JP5938732B2 - Method for manufacturing optical film or optical sheet - Google Patents

Method for manufacturing optical film or optical sheet Download PDF

Info

Publication number
JP5938732B2
JP5938732B2 JP2014054373A JP2014054373A JP5938732B2 JP 5938732 B2 JP5938732 B2 JP 5938732B2 JP 2014054373 A JP2014054373 A JP 2014054373A JP 2014054373 A JP2014054373 A JP 2014054373A JP 5938732 B2 JP5938732 B2 JP 5938732B2
Authority
JP
Japan
Prior art keywords
pattern
concavo
convex
continuous
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014054373A
Other languages
Japanese (ja)
Other versions
JP2014160255A (en
Inventor
一樹 加藤
一樹 加藤
次郎 佐藤
次郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2014054373A priority Critical patent/JP5938732B2/en
Publication of JP2014160255A publication Critical patent/JP2014160255A/en
Application granted granted Critical
Publication of JP5938732B2 publication Critical patent/JP5938732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polarising Elements (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

光学機器、光学フィルムに使用するパタン形成基板の製造方法及びパタン形成基板、並びに光学フィルム若しくは光学シートに関し、特に、単位パタンを数十万〜百万回くり返したパタンピッチに比べ非常に大きな面積にわたり一様な形状を有するパタン形成基板の製造方法及びパタン形成基板、並びに光学フィルム若しくは光学シートに関する。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device, a method for producing a pattern forming substrate used for an optical film, a pattern forming substrate, and an optical film or an optical sheet, and particularly, over a very large area compared to a pattern pitch in which unit patterns are repeated several hundred thousand to million times. The present invention relates to a method for producing a pattern forming substrate having a uniform shape, a pattern forming substrate, and an optical film or optical sheet.

近年、ワイヤグリッド偏光子等の光の波長レベルの周期を有する微細構造体の研究が盛んに行われている。このような非常に狭い周期の微細構造パタンを有する部材や製品は、半導体分野だけでなく、光学分野において利用範囲が広く有用である。一般的に、このような微細構造パタンを形成する技術としては、電子線ビーム描画、ステッパなど半導体加工技術や、レーザ干渉露光法が広く知られている。   In recent years, research on fine structures having a wavelength level period of light such as a wire grid polarizer has been actively conducted. Such a member or product having a microstructure pattern with a very narrow period is widely useful not only in the semiconductor field but also in the optical field. In general, as a technique for forming such a fine structure pattern, a semiconductor processing technique such as electron beam drawing and a stepper and a laser interference exposure method are widely known.

しかし、これらの技術を用いて微細構造体を直接形成することは非常に多くの時間とコストがかかるため、現実的とはいえない。そのため、微細な凹凸パタンをガラス基板やSi基板に形成し、表面にパタンが形成されたパタン形成基板を型(スタンパ)としてレジストに転写すること(エンボス技法)により、低コスト且つ高効率で微細構造を作製する方法が提案されている(例えば、特許文献1)。エンボス技法を用いる場合であっても、型の形成においては、電子線ビーム描画等の加工技術が用いられることとなる。   However, it is not practical to directly form a fine structure using these techniques because it takes much time and cost. Therefore, by forming a fine concavo-convex pattern on a glass substrate or Si substrate and transferring the pattern-formed substrate with the pattern formed on the surface as a mold (stamper) to the resist (embossing technique), it is fine at low cost and high efficiency. A method of manufacturing a structure has been proposed (for example, Patent Document 1). Even in the case of using the embossing technique, a processing technique such as electron beam drawing is used in forming the mold.

エンボス技法において、型となるパタン形成基板の大面積化は生産性を向上する上で非常に重要であるが、例えば、電子線ビーム描画では、一回に描画できる区画面積が数mm角以下であり、描画に時間を要することから、加工時間中の温度変化などを考慮すると、直径20cm以上のSiウェハ上に、各区画を大面積に渡り高精度に接ぎ合わせ、一様なパタンを作ることは困難である。   In the embossing technique, increasing the area of the pattern forming substrate to be a mold is very important for improving productivity. For example, in electron beam writing, the partition area that can be drawn at a time is several mm square or less. Since drawing takes time, considering temperature changes during processing time, etc., a uniform pattern can be created by joining each section over a large area with high accuracy on a Si wafer with a diameter of 20 cm or more. It is difficult.

