JP5939816B2 - ICP emission spectroscopic analyzer and method for analyzing sample containing organic solvent - Google Patents

ICP emission spectroscopic analyzer and method for analyzing sample containing organic solvent Download PDF

Info

Publication number
JP5939816B2
JP5939816B2 JP2012016898A JP2012016898A JP5939816B2 JP 5939816 B2 JP5939816 B2 JP 5939816B2 JP 2012016898 A JP2012016898 A JP 2012016898A JP 2012016898 A JP2012016898 A JP 2012016898A JP 5939816 B2 JP5939816 B2 JP 5939816B2
Authority
JP
Japan
Prior art keywords
chamber
cooling
plasma
organic solvent
torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012016898A
Other languages
Japanese (ja)
Other versions
JP2013156150A (en
JP2013156150A5 (en
Inventor
聡子 伊藤
聡子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012016898A priority Critical patent/JP5939816B2/en
Publication of JP2013156150A publication Critical patent/JP2013156150A/en
Publication of JP2013156150A5 publication Critical patent/JP2013156150A5/ja
Application granted granted Critical
Publication of JP5939816B2 publication Critical patent/JP5939816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、ICP(Inductively Coupled Plasma)発光分光分析装置に係わり、特にはエアロゾル搬送経路の一部に冷却機構を設けたICP発光分光分析装置及びそれを用いた有機溶媒を含む試料の分析方法に関する。   The present invention relates to an ICP (Inductively Coupled Plasma) emission spectroscopic analysis apparatus, and more particularly to an ICP emission spectroscopic analysis apparatus provided with a cooling mechanism in a part of an aerosol transport path and a method for analyzing a sample containing an organic solvent using the same. .

高周波誘導結合プラズマ発光分光分析装置は、一般に図2に示すような構成になっている。即ち、図2において、プラズマト−チ1の外室1bと最外室1cにはガス調節器2を介してアルゴンガス供給源3からアルゴンガスが供給される。一方、試料槽5内の溶液試料は、スプレーチャンバ4内で霧化されキャリアガスとともにトーチ内室1aにエアロゾルとして搬入されるようになっている。搬入されたエアロゾルはプラズマ炎内で元素単位にイオン化され、分光器8内で分光・検出される。   A high-frequency inductively coupled plasma atomic emission spectrometer is generally configured as shown in FIG. That is, in FIG. 2, argon gas is supplied from an argon gas supply source 3 to the outer chamber 1b and the outermost chamber 1c of the plasma torch 1 through the gas regulator 2. On the other hand, the solution sample in the sample tank 5 is atomized in the spray chamber 4 and is carried into the torch inner chamber 1a as an aerosol together with the carrier gas. The carried aerosol is ionized element by element in the plasma flame, and is dispersed and detected in the spectrometer 8.

このような装置を用いて有機溶剤中の微量元素を測定する場合は、有機溶剤のまま装置内に導入するとプラズマが不安定になったり、失火してしまうことがある。そのため、試料の水溶液化が必須であるため煩雑な前処理が必要とされていた。しかし、前処理によるコンタミの混入や高希釈率による感度低下が発生するため、有機溶剤中の微量成分を水溶液で測定することは困難であった。このため、有機溶剤を直接試料溶液として安定に測定する方法が近年注目されており、様々な検討がされてきた。   When measuring trace elements in an organic solvent using such an apparatus, if the organic solvent is introduced into the apparatus as it is, the plasma may become unstable or misfire may occur. Therefore, since it is essential to make the sample into an aqueous solution, complicated pretreatment is required. However, it is difficult to measure a trace component in an organic solvent with an aqueous solution because of contamination due to pretreatment and a decrease in sensitivity due to a high dilution rate. For this reason, a method for stably measuring an organic solvent directly as a sample solution has attracted attention in recent years, and various studies have been made.

