JP5949461B2 - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP5949461B2
JP5949461B2 JP2012242626A JP2012242626A JP5949461B2 JP 5949461 B2 JP5949461 B2 JP 5949461B2 JP 2012242626 A JP2012242626 A JP 2012242626A JP 2012242626 A JP2012242626 A JP 2012242626A JP 5949461 B2 JP5949461 B2 JP 5949461B2
Authority
JP
Japan
Prior art keywords
housing
measuring device
hole
flow rate
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012242626A
Other languages
Japanese (ja)
Other versions
JP2014092430A (en
Inventor
寛 田川
寛 田川
彰之 須藤
彰之 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012242626A priority Critical patent/JP5949461B2/en
Publication of JP2014092430A publication Critical patent/JP2014092430A/en
Application granted granted Critical
Publication of JP5949461B2 publication Critical patent/JP5949461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、内燃機関に吸入される吸入空気の流量(以下、吸気量ともいう。)を測定するのに好適な流量測定装置に関する。   The present invention relates to a flow rate measuring apparatus suitable for measuring, for example, a flow rate of intake air sucked into an internal combustion engine (hereinafter also referred to as intake air amount).

〔従来の技術〕
従来から、この種の流量測定装置としては、種々の構成のものが提案され、実用に供されているが、近年、吸気量測定用の流量センサを内蔵する筺体に、吸入空気の温度(以下、吸気温ともいう。)を測定するための温度センサを付設した流量測定装置が有用されている(例えば、特許文献1参照)。
この流量測定装置は、温度センサで測定された吸気温を示す信号を、流量センサからの吸気量を示す信号とともに、内燃機関の運転状態を制御する電子制御装置(以下、ECUという。)に供給することにより、内燃機関の吸気系を適正に制御するための温度補償に利用されるものである。
[Conventional technology]
Conventionally, various types of flow measuring devices of this type have been proposed and put to practical use. Recently, the temperature of the intake air (hereinafter referred to as “intake air temperature”) is incorporated into a housing incorporating a flow rate sensor for measuring the amount of intake air. In addition, a flow rate measuring device provided with a temperature sensor for measuring the intake air temperature is also useful (see, for example, Patent Document 1).
This flow measurement device supplies a signal indicating the intake air temperature measured by the temperature sensor together with a signal indicating the intake air amount from the flow sensor to an electronic control device (hereinafter referred to as ECU) that controls the operating state of the internal combustion engine. By doing so, it is used for temperature compensation for appropriately controlling the intake system of the internal combustion engine.

ところで、吸気温を正確に測定するためには、温度センサを筺体から露出させて吸入空気に晒された状態で付設しなければならない。
そして、特許文献1に記載された従来の流量測定装置では、筺体を吸入空気通路に対しOリング等で封着する関係上、温度センサが吸入空気通路内に突出できるように、筺体には温度センサを担持する支持部材(結線用導電部材やターミナル)が通過できる比較的大きな矩形状の装入穴を設けて付設しているのが通例である。
また、この比較的大きい装入穴は、筐体の蓋体であるハウジングを樹脂モールド(筐体をインサート品として一体成形)する際に封鎖しておく必要があることから、温度センサの支持部材(結線用導電部材やターミナル)をインサート品として矩形状の樹脂モールド品をあらかじめ作製しておき、この樹脂モールド品で上述の装入穴を封鎖した後にハウジングを樹脂モールドしている。
By the way, in order to accurately measure the intake air temperature, it is necessary to attach the temperature sensor in a state where the temperature sensor is exposed from the housing and exposed to the intake air.
In the conventional flow rate measuring device described in Patent Document 1, the temperature of the housing is such that the temperature sensor can protrude into the intake air passage because the housing is sealed to the intake air passage by an O-ring or the like. Usually, a relatively large rectangular insertion hole through which a supporting member (conductive member for connection or terminal) carrying the sensor can pass is provided.
In addition, this relatively large insertion hole needs to be sealed when the housing, which is the lid of the casing, is resin-molded (molded integrally with the casing as an insert product). A rectangular resin molded product is prepared in advance using the (conductive member for connection or terminal) as an insert product, and the housing is resin molded after the above-described insertion hole is sealed with this resin molded product.

〔従来技術の問題点〕
しかしながら、上記構成の流量測定装置は、樹脂成形工程が多く、部品点数も多いため、全体として高価なものとなっており、せめて上述の樹脂モールド品を省略することができる斬新な構造で安価な流量測定装置が待望されている。
そこで、温度センサのリード線を積極的に有効活用して上記樹脂モールド品を省略する提案がなされている(本発明者の創案によるものであって従来周知ではない)。つまり、筐体には温度センサのリード線挿通用の貫通孔を設けておき、この貫通孔にリード線を挿通した後その孔を接着剤で封止する手法である。
[Problems of the prior art]
However, the flow rate measuring apparatus having the above configuration is expensive as a whole because it has many resin molding processes and a large number of parts, and is inexpensive with a novel structure capable of omitting the above-mentioned resin molded product. A flow measuring device is awaited.
In view of this, a proposal has been made to actively utilize the lead wires of the temperature sensor to omit the resin molded product (this is based on the idea of the present inventor and is not well known in the art). That is, this is a method in which a through hole for inserting a lead wire of a temperature sensor is provided in the housing, and the lead wire is inserted into the through hole and then the hole is sealed with an adhesive.