ステッパを用いた露光では、ステップ・アンド・リピートを繰り返すことにより単位パタンを連続して転写することができるが、一般的に、パタンの転写はチップ単位で行われ、ライン・アンド・スペースパタン(L/Sパタン)等の凹凸格子形状からなる単位パタンを大面積で精密に接ぎ合わせて連続したパタンとすることは高い精度が要求される。また、ナノメートルレベルでの形状の均一性を数十センチメートルレベルの広い領域において非破壊で評価することがなかったため、均一性が保障されたナノパタン(L/Sパタンのピッチが1μm以下)原版を製造することは難しかった。レーザ干渉露光法は、比較的広い面積に均一で微細なパタンを形成するのに適しているが、露光面積が大きくなると、露光時間が長くなり、レーザ光の位相安定性やレジスト基板の温度変化による寸法安定性を維持することが難しく、均一性に優れたナノパタンを形成することは難しかった。   In exposure using a stepper, unit patterns can be transferred continuously by repeating step and repeat. In general, pattern transfer is performed on a chip basis, and line and space patterns ( It is required to have a high accuracy in order to form a continuous pattern by closely joining unit patterns each having a concavo-convex lattice shape such as (L / S pattern) in a large area. In addition, since the uniformity of the shape at the nanometer level was not evaluated non-destructively in a wide area of several tens of centimeters, the nano pattern (the pitch of the L / S pattern is 1 μm or less) in which uniformity was ensured It was difficult to manufacture. The laser interference exposure method is suitable for forming uniform and fine patterns over a relatively large area. However, as the exposure area increases, the exposure time increases, and the phase stability of the laser beam and the temperature change of the resist substrate It was difficult to maintain the dimensional stability due to, and it was difficult to form nanopatterns with excellent uniformity.

また、大面積の型を得るために、面積が小さい第1の型を形成した後、該第1の型を用いて大型の第2の型を形成する方法が提案されている(例えば、特許文献2)。   Further, in order to obtain a large-area mold, a method of forming a large second mold using the first mold after forming a first mold having a small area has been proposed (for example, a patent). Reference 2).

しかし、特許文献2の方法を用いる場合には、第1の型を転写する際に部分的にレジストに加熱処理又は照射を行うため、単位パタン(第1の型に形成されたパタン)を接ぎ合わせて連続したパタンとすることは困難である。特に、ライン・アンド・スペースパタン等のピッチが狭くなるにつれて接ぎ合わせ部分において欠陥が生じる可能性が高くなる。   However, when the method of Patent Document 2 is used, a unit pattern (a pattern formed on the first mold) is contacted because the resist is partially heated or irradiated when the first mold is transferred. It is difficult to make a continuous pattern together. In particular, as the pitch of the line and space pattern becomes narrower, there is a higher possibility that a defect will occur at the joint portion.

特開2006−84776号公報JP 2006-84776 A 特開2005−203797号公報JP 2005-203797 A

本発明はかかる点に鑑みてなされたものであり、パタンピッチに比べ大きな面積にわたり、均一で連続したパタン形状を有するパタン形成基板の製造方法及びパタン形成基板、並びに光学フィルム若しくは光学シートを提供することを目的の一とする。   This invention is made | formed in view of this point, and provides the manufacturing method of a pattern formation board | substrate which has a uniform and continuous pattern shape over a large area compared with a pattern pitch, a pattern formation board | substrate, and an optical film or an optical sheet. One of the purposes.

本発明の光学フィルム若しくは光学シートの製造方法は、ピッチ300nm以下で高さが50nm以上200nm以下の連続凹凸格子パタンから構成され、前記連続凹凸格子パタンが形成された部分の最小外接円の直径が20cm以上であり、前記連続凹凸格子パタンにおいて、前記連続凹凸格子パタンからの可視光領域の反射光波長のばらつき幅が25nm以内であり、前記連続凹凸格子パタンが単位面積の微細パタンを繰り返し露光法により接合形成されたパタン形成基板が、シリコン又は酸化珪素からなり、前記パタン形成基板上のパタン、その複製パタンもしくは反転パタンを用いて、転写用樹脂によりフィルムやシート基材上に凹凸格子構造を転写することを特徴とする。 The manufacturing method of the optical film or optical sheet of the present invention is composed of a continuous concavo-convex lattice pattern having a pitch of 300 nm or less and a height of 50 nm or more and 200 nm or less, and the diameter of the minimum circumscribed circle of the portion where the continuous concavo-convex lattice pattern is formed The continuous concavo-convex grid pattern has a variation width of the reflected light wavelength of the visible light region from the continuous concavo-convex grid pattern within 25 nm, and the continuous concavo-convex grid pattern repeats a fine pattern with a unit area. The pattern forming substrate formed by bonding is made of silicon or silicon oxide, and the pattern on the pattern forming substrate, its replication pattern or reverse pattern is used to form a concavo-convex lattice structure on the film or sheet base material with a transfer resin. It is characterized by transferring.