一般的に有機溶剤を測定する際に用いられる改良された方法を説明する。図3はスプレーチャンバからトーチまでの装置の簡略図である。Arガスと試料溶液が導入され試料溶液を霧化するネブライザ9とチャンバ本体10と冷却ブロック11aと冷却機構12aとドレイン搬出口13とプラズマ室14と導出口15で構成している。この構成は、冷却ブロック11aを冷却してチャンバ本体10を一定温度に保つ方法が開示されている。   An improved method generally used in measuring organic solvents is described. FIG. 3 is a simplified diagram of the apparatus from the spray chamber to the torch. A nebulizer 9 that introduces Ar gas and a sample solution and atomizes the sample solution, a chamber body 10, a cooling block 11a, a cooling mechanism 12a, a drain carry-out port 13, a plasma chamber 14, and a lead-out port 15 are included. This configuration discloses a method of cooling the cooling block 11a to keep the chamber body 10 at a constant temperature.

更に、ICP発光分光装置ではないがその類似の技術の中で図4に示すように工夫をしたものがある。特許文献1では冷却ブロック11aを備えたチャンバ本体10とチャンバ導出口15の近傍の搬送経路16bに冷却ブロック11cを具備し、冷却ブロック11cをチャンバ本体10よりも低温に冷却することによって有機溶剤の測定を可能にする、と報告している。しかし、高揮発性の有機溶剤に対する効果の検証や測定精度に対する検証はされていない。   Further, although not an ICP emission spectroscopic apparatus, there is a similar technique as shown in FIG. In Patent Document 1, a cooling block 11c is provided in the conveyance path 16b in the vicinity of the chamber main body 10 and the chamber outlet 15 provided with the cooling block 11a, and the cooling block 11c is cooled to a temperature lower than that of the chamber main body 10, thereby It reports that measurement is possible. However, the verification of the effect on the highly volatile organic solvent and the verification of the measurement accuracy have not been performed.

このような構成からなる従来のチャンバによれば、チャンバ本体10内の水蒸気はドレイン搬出口13から落ちるが、霧化により発生した微小径のエアロゾルは導出口15から導出され、搬送経路16を通過しプラズマトーチ内1aに到達する。このとき、プラズマトーチ近傍の搬送経路16aは、プラズマ室14内を通過する。このプラズマ室14内部の雰囲気はプラズマ熱の影響を受けて室温よりも上昇しているため、プラズマトーチ近傍の搬送経路16aはプラズマ室14内の温度に達しているため搬送経路16aを流れるキャリアガスとエアロゾルは搬送経路16aの温度に加熱されていることになる。   According to the conventional chamber having such a configuration, the water vapor in the chamber body 10 falls from the drain carry-out port 13, but the micro-aerosol generated by the atomization is led out from the lead-out port 15 and passes through the transport path 16. And reaches 1a in the plasma torch. At this time, the transfer path 16a in the vicinity of the plasma torch passes through the plasma chamber 14. Since the atmosphere inside the plasma chamber 14 is higher than the room temperature due to the influence of plasma heat, the carrier path 16a in the vicinity of the plasma torch reaches the temperature in the plasma chamber 14, and therefore the carrier gas flowing through the carrier path 16a. The aerosol is heated to the temperature of the transport path 16a.

