JP5945123B2 - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
JP5945123B2
JP5945123B2 JP2012019451A JP2012019451A JP5945123B2 JP 5945123 B2 JP5945123 B2 JP 5945123B2 JP 2012019451 A JP2012019451 A JP 2012019451A JP 2012019451 A JP2012019451 A JP 2012019451A JP 5945123 B2 JP5945123 B2 JP 5945123B2
Authority
JP
Japan
Prior art keywords
polishing
acid
polishing composition
phase change
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012019451A
Other languages
Japanese (ja)
Other versions
JP2013157581A (en
JP2013157581A5 (en
Inventor
幸信 吉崎
幸信 吉崎
由裕 井澤
由裕 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to JP2012019451A priority Critical patent/JP5945123B2/en
Publication of JP2013157581A publication Critical patent/JP2013157581A/en
Publication of JP2013157581A5 publication Critical patent/JP2013157581A5/ja
Application granted granted Critical
Publication of JP5945123B2 publication Critical patent/JP5945123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、相変化合金を有する研磨対象物の研磨に適した研磨用組成物に関する。   The present invention relates to a polishing composition suitable for polishing a polishing object having a phase change alloy.

PRAM(相変化ランダムアクセスメモリ)デバイス(オボニックメモリデバイス又はPCRAMデバイスとしても知られている)には、電子記憶用途のための絶縁性非晶質相と伝導性結晶性相との間で電気的に切り換えることができる相変化材料(PCM)が利用される。これらの用途に適した典型的相変化材料には、周期表の種々のVIB族(カルコゲニド、例えば、Te又はPo)及びVB族(例えば、Sb)元素が、In、Ge、Ga、Sn、又はAgなどの1種又は複数種の金属元素との組合せで利用される。特に有用な相変化材料は、ゲルマニウム(Ge)−アンチモン(Sb)−テルル(Te)合金(GST合金)である。これらの材料は、加熱/冷却速度、温度、及び時間に依存して、物理的状態を可逆的に変化させ得る。他の有用な合金には、インジウムアンチモナイト(InSb)が含まれる。PRAMデバイス中の記憶情報は、異なった物理的な相又は状態の伝導特性により、損失を最小にして保存される。   PRAM (phase change random access memory) devices (also known as ovonic memory devices or PCRAM devices) have an electrical connection between an insulating amorphous phase and a conductive crystalline phase for electronic storage applications. Phase change material (PCM) that can be switched automatically is utilized. Typical phase change materials suitable for these applications include the various VIB (chalcogenide, eg Te or Po) and VB (eg Sb) elements of the periodic table, In, Ge, Ga, Sn, or It is used in combination with one or more metal elements such as Ag. A particularly useful phase change material is germanium (Ge) -antimony (Sb) -tellurium (Te) alloy (GST alloy). These materials can reversibly change their physical state depending on the heating / cooling rate, temperature, and time. Other useful alloys include indium antimonite (InSb). The stored information in the PRAM device is stored with minimal loss due to the conduction properties of the different physical phases or states.

半導体基材(例えば集積回路)の金属含有表面を研磨する方法としては、化学的機械的研磨(CMP)が知られている。CMPで用いられる研磨用組成物は、典型的には、砥粒、酸化剤、錯化剤を含有して効果的にエッチングを利用して研磨する。   Chemical mechanical polishing (CMP) is known as a method for polishing a metal-containing surface of a semiconductor substrate (for example, an integrated circuit). The polishing composition used in CMP typically contains abrasive grains, an oxidizing agent, and a complexing agent, and is effectively polished using etching.

このようなCMPは、相変化材料を使用する記憶デバイスを製作するために利用することができる。しかしながら、銅(Cu)またはタングステン(W)のような単一の成分からなる従来の金属層とは異なり、研磨される相変化材料は、硫黄(S)、セリウム(Ce)、ゲルマニウム(Ge)、アンチモン(Sb)、テルル(Te)、銀(Ag)、インジウム(In)、スズ(Sn)、ガリウム(Ga)などが結晶相および非結晶質相を可逆的に相変化する特定の割合で混合されてなり、多くの相変化材料(例えば、GST)の物理的性質は、PCMチップ中で利用される他の材料と比較して「軟質」である点など従来の金属層材料の特性と異なるため、現行の金属含有表面を研磨するための研磨用組成物をそのまま適用することは困難であった。   Such CMP can be utilized to fabricate storage devices that use phase change materials. However, unlike conventional metal layers consisting of a single component such as copper (Cu) or tungsten (W), the phase change material to be polished is sulfur (S), cerium (Ce), germanium (Ge). , Antimony (Sb), tellurium (Te), silver (Ag), indium (In), tin (Sn), gallium (Ga), etc. at a specific rate at which the crystalline phase and the amorphous phase change reversibly. When mixed, the physical properties of many phase change materials (eg, GST) are characteristic of conventional metal layer materials, such as being “soft” compared to other materials utilized in PCM chips. Because of the difference, it has been difficult to apply the polishing composition for polishing a current metal-containing surface as it is.

このような状況の中、相変化合金を有する研磨対象物の研磨に適した研磨用組成物について種々の検討がなされている。例えば、特許文献1には、砥粒及び窒素化合物を含む相変化合金を有する研磨対象物の研磨を目的とした研磨用組成物が開示されている。また、特許文献2には、砥粒、鉄イオン又は鉄キレート錯体を含む相変化合金を有する研磨対象物の研磨を目的とした研磨用組成物が開示されている。しかし、これらの発明だけでは相変化合金を有する研磨対象物の研磨を目的とした研磨用組成物としては十分ではなく、改良が望まれていた。   Under such circumstances, various studies have been made on polishing compositions suitable for polishing a polishing object having a phase change alloy. For example, Patent Document 1 discloses a polishing composition intended for polishing a polishing object having a phase change alloy containing abrasive grains and a nitrogen compound. Patent Document 2 discloses a polishing composition for polishing a polishing object having a phase change alloy containing abrasive grains, iron ions, or an iron chelate complex. However, these inventions alone are not sufficient as a polishing composition for polishing a polishing object having a phase change alloy, and improvement has been desired.

特開2009−016821号公報JP 2009-016821 A 特開2009−016829号公報JP 2009-016829 A

そこで本発明の目的は、相変化合金を有する研磨対象物を研磨する用途で好適に用いることができる研磨用組成物を提供することにある。特に、従来の金属含有表面を研磨するための典型的な研磨用組成物に含まれるような酸化剤及び錯化剤に依存せず、高い研磨速度を得ることができる研磨用組成物を提供することにある。   Accordingly, an object of the present invention is to provide a polishing composition that can be suitably used for polishing a polishing object having a phase change alloy. In particular, a polishing composition capable of obtaining a high polishing rate without depending on an oxidizing agent and a complexing agent as included in a typical polishing composition for polishing a conventional metal-containing surface is provided. There is.

本発明者らは、鋭意検討の結果、砥粒と特定の脆性膜形成剤を含むことで、相変化合金を有する研磨対象物に対して高い研磨速度を得ることができる研磨用組成物を見出した。   As a result of intensive studies, the present inventors have found a polishing composition capable of obtaining a high polishing rate for a polishing object having a phase change alloy by containing abrasive grains and a specific brittle film forming agent. It was.