また、本発明の光学フィルム若しくは光学シートの製造方法は、ピッチ300nm以下で高さが50nm以上200nm以下の連続凹凸格子パタンから構成され、前記連続凹凸格子パタンが形成された部分の最小外接円の直径が20cm以上であり、前記連続凹凸格子パタンにおいて、前記連続凹凸格子パタンからの可視光領域の反射率のばらつき幅が2%以内であり、前記連続凹凸格子パタンが単位面積の微細パタンを繰り返し露光法により接合形成されたパタン形成基板が、シリコン又は酸化珪素からなり、前記パタン形成基板上のパタン、その複製パタンもしくは反転パタンを用いて、転写用樹脂によりフィルムやシート基材上に凹凸格子構造を転写することを特徴とする。 Further, the method for producing an optical film or optical sheet of the present invention is composed of a continuous concavo-convex lattice pattern having a pitch of 300 nm or less and a height of 50 nm or more and 200 nm or less, and a minimum circumcircle of the portion where the continuous concavo-convex lattice pattern is formed. The diameter is 20 cm or more, and in the continuous concavo-convex lattice pattern, the variation width of the reflectance of the visible light region from the continuous concavo-convex lattice pattern is within 2%, and the continuous concavo-convex lattice pattern repeats a fine pattern of a unit area. The pattern forming substrate bonded and formed by the exposure method is made of silicon or silicon oxide. Using the pattern on the pattern forming substrate, its replication pattern or its reversal pattern, a concavo-convex lattice is formed on the film or sheet substrate by a transfer resin. It is characterized by transferring the structure.

本発明によれば、パタンピッチに比べ大きな面積にわたり、均一で連続したパタン形状を有するパタン形成基板が得られる。   According to the present invention, a pattern forming substrate having a uniform and continuous pattern shape over a larger area than the pattern pitch can be obtained.

本発明の露光法の一例を示す概略図Schematic showing an example of the exposure method of the present invention 本発明に係る実施例の波長と反射率の測定結果Measurement results of wavelength and reflectance of the embodiment according to the present invention 本発明に係る比較例の波長と反射率の測定結果Measurement results of wavelength and reflectance of comparative example according to the present invention

本願発明者は、ナノメートルレベルでの形状の均一性を数十センチメートルレベルの広い領域において非破壊で評価する方法を鋭意検討し、白色光や単色光を用いた簡便で精度の高い評価方法を見出した。これにより形状の不均一箇所の評価が可能となり、パタン接ぎ合わせ条件を最適化することにより不均一箇所の解消が可能となった。   The present inventor has intensively studied a method for nondestructively evaluating the uniformity of the shape at the nanometer level in a wide area of several tens of centimeters, and a simple and highly accurate evaluation method using white light or monochromatic light. I found. As a result, it was possible to evaluate the non-uniform portion of the shape, and it was possible to eliminate the non-uniform portion by optimizing the pattern joining condition.

そして、このような評価法を用いながら、近年、著しく精度が向上したステッパや干渉露光技術を応用し、マスク、露光方法について鋭意検討した結果、パタンピッチに比べ非常に大きな面積にわたり継目を視認することのできない一様な形状を有するパタン形成基板を得るに至った。以下に、ナノメートルレベルの単位パタンが大面積に形成されたパタン形成基板及びその作製方法の一例について説明する。   And while using such an evaluation method, in recent years, applying stepper and interference exposure technology with significantly improved accuracy, and as a result of intensive studies on masks and exposure methods, the seam is visually recognized over a much larger area than the pattern pitch. It came to obtain the pattern formation board | substrate which has the uniform shape which cannot be performed. Hereinafter, an example of a pattern forming substrate on which a nanometer unit pattern is formed in a large area and a method for manufacturing the same will be described.

まず、基板を準備する。基板としては、シリコン(Si)、酸化珪素、ガラス、窒化ガリウム、ヒ化ガリウム、酸化アルミニウム、炭化珪素等を用いることができる。   First, a substrate is prepared. As the substrate, silicon (Si), silicon oxide, glass, gallium nitride, gallium arsenide, aluminum oxide, silicon carbide, or the like can be used.

次に、基板上にレジスト膜を形成した後、ステップ・アンド・リピート方式の露光装置(ステッパ)を用いて、基板上のレジスト膜を露光する(図1(A)、(B)参照)。図1(B)において、基板100の点線で囲まれた領域が1回(1ショット)の照射でレジストが露光する領域であり、レチクル101のパタンを縮小した単位パタンに相当する。   Next, after a resist film is formed on the substrate, the resist film on the substrate is exposed using a step-and-repeat type exposure apparatus (stepper) (see FIGS. 1A and 1B). In FIG. 1B, a region surrounded by a dotted line on the substrate 100 is a region where the resist is exposed by one-time (one-shot) irradiation, and corresponds to a unit pattern obtained by reducing the pattern of the reticle 101.

本実施の形態では、レチクルに形成された微細パタンであるライン・アンド・スペースパタン(単位ライン・アンド・スペースパタン、単位面積の微細パタン)を接ぎ合わせる(接合させる)ようにショットを繰り返し、基板上のレジストを露光する(繰り返し露光法により接合する)。したがって、レジストには、単位ライン・アンド・スペースパタンが接合して形成された連続ライン・アンド・スペースパタン(連続凹凸格子パタン、連続微細パタン)が転写されることとなる。各ショットにおいて、ショット同士の重ね合わせ量(露光回数が複数になる部分の量)は、接合が均一になるように任意に設定できる。基板上のレジスト膜を露光した後に、レジストに適した方法で現像を行い、ついで基板をエッチングして凹凸格子パタンを形成する。   In this embodiment, shots are repeated so that a line and space pattern (unit line and space pattern, fine pattern of unit area), which is a fine pattern formed on the reticle, is joined (bonded), The upper resist is exposed (bonded by repeated exposure). Therefore, a continuous line and space pattern (continuous concavo-convex lattice pattern, continuous fine pattern) formed by joining unit line and space patterns is transferred to the resist. In each shot, the amount of overlap between the shots (the amount of the portion where the number of exposures becomes plural) can be arbitrarily set so that the joining is uniform. After the resist film on the substrate is exposed, development is performed by a method suitable for the resist, and then the substrate is etched to form an uneven lattice pattern.