特開平05−087779号公報Japanese Patent Laid-Open No. 05-087779

図3の従来例では、試料が揮発性の高い有機溶剤の場合、トーチ近傍の搬送経路16aを通過する際にエアロゾル内の溶剤が気体となり体積が温度に比例して膨張する。本来プラズマ内に導入するガス流量はキャリアガスによって制御しているが、エアロゾルから発生した制御不可能である大量のガスがプラズマ炎に到達することになる。そのため、炎が不安定になることで測定精度が悪化したり、失火して測定ができなくなる現象が発生する。したがって、揮発性の高い有機溶剤を測定する場合に、測定精度を向上する手段として、プラズマ室14内の温度上昇の影響で搬送経路16a内を通るエアロゾルの加熱現象を抑制する必要がある。しかしながら、従来のようにチャンバ本体10及び導出口15近傍の搬送経路16bの冷却ブロック11cによる構成では、プラズマを安定な状態で維持することが難しく、発光強度や分析値の変動が大きかった。このため、安定に、しかも精度良く測定できる装置の開発、及び測定方法が求められていた。   In the conventional example of FIG. 3, when the sample is a highly volatile organic solvent, the solvent in the aerosol becomes a gas when passing through the transport path 16a near the torch, and the volume expands in proportion to the temperature. Although the gas flow rate introduced into the plasma is originally controlled by the carrier gas, a large amount of uncontrollable gas generated from the aerosol reaches the plasma flame. For this reason, the measurement accuracy deteriorates due to instability of the flame, and a phenomenon occurs in which measurement cannot be performed due to misfire. Therefore, when measuring a highly volatile organic solvent, it is necessary to suppress the heating phenomenon of the aerosol passing through the transport path 16a due to the temperature rise in the plasma chamber 14 as a means for improving the measurement accuracy. However, in the conventional configuration of the cooling block 11c in the transport path 16b in the vicinity of the chamber body 10 and the outlet port 15, it is difficult to maintain the plasma in a stable state, and fluctuations in emission intensity and analysis value are large. For this reason, there has been a demand for the development of a device that can measure stably and accurately and a measurement method.

本発明は、この様な背景技術に鑑みてなされたものであり、有機溶剤中の微量成分の分析を測定精度を向上して行うことができるICP発光分光分析装置および分析方法を提供するものである。   The present invention has been made in view of the background art as described above, and provides an ICP emission spectroscopic analysis apparatus and analysis method capable of analyzing trace components in organic solvents with improved measurement accuracy. is there.

上記の課題を解決するICP発光分光分析装置は、有機溶媒を含む試料を霧化するためのチャンバと、前記霧化した試料をプラズマ化するプラズマトーチと、前記プラズマトーチを収容するプラズマ室と、前記霧化した試料を前記チャンバから前記プラズマトーチへ搬送するための搬送経路と、前記チャンバを冷却する第1の冷却手段と、前記搬送経路を冷却する第2の冷却手段と、を備え、前記プラズマトーチは、前記霧化した試料が流れる第1トーチ室と、前記霧化した試料を空冷するためのアルゴンガスが流れる第2トーチ室と、を有し、前記第2の冷却手段は、前記搬送経路のうち、前記プラズマ室内であって前記チャンバと前記プラズマトーチとの間の部分、を水冷する冷却部を有することを特徴とする。 An ICP emission spectroscopic analyzer that solves the above problems includes a chamber for atomizing a sample containing an organic solvent, a plasma torch for converting the atomized sample into plasma, a plasma chamber for storing the plasma torch, A transport path for transporting the atomized sample from the chamber to the plasma torch, a first cooling means for cooling the chamber, and a second cooling means for cooling the transport path , The plasma torch has a first torch chamber through which the atomized sample flows, and a second torch chamber through which argon gas for air-cooling the atomized sample flows, and the second cooling means includes the of the conveying path, characterized Rukoto of having a cooling section portion, the water cooling between the chamber a the plasma chamber and the plasma torch.

本発明によれば、有機溶剤中の微量成分の分析を測定精度を向上して行うことができるICP発光分光分析装置および分析方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the ICP emission-spectral-analysis apparatus and analysis method which can perform the analysis of the trace component in an organic solvent by improving a measurement precision can be provided.