すなわち、本発明の要旨は下記の通りである。
<1>相変化合金を有する研磨対象物を研磨する用途で使用される研磨用組成物であって、砥粒及び脆性膜形成剤を含み、前記脆性膜形成剤が有機リン化合物であることを特徴とする研磨用組成物。
<2>砥粒が、コロイダルシリカである研磨用組成物。
<3>コロイダルシリカが、有機酸を固定化されたコロイダルシリカである研磨用組成物。
<4>有機リン化合物がホスホン酸、アルキルホスホン酸、HEDP及びホスフィン酸から選ばれる少なくとも1以上である研磨用組成物。
<5>砥粒の平均二次粒子径の値を平均一次粒子径の値で除することにより得られる砥粒の平均会合度が1.2以上である研磨用組成物。
<6>脆性膜形成剤が相変化合金表面と錯形成して不溶性膜を形成する研磨用組成物。
>相変化合金を有する研磨対象物を研磨する用途で使用される研磨用組成物であって、脆性膜形成剤として有機リン化合物を含むことを特徴とする研磨用組成物。
>相変化合金としてGST有する研磨対象物を研磨する用途で使用される研磨用組成物。
>上記<1>〜<>のいずれかの研磨用組成物を用いて、相変化合金を有する研磨対象物の表面を研磨することを特徴とする研磨方法。
10>上記<1>〜<>のいずれかの研磨用組成物を用いて、相変化合金を有する研磨対象物の表面を研磨する工程を有することを特徴とする基板の製造方法。
That is, the gist of the present invention is as follows.
A polishing composition used for polishing an object having a <1> phase change alloy comprises abrasive grains and brittle film forming agents, the brittle film forming agent is organic phosphorus compound A polishing composition characterized by the above.
<2> Polishing composition whose abrasive is colloidal silica.
<3> Polishing composition whose colloidal silica is the colloidal silica which fix | immobilized the organic acid.
<4> organic phosphorus compound is a phosphonic acid, alkyl phosphonic acid, the polishing composition is at least 1 or more selected from HEDP and phosphinic acid.
<5> A polishing composition wherein the average degree of association of abrasive grains obtained by dividing the value of the average secondary particle diameter of the abrasive grains by the value of the average primary particle diameter is 1.2 or more.
<6> A polishing composition in which a brittle film forming agent forms a complex with the surface of a phase change alloy to form an insoluble film.
< 7 > A polishing composition for use in polishing a polishing object having a phase change alloy, comprising an organophosphorus compound as a brittle film forming agent.
< 8 > A polishing composition used for polishing a polishing object having GST as a phase change alloy.
< 9 > A polishing method comprising polishing the surface of an object to be polished having a phase change alloy, using the polishing composition according to any one of <1> to < 7 >.
< 10 > A method for producing a substrate, comprising a step of polishing the surface of an object to be polished having a phase change alloy using the polishing composition according to any one of <1> to < 7 >.

本発明によれば、相変化合金を有する研磨対象物を研磨する用途で好適に用いることができる研磨用組成物が提供される。特に、研磨速度向上に効果的な研磨用組成物が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the polishing composition which can be used suitably for the use which grind | polishes the grinding | polishing target object which has a phase change alloy is provided. In particular, a polishing composition effective for improving the polishing rate is provided.

以下、本発明の一実施形態を説明する。
本実施形態の研磨用組成物は、砥粒と特定の脆性膜形成剤を含む。
Hereinafter, an embodiment of the present invention will be described.
The polishing composition of this embodiment contains abrasive grains and a specific brittle film forming agent.

この研磨用組成物は、相変化合金を有する研磨対象物を研磨する用途で使用される。相変化合金は、PRAM(相変化ランダムアクセスメモリ)デバイス(オボニックメモリデバイス又はPCRAMデバイスとしても知られている)において、電子記憶用途のための絶縁性非晶質相と伝導性結晶性相との間で電気的に切り換えることができる材料として利用されるものである。これらの用途に適した相変化合金として、周期表の種々のVIB族(カルコゲニド、例えば、Te又はPo)及びVB族(例えば、Sb)元素が、In、Ge、Ga、Sn、又はAgなどの1種又は複数種の金属元素との組合せが利用される。特に有用な相変化材料は、ゲルマニウム(Ge)−アンチモン(Sb)−テルル(Te)合金(GST合金)である。   This polishing composition is used for polishing a polishing object having a phase change alloy. Phase change alloys are used in PRAM (phase change random access memory) devices (also known as ovonic memory devices or PCRAM devices) in insulating amorphous and conductive crystalline phases for electronic storage applications. It is used as a material that can be electrically switched between. Phase change alloys suitable for these applications include various Group VIB (chalcogenide, eg, Te or Po) and VB (eg, Sb) elements of the periodic table such as In, Ge, Ga, Sn, or Ag. Combinations with one or more metal elements are utilized. A particularly useful phase change material is germanium (Ge) -antimony (Sb) -tellurium (Te) alloy (GST alloy).

(砥粒)
研磨用組成物は、砥粒を含有する。砥粒は、無機粒子、有機粒子、及び有機無機複合粒子のいずれであってもよい。無機粒子の具体例としては、例えば、シリカ、アルミナ、セリア、チタニアなどの金属酸化物からなる粒子、並びに窒化ケイ素粒子、炭化ケイ素粒子及び窒化ホウ素粒子が挙げられる。有機粒子の具体例としては、例えばポリメタクリル酸メチル(PMMA)粒子が挙げられる。その中でもシリカ粒子が好ましく、特に好ましいのはコロイダルシリカである。
(Abrasive grains)
The polishing composition contains abrasive grains. The abrasive grains may be any of inorganic particles, organic particles, and organic-inorganic composite particles. Specific examples of the inorganic particles include particles made of metal oxides such as silica, alumina, ceria, titania, and silicon nitride particles, silicon carbide particles, and boron nitride particles. Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles. Among these, silica particles are preferable, and colloidal silica is particularly preferable.

砥粒は表面修飾されていてもよい。通常のコロイダルシリカは、酸性条件下でゼータ電位の値がゼロに近いために、酸性条件下ではシリカ粒子同士が互いに電気的に反発せず凝集を起こしやすい。これに対し、酸性条件でもゼータ電位が比較的大きな正もしくは負の値を有するように表面修飾された砥粒は、酸性条件下においても互いに強く反発して良好に分散する結果、研磨用組成物の保存安定性を向上させることになる。このような表面修飾砥粒は、例えば、アルミニウム、チタン又はジルコニウムなどの金属あるいはそれらの酸化物を砥粒と混合して砥粒の表面にドープさせることにより得ることができる。   The abrasive grains may be surface-modified. Since ordinary colloidal silica has a zeta potential value close to zero under acidic conditions, silica particles are not electrically repelled with each other under acidic conditions and are likely to agglomerate. On the other hand, abrasive grains whose surfaces are modified so that the zeta potential has a relatively large positive or negative value even under acidic conditions are strongly repelled and dispersed well even under acidic conditions. This will improve the storage stability. Such surface-modified abrasive grains can be obtained, for example, by mixing a metal such as aluminum, titanium or zirconium or an oxide thereof with the abrasive grains and doping the surface of the abrasive grains.

あるいは、研磨用組成物中の表面修飾砥粒は、有機酸を固定化したシリカであってもよい。中でも有機酸を固定化したコロイダルシリカを好ましく使用することができる。コロイダルシリカへの有機酸の固定化は、コロイダルシリカの表面に有機酸の官能基を化学的に結合させることにより行われる。コロイダルシリカと有機酸を単に共存させただけではコロイダルシリカへの有機酸の固定化は果たされない。有機酸の一種であるスルホン酸をコロイダルシリカに固定化するのであれば、例えば、“Sulfonic acid−functionalized silica through quantitative oxidation of thiol groups”, Chem. Commun. 246−247 (2003)に記載の方法で行うことができる。具体的には、3−メルカプトプロピルトリメトキシシラン等のチオール基を有するシランカップリング剤をコロイダルシリカにカップリングさせた後に過酸化水素でチオール基を酸化することにより、スルホン酸が表面に固定化されたコロイダルシリカを得ることができる。あるいは、カルボン酸をコロイダルシリカに固定化するのであれば、例えば、“Novel Silane Coupling Agents Containing a Photolabile 2−Nitrobenzyl Ester for Introduction of a Carboxy Group on the Surface of Silica Gel”, Chemistry Letters, 3, 228−229 (2000)に記載の方法で行うことができる。具体的には、光反応性2−ニトロベンジルエステルを含むシランカップリング剤をコロイダルシリカにカップリングさせた後に光照射することにより、カルボン酸が表面に固定化されたコロイダルシリカを得ることができる。   Alternatively, the surface-modified abrasive grains in the polishing composition may be silica with an organic acid immobilized thereon. Of these, colloidal silica having an organic acid immobilized thereon can be preferably used. The organic acid is immobilized on the colloidal silica by chemically bonding a functional group of the organic acid to the surface of the colloidal silica. If the colloidal silica and the organic acid are simply allowed to coexist, the organic acid is not fixed to the colloidal silica. For immobilizing sulfonic acid, which is a kind of organic acid, on colloidal silica, see, for example, “Sulphonic acid-functionalized silica through quantitative oxides of thiol groups”, Chem. Commun. 246-247 (2003). Specifically, a silane coupling agent having a thiol group such as 3-mercaptopropyltrimethoxysilane is coupled to colloidal silica, and then the sulfonic acid is immobilized on the surface by oxidizing the thiol group with hydrogen peroxide. The colloidal silica thus obtained can be obtained. Alternatively, if the carboxylic acid is immobilized on colloidal silica, for example, “Novel Silene Coupling Agents Containing a Photolabile 2-Nitrobenzoyl Ester for the Carboxy Group” 229 (2000). Specifically, colloidal silica having a carboxylic acid immobilized on the surface can be obtained by irradiating light after coupling a silane coupling agent containing a photoreactive 2-nitrobenzyl ester to colloidal silica. .