この手法によれば、リード線自体を温度センサの支持部材として有効活用することができ、しかも、リード線を挿通する貫通孔は適量の接着剤を充填できる程度の比較的小径にすることができるため、接着剤を充填する簡便な方法で貫通孔を完全に封鎖することができる。したがって、樹脂モールド品を省略することができる。   According to this method, the lead wire itself can be effectively used as a supporting member for the temperature sensor, and the through-hole through which the lead wire is inserted can be made to have a relatively small diameter so that an appropriate amount of adhesive can be filled. Therefore, the through hole can be completely blocked by a simple method of filling the adhesive. Therefore, the resin mold product can be omitted.

ところが、本発明者のその後の実験・研究によれば、冷熱サイクルの厳しい環境下においては導通不良が生じる恐れがあることが判明した。また、併せて、その原因を究明したところ、温度センサのリード線を挿通させる貫通孔付近にひび割れ(クラック)が生じ、このクラックを介して筐体内に水分が浸入することに起因していることも判明した。実験によれば、筐体には一般的にPBT(ポリブチレンテレフタレート樹脂)のごとき耐熱樹脂が用いられているため、接着剤としてシール性が良好で耐熱強度も強い汎用のエポキシ樹脂系のものを用いた場合、冷熱サイクルを繰り返すと、両部材の熱膨張係数の相違によって貫通孔付近にクラックが生じる事象が確認された。   However, according to the subsequent experiments and researches of the present inventor, it has been found that there is a possibility that a conduction failure may occur in an environment where the thermal cycle is severe. In addition, as a result of investigating the cause, it is caused by the occurrence of a crack near the through hole through which the lead wire of the temperature sensor is inserted, and moisture entering the housing through the crack. Also turned out. According to experiments, heat-resistant resin such as PBT (polybutylene terephthalate resin) is generally used for the casing, so a general-purpose epoxy resin-based adhesive with good sealing performance and high heat resistance is used. When it was used, when the cooling / heating cycle was repeated, it was confirmed that a crack occurred in the vicinity of the through hole due to the difference in thermal expansion coefficient between the two members.

特開2010−181354号公報JP 2010-181354 A

本発明は、上記の事情に鑑みてなされたものであって、その目的は、安価な構成でありながら、冷熱サイクルの厳しい環境下でも筐体にクラックが生じることなく、高品質を確保することができる流量測定装置を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to ensure high quality without cracking in a housing even in a severe environment of a thermal cycle while having an inexpensive configuration. An object of the present invention is to provide a flow measuring device capable of

〔請求項1の手段〕
請求項1に記載の発明(流量測定装置)は、筐体に付設される温度センサが、所定の通路(吸入空気通路)を流れる空気に晒される温度検出素子と、この温度検出素子の両端から伸びる一対のリード線とを有しており、一方、耐熱樹脂製の筐体が、リード線を筐体の外側から内側へ挿通可能な一対の貫通孔と、この貫通孔の各孔に筐体の内側で連なり接着剤が充填される一対の接着剤充填用孔と、この一対の接着剤充填用孔の間に位置し、筐体の内側から外側に向かって凹む形状に形成された熱応力吸収用溝とを有していて、リード線が挿通された一対の接着剤充填用孔には、接着剤が充填されていることを特徴としている。
[Means of Claim 1]
According to the first aspect of the present invention (flow rate measuring device), the temperature sensor attached to the housing is exposed to the air flowing through a predetermined passage (intake air passage), and from both ends of the temperature detection element. The heat-resistant resin housing has a pair of through-holes through which the lead wire can be inserted from the outside to the inside of the housing, and a housing in each of the through-holes. A pair of adhesive filling holes that are continuously filled with adhesive and the thermal stress that is located between the pair of adhesive filling holes and that is recessed from the inside to the outside of the housing A pair of adhesive filling holes that have absorption grooves and through which lead wires are inserted are filled with an adhesive .

上記構成を有する請求項1の発明によれば、筐体と接着剤との熱膨張差に基づいて熱応力が発生しても、一対の接着剤充填用孔間に形成された熱応力吸収用溝の伸縮によって熱応力を吸収することができる。よって、冷熱サイクルの厳しい環境下においても筐体にクラックが生じることがない。
また、熱応力吸収用溝を設けるだけの簡単な構造であり、しかもこの溝は、筺体の樹脂成形時に一体形成することができるため、熱応力吸収用溝を設けるための工数を特別に要しない。
したがって、安価な構成で、冷熱サイクルの厳しい環境下においても高品質を確保できる流量測定装置を提供することができる。
According to the invention of claim 1 having the above-described configuration, even if thermal stress is generated based on a difference in thermal expansion between the casing and the adhesive, the thermal stress absorbing gap formed between the pair of adhesive filling holes. Thermal stress can be absorbed by expansion and contraction of the groove. Therefore, a crack does not occur in the housing even under a severe environment of the cooling and heating cycle.
In addition, the structure is simple enough to provide a thermal stress absorbing groove, and since this groove can be formed integrally during resin molding of the housing, no special man-hour is required to provide the thermal stress absorbing groove. .
Therefore, it is possible to provide a flow rate measuring device that can ensure high quality even in a severe environment of a cooling and heating cycle with an inexpensive configuration.