本発明のICP発光分光分析装置の一実施態様を示す概略図である。It is the schematic which shows one embodiment of the ICP emission-spectral-analysis apparatus of this invention. 従来例のICP発光分光装置を示す構成図である。It is a block diagram which shows the ICP emission spectroscopy apparatus of a prior art example. 従来例のICP発光分光装置のチャンバからトーチまでを示す簡略図である。It is a simplified diagram showing from the chamber to the torch of the ICP emission spectrometer of the conventional example. 従来例のICP発光分光装置の冷却機構を示す簡略図である。It is a simplified diagram showing a cooling mechanism of a conventional ICP emission spectroscopic device.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明に係るICP発光分光分析装置は、高周波誘導結合放電によって励起発光等を行うICP発光分光分析装置において、有機溶媒を含む試料を霧化するためのチャンバ本体10と、前記チャンバ本体10で霧化した試料をプラズマ化するプラズマトーチ1と、前記霧化した試料を前記プラズマトーチ1に搬送するための搬送経路16とを有し、さらに、チャンバ本体10を冷却する冷却ブロック11aと、搬送経路16であってプラズマトーチ近傍の搬送経路16aを冷却する冷却ブロック11bと、冷却ブロック11aの温度制御のための冷却機構12aと、冷却ブロック11bの温度制御のための冷却機構12bとを有することを特徴とする。   An ICP emission spectroscopic analysis apparatus according to the present invention is an ICP emission spectroscopic analysis apparatus that performs excitation light emission or the like by high-frequency inductively coupled discharge. A chamber main body 10 for atomizing a sample containing an organic solvent; A plasma torch 1 for converting the atomized sample into plasma, a transport path 16 for transporting the atomized sample to the plasma torch 1, a cooling block 11 a for cooling the chamber body 10, and a transport path A cooling block 11b that cools the conveyance path 16a in the vicinity of the plasma torch, a cooling mechanism 12a for controlling the temperature of the cooling block 11a, and a cooling mechanism 12b for controlling the temperature of the cooling block 11b. Features.

また、本発明に係るICP発光分光分析装置は、高周波誘導結合放電によって励起発光等を行うICP発光分光分析装置において、有機溶媒を含む試料を霧化するためのチャンバ本体10と、前記チャンバ本体10で霧化した試料をプラズマ化するプラズマトーチ1と、前記霧化した試料を前記プラズマトーチ1に搬送するための搬送経路16とを有し、さらに、チャンバ本体10を冷却する冷却ブロック11aと、搬送経路16の一部であってプラズマ室14内にある搬送経路16aを冷却する冷却ブロック11bと、冷却ブロック11aの温度制御のための冷却機構12aと、冷却ブロック11bの温度制御のための冷却機構12bとを有することを特徴とする。   Further, an ICP emission spectroscopic analysis apparatus according to the present invention is an ICP emission spectroscopic analysis apparatus that performs excitation light emission or the like by high frequency inductively coupled discharge. A chamber main body 10 for atomizing a sample containing an organic solvent; and the chamber main body 10 A plasma torch 1 for converting the atomized sample into plasma, a transfer path 16 for transferring the atomized sample to the plasma torch 1, and a cooling block 11a for cooling the chamber body 10; A cooling block 11b that cools a transfer path 16a that is a part of the transfer path 16 and is in the plasma chamber 14, a cooling mechanism 12a for temperature control of the cooling block 11a, and cooling for temperature control of the cooling block 11b And a mechanism 12b.

本発明に係る分析方法は、高周波誘導結合放電によって励起発光等を行うICP発光分光分析方法により有機溶媒を含む試料を分析する方法であって、前記有機溶媒を含む試料を室温以下に冷却されたチャンバ本体10内に導入して前記有機溶媒を含む試料を霧化する工程と、前記霧化した有機溶媒を含む試料を搬送経路16によりプラズマトーチ1に搬送する工程とを有し、前記搬送する工程において、プラズマ室14内部を通過する前記搬送経路16aを冷却することを特徴とする有機溶媒を含む試料の分析方法である。   An analysis method according to the present invention is a method of analyzing a sample containing an organic solvent by an ICP emission spectroscopic analysis method that performs excitation light emission or the like by high frequency inductively coupled discharge, and the sample containing the organic solvent is cooled to room temperature or lower. Introducing into the chamber body 10 and atomizing the sample containing the organic solvent; and conveying the sample containing the atomized organic solvent to the plasma torch 1 by the conveyance path 16; In the process, the transport path 16a passing through the inside of the plasma chamber 14 is cooled, and this is a method for analyzing a sample containing an organic solvent.