研磨用組成物中の砥粒の含有量は0.1質量%以上であることが好ましく、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上である。砥粒の含有量が多くなるにつれて、研磨用組成物による研磨対象物の除去速度が向上する利点がある。   The content of abrasive grains in the polishing composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more. As the content of the abrasive grains increases, there is an advantage that the removal rate of the object to be polished by the polishing composition is improved.

研磨用組成物中の砥粒の含有量はまた、20質量%以下であることが好ましく、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。砥粒の含有量が少なくなるにつれて、研磨用組成物の材料コストを抑えることができる。   The content of abrasive grains in the polishing composition is also preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 10% by mass or less. As the abrasive content decreases, the material cost of the polishing composition can be reduced.

砥粒の平均一次粒子径は5nm以上であることが好ましく、より好ましくは7nm以上、さらに好ましくは10nm以上である。砥粒の平均一次粒子径が大きくなるにつれて、研磨用組成物による研磨対象物の除去速度が向上する有利がある。なお、砥粒の平均一次粒子径の値は、例えば、BET法で測定される砥粒の比表面積に基づいて計算することができる。   The average primary particle diameter of the abrasive grains is preferably 5 nm or more, more preferably 7 nm or more, and further preferably 10 nm or more. As the average primary particle diameter of the abrasive grains increases, there is an advantage that the removal rate of the object to be polished by the polishing composition is improved. In addition, the value of the average primary particle diameter of an abrasive grain can be calculated based on the specific surface area of the abrasive grain measured by BET method, for example.

砥粒の平均一次粒子径はまた、100nm以下であることが好ましく、より好ましくは90nm以下、さらに好ましくは80nm以下である。砥粒の平均一次粒子径が小さくなるにつれて、研磨用組成物を用いて研磨対象物を研磨することにより表面欠陥の少ない研磨面を得られやすい。   The average primary particle diameter of the abrasive grains is also preferably 100 nm or less, more preferably 90 nm or less, and still more preferably 80 nm or less. As the average primary particle diameter of the abrasive grains decreases, it is easy to obtain a polished surface with few surface defects by polishing the object to be polished using the polishing composition.

砥粒の平均二次粒子径は150nm以下であることが好ましく、より好ましくは120nm以下、さらに好ましくは100nm以下である。砥粒の平均二次粒子径の値は、例えば、レーザー光散乱法により測定することができる。   The average secondary particle diameter of the abrasive grains is preferably 150 nm or less, more preferably 120 nm or less, and still more preferably 100 nm or less. The value of the average secondary particle diameter of the abrasive grains can be measured by, for example, a laser light scattering method.

砥粒の平均二次粒子径の値を平均一次粒子径の値で除することにより得られる砥粒の平均会合度は1.2以上であることが好ましく、より好ましくは1.5以上である。砥粒の平均会合度が大きくなるにつれて、研磨用組成物による研磨対象物の除去速度が向上する利点がある。   The average degree of association of the abrasive grains obtained by dividing the value of the average secondary particle diameter of the abrasive grains by the value of the average primary particle diameter is preferably 1.2 or more, more preferably 1.5 or more. . As the average degree of association of the abrasive grains increases, there is an advantage that the removal rate of the object to be polished by the polishing composition is improved.

砥粒の平均会合度はまた、4以下であることが好ましく、より好ましくは3以下、さらに好ましくは2以下である。砥粒の平均会合度が小さくなるにつれて、研磨用組成物を用いて研磨対象物を研磨することにより表面欠陥の少ない研磨面を得られやすい。   The average degree of association of the abrasive grains is also preferably 4 or less, more preferably 3 or less, and still more preferably 2 or less. As the average degree of association of the abrasive grains decreases, it is easy to obtain a polished surface with few surface defects by polishing the object to be polished using the polishing composition.

(脆性膜形成剤)
研磨用組成物は、飽和モノカルボン酸及び有機リン酸から選ばれる少なくとも1以上である脆性膜形成剤を含む。従来の金属含有表面を研磨するための典型的な研磨用組成物では、その研磨用組成物に含まれる酸化剤で研磨対象の金属を酸化して金属酸化物を形成し、さらに錯化剤で金属酸化物を溶解することで研磨する。それに対して本発明の研磨用組成物は、その研磨用組成物に含まれる上記脆性膜形成剤が、相変化合金表面と錯形成して不溶性の脆性膜を形成し、その脆性膜を砥粒で機械的に研磨することで高い研磨速度が得られると考えられる。
(Brittle film forming agent)
Polishing composition contains the brittle film-forming agent which is at least 1 or more chosen from saturated monocarboxylic acid and organic phosphoric acid. In a typical polishing composition for polishing a conventional metal-containing surface, a metal oxide is formed by oxidizing a metal to be polished with an oxidizing agent contained in the polishing composition, and further a complexing agent is used. Polishing is performed by dissolving the metal oxide. On the other hand, in the polishing composition of the present invention, the brittle film forming agent contained in the polishing composition forms an insoluble brittle film by complexing with the phase change alloy surface, and the brittle film is formed into abrasive grains. It is considered that a high polishing rate can be obtained by mechanical polishing.

脆性膜形成剤として飽和モノカルボン酸を用いる場合、例えば、酢酸、乳酸、プロピオン酸、酪酸、グリコール酸、グルコン酸、サリチル酸、イソニコチン酸、イソ酪酸、吉草酸、イソ吉草酸、ピバル酸、ヒドロアンゲリカ酸、カプロン酸、2−メチルペンタン酸、4−メチルペンタン酸、2,3−ジメチルブタン酸、2−エチルブタン酸、2,2−ジメチルブタン酸、3,3−ジメチルブタン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸が挙げられる。飽和モノカルボン酸の炭素数は、2〜6が好ましく、2〜4がより好ましい。炭素数が2〜6の飽和モノカルボン酸としては、相変化合金表面と錯形成して不溶性の脆性膜を形成しやすく、その結果として高い研磨速度が得られるという観点から、酢酸、乳酸、プロピオン酸、酪酸、グリコール酸、グルコン酸、サリチル酸、イソニコチン酸、イソ酪酸、吉草酸、イソ吉草酸、ピバル酸、ヒドロアンゲリカ酸、カプロン酸、2−メチルペンタン酸、4−メチルペンタン酸、2,3−ジメチルブタン酸、2−エチルブタン酸、2,2−ジメチルブタン酸及び3,3−ジメチルブタン酸からなる群より選択される少なくとも1以上の化合物を含有することが好ましい。上記飽和モノカルボン酸は、塩であってもよい。また、上記飽和モノカルボン酸は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   When using a saturated monocarboxylic acid as a brittle film forming agent, for example, acetic acid, lactic acid, propionic acid, butyric acid, glycolic acid, gluconic acid, salicylic acid, isonicotinic acid, isobutyric acid, valeric acid, isovaleric acid, pivalic acid, hydro Angelic acid, caproic acid, 2-methylpentanoic acid, 4-methylpentanoic acid, 2,3-dimethylbutanoic acid, 2-ethylbutanoic acid, 2,2-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, heptanoic acid, Examples include octanoic acid, nonanoic acid, and decanoic acid. 2-6 are preferable and, as for carbon number of saturated monocarboxylic acid, 2-4 are more preferable. As the saturated monocarboxylic acid having 2 to 6 carbon atoms, acetic acid, lactic acid, propion are used from the viewpoint of easily forming an insoluble brittle film by complex formation with the surface of the phase change alloy and as a result, a high polishing rate can be obtained. Acid, butyric acid, glycolic acid, gluconic acid, salicylic acid, isonicotinic acid, isobutyric acid, valeric acid, isovaleric acid, pivalic acid, hydroangelic acid, caproic acid, 2-methylpentanoic acid, 4-methylpentanoic acid, 2, It is preferable to contain at least one compound selected from the group consisting of 3-dimethylbutanoic acid, 2-ethylbutanoic acid, 2,2-dimethylbutanoic acid and 3,3-dimethylbutanoic acid. The saturated monocarboxylic acid may be a salt. Moreover, the said saturated monocarboxylic acid may be used individually by 1 type, and may be used in combination of 2 or more type.

