JP5935766B2 - Microbial sample observation method - Google Patents

Microbial sample observation method Download PDF

Info

Publication number
JP5935766B2
JP5935766B2 JP2013133893A JP2013133893A JP5935766B2 JP 5935766 B2 JP5935766 B2 JP 5935766B2 JP 2013133893 A JP2013133893 A JP 2013133893A JP 2013133893 A JP2013133893 A JP 2013133893A JP 5935766 B2 JP5935766 B2 JP 5935766B2
Authority
JP
Japan
Prior art keywords
sample
microorganism sample
microorganism
observation
microbial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013133893A
Other languages
Japanese (ja)
Other versions
JP2015008634A (en
Inventor
悦男 ▲濱▼田
悦男 ▲濱▼田
克美 山田
克美 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013133893A priority Critical patent/JP5935766B2/en
Publication of JP2015008634A publication Critical patent/JP2015008634A/en
Application granted granted Critical
Publication of JP5935766B2 publication Critical patent/JP5935766B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、微生物試料の観察方法に関する。   The present invention relates to a method for observing a microorganism sample.

微生物の表面形態、分裂様式、増殖様式、物体表面への付着の仕方、集合形式を明らかにするために、走査電子顕微鏡(以下、SEMと称す)を用いて微生物観察が行われる。そして、このような走査電子顕微鏡(以下、SEMと称す)を用いた微生物観察は、生物学上の研究、開発に必須の手法となっている。通常、SEM観察では微生物試料を真空中に設置するため、微生物等の生体試料を観察する場合には、真空内でも微生物試料の構造が変化しないように前もって微生物試料に対して固定、脱水等の処理をする必要がある。SEM観察のための一般的な微生物試料の標準的工程は、固定、脱水、置換、凍結乾燥、染色、金属コーティング等、その微生物試料の特性に応じて数多くの工程があり、すべての工程を終了するためには最低でも2〜3日の時間を要する。微生物試料の固定処理、脱水処理、置換処理、凍結乾燥は、以下の1〜6工程を順次行う方法が知られている(非特許文献1〜3)。
1)前固定工程:微生物試料をグルタールアルデヒド溶液(2.5質量%〜5質量%)に数時間〜24時間浸漬する。
2)洗浄工程:微生物試料をリン酸緩衝液で数回洗浄する。
3)後固定工程:微生物試料を四酸化オスミウム溶液(1〜2質量%)に数時間浸漬する。
4)洗浄工程:微生物試料をリン酸緩衝液で数回洗浄する。
5)脱水工程:微生物試料を50、70、85、95質量%のエタノールに各15分間浸漬し、さらに無水エタノールに15分間、3回繰り返し、浸漬する。
6)置換工程、乾燥工程:微生物試料を酢酸イソアミルに15分間浸漬後、臨界点乾燥を行う。
Microbial observation is performed using a scanning electron microscope (hereinafter referred to as SEM) in order to clarify the surface morphology of microorganisms, the mode of division, the manner of growth, the manner of attachment to the surface of an object, and the type of assembly. Microbial observation using such a scanning electron microscope (hereinafter referred to as SEM) is an indispensable technique for biological research and development. Usually, in SEM observation, a microorganism sample is placed in a vacuum. Therefore, when observing a biological sample such as a microorganism, the microorganism sample is fixed, dehydrated, etc. in advance so that the structure of the microorganism sample does not change even in the vacuum. It needs to be processed. There are many standard microbial sample processes for SEM observation, such as fixation, dehydration, replacement, lyophilization, staining, metal coating, etc., depending on the characteristics of the microbial sample, and all processes are completed. It takes a minimum of 2-3 days to do this. As a method for fixing, dehydrating, replacing, and lyophilizing a microorganism sample, a method of sequentially performing the following 1 to 6 steps is known (Non-Patent Documents 1 to 3).
1) Pre-fixation step: The microorganism sample is immersed in a glutaraldehyde solution (2.5 mass% to 5 mass%) for several hours to 24 hours.
2) Washing step: The microorganism sample is washed several times with a phosphate buffer.
3) Post-fixation step: The microorganism sample is immersed in an osmium tetroxide solution (1-2% by mass) for several hours.
4) Washing step: The microorganism sample is washed several times with a phosphate buffer.
5) Dehydration step: The microorganism sample is immersed in 50, 70, 85, and 95% by mass of ethanol for 15 minutes each, and further immersed in absolute ethanol for 15 minutes three times.
6) Substitution process, drying process: After immersing the microorganism sample in isoamyl acetate for 15 minutes, critical point drying is performed.

