JP5929620B2 - ポリエーテルポリアミド組成物 - Google Patents

ポリエーテルポリアミド組成物 Download PDF

Info

Publication number
JP5929620B2
JP5929620B2 JP2012179741A JP2012179741A JP5929620B2 JP 5929620 B2 JP5929620 B2 JP 5929620B2 JP 2012179741 A JP2012179741 A JP 2012179741A JP 2012179741 A JP2012179741 A JP 2012179741A JP 5929620 B2 JP5929620 B2 JP 5929620B2
Authority
JP
Japan
Prior art keywords
polyether polyamide
polyamide composition
compound
polyether
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012179741A
Other languages
English (en)
Other versions
JP2014037462A (ja
Inventor
まゆみ 武尾
まゆみ 武尾
加藤 智則
智則 加藤
三田寺 淳
淳 三田寺
佐藤 和哉
和哉 佐藤
伸幸 津中
伸幸 津中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012179741A priority Critical patent/JP5929620B2/ja
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to US14/421,198 priority patent/US20150218344A1/en
Priority to KR1020157003018A priority patent/KR20150043305A/ko
Priority to EP13829167.9A priority patent/EP2886607A4/en
Priority to PCT/JP2013/071838 priority patent/WO2014027650A1/ja
Priority to CN201380041110.6A priority patent/CN104508045A/zh
Priority to TW102129202A priority patent/TW201414772A/zh
Publication of JP2014037462A publication Critical patent/JP2014037462A/ja
Application granted granted Critical
Publication of JP5929620B2 publication Critical patent/JP5929620B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ポリエーテルポリアミド組成物に関し、詳しくは、自動車部品や電気部品、電子部品等の材料として好適なポリエーテルポリアミド組成物に関する。
加硫による化学的な架橋点をもつゴムは、リサイクルができず高比重である。それに対し、熱可塑性エラストマーは結晶等による物理的な架橋点をハードセグメントとし、非晶部分をソフトセグメントとする相分離構造からなるため、容易に溶融成形加工ができ、リサイクルが可能で、低比重であるという特長を有する。そのため、自動車部品、電気・電子部品、スポーツ用品等の分野で注目されている。
熱可塑性エラストマーとして、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリスチレン系、ポリ塩化ビニル系等の種々の熱可塑性エラストマーが開発されている。その中でもポリウレタン系、ポリエステル系、ポリアミド系の熱可塑性エラストマーは比較的耐熱性に優れたエラストマーとして知られている。
中でもポリアミドエラストマーは、柔軟性、低比重、耐摩擦・磨耗特性、弾性、耐屈曲疲労性、低温特性、成形加工性、耐薬品性に優れていることから、チューブ、ホース、スポーツ用品、シール、パッキン、自動車部品、電機部品、電子部品等の材料として幅広く使用されている。
ポリアミドエラストマーとしては、ポリアミドブロックをハードセグメントとし、ポリエーテルブロックをソフトセグメントとするポリエーテルポリアミドエラストマー等が知られている。例えば、特許文献1及び2には、ポリアミド12等の脂肪族ポリアミドをベースとしたポリエーテルポリアミドエラストマーが開示されている。
特開2004−161964号公報 特開2004−346274号公報
特許文献1及び2に開示されたポリエーテルポリアミドエラストマーでは、ポリアミド成分としてポリアミド12等の脂肪族ポリアミドが利用されているが、ポリアミド成分が低融点であるために、高温環境下で利用される用途では耐熱性が不十分である。
一方、ポリアミドとしては、ポリマー主鎖にキシリレン基を含有するポリアミドも知られている。ポリマー主鎖にキシリレン基を含有するポリアミドは、ナイロン6等の脂肪族ポリアミドに比べて剛性が高いという特長を有するが、構造的にベンジルメチレン位でラジカルが生成しやすいことから熱安定性及び耐熱老化性が不十分である。
本発明が解決しようとする課題は、ポリアミドエラストマーの溶融成形性、強靭性、柔軟性、ゴム的な性質を保持しつつ、かつ、熱安定性及び耐熱老化性に優れるポリエーテルポリアミド組成物を提供することである。
本発明は、以下のポリエーテルポリアミド組成物及び成形品を提供する。
<1>ジアミン構成単位が下記一般式(1)で表されるポリエーテルジアミン化合物(a−1)及びキシリレンジアミン(a−2)に由来し、ジカルボン酸構成単位が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来するポリエーテルポリアミド(A)並びに安定剤(B)を含む、ポリエーテルポリアミド組成物。
Figure 0005929620
(式中、x+zは1〜30、yは1〜50を表し、R1はプロピレン基を表す。)
<2>上記<1>に記載のポリエーテルポリアミド組成物を含む成形品。
本発明のポリエーテルポリアミド組成物は、既存のポリアミドエラストマーの溶融成形性、強靭性、柔軟性、ゴム的な性質を保持しつつ、かつ、熱安定性及び耐熱老化性に優れる。
[ポリエーテルポリアミド組成物]
本発明のポリエーテルポリアミド組成物は、ジアミン構成単位が下記一般式(1)で表されるポリエーテルジアミン化合物(a−1)及びキシリレンジアミン(a−2)に由来し、ジカルボン酸構成単位が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来するポリエーテルポリアミド(A)並びに安定剤(B)を含む。
Figure 0005929620
(式中、x+zは1〜30、yは1〜50を表し、R1はプロピレン基を表す。)
<ポリエーテルポリアミド(A)>
ポリエーテルポリアミド(A)は、ジアミン構成単位が上記一般式(1)で表されるポリエーテルジアミン化合物(a−1)及びキシリレンジアミン(a−2)に由来し、ジカルボン酸構成単位が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来する。該ポリエーテルポリアミド(A)を用いることで、柔軟性、引張破断伸び等の機械的特性に優れるポリエーテルポリアミド組成物とすることができる。
ポリエーテルポリアミド(A)を構成するジアミン構成単位は、上記一般式(1)で表されるポリエーテルジアミン化合物(a−1)及びキシリレンジアミン(a−2)に由来する。
(ポリエーテルジアミン化合物(a−1))
ポリエーテルポリアミド(A)を構成するジアミン構成単位は、上記一般式(1)で表されるポリエーテルジアミン化合物(a−1)に由来する構成単位を含む。上記一般式(1)における(x+z)の数値は1〜30であり、好ましくは2〜25、より好ましくは2〜20、更に好ましくは2〜15である。また、yの数値は1〜50であり、好ましくは1〜40、より好ましくは1〜30、更に好ましくは1〜20である。x、y、zの値が上記範囲より大きい場合、溶融重合の反応途中に生成するキシリレンジアミンとジカルボン酸とからなるオリゴマーやポリマーとの相溶性が低くなり、重合反応が進行しづらくなる。
また、上記一般式(1)におけるR1はいずれもプロピレン基を表す。−OR1−で表されるオキシプロピレン基の構造は、−OCH2CH2CH2−、−OCH(CH3)CH2−、−OCH2CH(CH3)−のいずれであってもよい。
ポリエーテルジアミン化合物(a−1)の重量平均分子量は、好ましくは204〜5000、より好ましくは250〜4000、更に好ましくは300〜3000、より更に好ましくは400〜2000、より更に好ましくは500〜1800である。ポリエーテルジアミン化合物の平均分子量が上記範囲内であれば、柔軟性やゴム弾性等のエラストマーとしての機能を発現するポリマーを得ることができる。
(キシリレンジアミン(a−2))
ポリエーテルポリアミド(A)を構成するジアミン構成単位は、キシリレンジアミン(a−2)に由来する構成単位を含む。キシリレンジアミン(a−2)としては、メタキシリレンジアミン、パラキシリレンジアミン又はこれらの混合物であることが好ましく、メタキシリレンジアミン、又はメタキシリレンジアミンとパラキシリレンジアミンとの混合物であることがより好ましい。
キシリレンジアミン(a−2)がメタキシリレンジアミンに由来する場合、得られるポリエーテルポリアミドは、柔軟性、結晶性、溶融成形性、成形加工性、強靭性に優れたものとなる。
キシリレンジアミン(a−2)が、メタキシリレンジアミンとパラキシリレンジアミンとの混合物に由来する場合、得られるポリエーテルポリアミドは柔軟性、結晶性、溶融成形性、成形加工性、強靭性に優れ、さらに高耐熱性、高弾性率を示す。
キシリレンジアミン(a−2)として、メタキシリレンジアミンとパラキシリレンジアミンとの混合物を用いる場合には、メタキシリレンジアミン及びパラキシリレンジアミンの総量に対するパラキシリレンジアミンの割合は、好ましくは90モル%以下であり、より好ましくは1〜80モル%、更に好ましくは5〜70モル%である。パラキシリレンジアミンの割合が上記範囲であれば、得られるポリエーテルポリアミドの融点が、該ポリエーテルポリアミドの分解温度に近接せず、好ましい。
ジアミン構成単位中のキシリレンジアミン(a−2)に由来する構成単位の割合、すなわち、ジアミン構成単位を構成するポリエーテルジアミン化合物(a−1)とキシリレンジアミン(a−2)との総量に対する、キシリレンジアミン(a−2)の割合は、好ましくは50〜99.8モル%、より好ましくは50〜99.5モル%、更に好ましくは50〜99モル%である。ジアミン構成単位中のキシリレンジアミン(a−2)に由来する構成単位の割合が上記範囲内であれば、得られるポリエーテルポリアミドは溶融成形性に優れており、さらに強度、弾性率等の機械的物性が優れたものとなる。
ポリエーテルポリアミド(A)を構成するジアミン構成単位は、上述したように、前記一般式(1)で表されるポリエーテルジアミン化合物(a−1)及びキシリレンジアミン(a−2)に由来するが、本発明の効果を損なわない範囲であれば、その他のジアミン化合物に由来する構成単位を含んでもよい。
ポリエーテルジアミン化合物(a−1)及びキシリレンジアミン(a−2)以外のジアミン構成単位を構成しうるジアミン化合物としては、テトラメチレンジアミン、ペンタメチレンジアミン、2−メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4−トリメチル−ヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン等の脂肪族ジアミン;1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環族ジアミン;ビス(4−アミノフェニル)エーテル、パラフェニレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン類等を例示することができるが、これらに限定されるものではない。
(ジカルボン酸構成単位)
ポリエーテルポリアミド(A)を構成するジカルボン酸構成単位は、炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来する。炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸としては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,10−デカンジカルボン酸、1,11−ウンデカンジカルボン酸、1,12−ドデカンジカルボン酸等を例示できるが、これらの中でも結晶性、高弾性の観点からアジピン酸及びセバシン酸からなる群から選ばれる少なくとも1種が好ましく使用される。これらのジカルボン酸は、単独で使用してもよいし、2種類以上を併用してもよい。
ポリエーテルポリアミド(A)を構成するジカルボン酸構成単位は、上述したように、炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来するが、本発明の効果を損なわない範囲であれば、その他のジカルボン酸に由来する構成単位を含んでもよい。
炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸以外のジカルボン酸構成単位を構成しうるジカルボン酸としては、シュウ酸、マロン酸等の脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸類等を例示できるが、これらに限定されるものではない。
ジカルボン酸成分として、炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸とイソフタル酸との混合物を使用する場合、ポリエーテルポリアミド(A)の成形加工性は向上し、また、ガラス転移温度が上昇し、それにより耐熱性も向上させることができる。炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸とイソフタル酸とのモル比(炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸/イソフタル酸)は、50/50〜99/1が好ましく、70/30〜95/5がより好ましい。
(ポリエーテルポリアミド(A)の物性)
ポリエーテルポリアミド(A)は、キシリレンジアミン(a−2)と炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸とから形成される高結晶性のポリアミドブロックをハードセグメントとし、ポリエーテルジアミン化合物(a−1)由来のポリエーテルブロックをソフトセグメントとすることで、溶融成形性及び成形加工性に優れる。さらに得られたポリエーテルポリアミドは強靭性、柔軟性、結晶性、耐熱性等に優れている。
ポリエーテルポリアミド(A)の相対粘度は、成形性及び他の樹脂との溶融混合性の観点から、好ましくは1.1〜3.0の範囲、より好ましくは1.1〜2.9の範囲、更に好ましくは1.1〜2.8の範囲である。当該相対粘度は実施例に記載の方法により測定される。
ポリエーテルポリアミド(A)の融点は、耐熱性の観点から、好ましくは170〜270℃の範囲、より好ましくは175〜270℃の範囲、更に好ましくは180〜270℃の範囲である。当該融点は実施例に記載の方法により測定される。
ポリエーテルポリアミド(A)の引張破断伸び率(測定温度23℃、湿度50%RH)は、柔軟性の観点から、好ましくは50%以上、より好ましくは100%以上、更に好ましくは200%以上、更に好ましくは250%以上、更に好ましくは300%以上である。
ポリエーテルポリアミド(A)の引張弾性率(測定温度23℃、湿度50%RH)は、柔軟性及び機械強度の観点から、好ましくは200MPa以上、より好ましくは300MPa以上、更に好ましくは400MPa以上、更に好ましくは500MPa以上、更に好ましくは1000MPa以上である。
(ポリエーテルポリアミド(A)の製造)
ポリエーテルポリアミド(A)の製造は、特に限定されるものではなく、任意の方法、重合条件により行うことができる。例えば、ジアミン成分(ポリエーテルジアミン化合物(a−1)及びキシリレンジアミン(a−2)等のジアミン)とジカルボン酸成分(炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸等のジカルボン酸)とからなる塩を水の存在下に加圧状態で昇温し、加えた水及び縮合水を除きながら溶融状態で重合させる方法によりポリエーテルポリアミド(A)を製造することができる。また、ジアミン成分(ポリエーテルジアミン化合物(a−1)及びキシリレンジアミン(a−2)等のジアミン)を溶融状態のジカルボン酸成分(炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸等のジカルボン酸)に直接加えて、常圧下で重縮合する方法によってもポリエーテルポリアミド(A)を製造することができる。この場合、反応系を均一な液状態で保つために、ジアミン成分をジカルボン酸成分に連続的に加え、その間、反応温度が生成するオリゴアミド及びポリアミドの融点よりも下回らないように反応系を昇温しつつ、重縮合が進められる。
この際、ジアミン成分のうち、ポリエーテルジアミン化合物(a−1)については、ジカルボン酸成分とともに予め反応槽内に仕込んでおいてもよい。ポリエーテルジアミン化合物(a−1)を予め反応槽内に仕込んでおくことで、ポリエーテルジアミン化合物(a−1)の熱劣化を抑制することができる。その場合もまた、反応系を均一な液状態で保つために、ポリエーテルジアミン化合物(a−1)以外のジアミン成分をジカルボン酸成分に連続的に加え、その間、反応温度が生成するオリゴアミド及びポリアミドの融点よりも下回らないように反応系を昇温しつつ、重縮合が進められる。
ジアミン成分(ポリエーテルジアミン化合物(a−1)及びキシリレンジアミン(a−2)等のジアミン)と、ジカルボン酸成分(炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸等のジカルボン酸)とのモル比(ジアミン成分/ジカルボン酸成分)は、好ましくは0.9〜1.1の範囲、より好ましくは0.93〜1.07の範囲、更に好ましくは0.95〜1.05の範囲、更に好ましくは0.97〜1.02の範囲である。モル比が上記範囲内であれば、高分子量化が進行しやすくなる。
重合温度は、好ましくは150〜300℃、より好ましくは160〜280℃、更に好ましくは170〜270℃である。重合温度が上記温度範囲内であれば、重合反応が速やかに進行する。また、モノマーや重合途中のオリゴマー、ポリマー等の熱分解が起こりにくいため、得られるポリマーの性状が良好なものとなる。
重合時間は、ジアミン成分を滴下し始めてから通常1〜5時間である。重合時間を上記範囲内とすることにより、ポリエーテルポリアミド(A)の分子量を十分に上げることができ、さらに得られたポリマーの着色が抑えることができる。
ポリエーテルポリアミド(A)は、リン原子含有化合物を添加して溶融重縮合(溶融重合)法により製造されることが好ましい。溶融重縮合法としては、常圧で溶融させたジカルボン酸成分中にジアミン成分を滴下し、縮合水を除きながら溶融状態で重合させる方法が好ましい。
ポリエーテルポリアミド(A)の重縮合系内には、その特性が阻害されない範囲で、リン原子含有化合物を添加できる。添加できるリン原子含有化合物としては、ジメチルホスフィン酸、フェニルメチルホスフィン酸、次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸エチル、フェニル亜ホスホン酸、フェニル亜ホスホン酸ナトリウム、フェニル亜ホスホン酸カリウム、フェニル亜ホスホン酸リチウム、フェニル亜ホスホン酸エチル、フェニルホスホン酸、エチルホスホン酸、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム、フェニルホスホン酸ジエチル、エチルホスホン酸ナトリウム、エチルホスホン酸カリウム、亜リン酸、亜リン酸水素ナトリウム、亜リン酸ナトリウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸等が挙げられ、これらの中でも特に次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム等の次亜リン酸金属塩がアミド化反応を促進する効果が高く、かつ着色防止効果にも優れるため好ましく用いられ、特に次亜リン酸ナトリウムが好ましい。本発明で使用できるリン原子含有化合物はこれらの化合物に限定されない。重縮合系内に添加するリン原子含有化合物の添加量は、良好な外観及び成形加工性の観点から、ポリエーテルポリアミド中のリン原子濃度換算で、好ましくは1〜1000ppm、より好ましくは5〜1000ppm、更に好ましくは10〜1000ppmである。
また、ポリエーテルポリアミド(A)の重縮合系内には、リン原子含有化合物と併用してアルカリ金属化合物を添加することが好ましい。重縮合中のポリマーの着色を防止するためにはリン原子含有化合物を十分な量存在させる必要があるが、場合によってはポリマーのゲル化を招くおそれがあるため、アミド化反応速度を調整するためにもアルカリ金属化合物を共存させることが好ましい。アルカリ金属化合物としては、アルカリ金属水酸化物やアルカリ金属酢酸塩が好ましい。本発明で用いることのできるアルカリ金属化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム等が挙げられるが、これらの化合物に限定されることなく用いることができる。重縮合系内にアルカリ金属化合物を添加する場合、該化合物のモル数をリン原子含有化合物のモル数で除した値が0.5〜1となるようにすることが好ましく、より好ましくは0.55〜0.95であり、更に好ましくは0.6〜0.9である。上記範囲内であると、リン原子含有化合物のアミド化反応促進を抑制する効果が適度であるので、反応を抑制しすぎることにより重縮合反応速度が低下し、ポリマーの熱履歴が増加してポリマーのゲル化が増大することを避けることができる。
ポリエーテルポリアミド(A)の硫黄原子濃度は、好ましくは1〜200ppm、より好ましくは10〜150ppm、更に好ましくは20〜100ppmである。上記の範囲であると、製造時にポリエーテルポリアミドの黄色度(YI値)の増加を抑えることができるばかりでなく、ポリエーテルポリアミドを溶融成形する際のYI値の増加を抑えることができ、得られた成形品のYI値を低くすることができる。
さらに、ジカルボン酸としてセバシン酸を使用する場合には、その硫黄原子濃度が1〜500ppmであることが好ましく、より好ましくは1〜200ppm、更に好ましくは10〜150ppm、特に好ましくは20〜100ppmである。上記の範囲であると、ポリエーテルポリアミドを重合する際のYI値の増加を抑えることができる。また、ポリエーテルポリアミドを溶融成形する際のYI値の増加を抑えることができ、得られる成形品のYI値を低くすることができる。
同様に、ジカルボン酸としてセバシン酸を使用する場合には、そのナトリウム原子濃度が1〜500ppmであることが好ましく、より好ましくは10〜300ppm、更に好ましくは20〜200ppmである。上記の範囲であると、ポリエーテルポリアミドを合成する際の反応性が良く、適切な分子量範囲にコントロールしやすく、さらに、前述のアミド化反応速度調整の目的で配合するアルカリ金属化合物の使用量を少なくすることができる。また、ポリエーテルポリアミドを溶融成形する際に粘度増加を抑制することができ、成形性が良好となると共に成形加工時にコゲの発生を抑制できることから、得られる成形品の品質が良好となる傾向にある。
このようなセバシン酸は、植物由来のものであることが好ましい。植物由来のセバシン酸は、不純物として硫黄化合物やナトリウム化合物を含有することから、植物由来のセバシン酸に由来する単位を構成単位とするポリエーテルポリアミドは、酸化防止剤を添加しなくてもYI値が低く、また、得られる成形品のYI値も低い。また、植物由来のセバシン酸は、不純物を過度に精製することなく使用することが好ましい。過度に精製する必要が無いので、コスト的にも優位である。
植物由来の場合のセバシン酸の純度は、99〜100質量%が好ましく、99.5〜100質量%がより好ましく、99.6〜100質量%が更に好ましい。この範囲であると、得られるポリエーテルポリアミドの品質が良く、重合に影響を及ぼさないため好ましい。
例えば、セバシン酸に含まれる他のジカルボン酸(1,10−デカメチレンジカルボン酸等)は、0〜1質量%が好ましく、0〜0.7質量%がより好ましく、0〜0.6質量%が更に好ましい。この範囲であると、得られるポリエーテルポリアミドの品質が良く、重合に影響を及ぼさないため好ましい。
また、セバシン酸に含まれるモノカルボン酸(オクタン酸、ノナン酸、ウンデカン酸等)は、0〜1質量%が好ましく、0〜0.5質量%がより好ましく、0〜0.4質量%が更に好ましい。この範囲であると、得られるポリエーテルポリアミドの品質が良く、重合に影響を及ぼさないため好ましい。
セバシン酸の色相(APHA)は、100以下が好ましく、75以下がより好ましく、50以下が更に好ましい。この範囲であると、得られるポリエーテルポリアミドのYI値が低いため、好ましい。なお、APHAは、日本油化学会(Japan Oil Chemist’s Society)の基準油脂分析試験法(Standard Methods for the Analysis of Fats,Oils and Related Materials)により測定することができる。
溶融重縮合で得られたポリエーテルポリアミド(A)は、一旦取り出され、ペレット化された後、乾燥して使用される。また更に重合度を高めるために固相重合してもよい。乾燥乃至固相重合で用いられる加熱装置としては、連続式の加熱乾燥装置やタンブルドライヤー、コニカルドライヤー、ロータリードライヤー等と称される回転ドラム式の加熱装置及びナウタミキサーと称される内部に回転翼を備えた円錐型の加熱装置が好適に使用できるが、これらに限定されることなく公知の方法、装置を使用することができる。
<安定剤(B)>
本発明に用いられる安定剤(B)は、熱安定性及び耐熱老化性の向上の観点から、好ましくはアミン系化合物(B1)、有機硫黄系化合物(B2)、フェノール系化合物(B3)、リン系化合物(B4)及び無機系化合物(B5)からなる群から選ばれる少なくとも1種である。さらに、溶融成形時の加工安定性、熱安定性及び耐熱老化性の向上の観点、並びに成形品の外観、特に着色防止の観点から、アミン系化合物(B1)、有機硫黄系化合物(B2)及び無機系化合物(B5)からなる群から選ばれる少なくとも1種であることが特に好ましい。
(アミン系化合物(B1))
アミン系化合物(B1)としては、芳香族第2級アミン系化合物が好ましく、ジフェニルアミン骨格を有する化合物、フェニルナフチルアミン骨格を有する化合物及びジナフチルアミン骨格を有する化合物がより好ましく、ジフェニルアミン骨格を有する化合物及びフェニルナフチルアミン骨格を有する化合物がさらに好ましい。
具体的には、p,p’−ジアルキルジフェニルアミン(アルキル基の炭素数:8〜14)、オクチル化ジフェニルアミン(例えば、BASF社製、商品名:IRGANOX 5057、大内新興化学工業(株)製、商品名:ノクラックAD−Fとして入手可能)、4,4’−ビス(α,α−ジメチルベンジル)ジフェニルアミン(例えば、大内新興化学工業(株)製、商品名:ノクラックCDとして入手可能)、p−(p−トルエンスルホニルアミド)ジフェニルアミン(例えば、大内新興化学工業(株)製、商品名:ノクラックTDとして入手可能)、N,N’−ジフェニル−p−フェニレンジアミン(例えば、大内新興化学工業(株)製、商品名:ノクラックDPとして入手可能)、N−フェニル−N’−イソプロピル−p−フェニレンジアミン(例えば、大内新興化学工業(株)製、商品名:ノクラック810−NAとして入手可能)、N−フェニル−N’−(1,3−ジメチルブチル)−p−フェニレンジアミン(例えば、大内新興化学工業(株)製、商品名:ノクラック6Cとして入手可能)、及びN−フェニル−N’−(3−メタクリロイルオキシ−2−ヒドロキシプロピル)−p−フェニレンジアミン(例えば、大内新興化学工業(株)製、商品名:ノクラックG−1として入手可能)等のジフェニルアミン骨格を有する化合物;N−フェニル−1−ナフチルアミン(例えば、大内新興化学工業(株)製、商品名:ノクラックPAとして入手可能)及びN,N’−ジ−2−ナフチル−p−フェニレンジアミン(例えば、大内新興化学工業(株)製、商品名:ノクラックWhiteとして入手可能)等のフェニルナフチルアミン骨格を有する化合物;2,2’−ジナフチルアミン、1,2’−ジナフチルアミン、及び1,1’−ジナフチルアミン等のジナフチルアミン骨格を有する化合物;あるいはこれらの混合物が例示できるがこれらに限定されるものではない。
これらの中でも、4,4’−ビス(α,α−ジメチルベンジル)ジフェニルアミン、N,N’−ジ−2−ナフチル−p−フェニレンジアミン及びN,N’−ジフェニル−p−フェニレンジアミンが好ましく、N,N’−ジ−2−ナフチル−p−フェニレンジアミン及び4,4’−ビス(α,α−ジメチルベンジル)ジフェニルアミンが特に好ましい。
(有機硫黄系化合物(B2))
有機硫黄系化合物(B2)としては、メルカプトベンゾイミダゾール系化合物、ジチオカルバミン酸系化合物、チオウレア系化合物及び有機チオ酸系化合物が好ましく、メルカプトベンゾイミダゾール系化合物及び有機チオ酸系化合物がより好ましい。
具体的には、2−メルカプトベンゾイミダゾール(例えば、大内新興化学工業(株)製、商品名:ノクラックMBとして入手可能)、2−メルカプトメチルベンゾイミダゾール(例えば、大内新興化学工業(株)製、商品名:ノクラックMBとして入手可能)、及び2−メルカプトベンゾイミダゾールの金属塩等のメルカプトベンゾイミダゾール系化合物;ジラウリル−3,3’−チオジプロピオネート(例えば、株式会社エーピーアイ コーポレーション製、商品名:DLTP「ヨシトミ」、住友化学(株)製、商品名:SUMILIZER TPL−Rとして入手可能)、ジミリスチル−3,3’−チオジプロピオネート(例えば、株式会社エーピーアイ コーポレーション製、商品名:DMTP「ヨシトミ」、住友化学(株)製、商品名:SUMILIZER TPMとして入手可能)、ジステアリル−3,3’−チオジプロピオネート(例えば、株式会社エーピーアイ コーポレーション製、商品名:DSTP「ヨシトミ」、住友化学(株)製、商品名:SUMILIZER TPSとして入手可能)、及びペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)(例えば、住友化学(株)製、商品名:SUMILIZER TP−Dとして入手可能)等の有機チオ酸系化合物;ジエチルジチオカルバミン酸の金属塩及びジブチルジチオカルバミン酸の金属塩等のジチオカルバミン酸系化合物;並びに1,3−ビス(ジメチルアミノプロピル)−2−チオ尿素(例えば、大内新興化学工業(株)製、商品名:ノクラックNS−10−Nとして入手可能)及びトリブチルチオ尿素等のチオウレア系化合物;あるいはこれらの混合物が例示できるが、これらに限定されるものではない。
これらの中でも、2−メルカプトベンゾイミダゾール、2−メルカプトメチルベンズイミダゾール、ジミリスチル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート及びペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)が好ましく、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、2−メルカプトベンゾイミダゾール、及びジミリスチル−3,3’−チオジプロピオネートがより好ましく、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)が特に好ましい。
有機硫黄系化合物(B2)の分子量は、通常200以上、好ましくは500以上であり、その上限は通常3,000である。
アミン系化合物(B1)及び有機硫黄系化合物(B2)を併用することが好ましい。これらを併用することによって、それぞれ単独で使用した場合よりも、ポリアミド樹脂組成物の耐熱老化性が良好となる傾向にある。
アミン系化合物(B1)及び有機硫黄系化合物(B2)の好適な組合せとしては、4,4’−ビス(α,α−ジメチルベンジル)ジフェニルアミン及びN,N’−ジ−2−ナフチル−p−フェニレンジアミンから選ばれる少なくとも1種のアミン系化合物(B1)と、ジミリスチル−3,3’−チオジプロピオネート、2−メルカプトメチルベンゾイミダゾール及びペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)から選ばれる少なくとも1種の有機硫黄系化合物(B2)との組合せが挙げられる。さらに、アミン系化合物(B1)がN,N’−ジ−2−ナフチル−p−フェニレンジアミン、有機硫黄系化合物(B2)がペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)である組合せがより好ましい。
また、アミン系化合物(B1)及び有機硫黄系化合物(B2)を併用する場合は、耐熱老化性の向上の観点から、本発明のポリエーテルポリアミド組成物中の含有量比(質量比)で、アミン系化合物(B1)/有機硫黄系化合物(B2)が好ましくは0.05〜15、より好ましくは0.1〜5、更に好ましくは0.2〜2である。
(フェノール系化合物(B3))
フェノール系化合物(B3)としては、例えば、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)(例えば、株式会社エーピーアイ コーポレーション製、商品名:ヨシノックス425として入手可能)、4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)(例えば、(株)ADEKA製、商品名:アデカスタブAO−40、住友化学(株)製、商品名:Sumilizer BBM−Sとして入手可能)、4,4’−チオビス(6−t−ブチル−3−メチルフェノール)(例えば、川口化学工業(株)製、商品名:アンテージクリスタルとして入手可能)、3,9−ビス[2−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン(例えば、住友化学(株)製、商品名:Sumilizer GA−80、(株)ADEKA製、商品名:アデカスタブAO−80として入手可能)、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート](例えば、BASF社製、商品名:Irganox(R)245として入手可能)、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート](例えば、BASF社製、商品名:Irganox259として入手可能)、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン(例えば、BASF社製、商品名:Irganox565として入手可能)、ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート](例えば、BASF社製、商品名:Irganox1010、(株)ADEKA製、商品名:アデカスタブAO−60として入手可能)、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート](例えば、BASF社製、商品名:Irganox1035として入手可能)、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート(例えば、BASF社製、商品名:Irganox1076、(株)ADEKA製、商品名:アデカスタブAO−50として入手可能)、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナムアミド)(例えば、BASF社製、商品名:Irganox1098として入手可能)、3,5−ジ−t−ブチル−4−ヒドロキシベンジルフォスフォネート−ジエチルエステル(例えば、BASF社製、商品名:Irganox1222として入手可能)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン(例えば、BASF社製、商品名:Irganox1330として入手可能)、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト(例えば、BASF社製、商品名:Irganox3114、(株)ADEKA製、商品名:アデカスタブAO−20として入手可能)、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール(例えば、BASF社製、商品名:Irganox1520として入手可能)、イソオクチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート(例えば、BASF社製、商品名:Irganox1135として入手可能)等を例示できるがこれらに限定されるものではない。
これらの中でも、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナムアミド)、3,9−ビス[2−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン及びN,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナムアミド)のヒンダードフェノール系化合物が好ましい。
(リン系化合物(B4))
リン系化合物(B4)としては、ホスファイト系化合物、ホスホナイト系化合物が好ましい。
ホスファイト系化合物としては、例えば、ジステアリルペンタエリスリトールジホスファイト(例えば、(株)ADEKA製、商品名:アデカスタブPEP−8、城北化学工業(株)製、商品名:JPP−2000として入手可能)、ジノニルフェニルペンタエリスリトールジホスファイト(例えば、(株)ADEKA製、商品名:アデカスタブPEP−4Cとして入手可能)、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトールジホスファイト(例えば、BASF社製、商品名:Irgafos126、(株)ADEKA製、商品名:ADEKAPEP−24Gとして入手可能)、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト(例えば、(株)ADEKA製、商品名:アデカスタブPEP−36として入手可能)、ビス(2,6−ジ−t−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−t−ブチル−4−イソプロピルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6−トリ−t−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−t−ブチル−4−sec−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−t−ブチル−4−t−オクチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジクミルフェニル)ペンタエリスリトールジホスファイト等が挙げられ、特に、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジクミルフェニル)ペンタエリスリトールジホスファイト(例えば、(株)ADEKA製、商品名:アデカスタブPEP−45として入手可能)が好ましい。
ホスホナイト系化合物としては、例えば、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト(例えば、BASF社製、商品名:Irgafos P−EPQとして入手可能)、テトラキス(2,5−ジ−t−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,3,4−トリメチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,3−ジメチル−5−エチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−t−ブチル−5−エチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,3,4−トリブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4,6−トリ−t−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト等が挙げられ、特に、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレンジホスホナイトが好ましい。
またフェノール系化合物及びリン系化合物の併用は、色調改良効果に優れた効果を発揮するので好ましい。
(無機系化合物(B5))
無機系化合物(B5)としては、銅化合物及びハロゲン化物が好ましい。
無機系化合物(B5)として使用される銅化合物は、種々の無機酸または有機酸の銅塩であって、後述のハロゲン化物を除くものである。銅としては、第1銅、第2銅のいずれでもよく、その具体例としては、塩化銅、臭化銅、ヨウ化銅、リン酸銅、ステアリン酸銅の他、ハイドロタルサイト、スチヒタイト、パイロライト等の天然鉱物が挙げられる。
また、無機系化合物(B5)として使用されるハロゲン化物としては、例えば、アルカリ金属またはアルカリ土類金属のハロゲン化物;ハロゲン化アンモニウム及び有機化合物の第4級アンモニウムのハロゲン化物;ハロゲン化アルキル、ハロゲン化アリル等の有機ハロゲン化物が挙げられ、その具体例としては、ヨウ化アンモニウム、ステアリルトリエチルアンモニウムブロマイド、ベンジルトリエチルアンモニウムアイオダイド等が挙げられる。これらの中では、塩化カリウム、塩化ナトリウム、臭化カリウム、ヨウ化カリウム、ヨウ化ナトリウム等のハロゲン化アルカリ金属塩が好適である。
銅化合物及びハロゲン化物の併用、特に、銅化合物及びハロゲン化アルカリ金属塩の併用は、耐熱変色性、耐候性(耐光性)の面で優れた効果を発揮するので好ましい。例えば、銅化合物を単独で使用する場合は、成形品が銅により赤褐色に着色することがあり、この着色は用途によっては好ましくない。この場合、銅化合物及びハロゲン化物を併用することにより赤褐色への変色を防止することができる。
本発明のポリエーテルポリアミド組成物における安定剤(B)の含有量は、ポリエーテルポリアミド(A)100質量部に対し、好ましくは0.01〜1質量部、より好ましくは0.01〜0.8質量部、更に好ましくは0.1〜0.5質量部である。含有量を0.01質量部以上とすることにより、熱変色改善、耐候性/耐光性改善効果を十分に発揮することができ、含有量を1質量部以下とすることにより、成形品の外観不良、機械的物性低下を抑制することができる。
<その他の成分>
本発明のポリエーテルポリアミド組成物には、その特性が阻害されない範囲で、艶消剤、紫外線吸収剤、核剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、ゲル化防止剤等の添加剤を、必要に応じて配合することができる。
また、本発明のポリエーテルポリアミド組成物には、その特性が阻害されない範囲で、ポリアミド樹脂、ポリエステル樹脂、ポリオレフィン樹脂等の熱可塑性樹脂を、必要に応じて配合することができる。
ポリアミド樹脂としては、ポリカプロアミド(ナイロン6)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンアゼラミド(ナイロン69)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリウンデカメチレンアジパミド(ナイロン116)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリヘキサメチレンテレフタラミド(ナイロン6T(Tは、テレフタル酸成分単位を表す。以下において同じ))、ポリヘキサメチレンイソフタラミド(ナイロン6I(Iは、イソフタル酸成分単位を表す。以下において同じ))、ポリヘキサメチレンテレフタルイソフタルアミド(ナイロン6TI)、ポリヘプタメチレンテレフタルアミド(ナイロン9T)、ポリメタキシリレンアジパミド(ナイロンMXD6(MXDは、m−キシリレンジアミン成分単位を表す。以下において同じ))、ポリメタキシリレンセバカミド(ナイロンMXD10)、ポリパラキシリレンセバカミド(ナイロンPXD10(PXDは、p−キシリレンジアミン成分単位を表す。))、1,3−又は1,4−ビス(アミノメチル)シクロヘキサンとアジピン酸を重縮合して得られるポリアミド樹脂(ナイロン1,3−/1,4−BAC6(BACは、ビス(アミノメチル)シクロヘキサン成分単位を表す。))及びこれらの共重合アミド等を使用することができる。
ポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンテレフタレート−イソフタレート共重合樹脂、ポリエチレン−1,4−シクロヘキサンジメチレン−テレフタレート共重合樹脂、ポリエチレン−2,6−ナフタレンジカルボキレート樹脂、ポリエチレン−2,6−ナフタレンジカルボキシレート−テレフタレート共重合樹脂、ポリエチレン−テレフタレート−4,4' −ビフェニルジカルボキシレート共重合樹脂、ポリ−1,3−プロピレン−テレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリブチレン−2,6−ナフタレンジカルボキシレート樹脂等がある。より好ましいポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンテレフタレート−イソフタレート共重合樹脂、ポリブチレンテレフタレート樹脂及びポリエチレン−2,6−ナフタレンジカルボキシレート樹脂が挙げられる。
ポリオレフィン樹脂としては、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)等のポリエチレン;プロピレン単独重合体、プロピレンとエチレンまたはα−オレフィンとのランダム若しくはブロック共重合体等のポリプロピレン;これらの2種以上の混合物等が挙げられる。ポリエチレンの多くは、エチレンとα−オレフィンとの共重合体である。またポリオレフィン樹脂には、少量のアクリル酸、マレイン酸、メタクリル酸、無水マレイン酸、フマル酸、イタコン酸等のカルボキシル基含有単量体によって変性された変性ポリオレフィン樹脂が含まれる。変性は、通常、共重合またはグラフト変性によって行われる。
本発明のポリエーテルポリアミド組成物をポリアミド樹脂、ポリエステル樹脂、ポリオレフィン樹脂等の熱可塑性樹脂の少なくとも一部に利用することで、射出成形、押出成形、ブロー成形等の成形方法により、強靭性、柔軟性、耐衝撃性に優れた成形体を得ることができる。
[ポリエーテルポリアミド組成物の物性]
本発明のポリエーテルポリアミド組成物の相対粘度は、成形性及び他の樹脂との溶融混合性の観点から、好ましくは1.1〜3.0の範囲、より好ましくは1.1〜2.9の範囲、更に好ましくは1.1〜2.8の範囲である。当該相対粘度は実施例に記載の方法により測定される。
ポリエーテルポリアミド組成物の融点は、耐熱性の観点から、好ましくは170〜270℃の範囲、より好ましくは175〜270℃の範囲、更に好ましくは180〜270℃の範囲である。当該融点は実施例に記載の方法により測定される。
ポリエーテルポリアミド組成物の数平均分子量(Mn)は、成形性及び他の樹脂との溶融混合性の観点から、好ましくは8,000〜200,000の範囲、より好ましくは9,000〜150,000の範囲、更に好ましくは10,000〜100,000の範囲である。当該数平均分子量(Mn)は実施例に記載の方法により測定される。
本発明のポリエーテルポリアミド組成物は、耐熱老化性の観点から、下式で算出される引張強度保持率が、好ましくは75%以上、より好ましくは85%以上、更に好ましくは90%以上、更に好ましくは100%以上である。
引張強度保持率(%)=〔130℃72時間熱処理後のフィルムの破断時応力(MPa)/130℃72時間熱処理前のフィルムの破断時応力(MPa)〕×100
ここで、フィルムの破断時応力は実施例に記載の方法により測定される。
[ポリエーテルポリアミド組成物の製造]
本発明のポリエーテルポリアミド組成物は、前記ポリエーテルポリアミド(A)に、安定剤(B)ならびにその他の成分を配合して得られる。配合の方法は特に限定されず、反応槽内で溶融状態のポリエーテルポリアミド(A)に安定剤(B)等を添加する手法や、ポリエーテルポリアミド(A)に対し安定剤(B)等をドライブレンドし、押出機にて溶融混練する手法などが挙げられる。
本発明のポリエーテルポリアミド組成物を溶融混練する方法については、単軸もしくは二軸押出機等の通常用いられる種々の押出機を用いて溶融混練する方法等が挙げられるが、これらのなかでも、生産性、汎用性等の点から二軸押出機を用いる方法が好ましい。その際、溶融混練温度は、ポリエーテルポリアミド(A)の融点以上、融点より80℃高い温度以下の範囲に設定することが好ましく、該(A)成分の融点より10℃高い温度以上、該融点より60℃高い温度以下の範囲に設定することがより好ましい。溶融混練温度をポリエーテルポリアミド(A)の融点以上とすることで、該(A)成分の固化を抑制することができ、融点より80℃高い温度以下とすることで、該(A)成分の熱劣化を抑制することができる。
溶融混練における滞留時間は1〜10分の範囲に調整することが好ましく、2〜7分の範囲に調整することがより好ましい。滞留時間を1分以上とすることで、ポリエーテルポリアミド(A)と安定剤(B)との分散が十分となり、滞留時間を10分以下とすることでポリエーテルポリアミド(A)の熱劣化を抑制することができる。
二軸押出機のスクリューは少なくとも1箇所以上の逆目スクリューエレメント部分及び/又はニーディングディスク部分を有し、該部分においてポリエーテルポリアミド組成物を一部滞留させながら溶融混練を行うことが好ましい。
溶融混練したポリエーテルポリアミド組成物は、そのまま押出成形し、フィルム等の成形品としてもよく、一度ペレットとした後、改めて押出成型、射出成型等を行って種々の成形品としてもよい。
[成形品]
本発明の成形品は、前記ポリエーテルポリアミド組成物を含むものであり、本発明のポリエーテルポリアミド組成物を従来公知の成形方法により各種形態に成形することで得ることができる。成形法としては、例えば、射出成形、ブロー成形、押出成形、圧縮成形、真空成形、プレス成形、ダイレクトブロー成形、回転成形、サンドイッチ成形及び二色成形等の成形法を例示することができる。
本発明のポリエーテルポリアミド組成物を含む成形品は、優れた熱安定性及び耐熱老化性を兼ね備えており、自動車部品、電機部品、電子部品等として好適である。特に、ポリアミド樹脂組成物を含んでなる成形品としては、ホース、チューブ又は金属被覆材が好ましい。
以下、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されない。なお、本実施例において各種測定は以下の方法により行った。
1)相対粘度(ηr)
試料0.2gを精秤し、96%硫酸20mlに20〜30℃で撹拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5mlを取り、25℃の恒温槽中で10分間放置後、落下時間(t)を測定した。また、96%硫酸そのものの落下時間(t0)も同様に測定した。t及びt0から下式により相対粘度を算出した。
相対粘度=t/t0
2)数平均分子量(Mn)
まず試料をフェノール/エタノール混合溶媒、及びベンジルアルコール溶媒にそれぞれ溶解させ、カルボキシル末端基濃度とアミノ末端基濃度を塩酸及び水酸化ナトリウム水溶液の中和滴定により求めた。数平均分子量は、アミノ末端基濃度及びカルボキシル末端基濃度の定量値から次式により求めた。
数平均分子量=2×1,000,000/([NH2]+[COOH])
[NH2]:アミノ末端基濃度(μeq/g)
[COOH]:カルボキシル末端基濃度(μeq/g)
3)示差走査熱量測定(ガラス転移温度、結晶化温度及び融点)
示差走査熱量の測定はJIS K7121、K7122に準じて行った。示差走査熱量計((株)島津製作所製、商品名:DSC−60)を用い、各試料をDSC測定パンに仕込み、窒素雰囲気下にて昇温速度10℃/分で300℃まで昇温し、急冷する前処理を行った後に測定を行った。測定条件は、昇温速度10℃/分で、300℃で5分保持した後、降温速度−5℃/分で100℃まで測定を行い、ガラス転移温度Tg、結晶化温度Tch及び融点Tmを求めた。
4)引張試験(引張弾性率、引張破断伸び率及び引張強度保持率)
(引張弾性率及び引張破断伸び率の測定)
引張弾性率及び引張破断伸び率の測定はJIS K7161に準じて行った。作製した厚さ約100μmのフィルムを10mm×100mmに切り出して試験片とした。引張試験機((株)東洋精機製作所製、ストログラフ)を用いて、測定温度23℃、湿度50%RH、チャック間距離50mm、引張速度50mm/分の条件で引張試験を実施し、引張弾性率及び引張破断伸び率を求めた。
(引張強度保持率の測定)
まずフィルムに対して熱風乾燥機にて130℃、72時間の熱処理を行った。次に、熱処理前後のフィルムについてJIS K7127に準じて引張試験を行い、破断時の応力(MPa)を求めた。なお、装置は引張試験機((株)東洋精機製作所製、ストログラフ)を使用し、試験片幅を10mm、チャック間距離を50mm、引張速度を50mm/分とし、測定温度を23℃、測定湿度を50%RHとして測定した。熱処理前後の破断時の応力の比を引張強度保持率とし、下記式より引張強度保持率(%)を算出した。この引張強度保持率が高いほど耐熱老化性に優れることを意味する。
引張強度保持率(%)=〔130℃72時間熱処理後のフィルムの破断時応力(MPa)/130℃72時間熱処理前のフィルムの破断時応力(MPa)〕×100
5)黄色度:YI値測定
YI値の測定はJIS K−7105に準じて行った。作製した厚さ約100μmのフィルムを50mm×50mmに切り出して試験片とした。測定装置は、曇価測定装置(日本電色工業(株)製、型式:COH−300A)を使用した。
6)硫黄原子濃度(単位:ppm)
ジカルボン酸、又はポリエーテルポリアミドをプレス機で錠剤成形し、蛍光X線分析(XRF)を実施した。蛍光X線分析装置((株)リガク製、商品名:ZSX Primus)を用い、管球はRh管球(4kw)を使用した。分析窓用フィルムはポリプロピレンフィルムを使用し、真空雰囲気下で、照射領域30mmφでEZスキャンを実施した。
実施例1−1
撹拌機、窒素ガス導入口、縮合水排出口を備えた容積約3Lの反応容器にアジピン酸584.60g、次亜リン酸ナトリウム一水和物0.6832g及び酢酸ナトリウム0.4759gを仕込み、容器内を十分窒素置換した後、窒素ガスを20ml/分で供給しながら170℃で溶融させた。260℃まで徐々に昇温しながら、そこへメタキシリレンジアミン(MXDA)(三菱ガス化学(株)製)490.32gとポリエーテルジアミン(米国HUNTSMAN社製、商品名:XTJ−542)400.00gの混合液を滴下し約2時間重合を行い、ポリエーテルポリアミドを得た。ηr=1.38、[COOH]=110.17μeq/g、[NH2]=59.57μeq/g、Mn=11783、Tg=71.7℃、Tch=108.3℃、Tm=232.8℃。
次に、得られたポリエーテルポリアミド100質量部と、安定剤としてN,N’−ジ−2−ナフチル−p−フェニレンジアミン(大内新興化学工業(株)製、商品名:ノクラックWhite、安定剤(B1−1))0.5質量部とをドライブレンドし、直径30mmのスクリュー及びTダイを備える二軸押出機にて温度260℃で押出成形し、厚さ約100μmの無延伸フィルムを得た。
得られたフィルムを用いて、前記引張試験を行った。結果を表1に示す。
実施例1−2〜1−5
実施例1−1における安定剤の種類を各々表1に記載のとおりに変更したこと以外は、実施例1−1と同様にしてフィルムを得、前記引張試験を行った。結果を表1に示す。
比較例1−1
撹拌機、窒素ガス導入口、縮合水排出口を備えた容積約3Lの反応容器にアジピン酸584.5g、次亜リン酸ナトリウム一水和物0.6210g及び酢酸ナトリウム0.4325gを仕込み、容器内を十分窒素置換した後、窒素ガスを20ml/分で供給しながら170℃で溶融させた。260℃まで徐々に昇温しながら、そこへメタキシリレンジアミン(MXDA)(三菱ガス化学(株)製)544.80gを滴下し約2時間重合を行い、ポリアミドを得た。ηr=2.10、[COOH]=104.30μeq/g、[NH2]=24.58μeq/g、Mn=15500、Tg=86.1℃、Tch=153.0℃、Tm=239.8℃。
得られたポリアミドを、温度260℃で押出成形を行い、厚さ約100μmの無延伸フィルムを作成した。
得られたフィルムを用いて、前記引張試験を行った。結果を表1に示す。
比較例1−2
実施例1−1において得られたポリエーテルポリアミドを、温度260℃で押出成形を行い、厚さ約100μmの無延伸フィルムを作成した。
得られたフィルムを用いて、前記引張試験を行った。結果を表1に示す。
なお、表中の略号は、各々以下のとおりである。
XTJ−542:米国HUNTSMAN社製のポリエーテルジアミン。米国HUNTSMAN社のカタログによれば、前記一般式(1)におけるx+zの概数は6.0、yの概数は9.0、概略重量平均分子量は1000である。
安定剤(B1−1):N,N’−ジ−2−ナフチル−p−フェニレンジアミン(大内新興化学工業(株)製、商品名:ノクラックWhite)
安定剤(B1−2):4,4’−ビス(α,α−ジメチルベンジル)ジフェニルアミン(大内新興化学工業(株)製、商品名:ノクラックCD)
安定剤(B2−1):ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)(住友化学(株)製、商品名:スミライザーTP−D)
安定剤(B2−2):2−メルカプトベンゾイミダゾール(大内新興化学工業(株)製、商品名:ノクラックMB)
安定剤(B3−1):3,9−ビス[2−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン(住友化学(株)製、商品名:スミライザーGA−80)
安定剤(B3−2):N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナムアミド)(BASF製、商品名:Irganox1098)
安定剤(B4−1):ビス(2,4−ジクミルフェニル)ペンタエリスリトールジホスファイト((株)アデカ製、商品名:アデカスタブPEP−45)
安定剤(B4−2):テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナムアミド)(BASF製、商品名:Irgafos P−EPQ)
安定剤(B5−1):ヨウ化ナトリウム(和光純薬工業(株)製)
安定剤(B5−2):塩化カリウム(和光純薬工業(株)製)
Figure 0005929620
実施例2−1
撹拌機、窒素ガス導入口、縮合水排出口を備えた容積約3Lの反応容器にアジピン酸555.37g、次亜リン酸ナトリウム一水和物0.6490g及び酢酸ナトリウム0.4521gを仕込み、容器内を十分窒素置換した後、窒素ガスを20ml/分で供給しながら170℃で溶融させた。270℃まで徐々に昇温しながら、そこへメタキシリレンジアミン(MXDA)(三菱ガス化学(株)製)326.06gとパラキシリレンジアミン(PXDA)(三菱ガス化学(株)製)139.74g(モル比(MXDA/PXDA=70/30))、及びポリエーテルジアミン(米国HUNTSMAN社製、商品名:XTJ−542)380.00gの混合液を滴下し約2時間重合を行い、ポリエーテルポリアミドを得た。ηr=1.36、[COOH]=64.82μeq/g、[NH2]=100.70μeq/g、Mn=12083、Tg=79.3℃、Tch=107.1℃、Tm=251.4℃。
次に、得られたポリエーテルポリアミド100質量部と、安定剤としてN,N’−ジ−2−ナフチル−p−フェニレンジアミン(大内新興化学工業(株)製、商品名:ノクラックWhite、安定剤(B1−1))0.5質量部とをドライブレンドし、直径30mmのスクリュー及びTダイを備える二軸押出機にて温度280℃で押出成形し、厚さ約100μmの無延伸フィルムを得た。
得られたフィルムを用いて、前記引張試験を行った。結果を表2に示す。
実施例2−2〜2−5
実施例2−1における安定剤の種類を各々表2に記載のとおりに変更したこと以外は、実施例2−1と同様にしてフィルムを得、前記引張試験を行った。結果を表2に示す。
比較例2−1
撹拌機、窒素ガス導入口、縮合水排出口を備えた容積約3Lの反応容器にアジピン酸730.8g、次亜リン酸ナトリウム一水和物0.6322g及び酢酸ナトリウム0.4404gを仕込み、容器内を十分窒素置換した後、窒素ガスを20ml/分で供給しながら170℃で溶融させた。275℃まで徐々に昇温しながら、そこへメタキシリレンジアミン(MXDA)(三菱ガス化学(株)製)476.70gとパラキシリレンジアミン(PXDA)(三菱ガス化学(株)製)204.30g(モル比(MXDA/PXDA=70/30))の混合液を滴下し約2時間重合を行い、ポリアミドを得た。ηr=2.07、[COOH]=55.70μeq/g、[NH2]=64.58μeq/g、Mn=16623、Tg=89.0℃、Tch=135.0℃、Tm=257.0℃。
得られたポリアミドを、温度275℃で押出成形を行い、厚さ約100μmの無延伸フィルムを作成した。
得られたフィルムを用いて、前記引張試験を行った。結果を表2に示す。
比較例2−2
実施例2−1において得られたポリエーテルポリアミドを、温度280℃で押出成形を行い、厚さ約100μmの無延伸フィルムを作成した。
得られたフィルムを用いて、前記引張試験を行った。結果を表2に示す。
Figure 0005929620
実施例3−1
撹拌機、窒素ガス導入口、縮合水排出口を備えた容積約3Lの反応容器にセバシン酸(硫黄原子濃度70ppm)667.4g、次亜リン酸ナトリウム一水和物0.6587g及び酢酸ナトリウム0.4588gを仕込み、容器内を十分窒素置換した後、窒素ガスを20ml/分で供給しながら170℃で溶融させた。260℃まで徐々に昇温しながら、そこへメタキシリレンジアミン(MXDA)(三菱ガス化学(株)製)404.51gとポリエーテルジアミン(米国HUNTSMAN社製、商品名:XTJ−542)330.00gの混合液を滴下し約2時間重合を行い、ポリエーテルポリアミドを得た。ηr=1.29、[COOH]=100.8μeq/g、[NH2]=38.4μeq/g、Mn=14368、Tg=29.2℃、Tch=58.0℃、Tm=185.0℃。ポリエーテルポリアミド中の硫黄原子濃度は33ppmだった。
次に、得られたポリエーテルポリアミド100質量部と、安定剤として4,4’−ビス(α,α−ジメチルベンジル)ジフェニルアミン(大内新興化学工業(株)製、商品名:ノクラックCD、安定剤(B1−2))0.5質量部とをドライブレンドし、直径30mmのスクリュー及びTダイを備える二軸押出機にて温度235℃で押出成形し、厚さ約100μmの無延伸フィルムを得た。
得られたフィルムを用いて、前記引張試験及びYI値の測定を行った。結果を表3に示す。
実施例3−2〜3−5
実施例3−1における安定剤の種類を各々表3に記載のとおりに変更したこと以外は、実施例3−1と同様にしてフィルムを得、前記引張試験及びYI値の測定を行った。結果を表3に示す。
比較例3−1
撹拌機、窒素ガス導入口、縮合水排出口を備えた容積約3Lの反応容器にセバシン酸(硫黄原子濃度0ppm)809.0g、次亜リン酸ナトリウム一水和物0.6210g及び酢酸ナトリウム0.4325gを仕込み、容器内を十分窒素置換した後、窒素ガスを20ml/分で供給しながら170℃で溶融させた。260℃まで徐々に昇温しながら、そこへメタキシリレンジアミン(MXDA)(三菱ガス化学(株)製)544.80gを滴下し約2時間重合を行い、ポリアミドを得た。ηr=1.80、[COOH]=88.5μeq/g、[NH2]=26.7μeq/g、Mn=17300、Tg=61.2℃、Tch=114.1℃、Tm=191.5℃。
得られたポリアミドを、温度220℃で押出成形を行い、厚さ約100μmの無延伸フィルムを作成した。
得られたフィルムを用いて、前記引張試験及びYI値の測定を行った。結果を表3に示す。
比較例3−2
実施例3−1において得られたポリエーテルポリアミドを、温度235℃で押出成形を行い、厚さ約100μmの無延伸フィルムを作成した。
得られたフィルムを用いて、前記引張試験及びYI値の測定を行った。結果を表3に示す。
Figure 0005929620
実施例4−1
撹拌機、窒素ガス導入口、縮合水排出口を備えた容積約3Lの反応容器にセバシン酸667.43g、次亜リン酸ナトリウム一水和物0.6587g及び酢酸ナトリウム0.4588gを仕込み、容器内を十分窒素置換した後、窒素ガスを20ml/分で供給しながら170℃で溶融させた。260℃まで徐々に昇温しながら、そこへメタキシリレンジアミン(MXDA)(三菱ガス化学(株)製)283.16gとパラキシリレンジアミン(PXDA)(三菱ガス化学(株)製)121.35g(モル比(MXDA/PXDA=70/30))、及びポリエーテルジアミン(米国HUNTSMAN社製、商品名:XTJ−542)330.00gの混合液を滴下し約2時間重合を行い、ポリエーテルポリアミドを得た。ηr=1.31、[COOH]=81.62μeq/g、[NH2]=68.95μeq/g、Mn=13283、Tg=12.9℃、Tch=69.5℃、Tm=204.5℃。
次に、得られたポリエーテルポリアミド100質量部と、安定剤としてN,N’−ジ−2−ナフチル−p−フェニレンジアミン(大内新興化学工業(株)製、商品名:ノクラックWhite、安定剤(B1−1))0.5質量部とをドライブレンドし、直径30mmのスクリュー及びTダイを備える二軸押出機にて温度260℃で押出成形し、厚さ約100μmの無延伸フィルムを得た。
得られたフィルムを用いて、前記引張試験を行った。結果を表4に示す。
実施例4−2〜4−5
実施例4−1における安定剤の種類を各々表4に記載のとおりに変更したこと以外は、実施例4−1と同様にしてフィルムを得、前記引張試験を行った。結果を表4に示す。
実施例4−6〜4−8
実施例4−1又は4−2における安定剤の添加量を表4に記載のとおりに変更したこと以外は、実施例4−1又は4−2と同様にしてフィルムを得、前記引張試験を行った。結果を表4に示す。
実施例4−9〜4−11
実施例4−1における安定剤の種類及び添加量を各々表4に記載のとおりに変更したこと以外は、実施例4−1と同様にしてフィルムを得、前記引張試験を行った。結果を表4に示す。
比較例4−1
撹拌機、窒素ガス導入口、縮合水排出口を備えた容積約3Lの反応容器にセバシン酸829.2g、次亜リン酸ナトリウム一水和物0.6365g及び酢酸ナトリウム0.4434gを仕込み、容器内を十分窒素置換した後、窒素ガスを20ml/分で供給しながら170℃で溶融させた。260℃まで徐々に昇温しながら、そこへメタキシリレンジアミン(MXDA)(三菱ガス化学(株)製)390.89gとパラキシリレンジアミン(PXDA)(三菱ガス化学(株)製)167.53g(モル比(MXDA/PXDA=70/30))の混合液を滴下し約2時間重合を行い、ポリアミドを得た。ηr=2.20、[COOH]=81.8μeq/g、[NH2]=26.9μeq/g、Mn=18400、Tg=65.9℃、Tch=100.1℃、Tm=213.8℃。
得られたポリアミドを、温度240℃で押出成形を行い、厚さ約100μmの無延伸フィルムを作成した。
得られたフィルムを用いて、前記引張試験を行った。結果を表4に示す。
比較例4−2
実施例4−1において得られたポリエーテルポリアミドを、温度260℃で押出成形を行い、厚さ約100μmの無延伸フィルムを作成した。
得られたフィルムを用いて、前記引張試験を行った。結果を表4に示す。
Figure 0005929620
表1〜4の結果より、本発明のポリエーテルポリアミド組成物が、溶融成形性、結晶性、柔軟性に優れているとともに熱安定性及び耐熱老化性にも優れる材料であることがわかる。
本発明のポリエーテルポリアミド組成物は、既存のポリアミドエラストマーの溶融成形性、強靭性、柔軟性、ゴム的な性質を保持しつつ、かつ、熱安定性及び耐熱老化性に優れる。そのため、本発明のポリエーテルポリアミド組成物は、各種工業部品、機械及び電気精密機器のギア及びコネクタ、自動車のエンジン回りの燃料チューブ、コネクタ部品、摺動部品、ベルト、ホース、消音ギア等の電気部品及び電子部品、スポーツ用品等に好適に適用できる。

Claims (14)

  1. ジアミン構成単位が下記一般式(1)で表されるポリエーテルジアミン化合物(a−1)及びキシリレンジアミン(a−2)に由来し、ジカルボン酸構成単位が炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸に由来するポリエーテルポリアミド(A)並びに安定剤(B)を含み、
    ジアミン構成単位中のキシリレンジアミン(a−2)に由来する構成単位の割合が50〜99.8モル%である、ポリエーテルポリアミド組成物。
    Figure 0005929620

    (式中、x+zは1〜30、yは1〜50を表し、Rはプロピレン基を表す。)
  2. 安定剤(B)が、アミン系化合物(B1)、有機硫黄系化合物(B2)、フェノール系化合物(B3)、リン系化合物(B4)及び無機系化合物(B5)からなる群から選ばれる少なくとも1種である、請求項1に記載のポリエーテルポリアミド組成物。
  3. 安定剤(B)の含有量が、ポリエーテルポリアミド(A)100質量部に対して0.01〜1質量部である、請求項1又は2に記載のポリエーテルポリアミド組成物。
  4. キシリレンジアミン(a−2)が、メタキシリレンジアミン、パラキシリレンジアミン又はこれらの混合物である、請求項1〜3のいずれかに記載のポリエーテルポリアミド組成物。
  5. キシリレンジアミン(a−2)が、メタキシリレンジアミンである、請求項1〜4のいずれかに記載のポリエーテルポリアミド組成物。
  6. キシリレンジアミン(a−2)が、メタキシリレンジアミンとパラキシリレンジアミンとの混合物である、請求項1〜4のいずれかに記載のポリエーテルポリアミド組成物。
  7. メタキシリレンジアミン及びパラキシリレンジアミンの総量に対するパラキシリレンジアミンの割合が90モル%以下である、請求項6に記載のポリエーテルポリアミド組成物。
  8. 炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸が、アジピン酸及びセバシン酸からなる群から選ばれる少なくとも1種である、請求項1〜7のいずれかに記載のポリエーテルポリアミド組成物。
  9. ポリエーテルポリアミド組成物の相対粘度が1.1〜3.0である、請求項1〜のいずれかに記載のポリエーテルポリアミド組成物。
  10. ポリエーテルポリアミド組成物の融点が170〜270℃である、請求項1〜のいずれかに記載のポリエーテルポリアミド組成物。
  11. 下式で算出される引張強度保持率が75%以上である、請求項1〜10のいずれかに記載のポリエーテルポリアミド組成物。
    引張強度保持率(%)=〔130℃72時間熱処理後のフィルムの破断時応力(MPa)/130℃72時間熱処理前のフィルムの破断時応力(MPa)〕×100
  12. 安定剤(B)が、アミン系化合物(B1)、有機硫黄系化合物(B2)及び無機系化合物(B5)からなる群から選ばれる少なくとも1種である、請求項1〜11のいずれかに記載のポリエーテルポリアミド組成物。
  13. 請求項1〜12のいずれかに記載のポリエーテルポリアミド組成物を含む成形品。
  14. ホース、チューブ又は金属被覆材である、請求項13に記載の成形品。
JP2012179741A 2012-08-14 2012-08-14 ポリエーテルポリアミド組成物 Active JP5929620B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012179741A JP5929620B2 (ja) 2012-08-14 2012-08-14 ポリエーテルポリアミド組成物
KR1020157003018A KR20150043305A (ko) 2012-08-14 2013-08-12 폴리에테르폴리아미드 조성물
EP13829167.9A EP2886607A4 (en) 2012-08-14 2013-08-12 COMPOSITION OF POLYETHER POLYAMIDE
PCT/JP2013/071838 WO2014027650A1 (ja) 2012-08-14 2013-08-12 ポリエーテルポリアミド組成物
US14/421,198 US20150218344A1 (en) 2012-08-14 2013-08-12 Polyether-polyamide composition
CN201380041110.6A CN104508045A (zh) 2012-08-14 2013-08-12 聚醚聚酰胺组合物
TW102129202A TW201414772A (zh) 2012-08-14 2013-08-14 聚醚聚醯胺組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012179741A JP5929620B2 (ja) 2012-08-14 2012-08-14 ポリエーテルポリアミド組成物

Publications (2)

Publication Number Publication Date
JP2014037462A JP2014037462A (ja) 2014-02-27
JP5929620B2 true JP5929620B2 (ja) 2016-06-08

Family

ID=50285852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012179741A Active JP5929620B2 (ja) 2012-08-14 2012-08-14 ポリエーテルポリアミド組成物

Country Status (1)

Country Link
JP (1) JP5929620B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014168060A1 (ja) * 2013-04-09 2017-02-16 三菱瓦斯化学株式会社 金属被覆材
CN109923174B (zh) * 2016-11-15 2021-12-10 东丽株式会社 聚酰胺树脂组合物及包含其的成型品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4527461B2 (ja) * 2004-07-14 2010-08-18 ダイセル・エボニック株式会社 複合材料及びその製造方法
WO2010047315A1 (ja) * 2008-10-21 2010-04-29 宇部興産株式会社 ゴム組成物及びポリアミド積層体
RU2579138C2 (ru) * 2010-12-27 2016-03-27 Мицубиси Гэс Кемикал Компани, Инк. Полиамидная композиция
JP6164086B2 (ja) * 2012-03-06 2017-07-19 東洋紡株式会社 共重合ポリエーテルポリアミド樹脂組成物

Also Published As

Publication number Publication date
JP2014037462A (ja) 2014-02-27

Similar Documents

Publication Publication Date Title
JP5867419B2 (ja) ポリエーテルポリアミドエラストマー
JP5867418B2 (ja) ポリエーテルポリアミドエラストマー
JP6024671B2 (ja) ポリエーテルポリアミドエラストマー
US20180171075A1 (en) Polyamide resin and molded article
WO2014027649A1 (ja) ポリエーテルポリアミド樹脂組成物
WO2014027650A1 (ja) ポリエーテルポリアミド組成物
WO2014027651A1 (ja) ポリエーテルポリアミド組成物
JP5929620B2 (ja) ポリエーテルポリアミド組成物
JP6052031B2 (ja) ポリアミド樹脂組成物及びこれを用いた成形品
JP5929623B2 (ja) ポリエーテルポリアミド組成物
JP5929622B2 (ja) ポリエーテルポリアミド組成物
JP5929621B2 (ja) ポリエーテルポリアミド組成物
JP5929624B2 (ja) ポリエーテルポリアミド樹脂組成物
JP6007665B2 (ja) 吸放湿性材料
JP5929625B2 (ja) ポリエーテルポリアミド樹脂組成物
JP6225693B2 (ja) ポリアミド樹脂組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R151 Written notification of patent or utility model registration

Ref document number: 5929620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151