研磨用組成物中の飽和モノカルボン酸の含有量の上限は、10質量%であることが好ましく、より好ましくは8質量%、さらに好ましくは5質量%である。飽和モノカルボン酸の含有量が少なくなるにつれて、製造コストを下げることができるので好ましい。   The upper limit of the content of the saturated monocarboxylic acid in the polishing composition is preferably 10% by mass, more preferably 8% by mass, and even more preferably 5% by mass. As the content of the saturated monocarboxylic acid decreases, the production cost can be reduced, which is preferable.

研磨用組成物中の飽和モノカルボン酸の含有量の下限は、0.001質量%であることが好ましく、より好ましくは0.01質量%、さらに好ましくは0.1質量%である。飽和モノカルボン酸の含有量が多くなるにつれて、研磨速度が高くなるので好ましい。   The lower limit of the content of the saturated monocarboxylic acid in the polishing composition is preferably 0.001% by mass, more preferably 0.01% by mass, and still more preferably 0.1% by mass. As the content of the saturated monocarboxylic acid increases, the polishing rate increases, which is preferable.

脆性膜形成剤として有機リン化合物を用いる場合、当該有機リン化合物は炭素(C)−リン(P)結合を含む有機化合物をいい、例えば、ホスフィン、ホスフィンオキシド、ホスフィンスルフィド、ジホスファン、などの3価リンの酸及びハロゲン化物、ホスホニウム塩、ホスホン酸、ホスフィン酸及びこれらの誘導体、が挙げられる。相変化合金表面と錯形成して不溶性の脆性膜を形成しやすく、その結果として高い研磨速度が得られるという観点から、ホスフィン酸及びホスホン酸が好ましく、より具体的には、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン−1,1,−ジホスホン酸、エタン−1,1,2−トリホスホン酸、エタン−1−ヒドロキシ−1,1−ジホスホン酸、エタン−1−ヒドロキシ−1,1,2−トリホスホン酸、エタン−1,2−ジカルボキシ−1,2−ジホスホン酸、メタンヒドロキシホスホン酸、2−ホスホノブタン−1,2−ジカルボン酸、1−ホスホノブタン−2,3,4−トリカルボン酸、α−メチルホスホノコハク酸、フェニルホスホン酸、ホスフィン酸なる群より選択される少なくとも1以上の化合物を含有することが好ましい。上記有機リン化合物は、塩であってもよい。また、上記有機リン化合物は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   When an organic phosphorus compound is used as the brittle film forming agent, the organic phosphorus compound refers to an organic compound containing a carbon (C) -phosphorus (P) bond, for example, trivalent such as phosphine, phosphine oxide, phosphine sulfide, and diphosphane. And phosphoric acids and halides, phosphonium salts, phosphonic acids, phosphinic acids and derivatives thereof. Phosphinic acid and phosphonic acid are preferred from the viewpoint of easily forming an insoluble brittle film by complex formation with the phase change alloy surface, and as a result, a high polishing rate can be obtained. Acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1, -diphosphonic acid, ethane-1 , 1,2-Triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1,2-diphosphonic Acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phospho Butanoic 2,3,4-tricarboxylic acid, alpha-methyl phosphono succinic acid, phenylphosphonic acid, preferably contains at least one or more compounds selected from the group consisting of phosphinic acid. The organophosphorus compound may be a salt. Moreover, the said organophosphorus compound may be used individually by 1 type, and may be used in combination of 2 or more type.

研磨用組成物中の有機リン化合物の含有量の上限は、10質量%であることが好ましく、より好ましくは8質量%、さらに好ましくは5質量%である。有機リン化合物の含有量が少なくなるにつれて、製造コストを下げることができるので好ましい。   The upper limit of the content of the organophosphorus compound in the polishing composition is preferably 10% by mass, more preferably 8% by mass, and even more preferably 5% by mass. As the content of the organophosphorus compound decreases, the production cost can be reduced, which is preferable.

研磨用組成物中の有機リン化合物の含有量の下限は、0.001質量%であることが好ましく、より好ましくは0.01質量%、さらに好ましくは0.1質量%である。有機リン化合物の含有量が多くなるにつれて、研磨速度が高くなるので好ましい。   The lower limit of the content of the organophosphorus compound in the polishing composition is preferably 0.001% by mass, more preferably 0.01% by mass, and still more preferably 0.1% by mass. As the content of the organophosphorus compound increases, the polishing rate increases, which is preferable.

(研磨用組成物のpH及びpH調整剤)
研磨用組成物のpHの上限は特に限定されないが、12であることが好ましく、より好ましくは10である。pHが低くなるにつれて、研磨用組成物の操作性が向上する。
(Polishing composition pH and pH adjuster)
Although the upper limit of the pH of polishing composition is not specifically limited, It is preferable that it is 12, More preferably, it is 10. As the pH is lowered, the operability of the polishing composition is improved.

研磨用組成物のpHの下限も特に限定されないが、1であることが好ましく、より好ましくは3である。pHが高くなるほど、研磨用組成物中の砥粒の分散性が向上する。   The lower limit of the pH of the polishing composition is not particularly limited, but is preferably 1, and more preferably 3. The higher the pH, the better the dispersibility of the abrasive grains in the polishing composition.

研磨用組成物のpHを所望の値に調整するために必要に応じて使用されるpH調整剤は酸及びアルカリのいずれであってもよく、また無機及び有機の化合物のいずれであってもよい。   The pH adjuster used as necessary to adjust the pH of the polishing composition to a desired value may be either acid or alkali, and may be any of inorganic and organic compounds. .

(酸化剤)
研磨用組成物には、酸化剤をさらに含有させることができる。酸化剤は研磨対象物の表面を酸化する作用を有し、研磨用組成物中に酸化剤を加えた場合には、研磨用組成物による研磨速度の向上効果がある。しかし、研磨対象物が相変化合金を有する場合、従来の金属含有表面を研磨するための典型的な研磨用組成物で研磨すると、過度な研磨を引き起こす。これは、従来の半導体で使用される金属(例えばCu)と相変化合金の特性の違いに基づくと考えられ、研磨対象物が相変化合金を有する場合は酸化剤の含有量は低いほうが好ましい。
(Oxidant)
The polishing composition can further contain an oxidizing agent. The oxidizing agent has an action of oxidizing the surface of the object to be polished, and when an oxidizing agent is added to the polishing composition, there is an effect of improving the polishing rate by the polishing composition. However, when the object to be polished has a phase change alloy, polishing with a typical polishing composition for polishing a conventional metal-containing surface causes excessive polishing. This is considered to be based on the difference in characteristics between a metal (for example, Cu) used in a conventional semiconductor and a phase change alloy, and when the object to be polished has a phase change alloy, the content of the oxidizing agent is preferably low.

研磨用組成物中の酸化剤の含有量の上限は、10質量%であることが好ましく、より好ましくは5質量%である。酸化剤の含有量が少なくなるにつれて、酸化剤による相変化合金の過剰な酸化が起こりにくくなり、過度な研磨を抑制することができる。   The upper limit of the content of the oxidizing agent in the polishing composition is preferably 10% by mass, more preferably 5% by mass. As the content of the oxidizing agent decreases, excessive oxidation of the phase change alloy by the oxidizing agent is less likely to occur, and excessive polishing can be suppressed.

研磨用組成物中の酸化剤の含有量の下限は、0.1質量%であることが好ましく、より好ましくは0.3質量%である。酸化剤の含有量が多くなるにつれて、研磨速度の向上を助長する。   The lower limit of the content of the oxidizing agent in the polishing composition is preferably 0.1% by mass, more preferably 0.3% by mass. As the content of the oxidizing agent increases, the polishing rate is improved.