上記前固定工程において、固定液としてグルタールアルデヒドを使用する場合は、高い溶存酸素を保ったまま、固定操作途中でpHをアルカリ性に変化させることで最もよい観察結果が得られることが知られている。しかし、採取したばかりの生きた微生物は呼吸を行うため、固定の最中に固定液の溶存酸素やpHを低下させ、微生物試料の固定が上手くいかない場合がある。そのため、一般には、微生物試料を浸漬する固定液の量を増やす、固定途中で新鮮な固定液に交換する、曝気する等の措置を講じる必要がある(非特許文献4)。   In the above pre-fixing step, when glutaraldehyde is used as a fixing solution, it is known that the best observation results can be obtained by changing the pH to alkaline during the fixing operation while maintaining high dissolved oxygen. Yes. However, since live microorganisms that have just been collected breathe, the dissolved oxygen and pH of the fixative may be lowered during fixation, and the microorganism sample may not be fixed well. Therefore, in general, it is necessary to take measures such as increasing the amount of the fixing solution in which the microorganism sample is immersed, replacing the sample with a fresh fixing solution in the middle of fixing, or aeration (Non-Patent Document 4).

また、植物上の細菌、歯垢や環境中の微生物の集合体(バイオフィルム)等の観察では、微生物以外の生体や、構造や構成成分の異なる微生物の集合体について、それぞれの構造と位置関係を維持したまま一度に固定する必要があるため、熟練した技術とより複雑な工程が必要となる(非特許文献1〜3)。   In addition, when observing plant bacteria, plaque, and environmental microorganism aggregates (biofilms), the structures and positional relationships of living organisms other than microorganisms and aggregates of microorganisms with different structures and components are observed. Since it is necessary to fix at a time while maintaining the above, skilled techniques and more complicated processes are required (Non-Patent Documents 1 to 3).

このように微生物のSEM観察用試料の作製は煩雑で時間がかかる。観察するに際しては、熟練した技術を要する。またタンパク変性剤である固定液や揮発性溶剤等も多量に使用することから、作業者の安全性や廃棄物の環境への配慮に十分な注意が必要である。   Thus, the preparation of a sample for SEM observation of microorganisms is complicated and takes time. Observing skill is necessary for observation. In addition, since a large amount of a protein denaturant, such as a fixative or a volatile solvent, is used, sufficient attention must be paid to the safety of workers and consideration of the environment of waste.

医学生物学の走査電子顕微鏡、監修:宮澤七郎 医学出版センターScanning electron microscope for medical biology, supervision: Shichirou Miyazawa Medical Publishing Center 電子顕微鏡試料作製法、関西電子顕微鏡応用技術研究会編 KINPODOElectron Microscope Sample Preparation, Kansai Electron Microscope Application Technology Study Group KINPODO 走査電子顕微鏡、日本電子顕微鏡学会関東支部編Scanning electron microscope, Japan Electron Microscope Society Kanto branch 医学生物学電子顕微鏡学会、第22回学術講演会及び総会要旨集Abstracts of Medical Biological Electron Microscopy, 22nd Annual Conference and General Meeting

本発明は、かかる事情に鑑みてなされたものであって、微生物試料を煩雑な前処理をすることなく容易に観察する方法を提供することを目的とする。   This invention is made | formed in view of this situation, Comprising: It aims at providing the method of observing a microorganism sample easily, without performing a complicated pretreatment.