ここで、微細パタンが、ピッチ300nm以下で高さが50nm以上200nm以下の連続凹凸格子パタンから構成され、前記連続凹凸格子パタンが形成された部分の面積は、種々の用途に応用するために、できるだけ大きいことが好ましく、凹凸格子パタンが形成された部分の最少外接円の直径としては20cm以上であることが好ましく、25cm以上であることがより好ましく、30cm以上であることが最も好ましい。この程度の大きさがあれば、ワイヤグリッド偏光板、反射防止フィルム、位相差板などの光学部品等に適用できる可能性が広がる。一方で、大きさの上限に技術的制限は無く、干渉露光法によれば、パタン形状にもよるが、100cm角以上の面積にわたり、均一な微細パタンを形成する事も可能であり、最小外接円の直径としては150cm程度となる。   Here, the fine pattern is composed of a continuous concavo-convex lattice pattern having a pitch of 300 nm or less and a height of 50 nm or more and 200 nm or less, and the area of the portion where the continuous concavo-convex lattice pattern is formed is applied to various uses The diameter is preferably as large as possible, and the diameter of the minimum circumscribed circle of the portion where the concavo-convex lattice pattern is formed is preferably 20 cm or more, more preferably 25 cm or more, and most preferably 30 cm or more. If it is this size, the possibility that it can be applied to optical components such as a wire grid polarizing plate, an antireflection film, and a retardation plate is widened. On the other hand, there is no technical limitation on the upper limit of the size, and according to the interference exposure method, although it depends on the pattern shape, it is possible to form a uniform fine pattern over an area of 100 cm square or more. The diameter of the circle is about 150 cm.

次に、得られたパタン形成基板の連続凹凸格子形状について、単位凹凸格子形状の接合部の均一性について評価を行う。   Next, the uniformity of the joint portion of the unit concavo-convex lattice shape is evaluated for the continuous concavo-convex lattice shape of the obtained pattern forming substrate.

単位凹凸格子形状の接合部の均一性は、連続凹凸格子形状において、例えば4つのショットが隣接するような境界部分(接合部)の光学的特性により評価することができる。   The uniformity of the joint portion of the unit concavo-convex lattice shape can be evaluated by the optical characteristics of the boundary portion (joint portion) where, for example, four shots are adjacent in the continuous concavo-convex lattice shape.

接合部の光学的特性の評価は、接合部近傍領域の反射光を測定し、該反射光を比較して、そのばらつき幅を評価することにより行うことができる。具体的には、接合部を含む所定の領域を規定した後、該領域に複数のポイントを設定し、所定の方向から光を照射した際の複数ポイントにおける反射光の光量およびスペクトル(波長)をそれぞれ比較する。また、反射光の測定は、複数の方向から行うことが好ましく、例えば、連続凹凸格子形状の延伸方向であるX軸方向と、該X軸方向と垂直なY軸方向から光を照射して、それぞれの方向において複数ポイントの反射光のばらつき幅を評価することが好ましい。なお、干渉露光法により作製した凹凸格子形状の場合は、可視光(380〜780nm)における反射光のばらつき幅の最大となるポイントを含めるようにして、10ポイント以上設定すればよい。好ましくは20〜100ポイント程度設定すればよい。ステッパを用いて作製した凹凸格子形状場合は、接合部を含むポイントと含まないポイントをそれぞれ10ポイント以上設定すればよい。好ましくは、それぞれ20〜100ポイント程度設定すればよい。   The evaluation of the optical characteristics of the joint can be performed by measuring the reflected light in the vicinity of the joint, comparing the reflected light, and evaluating the variation width. Specifically, after defining a predetermined area including the joint portion, a plurality of points are set in the area, and the amount and spectrum (wavelength) of reflected light at the plurality of points when light is irradiated from a predetermined direction. Compare each. The measurement of the reflected light is preferably performed from a plurality of directions, for example, by irradiating light from the X-axis direction which is the extending direction of the continuous uneven lattice shape and the Y-axis direction perpendicular to the X-axis direction, It is preferable to evaluate the variation width of reflected light at a plurality of points in each direction. In the case of the concavo-convex lattice shape produced by the interference exposure method, it is sufficient to set 10 points or more so as to include the point at which the variation width of the reflected light in the visible light (380 to 780 nm) becomes maximum. Preferably, about 20 to 100 points may be set. In the case of a concavo-convex lattice shape produced using a stepper, it is only necessary to set 10 points or more including points and not including joints. Preferably, about 20 to 100 points may be set for each.