使用可能な酸化剤は、例えば過酸化物である。過酸化物の具体例としては、例えば、過酸化水素、過酢酸、過炭酸塩、過酸化尿素および過塩素酸、ならびに過硫酸ナトリウム、過硫酸カリウムおよび過硫酸アンモニウムなどの過硫酸塩が挙げられる。中でも過硫酸塩および過酸化水素が研磨速度の観点から好ましく、水溶液中での安定性および環境負荷への観点から過酸化水素が特に好ましい。   An oxidizing agent that can be used is, for example, a peroxide. Specific examples of the peroxide include, for example, hydrogen peroxide, peracetic acid, percarbonate, urea peroxide and perchloric acid, and persulfates such as sodium persulfate, potassium persulfate and ammonium persulfate. Among them, persulfate and hydrogen peroxide are preferable from the viewpoint of polishing rate, and hydrogen peroxide is particularly preferable from the viewpoint of stability in an aqueous solution and environmental load.

(錯化剤)
研磨用組成物には、錯化剤をさらに含有させることができる。研磨用組成物中に含まれる錯化剤は、相変化合金の表面を化学的にエッチングする作用を有し、研磨用組成物による研磨速度を向上させる働きをする。しかし、研磨対象物が相変化合金を有する場合、従来の金属含有表面を研磨するための典型的な研磨用組成物で研磨すると、過剰なエッチングを引き起こし、その結果過度な研磨を引き起こす。これは、従来の半導体で使用される金属(例えばCu)と相変化合金の特性の違いに基づくと考えられ、研磨対象物が相変化合金を有する場合は錯化剤の含有量は低いほうが好ましい。
(Complexing agent)
The polishing composition can further contain a complexing agent. The complexing agent contained in the polishing composition has a function of chemically etching the surface of the phase change alloy, and functions to improve the polishing rate by the polishing composition. However, if the object to be polished has a phase change alloy, polishing with a typical polishing composition for polishing a conventional metal-containing surface will cause excessive etching and consequently excessive polishing. This is considered to be based on the difference in characteristics between a metal (for example, Cu) used in a conventional semiconductor and a phase change alloy. When the object to be polished has a phase change alloy, the content of the complexing agent is preferably low. .

研磨用組成物中の錯化剤の含有量の上限は、10質量%であることが好ましく、より好ましくは1質量%である。錯化剤の含有量が少なくなるにつれて、錯化剤による相変化合金に対する過剰なエッチングが起こりにくくなる。その結果、過剰な研磨を抑制することができる。   The upper limit of the content of the complexing agent in the polishing composition is preferably 10% by mass, more preferably 1% by mass. As the content of the complexing agent decreases, excessive etching of the phase change alloy by the complexing agent is less likely to occur. As a result, excessive polishing can be suppressed.

研磨用組成物中の錯化剤の含有量の下限は、0.01質量%であることが好ましく、より好ましくは0.1質量%である。錯化剤の含有量が多くなるにつれて、相変化合金へのエッチング効果が増す。その結果、研磨用組成物による研磨速度の向上を助長する。   The lower limit of the content of the complexing agent in the polishing composition is preferably 0.01% by mass, more preferably 0.1% by mass. As the complexing agent content increases, the etching effect on the phase change alloy increases. As a result, improvement of the polishing rate by the polishing composition is promoted.

使用可能な錯化剤は、例えば、無機酸、下記に挙げる有機酸、およびアミノ酸である。無機酸の具体例としては、例えば、硫酸、硝酸、ホウ酸、炭酸、次亜リン酸、亜リン酸およびリン酸が挙げられる。有機酸の具体例としては、例えば、ギ酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、2−メチルヘキサン酸、2−エチルヘキサン酸、安息香酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、およびクエン酸が挙げられる。メタンスルホン酸、エタンスルホン酸およびイセチオン酸などの有機硫酸も使用可能である。無機酸または有機酸の代わりにあるいは無機酸または有機酸と組み合わせて、無機酸または有機酸のアルカリ金属塩などの塩を用いてもよい。アミノ酸の具体例としては、例えば、グリシン、α−アラニン、β−アラニン、N−メチルグリシン、N,N−ジメチルグリシン、2−アミノ酪酸、ノルバリン、バリン、ロイシン、ノルロイシン、イソロイシン、フェニルアラニン、プロリン、サルコシン、オルニチン、リシン、タウリン、セリン、トレオニン、ホモセリン、チロシン、ビシン、トリシン、3,5−ジヨード−チロシン、β−(3,4−ジヒドロキシフェニル)−アラニン、チロキシン、4−ヒドロキシ−プロリン、システイン、メチオニン、エチオニン、ランチオニン、シスタチオニン、シスチン、システイン酸、アスパラギン酸、グルタミン酸、S−(カルボキシメチル)−システイン、4−アミノ酪酸、アスパラギン、グルタミン、アザセリン、アルギニン、カナバニン、シトルリン、δ−ヒドロキシ−リシン、クレアチン、ヒスチジン、1−メチル−ヒスチジン、3−メチル−ヒスチジンおよびトリプトファンが挙げられる。その中でも錯化剤としては、研磨向上の観点から、グリシン、アラニン、リンゴ酸、酒石酸、クエン酸、イセチオン酸またはそれらの塩が好ましい。 Usable complexing agents are, for example, inorganic acids, organic acids listed below , and amino acids. Specific examples of the inorganic acid include sulfuric acid, nitric acid, boric acid, carbonic acid, hypophosphorous acid, phosphorous acid and phosphoric acid. Specific examples of the organic acid include, for example, formic acid , 2 -methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid , 2 -methylhexanoic acid , 2 -ethylhexanoic acid, benzoic acid , Examples include reseric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid, and citric acid . Organic sulfuric acids such as methanesulfonic acid, ethanesulfonic acid and isethionic acid can also be used. A salt such as an alkali metal salt of an inorganic acid or an organic acid may be used instead of the inorganic acid or the organic acid or in combination with the inorganic acid or the organic acid. Specific examples of amino acids include, for example, glycine, α-alanine, β-alanine, N-methylglycine, N, N-dimethylglycine, 2-aminobutyric acid, norvaline, valine, leucine, norleucine, isoleucine, phenylalanine, proline, Sarcosine, ornithine, lysine, taurine, serine, threonine, homoserine, tyrosine, bicine, tricine, 3,5-diiodo-tyrosine, β- (3,4-dihydroxyphenyl) -alanine, thyroxine, 4-hydroxy-proline, cysteine , Methionine, ethionine, lanthionine, cystathionine, cystine, cysteic acid, aspartic acid, glutamic acid, S- (carboxymethyl) -cysteine, 4-aminobutyric acid, asparagine, glutamine, azaserine, arginine, canavani , Citrulline, .delta.-hydroxy - lysine, creatine, histidine, 1-methyl - histidine, 3-methyl - include histidine and tryptophan. The complexing agent Among them, from the viewpoint of the polishing improvement, glycine, alanine, malic acid, tartaric acid, citric acid, Lee Sechion acids or their salts are preferred.

(金属防食剤)
研磨用組成物には、金属防食剤をさらに含有させることができる。研磨用組成物中に金属防食剤を加えた場合には、研磨用組成物を用いて研磨した後の相変化合金にディッシング等の表面欠陥がより生じにくくなる効果がある。また、その金属防食剤は、研磨用組成物中に酸化剤及び/又は錯化剤が含まれている場合には、酸化剤による相変化合金表面の酸化を緩和するとともに、酸化剤による相変化合金表面の金属の酸化により生じる金属イオンと反応して不溶性の錯体を生成する働きをする。その結果、錯化剤による相変化合金へのエッチングを抑制することができ、過度な研磨を抑制することができる。
(Metal anticorrosive)
The polishing composition can further contain a metal anticorrosive. In the case where a metal anticorrosive is added to the polishing composition, there is an effect that surface defects such as dishing are less likely to occur in the phase change alloy after polishing using the polishing composition. In addition, when the polishing composition contains an oxidizing agent and / or a complexing agent, the metal anticorrosive agent relaxes oxidation of the surface of the phase change alloy by the oxidizing agent, and phase change by the oxidizing agent. It reacts with metal ions generated by oxidation of the metal on the surface of the alloy to form an insoluble complex. As a result, etching to the phase change alloy by the complexing agent can be suppressed, and excessive polishing can be suppressed.