本発明者らは、通常のSEM観察で微生物試料を観察する際に煩雑な試料処理を必要とするのはひとえに微生物試料を真空中に設置しなければならないことに起因すると考えた。そして、上記を踏まえ、雰囲気下で微生物試料の観察が可能となる環境制御型走査電子顕微鏡(以降、ESEMと称す)に着目し、ESEMを特定条件下で利用すれば、微生物試料を前処理することなくそのまま観察できるのではないかと考えた。具体的には、飽和水蒸気圧下で微生物試料を観察することができれば、微生物試料を乾燥させることなく、前処理無しでそのまま観察することが可能であると考えられる。しかしながら、微生物試料を観察する場合、μmオーダーかμmオーダー以下の構造を観察する必要がある。ESEMを用いてこのようなレベルの構造を観察するための空間分解能で観察するには、次のような課題がある。ESEMでは雰囲気中を電子ビームが通過するため、低エネルギーの電子ビームでは電子が雰囲気ガスとの衝突で散乱し良好な画像を得ることができない。従って、雰囲気による電子の散乱を抑制するために、ESEMでは一般に15kVもしくはそれ以上の高い加速電圧を使用する。高加速電圧で生じた高エネルギーの電子ビームを用いれば雰囲気中での電子の散乱を抑制することはできる。一方、微生物試料中での電子ビームの拡散領域が大きくなってしまい十分な空間分解能を得ることができなくなる。微生物は主に軽元素から構成されるため、微生物試料観察に高エネルギービームを用いた時の拡散領域は大きく、空間分解能の劣化は著しい。   The inventors of the present invention have considered that the necessity of complicated sample processing when observing a microbial sample by ordinary SEM observation is due to the fact that the microbial sample must be placed in a vacuum. Based on the above, paying attention to an environment-controlled scanning electron microscope (hereinafter referred to as ESEM) that enables observation of a microbial sample in an atmosphere, and pre-treating a microbial sample if the ESEM is used under specific conditions I thought that it would be possible to observe without any change. Specifically, if a microbial sample can be observed under saturated water vapor pressure, it is considered that the microbial sample can be observed as it is without pretreatment without drying. However, when observing a microorganism sample, it is necessary to observe a structure of the order of μm or less. In order to observe with the spatial resolution for observing such a level structure using ESEM, there are the following problems. In the ESEM, since an electron beam passes through the atmosphere, a low-energy electron beam scatters electrons due to collision with the atmospheric gas, and a good image cannot be obtained. Therefore, in order to suppress scattering of electrons due to the atmosphere, ESEM generally uses a high acceleration voltage of 15 kV or higher. If a high energy electron beam generated at a high acceleration voltage is used, scattering of electrons in the atmosphere can be suppressed. On the other hand, the diffusion region of the electron beam in the microorganism sample becomes large, and sufficient spatial resolution cannot be obtained. Since microorganisms are mainly composed of light elements, the diffusion region is large when a high-energy beam is used for microbial sample observation, and the spatial resolution is significantly degraded.

そこで、上記課題を解決するべく鋭意検討した。その結果、ショットキー型電子銃の輝度が高く且つ微小なプローブ径を有するビームを用いると共に、微生物試料中での電子の拡散を抑制するために加速を低加速化する、そして、作動距離を短くして雰囲気による電子の散乱を抑制することで、微生物試料を乾燥させることなく、飽和蒸気圧下で微生物試料の微細構造をESEMで観察できることを見出した。   Therefore, intensive studies were conducted to solve the above problems. As a result, the Schottky electron gun has a high brightness and a beam having a small probe diameter, and the acceleration is reduced to suppress the diffusion of electrons in the microorganism sample, and the working distance is shortened. Then, it was found that the microstructure of the microbial sample can be observed by ESEM under saturated vapor pressure without drying the microbial sample by suppressing the scattering of electrons due to the atmosphere.

本発明は、このような知見に基づきなされたもので、その要旨は以下の通りである。
[1]ショットキー型電子銃を有する環境制御型走査電子顕微鏡を用いて、飽和水蒸気圧下、0℃〜5℃の温度範囲で、加速電圧2kV以上5kV以下、作動距離5mm以上8mm以下の条件で、微生物試料を観察することを特徴とする微生物試料の観察方法。
The present invention has been made based on such findings, and the gist thereof is as follows.
[1] Using an environmentally controlled scanning electron microscope with a Schottky electron gun, under the conditions of an acceleration voltage of 2 kV to 5 kV and a working distance of 5 mm to 8 mm under saturated water vapor pressure in a temperature range of 0 ° C to 5 ° C. A method for observing a microorganism sample, comprising observing the microorganism sample.

本発明によれば、微生物試料を煩雑な前処理をすることなく観察することができる。   According to the present invention, it is possible to observe a microbial sample without complicated pretreatment.

微生物試料を観察した図である。It is the figure which observed the microorganism sample.

本発明では、微生物試料を飽和蒸気圧下で観察するためにESEMを用いることとする。そして、ESEMを用いて微生物試料を観察するに際し、ESEMは、ショットキー型電子銃を有することとする。さらに、観察する際の条件は、飽和水蒸気圧下、0℃〜5℃の温度範囲で、加速電圧2kV以上5kV以下、作動距離5mm以上8mm以下の条件とする。以下、詳細に説明する。
本発明では、ショットキー型電子銃を用いる。ショットキー型電子銃の輝度が高く且つ微小なプローブ径を有するビームを用いることで、十分な電子ビームの輝度を保ったまま細径のビームが得られ、μmオーダーもしくはμmオーダーよりも微細な構造を観察することが可能となる。
In the present invention, ESEM is used to observe a microorganism sample under saturated vapor pressure. And when observing a microorganism sample using ESEM, ESEM shall have a Schottky type electron gun. Furthermore, the observation conditions are a saturated water vapor pressure, a temperature range of 0 ° C. to 5 ° C., an acceleration voltage of 2 kV to 5 kV, and a working distance of 5 mm to 8 mm. Details will be described below.
In the present invention, a Schottky electron gun is used. By using a high-luminance Schottky electron gun and a beam with a small probe diameter, a small-diameter beam can be obtained while maintaining a sufficient electron beam luminance, and the structure is finer than the μm order or μm order. Can be observed.

そして、飽和水蒸気圧下で観察することにより、微生物が干からびるのを防ぐことができる。   By observing under saturated water vapor pressure, microorganisms can be prevented from drying out.

上述したように、ESEMで微生物試料を観察しようとした場合、雰囲気による電子の散乱と、微生物試料中でのビームの拡散領域が大きくなり十分な空間分解能を得ることができなくなる、の2つの問題がある。この問題に対して、本発明では、まず、加速電圧を5kV以下とすることで、微生物試料中での電子ビームの拡散を抑制する。加速電圧を低下させると雰囲気による電子ビームの散乱が問題となる場合があるため、下限は2kVとする。   As described above, when observing a microbial sample with an ESEM, there are two problems: scattering of electrons due to the atmosphere and a large diffusion area of the beam in the microbial sample, making it impossible to obtain sufficient spatial resolution. There is. In response to this problem, in the present invention, first, the acceleration voltage is set to 5 kV or less to suppress the diffusion of the electron beam in the microorganism sample. Lowering the acceleration voltage may cause scattering of the electron beam by the atmosphere, so the lower limit is 2 kV.

加速電圧を低下させると雰囲気による電子ビームの散乱が問題となる。そこで、微生物試料を対物レンズに近づけて雰囲気中の電子ビームの経路を短くすることで、雰囲気による電子ビームの散乱を抑制することを考えた。   When the acceleration voltage is lowered, scattering of the electron beam by the atmosphere becomes a problem. Therefore, it was considered to suppress scattering of the electron beam by the atmosphere by shortening the path of the electron beam in the atmosphere by bringing the microorganism sample close to the objective lens.

ここで、本発明では、飽和水蒸気圧下で観察することを前提とするため、観察温度も重要となる。そこで、加速電圧3kVとし、温度と作動距離と電子ビームの散乱抑制すなわち画像との関係について調査した。得られた結果を表1に示す。なお、表1において、画像の評価結果である○△×は、後述する実施例の評価基準と同様である。   Here, in the present invention, the observation temperature is also important because it is premised on observation under saturated water vapor pressure. Therefore, the acceleration voltage was set to 3 kV, and the relationship between the temperature, the working distance, and the electron beam scattering suppression, that is, the image was investigated. The obtained results are shown in Table 1. In Table 1, “◯ Δ ×”, which is the evaluation result of the image, is the same as the evaluation criteria of the examples described later.

表1より、0℃〜5℃の温度範囲で、作動距離を5mm以上8mm以下とすることで、良好な画像が得られることがわかる。作動距離が短すぎる場合、検出器とサンプルが接触してしまい画像を得ることができない。作動距離が長すぎると電子線の散乱で良好な画像を取得できない。また、温度が高いと飽和水蒸気圧が上昇するため良好な画像を取得できない。
以上より、作動距離は5mm以上8mm以下とする。
From Table 1, it can be seen that a good image can be obtained when the working distance is 5 mm or more and 8 mm or less in the temperature range of 0 ° C to 5 ° C. When the working distance is too short, the detector and the sample come into contact with each other and an image cannot be obtained. If the working distance is too long, a good image cannot be obtained due to scattering of the electron beam. Further, when the temperature is high, the saturated water vapor pressure rises, so that a good image cannot be acquired.
Based on the above, the working distance is 5 mm or more and 8 mm or less.

また、0℃〜5℃の温度範囲とする。0℃未満では、水が凍結してしまう。一方、5℃超えでは、飽和水蒸気圧が高くなり、雰囲気によって電子ビームが散乱してしまうため、良好な画像を得ることができない。   Moreover, it is set as the temperature range of 0 degreeC-5 degreeC. If it is less than 0 degreeC, water will freeze. On the other hand, if it exceeds 5 ° C., the saturated water vapor pressure becomes high and the electron beam is scattered by the atmosphere, so that a good image cannot be obtained.

以上の条件を適用することで、特殊な前処理無しに微生物試料を観察することが可能となる。   By applying the above conditions, the microorganism sample can be observed without any special pretreatment.

具体的な手順は以下の通りである。まず、微生物試料を冷却ホルダーで0℃〜5℃に冷却してESEMの試料室へ微生物試料を導入する。次いで、ESEMの試料室の雰囲気を水蒸気に置換し、試料室内を飽和水蒸気圧の水蒸気で満たす。ショットキー型電子銃を有するESEMを用いる。さらに微生物試料中での電子ビームの拡散を抑制するために加速電圧を2kV以上5kV以下とする。次いで、微生物試料を対物レンズに近づけて観察する。   The specific procedure is as follows. First, the microorganism sample is cooled to 0 ° C. to 5 ° C. with a cooling holder, and the microorganism sample is introduced into the sample chamber of the ESEM. Next, the atmosphere in the sample chamber of the ESEM is replaced with water vapor, and the sample chamber is filled with water vapor having a saturated water vapor pressure. An ESEM having a Schottky electron gun is used. Further, the acceleration voltage is set to 2 kV or more and 5 kV or less in order to suppress diffusion of the electron beam in the microorganism sample. Next, the microorganism sample is observed close to the objective lens.