具体的に実施するための形態を図1を用いて説明する。図1は、本発明のICP発光分光分析装置に一実施態様を示す概略図である。図1において、冷却機構12aは水アルコール混合液による水冷式冷却機構を用いて、冷却ブロック11aを冷却する。プラズマ室14内部を通過するエアロゾル搬入経路16a部を冷却する冷却ブロック12bは、水アルコール混合液による水冷式冷却機構12bを用いる。冷却温度は、チャンバ温度より過冷却する必要はない。また、チャンバ近傍の搬送経路16bは室温であるため冷却ブロック12bが室温以下になるように、冷却機構12bで調整するのが望ましい。従って、プラズマ室14内の搬送経路16bの冷却温度範囲は、チャンバ冷却温度以上であり室温以下であることが望ましい。冷却機構12aおよび12bは水冷であってもガス冷であっても目的の温度に調整することができれば特に手段は限定されない。   A specific embodiment will be described with reference to FIG. FIG. 1 is a schematic view showing an embodiment of the ICP emission spectroscopic analyzer of the present invention. In FIG. 1, the cooling mechanism 12a cools the cooling block 11a using the water cooling type cooling mechanism by a hydroalcoholic liquid mixture. The cooling block 12b for cooling the aerosol carry-in path 16a passing through the plasma chamber 14 uses a water-cooled cooling mechanism 12b using a hydroalcoholic liquid mixture. The cooling temperature need not be supercooled below the chamber temperature. Moreover, since the conveyance path 16b in the vicinity of the chamber is at room temperature, it is desirable to adjust the cooling block 12b with the cooling mechanism 12b so that the cooling block 12b is below room temperature. Therefore, the cooling temperature range of the transfer path 16b in the plasma chamber 14 is preferably not less than the chamber cooling temperature and not more than room temperature. The cooling mechanisms 12a and 12b are not particularly limited as long as they can be adjusted to the target temperature regardless of whether they are water-cooled or gas-cooled.

本発明により、高揮発性の有機溶剤のエアロゾルが気化することによる体積膨張を抑制することができる。有機溶剤のエアロゾルの状態を保ったままプラズマトーチ内に導入できる。プラズマトーチ内には、トーチ最外室1cとトーチ外室1bにアルゴンガスが流れているためトーチ内室1aを流れるエアロゾルは空冷されながらプラズマに投入される。一方向に整流されながらプラズマへ入るため、プラズマ炎の不安定な要因を抑制し、長時間安定な炎を保つことができる。そのため、測定精度が向上し有機溶剤中の微量成分の分析ができるようになる。   According to the present invention, volume expansion due to vaporization of an aerosol of a highly volatile organic solvent can be suppressed. It can be introduced into the plasma torch while maintaining the aerosol state of the organic solvent. In the plasma torch, argon gas flows through the torch outermost chamber 1c and the torch outer chamber 1b, so that the aerosol flowing through the torch inner chamber 1a is charged into the plasma while being cooled by air. Since it enters the plasma while being rectified in one direction, it is possible to suppress unstable factors of the plasma flame and maintain a stable flame for a long time. As a result, the measurement accuracy is improved, and the trace components in the organic solvent can be analyzed.