使用可能な金属防食剤の種類は特に限定されないが、好ましくは複素環化合物である。複素環化合物中の複素環の員数は特に限定されない。また、複素環化合物は、単環化合物であってもよいし、縮合環を有する多環化合物であってもよい。   Although the kind of metal anticorrosive which can be used is not specifically limited, Preferably it is a heterocyclic compound. The number of heterocyclic rings in the heterocyclic compound is not particularly limited. The heterocyclic compound may be a monocyclic compound or a polycyclic compound having a condensed ring.

金属防食剤としての複素環化合物の具体例は、例えば、ピロール化合物、ピラゾール化合物、イミダゾール化合物、トリアゾール化合物、テトラゾール化合物、ピリジン化合物、ピラジン化合物、ピリダジン化合物、ピリンジン化合物、インドリジン化合物、インドール化合物、イソインドール化合物、インダゾール化合物、プリン化合物、キノリジン化合物、キノリン化合物、イソキノリン化合物、ナフチリジン化合物、フタラジン化合物、キノキサリン化合物、キナゾリン化合物、シンノリン化合物、ブテリジン化合物、チアゾール化合物、イソチアゾール化合物、オキサゾール化合物、イソオキサゾール化合物およびフラザン化合物などの含窒素複素環化合物が挙げられる。ピラゾール化合物の具体例として、例えば、1H−ピラゾール、4−ニトロ−3−ピラゾールカルボン酸および3,5−ピラゾールカルボン酸が挙げられる。イミダゾール化合物の具体例としては、例えば、イミダゾール、1−メチルイミダゾール、2−メチルイミダゾール、4−メチルイミダゾール、1,2−ジメチルピラゾール、2−エチル−4−メチルイミダゾール、2−イソプロピルイミダゾール、ベンゾイミダゾール、5,6−ジメチルベンゾイミダゾール、2−アミノベンゾイミダゾール、2−クロロベンゾイミダゾールおよび2−メチルベンゾイミダゾールが挙げられる。トリアゾール化合物の具体例としては、例えば、1,2,3−トリアゾール、1,2,4−トリアゾール、1−メチル−1,2,4−トリアゾール、メチル−1H−1,2,4−トリアゾール−3−カルボキシレート、1,2,4−トリアゾール−3−カルボン酸、1,2,4−トリアゾール−3−カルボン酸メチル、3−アミノ−1H−1,2,4−トリアゾール、3−アミノ−5−ベンジル−4H−1,2,4−トリアゾール、3−アミノ−5−メチル−4H−1,2,4−トリアゾール、3−ニトロ−1,2,4−トリアゾール、3−ブロモ−5−ニトロ−1,2,4−トリアゾール、4−(1,2,4−トリアゾール−1−イル)フェノール、4−アミノ−1,2,4−トリアゾール、4−アミノ−3,5−ジプロピル−4H−1,2,4−トリアゾール、4−アミノ−3,5−ジメチル−4H−1,2,4−トリアゾール、4−アミノ−3,5−ジペプチル−4H−1,2,4−トリアゾール、5−メチル−1,2,4−トリアゾール−3,4−ジアミン、1−ヒドロキシベンゾトリアゾール、1−アミノベンゾトリアゾール、1−カルボキシベンゾトリアゾール、5−クロロ−1H−ベンゾトリアゾール、5−ニトロ−1H−ベンゾトリアゾール、5−カルボキシ−1H−ベンゾトリアゾール、5,6−ジメチル−1H−ベンゾトリアゾール、1−(1’’,2’−ジカルボキシエチル)ベンゾトリアゾールが挙げられる。テトラゾール化合物の具体例としては、例えば、1H−テトラゾール、5−メチルテトラゾール、5−アミノテトラゾール、および5−フェニルテトラゾールが挙げられる。インドール化合物の具体例としては、例えば、1H−インドール、1−メチル−1H−インドール、2−メチル−1H−インドール、3−メチル−1H−インドール、4−メチル−1H−インドール、5−メチル−1H−インドール、6−メチル−1H−インドール、および7−メチル−1H−インドールが挙げられる。インダゾール化合物の具体例としては、例えば、1H−インダゾールおよび5−アミノ−1H−インダゾールが挙げられる。これらの複素環化合物は、相変化合金への化学的または物理的吸着力が高いため、より強固な保護膜を相変化合金表面に形成する。このことは、研磨用組成物を用いて研磨した後の相変化合金の過剰なエッチングを抑制することができる。その結果、過剰な研磨を抑制することができる。   Specific examples of the heterocyclic compound as the metal anticorrosive include, for example, a pyrrole compound, a pyrazole compound, an imidazole compound, a triazole compound, a tetrazole compound, a pyridine compound, a pyrazine compound, a pyridazine compound, a pyridine compound, an indolizine compound, an indole compound, Indole compounds, indazole compounds, purine compounds, quinolidine compounds, quinoline compounds, isoquinoline compounds, naphthyridine compounds, phthalazine compounds, quinoxaline compounds, quinazoline compounds, cinnoline compounds, buteridine compounds, thiazole compounds, isothiazole compounds, oxazole compounds, isoxazole compounds and Examples thereof include nitrogen-containing heterocyclic compounds such as furazane compounds. Specific examples of the pyrazole compound include 1H-pyrazole, 4-nitro-3-pyrazole carboxylic acid, and 3,5-pyrazole carboxylic acid. Specific examples of the imidazole compound include, for example, imidazole, 1-methylimidazole, 2-methylimidazole, 4-methylimidazole, 1,2-dimethylpyrazole, 2-ethyl-4-methylimidazole, 2-isopropylimidazole, and benzimidazole. 5,6-dimethylbenzimidazole, 2-aminobenzimidazole, 2-chlorobenzimidazole and 2-methylbenzimidazole. Specific examples of the triazole compound include, for example, 1,2,3-triazole, 1,2,4-triazole, 1-methyl-1,2,4-triazole, methyl-1H-1,2,4-triazole- 3-carboxylate, 1,2,4-triazole-3-carboxylic acid, methyl 1,2,4-triazole-3-carboxylate, 3-amino-1H-1,2,4-triazole, 3-amino- 5-benzyl-4H-1,2,4-triazole, 3-amino-5-methyl-4H-1,2,4-triazole, 3-nitro-1,2,4-triazole, 3-bromo-5 Nitro-1,2,4-triazole, 4- (1,2,4-triazol-1-yl) phenol, 4-amino-1,2,4-triazole, 4-amino-3,5-dipropyl-4H -1, , 4-triazole, 4-amino-3,5-dimethyl-4H-1,2,4-triazole, 4-amino-3,5-dipeptyl-4H-1,2,4-triazole, 5-methyl-1 2,4-triazole-3,4-diamine, 1-hydroxybenzotriazole, 1-aminobenzotriazole, 1-carboxybenzotriazole, 5-chloro-1H-benzotriazole, 5-nitro-1H-benzotriazole, 5 -Carboxy-1H-benzotriazole, 5,6-dimethyl-1H-benzotriazole, 1- (1 ″, 2′-dicarboxyethyl) benzotriazole. Specific examples of the tetrazole compound include 1H-tetrazole, 5-methyltetrazole, 5-aminotetrazole, and 5-phenyltetrazole. Specific examples of indole compounds include 1H-indole, 1-methyl-1H-indole, 2-methyl-1H-indole, 3-methyl-1H-indole, 4-methyl-1H-indole, 5-methyl- 1H-indole, 6-methyl-1H-indole, and 7-methyl-1H-indole. Specific examples of the indazole compound include 1H-indazole and 5-amino-1H-indazole. Since these heterocyclic compounds have high chemical or physical adsorptive power to the phase change alloy, a stronger protective film is formed on the surface of the phase change alloy. This can suppress excessive etching of the phase change alloy after polishing with the polishing composition. As a result, excessive polishing can be suppressed.

研磨用組成物中の金属防食剤の含有量の上限は、10質量%であることが好ましく、より好ましくは5質量%、さらに好ましくは1質量%である。金属防食剤の含有量が少なくなるにつれて、研磨用組成物による研磨速度が向上する効果がある。   The upper limit of the content of the metal anticorrosive in the polishing composition is preferably 10% by mass, more preferably 5% by mass, and even more preferably 1% by mass. As the content of the metal anticorrosive decreases, there is an effect that the polishing rate by the polishing composition is improved.

研磨用組成物中の金属防食剤の含有量の下限は、0.001質量%であることが好ましく、より好ましくは0.01質量%、さらに好ましくは0.1質量%である。金属防食剤の含有量が多くなるにつれて、研磨用組成物を用いて研磨した後の相変化合金の過剰なエッチングを抑制することができる。その結果、過剰な研磨を抑制することができる。   The lower limit of the content of the metal anticorrosive in the polishing composition is preferably 0.001% by mass, more preferably 0.01% by mass, and still more preferably 0.1% by mass. As the content of the metal anticorrosive increases, excessive etching of the phase change alloy after polishing with the polishing composition can be suppressed. As a result, excessive polishing can be suppressed.

本発明の別の実施形態では、本発明の研磨用組成物用いて、相変化合金を有する研磨対象物の表面を研磨する研磨方法を提供する。本研磨方法で使用できるパッドとしては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限はない。また、研磨パッドには研磨用組成物が溜まる様な溝加工が施されていても良い。   In another embodiment of the present invention, a polishing method for polishing a surface of an object to be polished having a phase change alloy using the polishing composition of the present invention is provided. As a pad that can be used in this polishing method, a general nonwoven fabric, foamed polyurethane, porous fluororesin, or the like can be used, and there is no particular limitation. Further, the polishing pad may be grooved so that the polishing composition accumulates.

相変化合金を有する研磨対象物を研磨する研磨パッドの硬度の下限は、ショアD硬度50であるのが好ましい。パッドのショアD硬度が高いほど、パッドの機械的作用が大きくなり、研磨速度が向上する。また、本発明の実施形態における研磨用組成物においては、砥粒を含まずとも高い研磨速度を得ることができるという利点がある。そのような観点から、より好ましくはショアD硬度の下限が60である。   The lower limit of the hardness of the polishing pad for polishing the polishing object having the phase change alloy is preferably a Shore D hardness of 50. The higher the Shore D hardness of the pad, the greater the mechanical action of the pad and the higher the polishing rate. Further, the polishing composition according to the embodiment of the present invention has an advantage that a high polishing rate can be obtained without containing abrasive grains. From such a viewpoint, the lower limit of Shore D hardness is more preferably 60.

相変化合金を有する研磨対象物を研磨する研磨パッドの硬度の上限は、ショアD硬度99であるのが好ましい。パッドのショアD硬度が低いほど、研磨対象物に傷が入りにくくなる。そのような観点から、さらに好ましくはショアD硬度の上限は95である。パッド硬度50未満ではパッドの機械的作用が小さくなり、研磨速度が低下する。なお、ショアD硬度は定義上から100以上の値にならない。パッドのショアD硬度はショアD硬度計で測定できる。   The upper limit of the hardness of the polishing pad for polishing the polishing object having the phase change alloy is preferably Shore D hardness 99. The lower the Shore D hardness of the pad, the harder it is to scratch the object to be polished. From such a viewpoint, the upper limit of Shore D hardness is more preferably 95. If the pad hardness is less than 50, the mechanical action of the pad becomes small, and the polishing rate decreases. In addition, Shore D hardness does not become a value of 100 or more from the definition. The Shore D hardness of the pad can be measured with a Shore D hardness meter.

ショアD硬度50以上の研磨パッドは、発泡体と、布、不織布等の非発泡体とのどちらでもよく、研磨パッドの材質としてはポリウレタン、アクリル、ポリエステル、アクリル−エステル共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリ4−メチルペンテン、セルロース、セルロースエステル、ナイロン及びアラミド等のポリアミド、ポリイミド、ポリイミドアミド、ポリシロキサン共重合体、オキシラン化合物、フェノール樹脂、ポリスチレン、ポリカーボネート、エポキシ樹脂等の樹脂が使用できる。   The polishing pad having a Shore D hardness of 50 or more may be either a foam or a non-foamed material such as cloth or nonwoven fabric. The polishing pad material is polyurethane, acrylic, polyester, acrylic-ester copolymer, polytetrafluoro Resins such as polyamide, polyimide, polyimide amide, polysiloxane copolymer, oxirane compound, phenol resin, polystyrene, polycarbonate, epoxy resin, such as ethylene, polypropylene, polyethylene, poly-4-methylpentene, cellulose, cellulose ester, nylon and aramid Can be used.

本実施形態によれば以下の作用及び効果が得られる。
従来の金属含有表面を研磨するための典型的な研磨用組成物では、その研磨用組成物に含まれる酸化剤で研磨対象の金属を酸化して金属酸化物を形成し、さらに錯化剤で金属酸化物を溶解することで研磨する。それに対して本実施形態の研磨用組成物は、その研磨用組成物に含まれる脆性膜形成剤が、相変化合金表面と錯形成して不溶性膜を形成し、その不溶性膜を砥粒で機械的に研磨していると考えられる。その結果、研磨速度を向上することができる。
According to this embodiment, the following operations and effects can be obtained.
In a typical polishing composition for polishing a conventional metal-containing surface, a metal oxide is formed by oxidizing a metal to be polished with an oxidizing agent contained in the polishing composition, and further a complexing agent is used. Polishing is performed by dissolving the metal oxide. On the other hand, in the polishing composition of this embodiment, the brittle film forming agent contained in the polishing composition forms a complex with the surface of the phase change alloy to form an insoluble film, and the insoluble film is machined with abrasive grains. It is thought that it is polishing. As a result, the polishing rate can be improved.

前記実施形態は次のように変更されてもよい。
・ 前記実施形態の研磨用組成物は、必要に応じて、界面活性剤や水溶性高分子、防腐剤のような公知の添加剤をさらに含有してもよい。
・ 前記実施形態の研磨用組成物は一液型であってもよいし、二液型を始めとする多液型であってもよい。
・ 前記実施形態の研磨用組成物は、研磨用組成物の原液を水で希釈することにより調製されてもよい。
The embodiment may be modified as follows.
-The polishing composition of the said embodiment may further contain well-known additives like surfactant, water-soluble polymer, and antiseptic | preservative as needed.
The polishing composition of the above embodiment may be a one-component type or a multi-component type including a two-component type.
-The polishing composition of the said embodiment may be prepared by diluting the undiluted | stock solution of polishing composition with water.

次に、本発明の実施例及び比較例を説明する。
表1に記載の組成となるように各成分を混合することにより、実施例〜14、参考例1〜8及び比較例1〜21の研磨用組成物を調整した。表1の“脆性膜形成剤”欄の“種類”欄には、実施例及び参考例においては各研磨用組成物中に含まれる飽和モノカルボン酸及び有機リン化合物から選ばれる脆性膜形成剤の種類を、比較例においては当該飽和モノカルボン酸及び有機リン化合物から選ばれる脆性膜形成剤以外の添加剤や各研磨用組成物中に含まれる従来の金属含有表面を研磨するための典型的な研磨用組成物に含まれる錯化剤、防食剤から選定した添加剤の種類を示す。また、“含有量(質量%)”欄には、各研磨用組成物中の当該脆性膜形成剤又は脆性膜形成剤以外の添加剤の含有量を示す。同欄において、“−”表記は当該脆性膜形成剤又は脆性膜形成剤以外の添加剤を含有していないことを示す。表1の“pH”欄には、各研磨用組成物中のpHを示す。また、表1中の砥粒は、約60nmの平均二次粒子径(平均一次粒子径30nm)を有するコロイダルシリカを使用し、“砥粒”欄に含有量を示す。また、pHは無機酸又は無機塩基を添加して所定の値に調整した。なお、表1中には示していないが、各研磨用組成物には、酸化剤として過酸化水素水が2.1質量%になるように添加されている。
Next, examples and comparative examples of the present invention will be described.
The polishing compositions of Examples 9 to 14 , Reference Examples 1 to 8 and Comparative Examples 1 to 21 were prepared by mixing each component so as to have the composition shown in Table 1. In the “type” column of the “brittle film forming agent” column of Table 1, in the examples and reference examples , the brittle film forming agent selected from saturated monocarboxylic acids and organophosphorus compounds contained in each polishing composition is shown. Typical types for polishing conventional metal-containing surfaces contained in additives and additives other than brittle film forming agents selected from saturated monocarboxylic acids and organophosphorus compounds in comparative examples The kind of additive selected from the complexing agent and anticorrosive agent contained in polishing composition is shown. In the “content (mass%)” column, the content of the brittle film forming agent or additives other than the brittle film forming agent in each polishing composition is shown. In the same column, “-” notation indicates that the brittle film forming agent or an additive other than the brittle film forming agent is not contained. In the “pH” column of Table 1, the pH in each polishing composition is shown. The abrasive grains in Table 1 use colloidal silica having an average secondary particle diameter of about 60 nm (average primary particle diameter of 30 nm), and the content is shown in the “Abrasive Grain” column. The pH was adjusted to a predetermined value by adding an inorganic acid or an inorganic base. In addition, although not shown in Table 1, hydrogen peroxide water is added to each polishing composition so that it may become 2.1 mass% as an oxidizing agent.

実施例〜14、参考例1〜8及び比較例1〜21の各研磨用組成物を用いて、GST合金(Ge、Sb及びTeの質量%比は2:2:5)を含むブランケットウェーハを、表2に示す条件で研磨した。表2に示す条件で一定時間研磨したときの研磨速度について、直流4探針法によるシート抵抗の測定から求められる研磨前後のブランケットウェーハの厚みの差を研磨時間で除することにより求めた。その結果を表1の“評価”欄の“研磨速度”欄に示す。 Example 9-14, by using the respective polishing compositions of Reference Examples 1 to 8 and Comparative Examples 1 to 21, GST alloy (Ge, Sb and Te mass% ratio of 2: 2: 5) blanket wafers comprising Was polished under the conditions shown in Table 2. The polishing rate when polishing for a certain time under the conditions shown in Table 2 was determined by dividing the difference in thickness of the blanket wafer before and after polishing obtained from the measurement of the sheet resistance by the direct current four-probe method by the polishing time. The results are shown in the “Polishing rate” column of the “Evaluation” column of Table 1.

表1に示すように、実施例〜14及び参考例1〜8の研磨用組成物を用いた場合には、本発明の条件を満たさない比較例1〜21の研磨用組成物を用いた場合に比べて、研磨速度において顕著に優れた効果を奏することが認められた。 As shown in Table 1, when the polishing compositions of Examples 9 to 14 and Reference Examples 1 to 8 were used, the polishing compositions of Comparative Examples 1 to 21 that did not satisfy the conditions of the present invention were used. Compared to the case, it was found that the polishing rate was significantly improved.

Claims (10)

相変化合金を有する研磨対象物を研磨する用途で使用される研磨用組成物であって、
砥粒及び脆性膜形成剤を含み、
前記脆性膜形成剤が有機リン化合物であることを特徴とする研磨用組成物。
A polishing composition used for polishing a polishing object having a phase change alloy,
Including abrasive grains and a brittle film forming agent,
Polishing composition, wherein the brittle film forming agent is organic phosphorus compounds.
前記砥粒が、コロイダルシリカである、請求項1に記載の研磨用組成物。   The polishing composition according to claim 1, wherein the abrasive grains are colloidal silica. 前記コロイダルシリカが、有機酸を固定化されたコロイダルシリカである、請求項2に記載の研磨用組成物。   The polishing composition according to claim 2, wherein the colloidal silica is colloidal silica in which an organic acid is fixed. 前記有機リン化合物がホスホン酸、アルキルホスホン酸、HEDP及びホスフィン酸から選ばれる少なくとも1以上である、請求項に記載の研磨用組成物。 The polishing composition according to claim 1 , wherein the organic phosphorus compound is at least one selected from phosphonic acid, alkylphosphonic acid, HEDP and phosphinic acid. 前記砥粒の平均二次粒子径の値を平均一次粒子径の値で除することにより得られる砥粒の平均会合度が1.2以上である、請求項1に記載の研磨用組成物。The polishing composition according to claim 1, wherein the average degree of association of the abrasive grains obtained by dividing the value of the average secondary particle diameter of the abrasive grains by the value of the average primary particle diameter is 1.2 or more. 前記脆性膜形成剤が前記相変化合金表面と錯形成して不溶性膜を形成する、請求項1に記載の研磨用組成物。The polishing composition according to claim 1, wherein the brittle film forming agent forms a complex with the surface of the phase change alloy to form an insoluble film. 相変化合金を有する研磨対象物を研磨する用途で使用される研磨用組成物であって、
脆性膜形成剤として有機リン化合物を含むことを特徴とする研磨用組成物。
A polishing composition used for polishing a polishing object having a phase change alloy,
A polishing composition comprising an organophosphorus compound as a brittle film forming agent.
前記相変化合金がGSTである、請求項1〜のいずれか一項に記載の研磨用組成物。 Is the phase change alloy is GST, the polishing composition according to any one of claims 1-7. 請求項1〜のいずれか一項に記載の研磨用組成物を用いて、相変化合金を有する研磨対象物の表面を研磨することを特徴とする研磨方法。 Polishing method using the polishing composition according to any one of claims 1 to 7, characterized in that polishing the surface of the object to be polished having a phase change alloy. 請求項1〜のいずれか一項に記載の研磨用組成物を用いて、相変化合金を有する研磨対象物の表面を研磨する工程を有することを特徴とする基板の製造方法。 Using the polishing composition according to any one of claims 1 to 7 method of manufacturing a substrate characterized by having a step of polishing the surface of an object to be polished having a phase change alloy.
JP2012019451A 2012-02-01 2012-02-01 Polishing composition Active JP5945123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012019451A JP5945123B2 (en) 2012-02-01 2012-02-01 Polishing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012019451A JP5945123B2 (en) 2012-02-01 2012-02-01 Polishing composition

Publications (3)

Publication Number Publication Date
JP2013157581A JP2013157581A (en) 2013-08-15
JP2013157581A5 JP2013157581A5 (en) 2015-01-22
JP5945123B2 true JP5945123B2 (en) 2016-07-05

Family

ID=49052456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012019451A Active JP5945123B2 (en) 2012-02-01 2012-02-01 Polishing composition

Country Status (1)

Country Link
JP (1) JP5945123B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11041097B2 (en) 2019-02-11 2021-06-22 Samsung Electronics Co., Ltd. Polishing composition and method of fabricating semiconductor device using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6527817B1 (en) * 1999-11-15 2003-03-04 Cabot Microelectronics Corporation Composition and method for planarizing surfaces
JP4231632B2 (en) * 2001-04-27 2009-03-04 花王株式会社 Polishing liquid composition
US7915071B2 (en) * 2007-08-30 2011-03-29 Dupont Air Products Nanomaterials, Llc Method for chemical mechanical planarization of chalcogenide materials
KR101198100B1 (en) * 2007-12-11 2012-11-09 삼성전자주식회사 Method of forming a phase-change material layer pattern, method of manufacturing a phase-change memory device and slurry composition used for the methods
JP5760317B2 (en) * 2010-02-05 2015-08-05 日立化成株式会社 CMP polishing liquid and polishing method using this CMP polishing liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11041097B2 (en) 2019-02-11 2021-06-22 Samsung Electronics Co., Ltd. Polishing composition and method of fabricating semiconductor device using the same

Also Published As

Publication number Publication date
JP2013157581A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
KR102162824B1 (en) Polishing composition
JP6139975B2 (en) Polishing composition
JP2013080751A (en) Polishing composition
JP2013084876A (en) Polishing composition
JP6029916B2 (en) Polishing composition
CN102318042A (en) Polishing agent for copper polishing and polishing method using same
TWI586793B (en) A polishing composition, a polishing method using the same, and a method for manufacturing the same
US9631121B2 (en) Polishing composition
JP5945123B2 (en) Polishing composition
JP2013157580A (en) Polishing composition
JP2013080752A (en) Polishing composition
JP2013157579A (en) Polishing composition
JP2013157582A (en) Polishing composition
JP2013157583A (en) Polishing composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160527

R150 Certificate of patent or registration of utility model

Ref document number: 5945123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250