本発明を適用する流量測定装置の代表例を示す内燃機関用流量測定装置の基本機能の説明に供する断面図である(実施例)。It is sectional drawing with which it uses for description of the basic function of the flow measuring device for internal combustion engines which shows the representative example of the flow measuring device to which this invention is applied (Example). 上記流量測定装置の正面図である(実施例)。It is a front view of the said flow measuring device (Example). 上記流量測定装置における筐体の上面図である(実施例)。It is a top view of the housing | casing in the said flow volume measuring apparatus (Example). 上記流量測定装置の分解斜視図である(実施例)。It is a disassembled perspective view of the said flow measuring device (Example). 図2のV−V線に沿う拡大断面図である(実施例)。It is an expanded sectional view which follows the VV line of FIG. 2 (Example). 本発明の主要部の説明に供するもので、(a)は筺体のターミナル配線前の上面図、(b)は(a)のVI−VI線に沿って鍔部を断面して示す筐体の要部正面図である(実施例)。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining a main part of the present invention, in which FIG. It is a principal part front view (Example).

以下、本発明を実施するための最良の形態を、図面に示す実施例に従って詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail according to embodiments shown in the drawings.

本実施例は、本発明の流量測定装置の代表例として、内燃機関の吸気量を測定するための流量測定装置への適用例を示している。以下の説明では、まず、流量測定装置の基本的な構成および機能を概説したのち、本発明の特徴的な構成および作用効果について詳説し、最後に本発明の特徴的事項の変形例について要約列挙する。
なお、各図において、同一または均等部分には、同一符号を付し、重複説明を省略することとする。
The present embodiment shows an application example to a flow measurement device for measuring the intake air amount of an internal combustion engine as a representative example of the flow measurement device of the present invention. In the following description, first, the basic configuration and functions of the flow rate measuring device are outlined, then the detailed configuration and operational effects of the present invention are described in detail, and finally, the modified examples of the characteristic items of the present invention are summarized and enumerated. To do.
In each figure, the same or equivalent parts are denoted by the same reference numerals, and redundant description is omitted.

〔実施例の構成〕
まず、本発明の流量測定装置の基本的な構成および機能について、図1〜図3に基づいて説明する。
[Configuration of Example]
First, the basic configuration and function of the flow measurement device of the present invention will be described with reference to FIGS.

流量測定装置1は、内燃機関に吸入される吸入空気の流量(吸気量)を測定するためのもので、吸入空気通路(以下、吸気路という。)2に配置される。流量測定装置1の筐体3には、吸気量を測定する熱式の流量センサ4が収容されており、吸入空気の温度(吸気温)を測定するための温度センサ5が付設されている。
そして、この温度センサ5で測定された吸気温を示す信号を、流量センサ4からの吸気量を示す信号とともに、内燃機関の運転状態を制御するECU(図示せず)に供給することにより、内燃機関の吸気系を適正に制御するための温度補償に利用される。
The flow rate measuring device 1 is for measuring the flow rate (intake amount) of intake air taken into the internal combustion engine, and is disposed in an intake air passage (hereinafter referred to as an intake passage) 2. A housing 3 of the flow rate measuring device 1 accommodates a thermal type flow rate sensor 4 that measures the amount of intake air, and is provided with a temperature sensor 5 for measuring the temperature of intake air (intake air temperature).
Then, by supplying a signal indicating the intake air temperature measured by the temperature sensor 5 together with a signal indicating the intake air amount from the flow sensor 4 to an ECU (not shown) that controls the operating state of the internal combustion engine, Used for temperature compensation to properly control the intake system of the engine.

流量測定装置1は、上記の流量センサ4および温度センサ5を含め、以下のような具体的構成を有している。   The flow rate measuring device 1 has the following specific configuration including the flow rate sensor 4 and the temperature sensor 5 described above.

筐体3は、一般的な耐熱樹脂、例えばPBT(ポリブチレンテレフタレート樹脂)によって形成されており、吸気路2に気密的に装着される本体31と、この本体31から垂下し吸気路2内に突き出される流路形成部32とから構成されている。また、筐体3は、図4にも示すごとく、本体31が鍔部31aを有する円盤形状を呈しているのに対し、流路形成部32が直方体の箱形形状を呈している。そして、流路形成部32には、吸気路2を流れる吸入空気の一部を取り込んで流すバイパス流路33が形成されており、このバイパス流路33に流量センサ4が収容されている。   The housing 3 is formed of a general heat-resistant resin, for example, PBT (polybutylene terephthalate resin), and a main body 31 that is airtightly attached to the intake passage 2 and a main body 31 that hangs down from the main body 31 and enters the intake passage 2. It is comprised from the flow-path formation part 32 protruded. In addition, as shown in FIG. 4, the housing 3 has a disk shape with the main body 31 having a flange portion 31 a, whereas the flow path forming portion 32 has a rectangular parallelepiped box shape. The flow path forming unit 32 is formed with a bypass flow path 33 that takes in a part of the intake air flowing through the intake path 2 and flows the flow sensor 4 in the bypass flow path 33.