(実施例1)
図1は、本発明の基本的なICP発光分光分折装置の略図である。水冷による冷却機構12bを用いてチャンバ本体10を−10℃に冷却した。更に0度に調整した冷却水を用いてプラズマトーチ近傍部の搬送経路16aを冷却した。ICP装置はスペクトロ社製CIROSCCD型を使用した。
Example 1
FIG. 1 is a schematic diagram of a basic ICP emission spectroscopic analyzer of the present invention. The chamber body 10 was cooled to −10 ° C. using the cooling mechanism 12b by water cooling. Furthermore, the conveyance path 16a in the vicinity of the plasma torch was cooled using cooling water adjusted to 0 degrees. As the ICP apparatus, a CIROSCCD type manufactured by Spectro Co., Ltd. was used.

(比較例1)
比較例1の構成を図4を用いて説明する。チャンバ本体10を水冷による冷却機構12bを用いて−10℃に調整した冷却水により冷却した。更に0度に調整した冷却水を用いてチャンバーの導出口の搬送経路16bを冷却した。
(Comparative Example 1)
The configuration of Comparative Example 1 will be described with reference to FIG. The chamber body 10 was cooled with cooling water adjusted to −10 ° C. using a cooling mechanism 12b by water cooling. Furthermore, the conveyance path 16b of the outlet port of the chamber was cooled using cooling water adjusted to 0 degrees.

(比較例2)
比較例2の構成を図3を用いて説明する。チャンバ本体10を水冷による冷却機構12bを用いて−10℃に調整した冷却水により冷却した。
(Comparative Example 2)
The configuration of Comparative Example 2 will be described with reference to FIG. The chamber body 10 was cooled with cooling water adjusted to −10 ° C. using a cooling mechanism 12b by water cooling.

有機溶剤試料は、関東化学製混合標準液IVをTHFに溶解し、10ppmとしたものを使用した。測定対象元素は、Na、Mg、Ca、Zn、Cu、Arとし、測定対象発光波長を元素記号の後に示した(単位nm)。標準液を溶解した有機溶媒試料を実施例及び比較例のICP装置に導入して、繰り返し10回測定を行い得られた定量値から平均相対標準偏差(RSD値)を算出した。   As the organic solvent sample, a mixed standard solution IV manufactured by Kanto Chemical Co., dissolved in THF to 10 ppm was used. The measurement target elements were Na, Mg, Ca, Zn, Cu, and Ar, and the measurement target emission wavelength was shown after the element symbol (unit: nm). The organic solvent sample in which the standard solution was dissolved was introduced into the ICP devices of Examples and Comparative Examples, and the measurement was repeated 10 times, and the average relative standard deviation (RSD value) was calculated from the quantitative values obtained.

実施例及び比較例の各元素の平均相対標準偏差値の測定結果を、下記の表1に示した。   The measurement results of the average relative standard deviation value of each element in the examples and comparative examples are shown in Table 1 below.

Figure 0005939816
Figure 0005939816

表1に示すように、実施例1の相対標準偏差値は全ての元素において4以下であった。本発明の構成により高揮発性の有機溶剤を測定精度を向上させることができた。更に、測定後引き続きTHFを導入していた場合でも長時間にわたってプラズマが安定であることを確認した。   As shown in Table 1, the relative standard deviation value of Example 1 was 4 or less for all elements. With the configuration of the present invention, the measurement accuracy of a highly volatile organic solvent could be improved. Furthermore, it was confirmed that the plasma was stable for a long time even when THF was continuously introduced after the measurement.

表1に示すように、比較例1、2の相対標準偏差値は同程度の精度であった。更に測定後引き続きTHFを導入していたが、炎が不安定になり失火してしまい長時間の安定性を確保できなかった。   As shown in Table 1, the relative standard deviation values of Comparative Examples 1 and 2 were of the same accuracy. Further, THF was continuously introduced after the measurement, but the flame became unstable and misfired, and long-term stability could not be secured.

本発明は、有機溶剤中の微量成分の分析に利用することができる。   The present invention can be used for analysis of trace components in organic solvents.