本発明の実施例について説明する。
ESEMはFEI(株)製のQuanta 250FEGを用いた。細菌(Bacillus subtilis)を冷却試料ホルダーに設置し、表2、表3に示す条件で細菌(微生物試料)観察を実施した。雰囲気はいずれも水蒸気であり、各温度における飽和水蒸気圧下で観察した。飽和水蒸気圧を上回る圧力では細菌(微生物試料)が結露してしまい、一方飽和水蒸気圧を下回る圧力では細菌(微生物試料)が乾燥してしまい、細菌(微生物試料)を良好な状態に保って観察することができなかった。
図1(a)に表2実施例No25(本発明例)の条件で観察した結果を示す。細菌(微生物試料)を良好な状態に保って観察でき、その結果、細菌(微生物試料)の形態識別が可能となっている。
図1(b)に通常のSEMの真空中へ細菌(微生物試料)を設置した場合の例(参考例)を示す。図1(b)では細菌は原型をとどめていないことがわかる。
図1(c)に表3実施例No74(比較例)の条件で観察した結果を示す。ESEM観察そのものが困難であり、細菌(微生物試料)は全く可視化されていないことがわかる。
図1(d)に表2実施例No40(比較例)の条件で観察した結果を示す。細菌(微生物試料)の形態識別が困難であることがわかる。
得られた観察結果を表2、表3に条件と併せて示す。なお、表2、表3において、画像の評価は、図1(a)のような画像が得られた場合を○、図1(c)のように観察が困難であった場合を×、図1(d)のように細菌の形態の識別が困難である場合を△とした。
Examples of the present invention will be described.
ESEM used was Quanta 250 FEG manufactured by FEI. Bacteria (Bacillus subtilis) was placed in a cooled sample holder, and the bacteria (microorganism sample) were observed under the conditions shown in Tables 2 and 3. The atmosphere was water vapor and was observed under saturated water vapor pressure at each temperature. At pressures above the saturated water vapor pressure, the bacteria (microorganism sample) will condense, while at pressures below the saturated water vapor pressure, the bacteria (microorganism sample) will dry out and keep the bacteria (microorganism sample) in good condition for observation. I couldn't.
FIG. 1 (a) shows the results observed under the conditions of Table 2 Example No. 25 (example of the present invention). Bacteria (microorganism sample) can be observed in good condition, and as a result, the morphology of the bacteria (microorganism sample) can be identified.
FIG. 1B shows an example (reference example) in which bacteria (microorganism sample) are placed in a normal SEM vacuum. In FIG. 1 (b), it can be seen that the bacteria do not remain in their original form.
FIG. 1 (c) shows the results of observation under the conditions of Table 3 Example No. 74 (Comparative Example). ESEM observation itself is difficult, and it can be seen that bacteria (microorganism sample) are not visualized at all.
FIG. 1 (d) shows the results observed under the conditions of Table 2 Example No. 40 (Comparative Example). It turns out that the form identification of bacteria (microorganism sample) is difficult.
The obtained observation results are shown in Tables 2 and 3 together with the conditions. In Tables 2 and 3, the evaluation of the images is ○ when the image as shown in FIG. 1A is obtained, × when the observation is difficult as shown in FIG. A case where it was difficult to identify the form of the bacteria as in 1 (d) was marked with Δ.

表2、表3より、本発明例の観察条件では、前処理無しで細菌(微生物試料)を良好な状態に保って観察できることがわかる。   From Tables 2 and 3, it can be seen that under the observation conditions of the examples of the present invention, the bacteria (microorganism sample) can be observed in a good state without pretreatment.

Claims (1)

ショットキー型電子銃を有する環境制御型走査電子顕微鏡を用いて、飽和水蒸気圧下、0℃〜5℃の温度範囲で、加速電圧2kV以上5kV以下、作動距離5mm以上8mm以下の条件で、微生物試料を観察することを特徴とする微生物試料の観察方法。   Using an environmentally controlled scanning electron microscope with a Schottky electron gun, a microorganism sample under saturated water vapor pressure, at a temperature range of 0 ° C to 5 ° C, under an acceleration voltage of 2 kV to 5 kV and a working distance of 5 mm to 8 mm A method for observing a microorganism sample, characterized in that
JP2013133893A 2013-06-26 2013-06-26 Microbial sample observation method Expired - Fee Related JP5935766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133893A JP5935766B2 (en) 2013-06-26 2013-06-26 Microbial sample observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133893A JP5935766B2 (en) 2013-06-26 2013-06-26 Microbial sample observation method