なお、バイパス流路33は、吸気路2の上流に向かって開口する吸入空気の取込口33aと、吸気路2の下流に向かって開口する吸入空気の放出口33bとを有し、例えば、取込口33aから矢印Xのごとく取り込んだ吸入空気を矢印Yのごとく周回させて放出口33bから放出する。また、バイパス流路33には、ダストを排出するためのダスト排出路34が接続されている。このダスト排出路34は、取込口33aに対向し、かつ流量センサ4の上流側に位置しているため、バイパス流路33に侵入したダストは、流量センサ4に向かうことなく、矢印Zのごとくダスト排出路34を通って吸気路2に戻る。   The bypass passage 33 has an intake air intake port 33a that opens toward the upstream side of the intake passage 2 and an intake air discharge port 33b that opens toward the downstream side of the intake passage 2, for example, The intake air taken in from the intake port 33a as shown by the arrow X is circulated as shown by the arrow Y and is released from the discharge port 33b. Further, a dust discharge path 34 for discharging dust is connected to the bypass flow path 33. Since this dust discharge path 34 faces the intake port 33a and is located on the upstream side of the flow rate sensor 4, the dust that has entered the bypass flow path 33 does not go to the flow rate sensor 4, but is indicated by the arrow Z. In this way, it returns to the intake passage 2 through the dust discharge passage 34.

流量センサ4は、バイパス流路33において、吸入空気が吸気路2における流れ(矢印Q=X)と逆向きに流れる領域に突出している。
また、図4に示すように、流量センサ4は、発生した信号に所定の処理を施す信号処理部(図示せず)、および、ターミナル6と信号処理部とを電気的接続する別のターミナル7とともに、インサート品として樹脂モールドされてセンサアッシー8を構成している。このセンサアッシー8が、筐体3の本体31中央部に設けられたアッシー装着穴9に例えば圧入によって装填されることにより、流量センサ4がバイパス流路33内に突出するようになっている。
The flow rate sensor 4 protrudes in a region where the intake air flows in a direction opposite to the flow in the intake passage 2 (arrow Q = X) in the bypass flow path 33.
As shown in FIG. 4, the flow sensor 4 includes a signal processing unit (not shown) that performs predetermined processing on the generated signal, and another terminal 7 that electrically connects the terminal 6 and the signal processing unit. In addition, the sensor assembly 8 is configured by resin molding as an insert product. The sensor assembly 8 is loaded into the assembly mounting hole 9 provided in the central portion of the main body 31 of the housing 3 by, for example, press-fitting so that the flow sensor 4 protrudes into the bypass flow path 33.

温度センサ5は、吸気路2を流れる空気に晒される温度検出素子5aと、この温度検出素子5aの両端から伸びる一対のリード線5bとを有している。温度検出素子5aには例えば周知のサーミスタが用いられている。そして、温度センサ5は、流路形成部32からの熱的影響を受けることがないように、流路形成部32から離間させて筐体3の本体31、特にその鍔部31aに後述する取付手段50によって吊り下げられている。
なお、この鍔部31aには、外周にシール部材(Oリング)10を装填する環状溝31bが設けられており、筐体3は、吸気路2の取付穴2aにシール部材10を介して気密的に装着される。
The temperature sensor 5 has a temperature detection element 5a exposed to the air flowing through the intake passage 2, and a pair of lead wires 5b extending from both ends of the temperature detection element 5a. For example, a known thermistor is used as the temperature detection element 5a. The temperature sensor 5 is attached to the main body 31 of the housing 3, particularly its flange 31 a, which will be described later, separated from the flow path forming portion 32 so as not to be affected by the heat from the flow path forming portion 32. It is suspended by means 50.
The flange 31a is provided with an annular groove 31b for loading the seal member (O-ring) 10 on the outer periphery, and the housing 3 is hermetically sealed via the seal member 10 in the mounting hole 2a of the intake passage 2. It is installed.

ターミナル6は、流量測定装置1の出力端子をなすもので、筐体3の本体31の上面に膨出形成されたホルダ11に保持された状態で、温度センサ5のリード線5bの先端部や、センサアッシー8から突出するターミナル7の先端部と電気的接続される。
そして、ターミナル6は、筐体3およびセンサアッシー8とともにインサート品として樹脂モールドされ、吸気量および吸気温を示す信号をECUに出力するためのコネクタ20が構成されている(以下、筐体3、ターミナル6およびセンサアッシー8をインサート品として樹脂モールドにより形成される樹脂部分をハウジング21と呼ぶ。ハウジング21には、コネクタ20の樹脂部分が含まれる。)。
The terminal 6 is an output terminal of the flow rate measuring device 1, and is held by a holder 11 bulged on the upper surface of the main body 31 of the housing 3, and the tip of the lead wire 5 b of the temperature sensor 5 The terminal 7 protruding from the sensor assembly 8 is electrically connected.
The terminal 6 is resin-molded as an insert product together with the housing 3 and the sensor assembly 8, and a connector 20 for outputting a signal indicating the intake air amount and the intake air temperature to the ECU is configured (hereinafter referred to as the housing 3, A resin portion formed by resin molding using the terminal 6 and the sensor assembly 8 as inserts is referred to as a housing 21. The housing 21 includes the resin portion of the connector 20.)

次に、温度センサ5の上記取付手段50について図4および図5をも参照しながら詳細に説明する。   Next, the mounting means 50 of the temperature sensor 5 will be described in detail with reference to FIGS. 4 and 5 as well.

筐体3の本体31の鍔部31aには、その厚さ方向に直線的に貫通するように、一対の小径の貫通孔51と大径で楕円形状の接着剤充填用孔52とが設けられている。各貫通孔51は、温度センサ5の各リード線5bを、下側(筐体3の外側)の開口51aから上側(筐体3の内側)の開口51bへと挿通させるものであり、各接着剤充填用孔52は、各貫通孔51の上側(筐体3の内側)の開口51bに連なっており、リード線5bが挿通された後に接着剤が充填される。この接着剤にはシール性が良く耐熱強度も強い汎用の接着剤、例えばエポキシ樹脂系の接着剤が用いられ、この接着剤によって、リード線5bを鍔部31aにしっかりと固定することができる。
接着剤充填用孔52は、貫通孔51に対する接着剤の充填を助長すると同時に、リード線5bの接着面積を増やし、貫通孔51でのリード線5bの接着固定を補っている。
A pair of small-diameter through-holes 51 and a large-diameter and elliptical adhesive filling hole 52 are provided in the flange 31a of the main body 31 of the housing 3 so as to linearly penetrate in the thickness direction. ing. Each through hole 51 allows each lead wire 5b of the temperature sensor 5 to be inserted from an opening 51a on the lower side (outside of the housing 3) to an opening 51b on the upper side (inside of the housing 3). The agent filling hole 52 is connected to the opening 51b above each through hole 51 (inside the housing 3), and is filled with the adhesive after the lead wire 5b is inserted. As this adhesive, a general-purpose adhesive having a high sealing property and a high heat resistance, for example, an epoxy resin adhesive is used, and the lead wire 5b can be firmly fixed to the flange portion 31a by this adhesive.
The adhesive filling hole 52 promotes the filling of the adhesive into the through-hole 51 and, at the same time, increases the bonding area of the lead wire 5 b and supplements the fixing of the lead wire 5 b in the through-hole 51.

また、筐体3の流路形成部32には、リード線5bを貫通孔51に通す際にリード線5bをガイドするガイド部53が膨出形成されている。このガイド部53には、下端側にリード線5bを仮止めすることができる圧入把持部53aが設けられており,リード線5bを貫通孔51に通した後にリード線5bを保持することができる。したがって、リード線5bを接着剤にて固定する以前においても、温度センサ5が抜け落ちることはない。   In addition, a guide portion 53 that guides the lead wire 5 b when the lead wire 5 b is passed through the through hole 51 is bulged and formed in the flow path forming portion 32 of the housing 3. The guide portion 53 is provided with a press-fit grip 53a capable of temporarily fixing the lead wire 5b on the lower end side, and can hold the lead wire 5b after passing the lead wire 5b through the through hole 51. . Therefore, even before the lead wire 5b is fixed with the adhesive, the temperature sensor 5 does not fall off.

さらに、筺体3の鍔部31aには、一対の接着剤充填用孔52の間に位置し、筐体3の内側から外側に向かって凹む形状に形成された矩形状の熱応力吸収用溝54が設けられている。この矩形状の熱応力吸収用溝54と楕円形状の接着剤充填用孔52の各孔との関係は、熱応力吸収用溝54の容積をAとし、接着剤充填用の各孔52の容積をBとしたとき、A>Bの関係を満足するようになっている。   Furthermore, a rectangular thermal stress absorbing groove 54 is formed in the flange portion 31a of the casing 3 between the pair of adhesive filling holes 52 and is formed to be recessed from the inside to the outside of the housing 3. Is provided. The relationship between the rectangular thermal stress absorbing groove 54 and each hole of the elliptical adhesive filling hole 52 is that the volume of the thermal stress absorbing groove 54 is A, and the volume of each adhesive filling hole 52 is as follows. When B is B, the relationship of A> B is satisfied.

〔実施例の効果〕
上記構成の流量測定装置1によれば、筐体3には、筐体3の内外を連通する貫通孔51が設けられ、この貫通孔51に温度センサ5のリード線5bを直接挿通させた後にリード線5bを接着剤で筐体3に固定している。そして、貫通孔51を通ったリード線5bの先端部が、コネクタ20を構成するターミナル(出力端子)6に電気的接続される。
[Effects of Examples]
According to the flow rate measuring apparatus 1 configured as described above, the housing 3 is provided with the through hole 51 that communicates the inside and outside of the housing 3, and the lead wire 5 b of the temperature sensor 5 is directly inserted into the through hole 51. The lead wire 5b is fixed to the housing 3 with an adhesive. The leading end of the lead wire 5 b that has passed through the through hole 51 is electrically connected to a terminal (output terminal) 6 that constitutes the connector 20.

これにより、リード線5b自体を温度センサ5の支持部材として有効活用することができ、例えばターミナル6を筐体3の鍔部31aから吸気路2に突出させる必要がなくなる。しかも、リード線5bを挿通する貫通孔51は適量の接着剤を充填できる程度の小径にすることができるため、接着剤を充填する簡便な方法で貫通孔51を完全に封鎖することができる。   As a result, the lead wire 5b itself can be effectively used as a support member for the temperature sensor 5. For example, the terminal 6 does not need to protrude from the flange 31a of the housing 3 to the intake passage 2. Moreover, since the through hole 51 through which the lead wire 5b is inserted can be made small enough to be filled with an appropriate amount of adhesive, the through hole 51 can be completely sealed by a simple method of filling the adhesive.

また、貫通孔51には、筐体3の内側に位置する開口51bに連なって接着剤充填用孔52が設けられていて、この接着剤充填用孔52が貫通孔51に対する接着剤の充填を助長すると同時に、リード線5bの接着面積を増やし、貫通孔51でのリード線5bの接着固定を補っている。   In addition, the through hole 51 is provided with an adhesive filling hole 52 connected to the opening 51 b located inside the housing 3, and the adhesive filling hole 52 fills the through hole 51 with the adhesive. At the same time, the bonding area of the lead wire 5b is increased to supplement the bonding and fixing of the lead wire 5b in the through hole 51.

ところで、筐体3と接着剤とは材質が全く異なっており、PBTのごとき耐熱樹脂の方がエポキシ樹脂系の接着剤に対し熱膨張係数が格段に大きい。このため、冷熱サイクルの厳しい環境下においては、筐体3と接着剤充填用孔52内に充填された接着剤との熱膨張差に基づいて発生する熱応力によって、接着剤充填用孔52付近にひび割れ(クラック)が生じる恐れがある。   By the way, the housing 3 and the adhesive are completely different from each other, and the heat expansion resin such as PBT has a much larger thermal expansion coefficient than the epoxy resin adhesive. For this reason, in the severe environment of the thermal cycle, the vicinity of the adhesive filling hole 52 is caused by the thermal stress generated based on the thermal expansion difference between the casing 3 and the adhesive filled in the adhesive filling hole 52. Cracks may occur.

本実施例では、一対の接着剤充填用孔52の間に熱応力吸収用溝54を設けているため、熱応力吸収用溝54の伸縮によって熱応力を吸収することができる。よって、冷熱サイクルの厳しい環境下においても筐体3にクラックが生じることがない。
なお、熱応力吸収用溝54には、ハウジング21を筐体3に樹脂モールドする際にこのモールド樹脂が介入することがある。この場合、モールド樹脂が溝54を完全に埋めつくすことはなく、仮に埋め尽くしたとしても、筐体3とモールド樹脂とは別部材であるため、溝54にて熱応力を吸収できる。
In this embodiment, since the thermal stress absorbing groove 54 is provided between the pair of adhesive filling holes 52, thermal stress can be absorbed by expansion and contraction of the thermal stress absorbing groove 54. Therefore, no crack is generated in the housing 3 even in an environment where the heat cycle is severe.
The mold resin may intervene in the thermal stress absorbing groove 54 when the housing 21 is resin-molded on the housing 3. In this case, the mold resin does not completely fill the groove 54, and even if the mold resin is completely filled, the housing 3 and the mold resin are separate members, so that the thermal stress can be absorbed by the groove 54.

ここで、接着剤充填用孔52の各孔と熱応力吸収用溝54との関係は、接着剤充填用孔52に充填され固化する接着剤の量を考慮すると、孔52の容積Bより溝54の容積Aの方が大きい(A>Bの関係を満足する)ことが肝要であり、その構造例を図6に示す。   Here, the relationship between each hole of the adhesive filling hole 52 and the thermal stress absorbing groove 54 is determined from the volume B of the hole 52 in consideration of the amount of the adhesive filled in the adhesive filling hole 52 and solidified. It is important that the volume A of 54 is larger (a relation of A> B is satisfied), and an example of the structure is shown in FIG.

図6(a)、(b)において、矩形状の熱応力吸収用溝54と楕円形状の接着剤充填用孔52との寸法関係は、溝54の長手方向の長さをL、深さをHとし、孔52の長軸方向の長さをl、深さをhとすると、L>l、H>hの関係を満足するようになっている。
これにより、矩形状の熱応力吸収用溝54と楕円形状の接着剤充填用孔52との容積関係を、A>Bとすることができる。
6A and 6B, the dimensional relationship between the rectangular thermal stress absorbing groove 54 and the elliptical adhesive filling hole 52 is that the length in the longitudinal direction of the groove 54 is L, and the depth is If H is the length of the hole 52 in the long axis direction and l is the depth, the relationship of L> l and H> h is satisfied.
As a result, the volume relationship between the rectangular thermal stress absorbing groove 54 and the elliptical adhesive filling hole 52 can satisfy A> B.

また、本発明の熱応力吸収構造によれば、熱応力吸収用溝54を設けるだけの簡単な構造であり、しかもこの溝54は、筺体3の樹脂成形時に一体形成することができるため、熱応力吸収用溝54を設けるための工数を特別に要しない。
したがって、安価な構成で、冷熱サイクルの厳しい環境下においても高品質を確保できる流量測定装置1を提供することができる。
In addition, according to the thermal stress absorbing structure of the present invention, the thermal stress absorbing groove 54 is simple, and the groove 54 can be integrally formed when the casing 3 is molded with resin. The number of steps for providing the stress absorbing groove 54 is not particularly required.
Therefore, it is possible to provide the flow rate measuring device 1 that can ensure high quality with an inexpensive configuration even in a severe environment of the cooling and heating cycle.

〔変形例〕
なお、温度センサ5の取付手段50の態様は、上述した実施例に限定されることなく、本発明の精神を逸脱しない範囲で種々変形することが可能である。
[Modification]
In addition, the aspect of the attachment means 50 of the temperature sensor 5 is not limited to the above-described embodiment, and can be variously modified without departing from the spirit of the present invention.

その変形例を例示すると、
(1)上記実施例のように、熱応力吸収用溝54が矩形状、接着剤充填用孔52が楕円形状のごとく両者の形状が異なる場合には、溝54の表面積をCとし、孔52の表面積をDとしたとき、C>Dの関係を満足するようにしても良い。もっとも、溝54、孔52の長さL、lもしくは深さH、hのいずれか一方だけで、または溝54の短手方向、孔52の短軸方向の長さだけで、A>B、C>Dの関係を調整するようにしても良い。
(2)接着剤充填用孔52と熱応力吸収用溝54との両者を同一形態(矩形状同士、楕円形状同士)にしても良い。
(3)接着剤の充填量によっては、貫通孔51と接着剤充填用孔52とを兼用にし、1本の貫通孔(51、52)としても良い。
(4)熱応力吸収用溝54は、複数に分割して設けても良い。
As an example of the modification,
(1) When the thermal stress absorbing groove 54 is rectangular and the adhesive filling hole 52 is elliptical as in the above embodiment, the surface area of the groove 54 is C, and the hole 52 When the surface area of D is D, the relationship of C> D may be satisfied. However, A> B, only in one of the lengths L and l or the depths H and h of the groove 54 and the hole 52, or only in the short direction of the groove 54 and the length in the short axis direction of the hole 52, You may make it adjust the relationship of C> D.
(2) Both the adhesive filling hole 52 and the thermal stress absorbing groove 54 may have the same form (rectangular shapes, elliptical shapes).
(3) Depending on the filling amount of the adhesive, the through hole 51 and the adhesive filling hole 52 may be used as a single through hole (51, 52).
(4) The thermal stress absorbing groove 54 may be divided into a plurality.

本発明の流量測定装置1は、上述した実施例の適用例に限定されることなく、車両の内燃機関に吸入される吸気量を測定する用途以外に様々な用途に適用することができることは勿論である。   The flow rate measuring apparatus 1 of the present invention is not limited to the application example of the above-described embodiment, but can be applied to various uses other than the use of measuring the intake air amount taken into the internal combustion engine of the vehicle. It is.

1…流量測定装置、2…吸入空気通路(所定の通路)、3…筐体、4…流量センサ、5…温度センサ、5a…温度検出素子、5b…リード線、33…バイパス流路、50…取付手段、51…貫通孔、52…接着剤充填用孔、54…熱応力吸収用溝。   DESCRIPTION OF SYMBOLS 1 ... Flow measuring device, 2 ... Intake air passage (predetermined passage), 3 ... Housing, 4 ... Flow rate sensor, 5 ... Temperature sensor, 5a ... Temperature detection element, 5b ... Lead wire, 33 ... Bypass flow path, 50 ... Attachment means, 51 ... through hole, 52 ... adhesive filling hole, 54 ... thermal stress absorbing groove.

Claims (4)

所定の通路(2)を流れる空気の一部を取り込んで流すバイパス流路(33)およびこのバイパス流路(33)を流れる空気の流量を測定する流量センサ(4)を具有し、耐熱樹脂により形成された筐体(3)と、
前記筐体(3)に付設され、前記所定の通路(2)を流れる空気の温度を測定する温度センサ(5)と
を備える流量測定装置(1)において、
前記温度センサ(5)は、前記所定の通路(2)を流れる空気に晒される温度検出素子(5a)と、この温度検出素子(5a)の両端から伸びる一対のリード線(5b)とを有しており、
前記筐体(3)は、前記リード線(5b)が前記筐体(3)の外側から内側へ挿通される一対の貫通孔(51)と、この貫通孔(51)の各孔に前記筐体(3)の内側で連なり接着剤が充填される一対の接着剤充填用孔(52)と、この一対の接着剤充填用孔(52)の間に位置し、前記筐体(3)の内側から外側に向かって凹む形状に形成された熱応力吸収用溝(54)とを有しており、
前記リード線(5b)が挿通された前記一対の接着剤充填用孔(52)には、接着剤が充填されていることを特徴とする流量測定装置(1)。
A bypass passage (33) that takes in a part of the air flowing through the predetermined passage (2) and a flow rate sensor (4) that measures the flow rate of the air that flows through the bypass passage (33) is provided. A formed housing (3);
In a flow rate measuring device (1) comprising a temperature sensor (5) attached to the housing (3) and measuring the temperature of air flowing through the predetermined passage (2),
The temperature sensor (5) has a temperature detection element (5a) exposed to the air flowing through the predetermined passage (2) and a pair of lead wires (5b) extending from both ends of the temperature detection element (5a). And
The housing (3) includes a pair of through holes (51) through which the lead wires (5b) are inserted from the outside to the inside of the housing (3), and the housings in the holes of the through holes (51). Located between the pair of adhesive filling holes (52) that are connected inside the body (3) and filled with the adhesive, and between the pair of adhesive filling holes (52), the housing (3) A thermal stress absorbing groove (54) formed in a shape recessed from the inside toward the outside,
The flow rate measuring device (1) , wherein the pair of adhesive filling holes (52) into which the lead wires (5b) are inserted are filled with an adhesive .
請求項1に記載の流量測定装置(1)において、
前記熱応力吸収用溝(54)の容積をA、前記接着剤充填用孔(52)の各孔の容積をBとしたとき、
A>B
の関係を満足することを特徴とする流量測定装置(1)。
In the flow measuring device (1) according to claim 1,
When the volume of the thermal stress absorbing groove (54) is A and the volume of each hole of the adhesive filling hole (52) is B,
A> B
The flow rate measuring device (1) characterized by satisfying the relationship:
請求項2に記載の流量測定装置(1)において、
前記熱応力吸収用溝(54)の表面積をC、前記接着剤充填用孔(52)の各孔の表面積をDとしたとき、
C>D
の関係を満足することを特徴とする流量測定装置(1)。
In the flow measuring device (1) according to claim 2,
When the surface area of the groove for heat stress absorption (54) is C and the surface area of each hole of the adhesive filling hole (52) is D,
C> D
The flow rate measuring device (1) characterized by satisfying the relationship:
請求項2に記載の流量測定装置(1)において、
前記熱応力吸収用溝(54)の深さをH、前記接着剤充填用孔(52)の深さをhとしたとき、
H>h
の関係を満足することを特徴とする流量測定装置(1)。
In the flow measuring device (1) according to claim 2,
When the depth of the heat stress absorbing groove (54) is H and the depth of the adhesive filling hole (52) is h,
H> h
The flow rate measuring device (1) characterized by satisfying the relationship:
JP2012242626A 2012-11-02 2012-11-02 Flow measuring device Active JP5949461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242626A JP5949461B2 (en) 2012-11-02 2012-11-02 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242626A JP5949461B2 (en) 2012-11-02 2012-11-02 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2014092430A JP2014092430A (en) 2014-05-19
JP5949461B2 true JP5949461B2 (en) 2016-07-06

Family

ID=50936602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242626A Active JP5949461B2 (en) 2012-11-02 2012-11-02 Flow measuring device

Country Status (1)

Country Link
JP (1) JP5949461B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798336B2 (en) 2017-02-08 2020-12-09 株式会社デンソー Absolute humidity sensor
JP2019023611A (en) * 2017-07-24 2019-02-14 株式会社デンソー Method of manufacturing physical quantity measurement device, molding apparatus, and physical quantity measurement device
WO2019021761A1 (en) * 2017-07-24 2019-01-31 株式会社デンソー Physical quantity measurement device and manufacturing method of physical quantity measurement device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281087A (en) * 1985-10-04 1987-04-14 株式会社日立製作所 Lead frame connecting structure
JP5223708B2 (en) * 2009-02-09 2013-06-26 株式会社デンソー Air flow measurement device
WO2012049742A1 (en) * 2010-10-13 2012-04-19 日立オートモティブシステムズ株式会社 Flow sensor and production method therefor, and flow sensor module and production method therefor

Also Published As

Publication number Publication date
JP2014092430A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
US10670440B2 (en) Thermal airflow measuring device
KR101854591B1 (en) Sensor device for detecting a flow property of a fluid medium
KR101957133B1 (en) Sensor device for detecting a flow property of a fluid medium
JP5445535B2 (en) Air flow measurement device
JP4020208B2 (en) Flow measuring device
JP6184915B2 (en) Physical quantity detection device
JP4867437B2 (en) Temperature sensor
JP5973371B2 (en) Thermal flow meter
US20110259097A1 (en) Device for detecting a property of a flowing fluid medium
CN107607164B (en) Thermal flowmeter
JPWO2019049513A1 (en) Thermal flow meter
US10260921B2 (en) Thermal flow meter
JP5949461B2 (en) Flow measuring device
US9658091B2 (en) Thermal flow meter with lead having a bent portion
US8549914B2 (en) Sensor structure
JP2014071032A (en) Thermal type flow meter
EP3358316A1 (en) Physical quantity detection device
JP2018204993A (en) Physical quantity measurement device
JP6520636B2 (en) Physical quantity sensor subassembly and physical quantity measuring device
JP2014016188A (en) Air flow rate measuring apparatus
JP2020176970A (en) Physical quantity measuring device
US9976886B2 (en) Thermal flow meter
JP7049277B2 (en) Physical quantity detector
JP6879104B2 (en) Physical quantity sensor
US9194764B2 (en) Sensor device for detecting at least one flow property of a fluid medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R151 Written notification of patent or utility model registration

Ref document number: 5949461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250