1 プラズマトーチ
1a トーチ内室
1b トーチ外室
1c トーチ最外室
2 ガス調整器
3 アルゴンガス供給源
4 スプレーチャンバ
5 試料槽
6 高周波誘導コイル
7 プラズマ電源
8 分光器・検出器・演算処理
9 ネブライザ
10 チャンバ本体
11a 冷却ブロック
11b 冷却ブロック
11c 冷却ブロック
12a 冷却機構
12b 冷却機構
13 ドレイン搬出口
14 プラズマ室
15 導出口
16 搬送経路
16a プラズマトーチ近傍の搬送経路
16b 導出口近傍の搬送経路
DESCRIPTION OF SYMBOLS 1 Plasma torch 1a Torch inner chamber 1b Torch outer chamber 1c Torch outermost chamber 2 Gas regulator 3 Argon gas supply source 4 Spray chamber 5 Sample tank 6 High frequency induction coil 7 Plasma power source 8 Spectrometer / detector / calculation processing 9 Nebulizer 10 Chamber body 11a Cooling block 11b Cooling block 11c Cooling block 12a Cooling mechanism 12b Cooling mechanism 13 Drain carry-out port 14 Plasma chamber 15 Deletion port 16 Transfer route 16a Transfer route near the plasma torch 16b Transfer route near the discharge port

Claims (1)

有機溶媒を含む試料を霧化するためのチャンバと、
前記霧化した試料をプラズマ化するプラズマトーチと、
前記プラズマトーチを収容するプラズマ室と、
前記霧化した試料を前記チャンバから前記プラズマトーチへ搬送するための搬送経路と、
前記チャンバを冷却する第1の冷却手段と、
前記搬送経路を冷却する第2の冷却手段と、を備え、
前記プラズマトーチは、前記霧化した試料が流れる第1トーチ室と、前記霧化した試料を空冷するアルゴンガスが流れる第2トーチ室と、を有し、
前記第2の冷却手段は、前記搬送経路のうち、前記プラズマ室内であって前記チャンバと前記プラズマトーチとの間の部分、を水冷する冷却部を有することを特徴とするICP発光分光分析装置。
A chamber for atomizing a sample containing an organic solvent;
A plasma torch for converting the atomized sample into plasma;
A plasma chamber containing the plasma torch;
A transport path for transporting the atomized sample from the chamber to the plasma torch;
First cooling means for cooling the chamber;
A second cooling means for cooling the transport path,
The plasma torch has a first torch chamber through which the atomized sample flows, and a second torch chamber through which an argon gas for air-cooling the atomized sample flows.
Said second cooling means of the transport path, the portion between the chamber a said plasma chamber and said plasma torch, ICP emission spectroscopy, characterized in Rukoto of having a cooling section for water cooling the apparatus.
JP2012016898A 2012-01-30 2012-01-30 ICP emission spectroscopic analyzer and method for analyzing sample containing organic solvent Expired - Fee Related JP5939816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016898A JP5939816B2 (en) 2012-01-30 2012-01-30 ICP emission spectroscopic analyzer and method for analyzing sample containing organic solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016898A JP5939816B2 (en) 2012-01-30 2012-01-30 ICP emission spectroscopic analyzer and method for analyzing sample containing organic solvent

Publications (3)

Publication Number Publication Date
JP2013156150A JP2013156150A (en) 2013-08-15
JP2013156150A5 JP2013156150A5 (en) 2015-03-12
JP5939816B2 true JP5939816B2 (en) 2016-06-22

Family

ID=49051477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016898A Expired - Fee Related JP5939816B2 (en) 2012-01-30 2012-01-30 ICP emission spectroscopic analyzer and method for analyzing sample containing organic solvent

Country Status (1)