Publications (2)

Publication Number Publication Date
JP2015008634A JP2015008634A (en) 2015-01-19
JP5935766B2 true JP5935766B2 (en) 2016-06-15

Family

ID=52302436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133893A Expired - Fee Related JP5935766B2 (en) 2013-06-26 2013-06-26 Microbial sample observation method

Country Status (1)

Country Link
JP (1) JP5935766B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079632B2 (en) * 1990-05-11 2000-08-21 住友化学工業株式会社 Thermoplastic resin molded article
JPH10172496A (en) * 1996-12-13 1998-06-26 Nikon Corp Environment controlled scanning type electron microscope
US6023060A (en) * 1998-03-03 2000-02-08 Etec Systems, Inc. T-shaped electron-beam microcolumn as a general purpose scanning electron microscope
JP2004037112A (en) * 2002-06-28 2004-02-05 Canon Inc Nucleic acid chip substrate, nucleic acid chip inspection method, and manufacturing method
JP4262158B2 (en) * 2004-07-13 2009-05-13 株式会社日立ハイテクサイエンスシステムズ Low vacuum scanning electron microscope
US20070009545A1 (en) * 2005-07-07 2007-01-11 Joachim Frey Mycoplasma subunit vaccine
EP2604720A1 (en) * 2011-12-14 2013-06-19 Sandvik Intellectual Property Ab Coated cutting tool and method of manufacturing the same

Also Published As

Publication number Publication date
JP2015008634A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
Mahamid et al. A focused ion beam milling and lift-out approach for site-specific preparation of frozen-hydrated lamellas from multicellular organisms
Baig et al. Multimodal chemical imaging of molecular messengers in emerging Pseudomonas aeruginosa bacterial communities
JP6143487B2 (en) Method for making a vitrified sample for an electron microscope
EP2105943A3 (en) Environmental cell for a particle-optical apparatus
Danilatos The examination of fresh or living plant material in an environmental scanning electron microscope
Jones Scanning electron microscopy: preparation and imaging for SEM
Kaech An introduction to electron microscopy instrumentation, imaging and preparation
Henning et al. Scanning electron microscopy, ESEM, and X-ray microanalysis
Ayub et al. Specimen preparation for electron microscopy: an overview
Bandara et al. Microbial identification, high-resolution microscopy and spectrometry of the rhizosphere in its native spatial context
CN106198135A (en) The method that staphylococcus aureus scanning electron microscope sample is quickly prepared
JP5935766B2 (en) Microbial sample observation method
Buravkov et al. Simple method of specimen preparation for scanning electron microscopy.
Parmenter et al. Cryogenic FIB lift-out as a preparation method for damage-free soft matter TEM imaging
US20080073534A1 (en) Scanning electron microscope
US9916963B2 (en) Specimen loading method, specimen stage, and charged particle beam device
Tacke et al. High-resolution cryo-scanning electron microscopy of macromolecular complexes
Bandara et al. High-Resolution Chemical Mapping and Microbial Identification of Rhizosphere using Correlative Microscopy
Wanner et al. Scanning electron microscopy of chromosomes
Balk et al. Characterization of the materials, phases and morphology typical of high-performance scandate cathodes
US10741357B2 (en) Method of observing liquid specimen, method of analyzing liquid specimen and electron microscope
Okolodkov et al. A low voltage scanning electron microscopy study of the theca of marine dinoflagellates
Nedela et al. Micro-morphological Characterization of Fresh Cannabis sativa L. Roots After Lead Exposure Using Low Temperature Method for ESEM
Shi Transmission electron microscope
Besserer et al. Visualization of Fungi During Wood Colonization and Decomposition by Microscopy: From Light to Electron Microscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5935766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees