JP5909523B2 - ND filter, light quantity diaphragm device, and imaging device - Google Patents

ND filter, light quantity diaphragm device, and imaging device Download PDF

Info

Publication number
JP5909523B2
JP5909523B2 JP2014098640A JP2014098640A JP5909523B2 JP 5909523 B2 JP5909523 B2 JP 5909523B2 JP 2014098640 A JP2014098640 A JP 2014098640A JP 2014098640 A JP2014098640 A JP 2014098640A JP 5909523 B2 JP5909523 B2 JP 5909523B2
Authority
JP
Japan
Prior art keywords
film
filter
water vapor
vapor barrier
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014098640A
Other languages
Japanese (ja)
Other versions
JP2014167651A (en
Inventor
安紘 佐藤
安紘 佐藤
柳 道男
道男 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2014098640A priority Critical patent/JP5909523B2/en
Publication of JP2014167651A publication Critical patent/JP2014167651A/en
Application granted granted Critical
Publication of JP5909523B2 publication Critical patent/JP5909523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、特にカメラ等に用いられるNDフィルタ、光量絞り装置、及び光量絞り装置を使用した撮像装置に関するものである。   The present invention relates to an ND filter, a light quantity diaphragm device, and an image pickup apparatus using the light quantity diaphragm device, particularly for use in cameras and the like.

ビデオカメラ或いはデジタルスチールカメラ等の光量絞り装置には、小絞り状態でのハンチング現象や回折現象等の影響を低減するために、ND(Neutral Density)フィルタが用いられている場合がある。   In some cases, an ND (Neutral Density) filter is used in a light amount diaphragm device such as a video camera or a digital still camera in order to reduce the influence of a hunting phenomenon or a diffraction phenomenon in a small diaphragm state.

近年では、撮像素子の感度が向上し、NDフィルタの濃度を濃くすることにより、更に光の透過率を低下させ、高感度の撮像素子を使用しても、明るい被写界に対して絞りの開口が小さくなり過ぎないようにする工夫が施されている。   In recent years, the sensitivity of the image sensor has improved, and the density of the ND filter has been increased to further reduce the light transmittance. The device is designed to prevent the opening from becoming too small.

また、NDフィルタの基材となる基板には、ガラス等の透明基板も用いられるが、近年では任意形状への加工性や、小型化・軽量化等の要望に伴い、合成樹脂製の基板も用いられてきている。一般的なNDフィルタの作製方法としては、合成樹脂やガラスから成る透明基板上に、真空蒸着法やスパッタ法等により、多層膜を成膜することにより作製している。   In addition, transparent substrates such as glass are also used as substrates for ND filters, but in recent years, synthetic resin substrates have also become available due to demands for processability to arbitrary shapes, miniaturization, and weight reduction. It has been used. As a general method for manufacturing an ND filter, a multilayer film is formed on a transparent substrate made of synthetic resin or glass by a vacuum deposition method, a sputtering method, or the like.

また、NDフィルタの分光特性においては、CCDの光感度向上等の理由から高精度化への要求が高まっており、その中でも概略λ=400〜700nmまでの可視光波長領域全域における分光特性が均一であることが求められている。これらのNDフィルタは、最適設計することにより、可視光波長全域において分光特性が均一な特性を得ることができる。しかしながら、NDフィルタは大気や基板から光減衰膜に浸入する水分等により、光減衰膜として用いられる金属・金属酸化物が酸化され、分光特性を変化させる問題を有している。   Further, in the spectral characteristics of the ND filter, there is an increasing demand for higher accuracy for reasons such as improving the photosensitivity of the CCD. Among them, the spectral characteristics are uniform in the entire visible light wavelength region from approximately λ = 400 to 700 nm. It is required to be. By designing these ND filters optimally, it is possible to obtain characteristics with uniform spectral characteristics over the entire visible light wavelength range. However, the ND filter has a problem that the spectral characteristics are changed due to oxidation of the metal / metal oxide used as the light attenuating film due to moisture or the like entering the light attenuating film from the atmosphere or the substrate.

この問題の対策として、特許文献1に記載のNDフィルタにおいては、光減衰膜としてTiNx、NbNx、TaNx、AlNx等の低級金属窒化物を用いている。これにより、隣接する誘電体である酸化物が外部環境に影響され光減衰膜が酸化することを防止し、安定した分光特性を有するNDフィルタを得ることが開示されている。 As a countermeasure against this problem, the ND filter described in Patent Document 1 uses a lower metal nitride such as TiN x , NbN x , TaN x , and AlN x as the light attenuation film. Thus, it is disclosed that an oxide, which is an adjacent dielectric, is affected by the external environment and the light attenuating film is prevented from being oxidized, and an ND filter having stable spectral characteristics is obtained.

図10は従来のNDフィルタ1の膜構成図を示している。透明基板2上には第1、3、5、7、9層にAl23膜3、第2、4、6、8、10層にTixy膜4が交互に積層され、最表層である第11層にMgF2膜5を成膜した計11層から成るND膜6が成膜されている。 FIG. 10 shows a film configuration diagram of a conventional ND filter 1. On the transparent substrate 2, Al 2 O 3 films 3 are laminated alternately on the first, third, fifth, seventh and ninth layers, and Ti x O y films 4 are laminated alternately on the second, fourth, sixth, eighth and tenth layers. An ND film 6 having a total of 11 layers, in which an MgF 2 film 5 is formed on the eleventh layer as the surface layer, is formed.

このND膜6は可視光波長領域における分光透過率が均一になるように十分に考慮して設計されている。また、各層の膜厚等の設計値は異なるが、Al23膜3の任意の数層又は全てのAl23膜3をSiO2膜に置換してもよい。そして、Al23膜3をSiO2膜に置換し、Tixy膜4とを相互に積層する構成であっても、ほぼ同様の光学特性を有するND膜6を作製することが可能である。 The ND film 6 is designed with sufficient consideration so that the spectral transmittance in the visible light wavelength region is uniform. Further, the design value of such layers of thicknesses different, an Al 2 O 3 film any number layers or all of the Al 2 O 3 film 3 of 3 may be replaced with the SiO 2 film. Then, even if the Al 2 O 3 film 3 is replaced with the SiO 2 film and the Ti x O y film 4 is laminated on each other, it is possible to produce the ND film 6 having substantially the same optical characteristics. It is.

最表層のMgF2膜5はND膜6の面の反射率の低減を目的として構成された反射防止膜であり、屈折率nが可視光波長領域で1.5以下のものとして選択されている。反射防止膜は反射率の低減を主目的としているため、屈折率の小さい材料であればよく、例えばSiO2膜等を使用した場合であっても、ほぼ同様のND膜6を作製することができる。 The outermost MgF 2 film 5 is an antireflection film configured for the purpose of reducing the reflectance of the surface of the ND film 6, and is selected so that the refractive index n is 1.5 or less in the visible light wavelength region. . Since the antireflection film is mainly intended to reduce the reflectance, any material having a low refractive index may be used. For example, even when an SiO 2 film or the like is used, an almost similar ND film 6 can be produced. it can.

図11は図10に示したNDフィルタ1に環境負荷(60℃、90%、1000h)を与えた環境試験前後の可視光波長領域における透過率の変化を示しており、環境試験後の方が透過率が概略1%程度上昇している。   FIG. 11 shows the change in transmittance in the visible light wavelength region before and after the environmental test in which an environmental load (60 ° C., 90%, 1000 h) was applied to the ND filter 1 shown in FIG. The transmittance is increased by about 1%.

特開2003−322709号公報JP 2003-322709 A

しかしながら、光減衰膜としてTiNx、NbNx、TaNx、AlNx等の低級金属窒化物を使用した場合には、消衰係数が比較的大きいため、設計膜厚を薄くする必要がある。NDフィルタの光量減衰率は光減衰膜の膜厚に大きく依存するため、設計膜厚が薄いと成膜誤差が発生し易く、再現性の低下を招く要因となる。 However, when a lower metal nitride such as TiN x , NbN x , TaN x , or AlN x is used as the light attenuating film, the extinction coefficient is relatively large, so the design film thickness needs to be reduced. Since the light amount attenuation rate of the ND filter greatly depends on the film thickness of the light attenuating film, if the designed film thickness is small, a film forming error is likely to occur, which causes a decrease in reproducibility.

本発明の目的は、上述の課題を解消し、成膜誤差が少なく、光減衰膜として用いられる金属・金属酸化物の酸化による分光特性の変化を抑制することにより、長期間に渡り分光特性を安定させたNDフィルタ、光量絞り装置、及び撮像装置を提供することにある。   The object of the present invention is to eliminate the above-mentioned problems, reduce the film formation error, and suppress the change in the spectral characteristics due to the oxidation of the metal / metal oxide used as the light attenuation film. An object of the present invention is to provide a stabilized ND filter, a light quantity diaphragm device, and an imaging device.

上記目的を達成するための本発明に係るNDフィルタは、ガラス基板と比較して含水率が大きな透明樹脂基板と、該透明樹脂基板上において誘電体層と光吸収層とを積層して設けた光減衰膜と、を備え、前記光減衰膜に含まれる前記光吸収層は、前記透明樹脂基板上に共に設けられた水蒸気バリア層他の水蒸気バリア層との間挟まれたことを特徴とする。 In order to achieve the above object, an ND filter according to the present invention includes a transparent resin substrate having a higher moisture content than a glass substrate, and a dielectric layer and a light absorption layer stacked on the transparent resin substrate. A light attenuating film, and the light absorbing layer included in the light attenuating film is sandwiched between a water vapor barrier layer and another water vapor barrier layer provided together on the transparent resin substrate. And

本発明に係るNDフィルタによれば、光減衰膜に浸入する水分や酸素の影響を受ける光減衰膜の光吸収層を複数の水蒸気バリア層の間に設けて、分光特性の変化を抑制することができる。   According to the ND filter of the present invention, the light absorption layer of the light attenuation film that is affected by moisture or oxygen that enters the light attenuation film is provided between the plurality of water vapor barrier layers to suppress the change in spectral characteristics. Can do.

参考例の撮影光学系の構成図である。It is a block diagram of the imaging optical system of a reference example. 参考例のNDフィルタの膜構成図である。It is a film | membrane block diagram of the ND filter of a reference example. 参考例の環境試験前後の透過率変化のグラフ図である。It is a graph of the transmittance | permeability change before and after the environmental test of a reference example. 実施例1のNDフィルタの膜構成図である。2 is a film configuration diagram of an ND filter according to Embodiment 1. FIG. 実施例1のNDフィルタの膜構成図である。2 is a film configuration diagram of an ND filter according to Embodiment 1. FIG. 実施例1の環境試験前後の透過率変化のグラフ図である。2 is a graph of transmittance change before and after an environmental test of Example 1. FIG. 実施例2のNDフィルタの膜構成図である。6 is a film configuration diagram of an ND filter of Example 2. FIG. 実施例2のNDフィルタの膜構成図である。6 is a film configuration diagram of an ND filter of Example 2. FIG. 実施例2の環境試験前後の透過率変化のグラフ図である。6 is a graph showing a change in transmittance before and after an environmental test of Example 2. FIG. 従来のNDフィルタの膜構成図である。It is a film | membrane structural view of the conventional ND filter. 従来のNDフィルタの環境試験前後の透過率変化のグラフ図である。It is a graph of the transmittance | permeability change before and behind the environmental test of the conventional ND filter.

図1は撮影光学系の構成図を示し、レンズ11、光量絞り装置12、レンズ13〜15、ローパスフィルタ16、CCD等から成る固体撮影素子17が順次に配列されている。光量絞り装置12においては、絞り羽根支持板18に一対の絞り羽根19a、19bが可動に取り付けられている。絞り羽根19aには、絞り羽根19a、19bにより形成される開口部を通過する光量を減光することを目的としたNDフィルタ20が接着されている。   FIG. 1 is a configuration diagram of a photographing optical system, in which a solid photographing element 17 including a lens 11, a light amount diaphragm 12, lenses 13 to 15, a low-pass filter 16, a CCD, and the like are sequentially arranged. In the light quantity diaphragm device 12, a pair of diaphragm blades 19 a and 19 b are movably attached to the diaphragm blade support plate 18. An ND filter 20 is bonded to the diaphragm blade 19a for the purpose of reducing the amount of light passing through the opening formed by the diaphragm blades 19a and 19b.

図2は参考例におけるNDフィルタ20の膜構成図を示している。NDフィルタ20の透明合成樹脂材から成る透明基板21には、耐熱性、柔軟性、更にはコスト的に基板材料として優れているノルボルネン系樹脂である板厚200μmのArton(JSR社製、商品名)のフィルムを選択している。   FIG. 2 shows a film configuration diagram of the ND filter 20 in the reference example. The transparent substrate 21 made of the transparent synthetic resin material of the ND filter 20 has a 200 μm thick Arton (made by JSR Corporation, trade name), which is a norbornene-based resin that is excellent in heat resistance, flexibility, and cost as a substrate material. ) Film is selected.

なお、本参考例においては透明基板21の材質としてArton(JSR社製、商品名)を選択したが、これに限らずZeonex、Zeonor(日本ゼオン社製、商品名)等の他のノルボルネン系樹脂を使用してもよい。また、ノルボルネン系樹脂以外のPMMA、ポリカーボネート、PET、PEN、PC、ポリイミド系樹脂等の様々な透明合成樹脂基板を使用することも可能である。   In this reference example, Arton (trade name) manufactured by JSR was selected as the material of the transparent substrate 21, but is not limited thereto, and other norbornene resins such as Zeonex and Zeonor (trade name, manufactured by Nippon Zeon Co., Ltd.). May be used. In addition, various transparent synthetic resin substrates such as PMMA, polycarbonate, PET, PEN, PC, and polyimide resin other than norbornene resin can be used.

一般的には、本参考例のようなNDフィルタ20として使用される透明基板21の材質としては、耐熱性(ガラス転移点Tg)が高く、曲げ弾性が大きく、更には可視光波長領域において透明性が高く、吸水率が低い材料がより好ましい。   Generally, as a material of the transparent substrate 21 used as the ND filter 20 as in this reference example, the heat resistance (glass transition point Tg) is high, the bending elasticity is high, and further, it is transparent in the visible light wavelength region. A material having high properties and low water absorption is more preferable.

本参考例のように、薄いフィルム状の透明基板21上にND膜を成膜する場合には、上述した耐熱性や曲げ弾性、更にはコスト的な要因等を考慮すると、ノルボルネン系樹脂、ポリイミド系樹脂が最も適している材料の1つである。   In the case where an ND film is formed on a thin film-like transparent substrate 21 as in this reference example, in consideration of the above-mentioned heat resistance, bending elasticity, cost factors, etc., norbornene resin, polyimide A series resin is one of the most suitable materials.

本参考例においては、真空蒸着法により透明基板21上の第1、3、5、7、9層に誘電体層であるAl23膜22、第2、4、6、8、10層に光吸収層であるTixy膜23が交互に積層して光減衰膜とされている。そして、光減衰膜の最上層である第10層のTixy膜23上に、第11層として水蒸気バリア層として機能するSi34膜24を積層し、更に最表層に反射防止膜であるMgF2膜25を成膜し、計12層から成るND膜26を成膜している。 In this reference example, the first, third , fifth, seventh, and ninth layers on the transparent substrate 21 are vacuum-deposited on the first, third , fifth, seventh, and ninth layers of the Al 2 O 3 film 22 that is a dielectric layer, and the second , fourth, sixth, eighth, and tenth layers. Further, Ti x O y films 23 as light absorption layers are alternately laminated to form a light attenuating film. Then, an Si 3 N 4 film 24 functioning as a water vapor barrier layer is laminated as an eleventh layer on the tenth Ti x O y film 23 which is the uppermost layer of the light attenuation film, and an antireflection film is further formed on the outermost layer. forming a MgF 2 film 25 is, and forming a ND film 26 consisting of a total of 12 layers.

このように、ND膜26の最表層であるMgF2膜25と、光減衰膜のうち最上層の第10層のTixy膜23の間に、Si34膜24を成膜することにより、大気からの水蒸気等の浸入を防止することができる。これにより、光吸収層であるTixy膜23の劣化を防止でき、分光特性の変化を抑制することができる。 In this manner, the Si 3 N 4 film 24 is formed between the MgF 2 film 25 that is the outermost layer of the ND film 26 and the tenth Ti x O y film 23 that is the uppermost layer of the light attenuation film. Thus, intrusion of water vapor or the like from the atmosphere can be prevented. Thereby, deterioration of the Ti x O y film 23 that is a light absorption layer can be prevented, and a change in spectral characteristics can be suppressed.

なお、MgF2膜25は反射防止膜であるため、ND膜26の最表層に位置することが好ましいが、水蒸気バリア層であるSi34膜24を最表層としてMgF2膜25の上に形成してもよい。 Since the MgF 2 film 25 is an antireflection film, it is preferably positioned on the outermost layer of the ND film 26. However, the Si 3 N 4 film 24, which is a water vapor barrier layer, is used as the outermost layer on the MgF 2 film 25. It may be formed.

図3は本参考例のNDフィルタ20に対する環境試験前後(60℃、90%、1000h)の可視光波長領域における透過率の変化の実験結果を示している。環境試験前後での透過率の変化は概略0.6%程度であり、水蒸気バリア層を設けない図11に示す従来のNDフィルタ1の透過率と比較して大幅に改善される。   FIG. 3 shows the experimental results of the change in transmittance in the visible light wavelength region before and after the environmental test (60 ° C., 90%, 1000 h) for the ND filter 20 of this reference example. The change in transmittance before and after the environmental test is approximately 0.6%, which is a significant improvement compared to the transmittance of the conventional ND filter 1 shown in FIG. 11 in which no water vapor barrier layer is provided.

本参考例においてはND膜26の成膜に真空蒸着法を使用したが、スパッタリング法、IAD法(イオンアシスト成膜)、IBS法、イオンプレーティング法、クラスタ蒸着法等の成膜方法においても成膜が可能である。また、蒸着方法は目的や条件等を考慮し、最も適当な成膜方法を選択すればよい。   In this reference example, the vacuum deposition method was used for the formation of the ND film 26. However, in the deposition method such as the sputtering method, the IAD method (ion assist film formation), the IBS method, the ion plating method, and the cluster deposition method. Film formation is possible. In addition, the most appropriate film forming method may be selected as the vapor deposition method in consideration of the purpose and conditions.

図4は参考例のND膜26の膜構成に加えて、透明基板21の光減衰膜を成膜する面の表面である第1層に水蒸気バリア層であるSi34膜24を成膜することにより、計13層の膜構成としている。つまり、透明基板21に最も近いAl23膜22との間に水蒸気バリア層であるSi34膜24を成膜している。 In FIG. 4, in addition to the film configuration of the ND film 26 of the reference example, the Si 3 N 4 film 24 that is a water vapor barrier layer is formed on the first layer that is the surface of the transparent substrate 21 on which the light attenuation film is formed. By doing so, a total 13-layer film configuration is obtained. That is, the Si 3 N 4 film 24 that is a water vapor barrier layer is formed between the Al 2 O 3 film 22 closest to the transparent substrate 21.

特に、透明基板21に合成樹脂材を使用すると、任意形状への加工性や、小型化・軽量化等の利点があるが、ガラス基板と比較して含水率が大きく、合成樹脂基板が有する水分により光減衰膜の分光特性が変化することが懸念される。しかし、このような構成とすることで、透明基板21の有する水分がSi34膜24の上層に浸入することを防止し、透明基板21からの水分による光減衰膜の分光特性の変化を低減することができる。 In particular, when a synthetic resin material is used for the transparent substrate 21, there are advantages such as processability to an arbitrary shape and reduction in size and weight. However, the moisture content of the synthetic resin substrate is higher than that of a glass substrate. As a result, there is a concern that the spectral characteristics of the light attenuating film may change. However, with such a configuration, the moisture of the transparent substrate 21 is prevented from entering the upper layer of the Si 3 N 4 film 24, and the change in the spectral characteristics of the light attenuation film due to the moisture from the transparent substrate 21 is prevented. Can be reduced.

この場合に、Si34膜24と透明基板21との密着性が問題となる場合がある。そのときは、図5に示すように比較的密着力が強く吸水率の小さいSiO2膜31やSiO膜等を第1層目に成膜し、その上層に水蒸気バリア層としてSi34膜24を成膜し、計14層の膜構成とすることで改善することができる。 In this case, the adhesion between the Si 3 N 4 film 24 and the transparent substrate 21 may be a problem. At that time, as shown in FIG. 5, a SiO 2 film 31 or a SiO film having a relatively high adhesion and a low water absorption rate is formed as the first layer, and a Si 3 N 4 film is formed as a water vapor barrier layer thereon. It can be improved by depositing 24 and forming a total of 14 layers.

図6は本実施例1におけるNDフィルタ20に対する環境試験前後(60℃、90%、1000h)の可視光波長領域における透過率の変化の実験結果を示している。環境試験前後で透過率の変化は概略0.4%程度であった。   FIG. 6 shows the experimental results of the change in transmittance in the visible light wavelength region before and after the environmental test (60 ° C., 90%, 1000 h) for the ND filter 20 in the first embodiment. The change in transmittance before and after the environmental test was approximately 0.4%.

図7は実施例2における膜構成図を示している。本実施例2においては、全てのAl23膜22とTixy膜23との間に水蒸気バリア層であるSi34膜24が成膜されている。同時に、最表層のMgF2膜25と光減衰膜の最上層の第20層のTixy膜23との間にSi34膜24を成膜することにより、計22層の膜構成としている。Al23膜22とTixy膜23の間に挿入されたSi34膜24は、Al23膜22によるTixy膜23の酸化を防止し光減衰膜の透過率の変化を更に低減する。 FIG. 7 shows a film configuration diagram in the second embodiment. In the second embodiment, a Si 3 N 4 film 24 that is a water vapor barrier layer is formed between all the Al 2 O 3 films 22 and the Ti x O y film 23. At the same time, by forming the Si 3 N 4 film 24 between the outermost MgF 2 film 25 and the 20th Ti x O y film 23 of the optical attenuation film, a total of 22 film structures are formed. It is said. The Si 3 N 4 film 24 inserted between the Al 2 O 3 film 22 and the Ti x O y film 23, the transmission of preventing the optical attenuation film oxidation of Ti x O y film 23 by the Al 2 O 3 film 22 Further reduce the rate change.

なお、全てのAl23膜22とTixy膜23との間に水蒸気バリア層であるSi34膜24を成膜する必要はなく、図8に示すように適宜の積層間に水蒸気バリア層を介在してもよい。特に、酸素や水分の影響を最も受け易く最も薄いTixy膜23の上下の面を水蒸気バリア層で成膜することが好ましい。 Note that it is not necessary to form the Si 3 N 4 film 24 which is a water vapor barrier layer between all the Al 2 O 3 films 22 and the Ti x O y film 23, and as shown in FIG. A water vapor barrier layer may be interposed. In particular, it is preferable to form the upper and lower surfaces of the thinnest Ti x O y film 23 that is most susceptible to the influence of oxygen and moisture with a water vapor barrier layer.

図9は本実施例2におけるNDフィルタ20に対する環境試験前後(60℃、90%、1000h)の可視光波長領域における透過率の変化の実験結果を示したものである。環境試験前後で透過率の変化は概略0.3%程度であった。   FIG. 9 shows the experimental results of the change in transmittance in the visible light wavelength region before and after the environmental test (60 ° C., 90%, 1000 h) for the ND filter 20 in the second embodiment. The change in transmittance before and after the environmental test was approximately 0.3%.

水蒸気バリア層であるSi34膜24の膜厚は、NDフィルタ20の使用帯域、例えばλ=400〜700nm程度の通常可視光波長領域で所定の光量減衰率、即ち所定の透過率を有する。このSi34膜24の膜厚はAl23膜22、Tixy膜23の各層の膜厚と共に調整して予め決められる。 The film thickness of the Si 3 N 4 film 24 which is a water vapor barrier layer has a predetermined light amount attenuation rate, that is, a predetermined transmittance in the use band of the ND filter 20, for example, in the normal visible light wavelength region of about λ = 400 to 700 nm. . The film thickness of the Si 3 N 4 film 24 is determined in advance together with the film thicknesses of the Al 2 O 3 film 22 and the Ti x O y film 23.

上述の実施例においては、水蒸気バリア層としてSi34膜24を使用しているが、SiOxyを使用してもほぼ同様の効果が得られる。Si34、SiOxyは消衰係数が比較的小さいため、Si34、SiOxyによる光の吸収の影響が少なく、設計の自由度を広げることができる。つまり、水蒸気バリア層はSi34、SiOxyの何れか1種類以上を用い、膜厚は希望する光学特性を満たすよう任意の厚さに設定すればよい。 In the above-described embodiment, the Si 3 N 4 film 24 is used as the water vapor barrier layer, but substantially the same effect can be obtained even if SiO x N y is used. Since Si 3 N 4 and SiO x N y have a relatively small extinction coefficient, there is little influence of light absorption by Si 3 N 4 and SiO x N y , and the degree of design freedom can be expanded. That is, the water vapor barrier layer may be one or more of Si 3 N 4 and SiO x N y , and the film thickness may be set to an arbitrary thickness so as to satisfy desired optical characteristics.

Si34、SiOxyの成膜はSiを蒸発源として、それぞれAr・N2雰囲気下、Ar・N2・O2雰囲気下で反応させて成膜することができる。Si34、SiOxyはAl23やTixyに比較して、密着性が良くないため、IAD法やイオンプレーティング法等によるアシストを用いて成膜するとより緻密な膜となり、水蒸気バリアの効果が向上させることができる。 Si 3 N 4 and SiO x N y can be formed by reacting in an Ar · N 2 atmosphere and an Ar · N 2 · O 2 atmosphere, respectively, using Si as an evaporation source. Since Si 3 N 4 and SiO x N y have poor adhesion compared to Al 2 O 3 and Ti x O y , a finer film can be formed by assisting with an IAD method or an ion plating method. It becomes a film | membrane and the effect of a water vapor | steam barrier can be improved.

このようにして製造したNDフィルタ20は、ビデオカメラやデジタルスチールカメラ等の撮像装置に適用することで、長期に渡り良好な性能の光量絞り装置が得られる。   The ND filter 20 manufactured in this way is applied to an imaging apparatus such as a video camera or a digital still camera, so that a light quantity diaphragm apparatus having good performance over a long period can be obtained.

20 NDフィルタ
21 透明基板
22 Al23
23 Tixy
24 Si34
25 MgF2
26 ND膜
31 SiO2
20 ND filter 21 Transparent substrate 22 Al 2 O 3 film 23 Ti x O y film 24 Si 3 N 4 film 25 MgF 2 film 26 ND film 31 SiO 2 film

Claims (8)

ガラス基板と比較して含水率が大きな透明樹脂基板と、
該透明樹脂基板上において誘電体層と光吸収層とを積層して設けた光減衰膜と、を備え、
前記光減衰膜に含まれる前記光吸収層は、前記透明樹脂基板上に共に設けられた水蒸気バリア層他の水蒸気バリア層との間挟まれたことを特徴とするNDフィルタ。
A transparent resin substrate having a large moisture content compared to a glass substrate ;
A light attenuation film provided by laminating a dielectric layer and a light absorption layer on the transparent resin substrate,
The light absorbing layer included in the optical attenuation film, ND filter, characterized in that interposed between said transparent resin water vapor barrier layer together provided on the substrate and another water vapor barrier layer.
前記水蒸気バリア層は、前記水蒸気バリア層よりも前記透明樹脂基板に対する密着性の高い膜を介して前記透明樹脂基板上に形成したことを特徴とする請求項1に記載のNDフィルタ。   The ND filter according to claim 1, wherein the water vapor barrier layer is formed on the transparent resin substrate through a film having higher adhesion to the transparent resin substrate than the water vapor barrier layer. 前記他の水蒸気バリア層は前記光減衰膜の上のNDフィルタとしての最表面を形成する反射防止膜と前記光減衰膜の最上層となる光吸収層との間に形成したことを特徴とする請求項1又は2に記載のNDフィルタ。 The other water vapor barrier layer is formed between an antireflection film that forms an outermost surface as an ND filter on the light attenuation film and a light absorption layer that is an uppermost layer of the light attenuation film. The ND filter according to claim 1 or 2. 前記他の水蒸気バリア層及び前記水蒸気バリア層は前記光吸収層の上下面に形成したことを特徴とする請求項1〜3の何れか1項に記載のNDフィルタ。   The ND filter according to claim 1, wherein the other water vapor barrier layer and the water vapor barrier layer are formed on upper and lower surfaces of the light absorption layer. 前記透明樹脂基板はノルボルネン系樹脂の合成樹脂であることを特徴とする請求項1〜4の何れか1項に記載のNDフィルタ。   The ND filter according to any one of claims 1 to 4, wherein the transparent resin substrate is a synthetic resin of a norbornene-based resin. 前記水蒸気バリア層はSi34又はSiOxyであることを特徴とする請求項1〜5の何れか1項に記載のNDフィルタ。 The ND filter according to claim 1, wherein the water vapor barrier layer is made of Si 3 N 4 or SiO x N y . 請求項1〜6の何れか1項に記載のNDフィルタを有することを特徴とする光量絞り装置。   A light quantity diaphragming device comprising the ND filter according to claim 1. 請求項7に記載の光量絞り装置を使用した撮像装置。   An imaging device using the light quantity diaphragm device according to claim 7.
JP2014098640A 2014-05-12 2014-05-12 ND filter, light quantity diaphragm device, and imaging device Active JP5909523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014098640A JP5909523B2 (en) 2014-05-12 2014-05-12 ND filter, light quantity diaphragm device, and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014098640A JP5909523B2 (en) 2014-05-12 2014-05-12 ND filter, light quantity diaphragm device, and imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009231710A Division JP5879021B2 (en) 2009-10-05 2009-10-05 ND filter

Publications (2)

Publication Number Publication Date
JP2014167651A JP2014167651A (en) 2014-09-11
JP5909523B2 true JP5909523B2 (en) 2016-04-26

Family

ID=51617327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014098640A Active JP5909523B2 (en) 2014-05-12 2014-05-12 ND filter, light quantity diaphragm device, and imaging device

Country Status (1)

Country Link
JP (1) JP5909523B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716978A (en) * 1993-06-29 1995-01-20 Asahi Glass Co Ltd Heat ray interceptive transparent body
FR2757151B1 (en) * 1996-12-12 1999-01-08 Saint Gobain Vitrage GLAZING COMPRISING A SUBSTRATE PROVIDED WITH A STACK OF THIN FILMS FOR SUN PROTECTION AND / OR THERMAL INSULATION
JP2000147245A (en) * 1998-11-12 2000-05-26 Mitsui Chemicals Inc Optical filter
JP4199466B2 (en) * 2002-03-05 2008-12-17 キヤノン電子株式会社 Filter and light quantity reduction device
JP3912159B2 (en) * 2002-03-29 2007-05-09 Jsr株式会社 Optical film, method for producing the same, and polarizing plate
JP2007101709A (en) * 2005-09-30 2007-04-19 Canon Electronics Inc Nd filter, method for manufacturing nd filter, and light quantity attenuation device
JP2007199447A (en) * 2006-01-27 2007-08-09 Canon Electronics Inc Nd filter, its manufacturing method, and light quantity reducing device
JP4802770B2 (en) * 2006-03-08 2011-10-26 住友金属鉱山株式会社 Absorption-type multilayer ND filter and method for manufacturing the same
JP2007298659A (en) * 2006-04-28 2007-11-15 Japan Aviation Electronics Industry Ltd Neutral density filter
JP5879021B2 (en) * 2009-10-05 2016-03-08 キヤノン電子株式会社 ND filter

Also Published As

Publication number Publication date
JP2014167651A (en) 2014-09-11

Similar Documents

Publication Publication Date Title
JP6241419B2 (en) Near-infrared cut filter
JP5016872B2 (en) Optical filter
JP4768995B2 (en) Optical filter and imaging device
JP2008276112A (en) Nd filter
JP5879021B2 (en) ND filter
JP2007206172A (en) Imaging system optical element
JP2013156619A (en) Nd filter with ir cut function
JP2017040909A (en) Optical filter and optical system having the same, imaging apparatus, and lens unit
JP2017040909A5 (en) Optical filter, optical system having the same, image pickup apparatus
JP2010032867A (en) Infrared ray cutoff filter
KR101058992B1 (en) Optical elements and optical instruments
JP4914955B2 (en) ND filter with IR cut function
JP6136661B2 (en) Near-infrared cut filter
JP6174379B2 (en) Visible light transmission filter
JP4963027B2 (en) ND filter, method for manufacturing the same, and light quantity reduction device using them
JP2010175941A (en) Optical filter and method of manufacturing the same, and image capturing apparatus having the same
JP5909523B2 (en) ND filter, light quantity diaphragm device, and imaging device
JP6957135B2 (en) Optical elements, optical systems, imaging devices and lens devices
JP2007225735A (en) Nd filter, light quantity control device using the same and imaging apparatus
US11513440B2 (en) Optical element, optical system, and optical apparatus
JP5126089B2 (en) Ray cut filter
US20120212809A1 (en) Infrared Cut Filter
JP2006220872A (en) Optical filter, manufacturing method of optical filter, and imaging device
JP2018036371A (en) Optical filter
US20240118462A1 (en) Bokeh filter membrane, imaging optical lens assembly, imaging apparatus and electronic device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150430

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R150 Certificate of patent or registration of utility model

Ref document number: 5909523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250