一例として、接合部を含む領域に複数のポイントを設定した後、該領域に所定の範囲の波長(例えば、380nm〜780nm)の光を照射して、各ポイントにおける反射光を比較することにより、反射光量や反射光波長のばらつき幅を評価する。なお、反射光波長のばらつきの幅とは、380nm〜780nmの波長領域の各ポイントの反射スペクトルを重ね書きして得られたスペクトルにおいて、特定反射率における波長の平均値からのぶれ幅(ばらつき幅)を差す。光をX軸方向から照射して、各ポイントにおける反射光を測定して比較することにより、反射光量や反射光波長のばらつき幅を評価する。さらに、Y軸方向についても同様に行い評価することができる。ここで、測定ポイントの大きさとしては、色のムラに応じ適宜設定すればよく、例えば、ステッパを用いて作製した場合は直径数μm〜1mm程度である。   As an example, after setting a plurality of points in the region including the joint, by irradiating the region with light in a predetermined range of wavelengths (for example, 380 nm to 780 nm), and comparing the reflected light at each point, The variation width of the reflected light amount and the reflected light wavelength is evaluated. The variation width of the reflected light wavelength is a fluctuation width (variation width) from an average value of wavelengths at a specific reflectance in a spectrum obtained by overwriting a reflection spectrum of each point in a wavelength region of 380 nm to 780 nm. ). By irradiating light from the X-axis direction and measuring and comparing the reflected light at each point, the amount of reflected light and the variation width of the reflected light wavelength are evaluated. Further, the same evaluation can be performed for the Y-axis direction. Here, the size of the measurement point may be appropriately set according to the color unevenness. For example, when the measurement point is manufactured using a stepper, the diameter is about several μm to 1 mm.

本実施の形態では、接合部近傍における反射光波長のばらつき幅が25nm以内であるか、または、反射率(入射光量と反射光量の比)のばらつき幅が2%以内である。この範囲であれば、単位凹凸格子形状の接合部が実用上十分な均一性を有しているといえる。さらに、接合部近傍における反射光波長のばらつき幅が25nm以内であり、かつ、反射率(入射光量と反射光量の比)のばらつき幅が2%以内であることが、単位凹凸格子形状の接合部の均一性の観点からより好ましい。なお、反射率のばらつき幅とは、380nm〜780nmの波長領域の各ポイントの反射スペクトルを重ね書きして得られたスペクトルにおいて、特定波長における反射率の平均値からのぶれ幅(ばらつき幅)を差す。反射光波長のばらつき幅を25nm以内に最適化するにあたり、凹凸格子の高さと幅および凹凸格子のピッチのばらつきを10nm以下、好ましくは5nm以下、さらに好ましくは2nm以下に凹凸格子形状を調整することが重要となる。また、反射率のばらつき幅を2%以内に最適化するにあたり、凹凸格子の高さと幅および凹凸格子のピッチのばらつきを10nm以下、好ましくは5nm以下、さらに好ましくは2nm以下に凹凸格子形状を調整することが重要となる。反射波長のばらつき幅は20nm以内にすることがより好ましい。   In the present embodiment, the variation width of the reflected light wavelength in the vicinity of the junction is within 25 nm, or the variation width of the reflectance (the ratio of the incident light amount to the reflected light amount) is within 2%. If it is this range, it can be said that the joint part of unit uneven | corrugated lattice shape has practically sufficient uniformity. Further, the unit-concave-lattice-shaped joint portion has a variation width of the reflected light wavelength in the vicinity of the joint portion within 25 nm and a variation width of the reflectance (ratio of incident light amount to reflected light amount) within 2%. It is more preferable from the viewpoint of uniformity. The variation width of the reflectance is the fluctuation width (variation width) from the average value of the reflectance at a specific wavelength in the spectrum obtained by overwriting the reflection spectrum of each point in the wavelength region of 380 nm to 780 nm. I'll show you. In optimizing the variation width of the reflected light wavelength to 25 nm or less, the height and width of the concavo-convex grid and the pitch variation of the concavo-convex grid should be adjusted to 10 nm or less, preferably 5 nm or less, more preferably 2 nm or less. Is important. In order to optimize the variation width of the reflectance within 2%, the height of the concavo-convex grid and the variation of the pitch of the concavo-convex grid are adjusted to 10 nm or less, preferably 5 nm or less, more preferably 2 nm or less. It is important to do. The variation width of the reflection wavelength is more preferably within 20 nm.

その後、得られた上記評価結果に基づいて、接ぎ合わせ条件(露光条件等)を試行錯誤により最適化して設定することにより、均一な接合部を有するパタン形成基板を製造することができる。   Thereafter, based on the obtained evaluation results, the pattern forming substrate having a uniform joint can be manufactured by optimizing and setting the joining conditions (exposure conditions and the like) by trial and error.

上記のような反射光の測定に基づく、反射率や反射光波長のばらつき幅の比較評価を簡略化して、目視による評価も簡易的に用いることができる。たとえば、連続凹凸格子パタンの平行方向もしくは直角から、入射角45度以上で基板表面に可視光を入射し、反射光を観察する。この方法で、単位格子凹凸格子パタンの接合部が視認されないことが好ましい。   The comparative evaluation of the reflectance and the variation width of the reflected light wavelength based on the measurement of the reflected light as described above can be simplified, and visual evaluation can also be easily used. For example, visible light is incident on the substrate surface at an incident angle of 45 degrees or more from a parallel direction or a right angle of the continuous concave-convex lattice pattern, and the reflected light is observed. In this method, it is preferable that the joint portion of the unit cell uneven lattice pattern is not visually recognized.

また、基板が酸化珪素など透明素材で形成されている場合には、基板表面を金属などの遮光性物質で平均20nm程度被覆したのち、同様な方法で反射光を観察、評価することが好ましい。   When the substrate is made of a transparent material such as silicon oxide, it is preferable to observe and evaluate the reflected light by the same method after coating the surface of the substrate with a light shielding material such as metal on the average of about 20 nm.

このように、上記評価方法を用いることにより、パタンピッチに比べ非常に大きな面積にわたり、パタンの均一性を評価することが可能となり、パタン形成法を最適化することで一様な形状を有するパタン形成基板を得ることができる。   Thus, by using the above evaluation method, it becomes possible to evaluate the uniformity of the pattern over a very large area compared to the pattern pitch, and by optimizing the pattern formation method, the pattern having a uniform shape can be evaluated. A forming substrate can be obtained.

また、単位凹凸格子パタンの接合部の評価において、一枚の基板上に形成されたレジストに露光条件等を変えて複数の条件からなる凹凸格子形状を作製することにより、一枚の基板で複数の露光条件についてパタン接合部の均一性評価を行うこともできる。   Moreover, in the evaluation of the joint portion of the unit concavo-convex lattice pattern, a plurality of concavo-convex lattice shapes having a plurality of conditions can be produced on a single substrate by changing the exposure conditions for the resist formed on the single substrate. It is also possible to evaluate the uniformity of the pattern joint with respect to the above exposure conditions.

以下、実施例により本発明を詳しく説明する。   Hereinafter, the present invention will be described in detail by way of examples.

本実施例では、ステッパの1ショット面積5×20mm、ピッチ130nm、ライン・アンド・スペースパタンにおけるラインとスペースの比(L/S比)が6/4、高さが150nmのパタンが連続的に広範囲に形成された直径30cmのシリコン基板を得た後、4つのショットが隣接し十字となる境界付近において反射光を測定した。   In this example, a stepper shot area of 5 × 20 mm, a pitch of 130 nm, a line-and-space pattern with a line-to-space ratio (L / S ratio) of 6/4, and a pattern with a height of 150 nm are continuously provided. After obtaining a silicon substrate having a diameter of 30 cm formed over a wide area, the reflected light was measured in the vicinity of the boundary where four shots are adjacent to form a cross.

反射光の測定は、大塚電子株式会社製の反射分光膜厚計FE3000(自動ステージ仕様)を用いて行った。測定条件は絶対反射率測定、測定モードはマニュアル、対物レンズを25倍にした後、アルミニウムを参照としてベースラインを調整し、他の参照として反射率が既知のBK7の反射率も測定し装置が正常であることを確認した。   The reflected light was measured using a reflective spectral film thickness meter FE3000 (automatic stage specification) manufactured by Otsuka Electronics Co., Ltd. The measurement conditions are absolute reflectance measurement, the measurement mode is manual, the objective lens is multiplied by 25 times, the baseline is adjusted with reference to aluminum, and the reflectance of BK7 with known reflectance is also measured as another reference. Confirmed that it was normal.

次に、反射分光膜厚計のサンプルステージのY軸と凹凸格子形状の軸方向が平行となるようにシリコン基板を設置し、基板表面に測定フォーカスが一致するように高さを調節した。シリコン基板を設置し、基板表面に測定フォーカスが一致するように高さを調整した。この時の測定入射角は、サンプルに対し10°〜22°で、測定面積は8μmφであった。   Next, a silicon substrate was placed so that the Y-axis of the sample stage of the reflection spectral film thickness meter and the axis direction of the concavo-convex lattice shape were parallel, and the height was adjusted so that the measurement focus coincided with the substrate surface. A silicon substrate was installed, and the height was adjusted so that the measurement focus coincided with the substrate surface. The measurement incident angle at this time was 10 ° to 22 ° with respect to the sample, and the measurement area was 8 μmφ.

次に、測定モードをマッピングとして、4つのショットが隣接し十字となる境界を含むように測定点を3×3mmの範囲にX軸40箇所、Y軸40箇所ずつ合計1600箇所設定し、ほぼ等間隔で反射光を測定した。   Next, using the measurement mode as a mapping, the measurement points are set in a range of 3 × 3 mm so that four shots are adjacent to each other and include a cross, and a total of 1600 points each of 40 points on the X axis and 40 points on the Y axis are set. The reflected light was measured at intervals.

まず、測定器の自動ステージのY軸に凹凸格子形状が平行となるように設置し反射率を測定した結果を示す(図2)。これは、後述する比較例で、凹凸格子形状を作製した条件に対して、ショットの接ぎ合わせ条件を最適化させて作製した。シリコン基板の反射率を測定したところ、条件1(実施例)のシリコン基板の反射率は、波長380〜780nmの範囲において波長で10nm以内、反射率で0.7%以内のばらつき幅であった。   First, the result of measuring the reflectance by installing the concavo-convex lattice shape parallel to the Y axis of the automatic stage of the measuring instrument is shown (FIG. 2). This is a comparative example which will be described later, and was produced by optimizing the shot joining conditions with respect to the conditions for producing the concavo-convex lattice shape. When the reflectance of the silicon substrate was measured, the reflectance of the silicon substrate of Condition 1 (Example) was within a variation range of 10 nm in wavelength and 0.7% in reflectance in the wavelength range of 380 to 780 nm. .

比較例として、別の接ぎ合わせ条件でシリコン基板に同様の形状を有する凹凸格子形状を形成し、反射率の測定を行った。測定器の自動ステージのY軸に凹凸格子形状が平行となるように設置し反射率を測定した結果(図3)も、条件2(比較例)のシリコン基板の反射率は、波長で27nm、反射率で2.1%以上のばらつき幅がある箇所があった。   As a comparative example, an uneven lattice shape having a similar shape was formed on a silicon substrate under different joining conditions, and the reflectance was measured. As a result of measuring the reflectance by installing the concave and convex lattice shape in parallel with the Y axis of the automatic stage of the measuring instrument (FIG. 3), the reflectance of the silicon substrate in condition 2 (comparative example) is 27 nm in wavelength, There was a portion with a variation width of 2.1% or more in reflectance.

さらに、この2種のシリコン基板を用い紫外線硬化樹脂によりPETフィルム上に凹凸格子構造を転写した。転写したフィルムは30°に傾斜をつけて凹凸構造面へ真空蒸着によりAlを平均厚み50nm被覆した。   Furthermore, the concavo-convex lattice structure was transferred onto the PET film using an ultraviolet curable resin using these two types of silicon substrates. The transferred film was inclined at 30 ° and Al was coated on the concavo-convex structure surface by vacuum deposition with an average thickness of 50 nm.

次に、このAlで被覆したワイヤグリッドフィルムを白色光源越しに透過光を観察した際の結果を表1に示す。   Next, Table 1 shows the results when the transmitted light was observed through the white light source on the wire grid film coated with Al.

条件1で作製したサンプルでは、透過光のショット斑は視認できず均一な透過光であった。しかし、条件2のシリコン基板から作製したサンプルには、シリコン基板で視認できたショット斑に対応する透過斑が容易に視認できた。   In the sample produced under Condition 1, the shot spot of the transmitted light was not visible and the transmitted light was uniform. However, in the sample produced from the silicon substrate of Condition 2, the transmission spots corresponding to the shot spots visible on the silicon substrate were easily visible.

本発明のパタン形成基板は、均一で連続したパタン形状を大面積で有し、ワイヤグリッド偏光板、反射防止構造、位相差板などの光学部品等に適用できる。   The pattern forming substrate of the present invention has a uniform and continuous pattern shape with a large area, and can be applied to optical components such as a wire grid polarizing plate, an antireflection structure, and a retardation plate.

100 基板
101 レチクル
100 substrate 101 reticle

Claims (2)

ピッチ300nm以下で高さが50nm以上200nm以下の連続凹凸格子パタンから構成され、
前記連続凹凸格子パタンが形成された部分の最小外接円の直径が20cm以上であり、
前記連続凹凸格子パタンにおいて、前記連続凹凸格子パタンからの可視光領域の反射光波長のばらつき幅が25nm以内であり、
前記連続凹凸格子パタンが単位面積の微細パタンを繰り返し露光法により接合形成されたパタン形成基板が、シリコン又は酸化珪素からなり、
前記パタン形成基板上のパタン、その複製パタンもしくは反転パタンを用いて、転写用樹脂によりフィルムやシート基材上に凹凸格子構造を転写することを特徴とする光学フィルム若しくは光学シートの製造方法
It is composed of a continuous concavo-convex lattice pattern having a pitch of 300 nm or less and a height of 50 nm to 200 nm,
The diameter of the minimum circumscribed circle of the portion where the continuous uneven lattice pattern is formed is 20 cm or more,
In the continuous concavo-convex lattice pattern, the variation width of the reflected light wavelength in the visible light region from the continuous concavo-convex lattice pattern is within 25 nm,
A pattern forming substrate in which the continuous concavo-convex lattice pattern is formed by repeatedly bonding a fine pattern of a unit area by an exposure method is made of silicon or silicon oxide,
A method for producing an optical film or optical sheet , comprising transferring a concavo-convex lattice structure onto a film or sheet substrate by a transfer resin using a pattern on the pattern forming substrate, a replication pattern or an inverted pattern thereof.
ピッチ300nm以下で高さが50nm以上200nm以下の連続凹凸格子パタンから構成され、
前記連続凹凸格子パタンが形成された部分の最小外接円の直径が20cm以上であり、
前記連続凹凸格子パタンにおいて、前記連続凹凸格子パタンからの可視光領域の反射率のばらつき幅が2%以内であり、
前記連続凹凸格子パタンが単位面積の微細パタンを繰り返し露光法により接合形成されたパタン形成基板が、シリコン又は酸化珪素からなり、
前記パタン形成基板上のパタン、その複製パタンもしくは反転パタンを用いて、転写用樹脂によりフィルムやシート基材上に凹凸格子構造を転写することを特徴とする光学フィルム若しくは光学シートの製造方法
It is composed of a continuous concavo-convex lattice pattern having a pitch of 300 nm or less and a height of 50 nm to 200 nm,
The diameter of the minimum circumscribed circle of the portion where the continuous uneven lattice pattern is formed is 20 cm or more,
In the continuous concavo-convex grid pattern, the variation width of the reflectance of the visible light region from the continuous concavo-convex grid pattern is within 2%,
A pattern forming substrate in which the continuous concavo-convex lattice pattern is formed by repeatedly bonding a fine pattern of a unit area by an exposure method is made of silicon or silicon oxide,
A method for producing an optical film or optical sheet , comprising transferring a concavo-convex lattice structure onto a film or sheet substrate by a transfer resin using a pattern on the pattern forming substrate, a replication pattern or an inverted pattern thereof.
JP2014054373A 2014-03-18 2014-03-18 Method for manufacturing optical film or optical sheet Active JP5938732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014054373A JP5938732B2 (en) 2014-03-18 2014-03-18 Method for manufacturing optical film or optical sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014054373A JP5938732B2 (en) 2014-03-18 2014-03-18 Method for manufacturing optical film or optical sheet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009218913A Division JP5503237B2 (en) 2009-09-24 2009-09-24 Pattern forming substrate

Publications (2)

Publication Number Publication Date
JP2014160255A JP2014160255A (en) 2014-09-04
JP5938732B2 true JP5938732B2 (en) 2016-06-22

Family

ID=51611939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014054373A Active JP5938732B2 (en) 2014-03-18 2014-03-18 Method for manufacturing optical film or optical sheet

Country Status (1)

Country Link
JP (1) JP5938732B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522226A (en) * 2004-11-30 2008-06-26 アグーラ テクノロジーズ インコーポレイテッド Application and fabrication technology of large-scale wire grid polarizer
JP2008158460A (en) * 2006-12-26 2008-07-10 Sony Corp Method of manufacturing polarizing element
JP2008268940A (en) * 2007-03-27 2008-11-06 Toray Ind Inc Reflection type polarizing plate and liquid crystal display device using same

Also Published As

Publication number Publication date
JP2014160255A (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP6895985B2 (en) HHG sources, inspection equipment, and methods of performing measurements
US9454072B2 (en) Method and system for providing a target design displaying high sensitivity to scanner focus change
TWI646410B (en) Metrology method and apparatus, computer program and lithographic system
CN1303477C (en) Determination of center of focus by cross-section analysis
TWI426018B (en) Imprint lithography
JP6727327B2 (en) Method and apparatus for generating illuminating radiation
CN110632689B (en) Method for manufacturing surface relief grating structure
JP6536185B2 (en) Method of manufacturing synthetic quartz glass substrate
KR20130099988A (en) Light absorption and filtering properties of vertically oriented semiconductor nano wires
KR101791268B1 (en) Method and system for evaluating EUV mask flatness
JP2022505074A (en) Optical fiber and its production method
CN102707568B (en) Photo-etching method of bottom surface of multi-step apparatus structure
US20120032377A1 (en) Apparatus and method for aligning surfaces
TW201944098A (en) Anti-reflection optical substrates and methods of manufacture
JP6843151B2 (en) Light intensity adjustment method
TWI305826B (en) Method for correlating the line width roughness of gratings and method for measurement
TW201312299A (en) Level sensor arrangement for lithographic apparatus, lithographic apparatus and device manufacturing method
JP5503237B2 (en) Pattern forming substrate
JP5938732B2 (en) Method for manufacturing optical film or optical sheet
JP7324782B2 (en) System for monitoring lattice formation
TW201040669A (en) A method of determining a characteristic
TW201327063A (en) Method for manufacturing periodic structures on a surface of a substrate
CN108681216A (en) A kind of device and method for the micron and nanometer composite structure preparing multicycle multiform looks
Leskova et al. The design and fabrication of one-dimensional random surfaces with specified scattering properties
JP2020120023A (en) Imprint mold and manufacturing method of the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

R150 Certificate of patent or registration of utility model

Ref document number: 5938732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350