Country Link
JP (1) JP5939816B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105116045A (en) * 2015-08-31 2015-12-02 刘向磊 Method for simultaneously determining trace gold, silver and palladium in geochemical sample
JP6779469B2 (en) * 2018-03-27 2020-11-04 信越半導体株式会社 Sample analysis method, sample introduction device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293220A (en) * 1979-07-02 1981-10-06 The United States Of America As Represented By The Secretary Of The Navy Application of inductively coupled plasma emission spectrometry to the elemental analysis of organic compounds and to the determination of the empirical formulas for these and other compounds
JP3047083B2 (en) * 1991-09-30 2000-05-29 横河電機株式会社 Spray chamber
JPH09318538A (en) * 1996-05-31 1997-12-12 Shimadzu Corp Icp analyzer
JP2002039944A (en) * 2000-07-25 2002-02-06 Shimadzu Corp Icp light source apparatus
JP4815915B2 (en) * 2005-07-20 2011-11-16 味の素株式会社 Inductively coupled plasma analysis method and apparatus therefor

Also Published As

Publication number Publication date
JP2013156150A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
Jiang et al. Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air
Rybarczyk et al. Spatial profiles of interelement effects in the inductively coupled plasma
Jamróz et al. Spectroscopic characterization of miniaturized atmospheric-pressure dc glow discharge generated in contact with flowing small size liquid cathode
Jamróz et al. The effect of a miniature argon flow rate on the spectral characteristics of a direct current atmospheric pressure glow micro-discharge between an argon microjet and a small sized flowing liquid cathode
US20180024068A1 (en) System for analyzing online-transferred assay samples
Matusiewicz et al. Simultaneous determination of As, Bi, Sb, Se and Sn by microwave induced plasma spectrometry using a quadruple-mode microflow ultrasonic nebulizer for in situ hydride generation with internal standardization
Ouyang et al. Characterization of an atmospheric-pressure helium plasma generated by 2.45-GHz microwave power
Frentiu et al. Low power capacitively coupled plasma microtorch for simultaneous multielemental determination by atomic emission using microspectrometers
JP5939816B2 (en) ICP emission spectroscopic analyzer and method for analyzing sample containing organic solvent
JP6734061B2 (en) Plasma spectroscopy analyzer
Matusiewicz et al. Ultrasonic nebulization/UV photolysis vapor generation sample introduction system for the determination of conventional hydride (As, Bi, Sb, Se, Sn) and cold vapor (Hg, Cd) generation elements in reference materials in the presence of acetic acid by microwave-induced plasma spectrometry
US10497550B1 (en) Systems and methods for hot plasma analysis of analytes using membrane desolvator
Jiang et al. Direct mass spectrometric analysis of zinc and cadmium in water by microwave plasma torch coupled with a linear ion trap mass spectrometer
Donati et al. Tungsten coil electrothermal matrix decomposition and sample vaporization to determine P and Si in biodiesel by inductively coupled plasma mass spectrometry
TWI311642B (en)
Pohl et al. Optical emission spectrometric determination of arsenic and antimony by continuous flow chemical hydride generation and a miniaturized microwave microstrip argon plasma operated inside a capillary channel in a sapphire wafer
Matusiewicz et al. Trace determination of Hg together with As, Sb, Se by miniaturized optical emission spectrometry integrated with chemical vapor generation and capacitively coupled argon microwave miniplasma discharge
Brandi et al. Optical and spectroscopic study of a supersonic flowing helium plasma: energy transport in the afterglow
US20200035475A1 (en) System for Introducing Particle-Containing Samples to an Analytical Instrument and Methods of Use
JPH11248632A (en) Plasma torch with adjustable injector and gas analizer using such torch
Grindlay et al. Analytical performance of the Conical torch in inductively coupled plasma optical emission spectroscopy operating methanol and 1-propanol solutions
Gandhi et al. Atomic Absorption Spectroscopy and Flame Photometry
JP6111841B2 (en) Desolvation sample introduction apparatus and desolvation sample introduction method
KR102528772B1 (en) Sample analysis method, sample introduction device
JP2018179555A (en) Emission spectrometer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160517

R151 Written notification of patent or utility model registration

Ref document number: 5939816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees