JP5896612B2 - Cell scaffold material - Google Patents

Cell scaffold material Download PDF

Info

Publication number
JP5896612B2
JP5896612B2 JP2011059899A JP2011059899A JP5896612B2 JP 5896612 B2 JP5896612 B2 JP 5896612B2 JP 2011059899 A JP2011059899 A JP 2011059899A JP 2011059899 A JP2011059899 A JP 2011059899A JP 5896612 B2 JP5896612 B2 JP 5896612B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
cell
sample
cell scaffold
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011059899A
Other languages
Japanese (ja)
Other versions
JP2012192105A (en
Inventor
祐介 興村
祐介 興村
一吉 喜多
一吉 喜多
尚幸 花木
尚幸 花木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunstar Inc
Original Assignee
Sunstar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunstar Inc filed Critical Sunstar Inc
Priority to JP2011059899A priority Critical patent/JP5896612B2/en
Publication of JP2012192105A publication Critical patent/JP2012192105A/en
Application granted granted Critical
Publication of JP5896612B2 publication Critical patent/JP5896612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は細胞足場材に関する。より詳しくは、本発明は特定の不織布を含む細胞足場材に関する。   The present invention relates to a cell scaffold. More specifically, the present invention relates to a cell scaffold comprising a specific nonwoven fabric.

近年、再生医療に関する様々な研究が行われている。細胞を増殖することにより、身体組織を再生させる研究も、再生医療研究の一分野として、研究が活発に行われている。細胞を増殖し、身体組織を再生させ、医療に応用するためには、効率よく細胞を増殖させ、所望の形状及び/又は機能を有する組織を製造することが求められる。このような所望の組織を製造するため、細胞が増殖する際に足場となる材料(細胞足場材)が用いられることが多い。例えば、皮膚の再生においては、特に生体適合性材料を細胞足場材として用い、損傷した皮膚の代わりに細胞を増殖させて製造した皮膚を移植するといった医療が行われている。   In recent years, various studies on regenerative medicine have been conducted. Research to regenerate body tissues by proliferating cells is also actively conducted as a field of regenerative medicine research. In order to proliferate cells, regenerate body tissues, and apply to medical treatment, it is required to efficiently proliferate cells and produce tissues having a desired shape and / or function. In order to produce such a desired tissue, a material (cell scaffold) that becomes a scaffold when cells proliferate is often used. For example, in the regeneration of skin, medical treatment is performed, in particular, using a biocompatible material as a cell scaffold and transplanting skin produced by growing cells instead of damaged skin.

このような細胞足場材としては、例えば、特許文献1において、約1.2〜4.0μmの平均直径を有するグリコリド含有繊維を含む足場が記載されている。   As such a cell scaffold, for example, Patent Document 1 describes a scaffold containing glycolide-containing fibers having an average diameter of about 1.2 to 4.0 μm.

WO2007/132186WO2007 / 132186

本発明は、従来品に比べ、さらに効率のよい細胞増殖を可能とする、細胞足場材を提供することを目的とする。   An object of the present invention is to provide a cell scaffold that enables more efficient cell growth than conventional products.

本発明者らは、驚くべき事に、不織布を含む細胞足場材であって、該不織布の平均ポアサイズが約6〜50μmであり、該不織布を構成する繊維が生体適合性繊維であり、該繊維の平均繊維径が約0.1〜3μmである、細胞足場材であれば、非常に効率よく細胞を増殖させることが可能であることを見出し、さらに改良を重ねて本発明を完成させるに至った。すなわち、本発明は例えば以下の項に記載の細胞足場材及び骨再生用材料を包含する。
項1.
不織布を含む細胞足場材であって、
該不織布の平均ポアサイズが6〜50μmであり、
該不織布を構成する繊維が生体適合性繊維であり、
該繊維の平均繊維径が0.1〜3μmである、
細胞足場材。
項2.
生体適合性繊維が、生体適合性ポリマーを含んでなる繊維である、項1に記載の細胞足場材。
項3.
生体適合性ポリマーが、ポリ乳酸、ポリグリコール酸、ポリ乳酸−ポリグリコール酸共重合体、ポリカプロラクトン、キチン、コラーゲン、ポリリジン、ポリアルギニン、ヒアルロン酸、セリシン、セルロース、デキストラン、及びプルランからなる群より選択される少なくとも1種である、項2に記載の細胞足場材。
項4.
生体適合性繊維がポリ乳酸からなる繊維である、項1〜3のいずれかに記載の細胞足場材。
項5.
骨芽細胞増殖用である、項1〜4のいずれかに記載の細胞足場材。
項6.
項1〜5のいずれかに記載の細胞足場材を含む骨再生用材料。
Surprisingly, the inventors of the present invention are cell scaffolds containing a nonwoven fabric, wherein the nonwoven fabric has an average pore size of about 6-50 μm, and the fibers constituting the nonwoven fabric are biocompatible fibers, the fibers It was found that a cell scaffold with an average fiber diameter of about 0.1 to 3 μm can proliferate cells very efficiently, and further improvements were made to complete the present invention. It was. That is, the present invention includes, for example, the cell scaffold material and bone regeneration material described in the following section.
Item 1.
A cell scaffold comprising a non-woven fabric,
The average pore size of the nonwoven fabric is 6 to 50 μm,
The fibers constituting the nonwoven fabric are biocompatible fibers,
The average fiber diameter of the fibers is 0.1 to 3 μm.
Cell scaffold material.
Item 2.
Item 2. The cell scaffold according to Item 1, wherein the biocompatible fiber is a fiber comprising a biocompatible polymer.
Item 3.
The biocompatible polymer is selected from the group consisting of polylactic acid, polyglycolic acid, polylactic acid-polyglycolic acid copolymer, polycaprolactone, chitin, collagen, polylysine, polyarginine, hyaluronic acid, sericin, cellulose, dextran, and pullulan. Item 3. The cell scaffold according to Item 2, which is at least one selected.
Item 4.
Item 4. The cell scaffold according to any one of Items 1 to 3, wherein the biocompatible fiber is a fiber made of polylactic acid.
Item 5.
Item 5. The cell scaffold according to any one of Items 1 to 4, which is used for osteoblast proliferation.
Item 6.
Item 6. A bone regeneration material comprising the cell scaffold according to any one of Items 1 to 5.

本発明の細胞足場材は、非常に細胞(特に骨芽細胞)の増殖効率が高い(細胞増殖能が高い)ため、組織再生のために好ましく用いることができる。特に、骨再生用材料として好適に用いることができる。具体的には、外的要因(例えば事故)により骨が損傷した場合や、内的要因(例えば骨粗鬆症、歯周病)により骨が少なく又は無くなった場合に、本発明の不織布を含む細胞足場材を適用することで、(具体的には、患部に埋めたり貼付したり等することで)早期の骨の再生を達成することができる。また、人工皮膚や人工骨等の人工組織製造の際に足場として用いることもできる。   The cell scaffold of the present invention has a very high proliferation efficiency (high cell proliferation ability) of cells (particularly osteoblasts) and can be preferably used for tissue regeneration. In particular, it can be suitably used as a bone regeneration material. Specifically, when the bone is damaged by an external factor (for example, an accident), or when the bone is reduced or lost by an internal factor (for example, osteoporosis, periodontal disease), the cell scaffold containing the nonwoven fabric of the present invention By applying, it is possible to achieve early bone regeneration (specifically, by embedding or sticking to the affected area). It can also be used as a scaffold in the production of artificial tissues such as artificial skin and artificial bone.

エレクトロスピニング法による不織布の製造方法の簡単な概要を示す。A brief outline of a method for producing a nonwoven fabric by electrospinning is shown. 各不織布を用いた際の細胞増殖性評価(DNA量比較)の結果を示す。具体的には、培養5時間後、3日目、8日目での評価サンプル中に存在する細胞を溶解させ、得られたDNA量を蛍光強度で比較した結果を示す。(n=3)The result of cell growth evaluation (DNA amount comparison) at the time of using each nonwoven fabric is shown. Specifically, after 5 hours of culturing, the cells present in the evaluation samples on day 3 and day 8 are lysed, and the obtained DNA amount is compared by fluorescence intensity. (N = 3) 各不織布を通過した細胞(シャーレ底面の細胞)の数を、細胞溶解液中のDNA量を蛍光強度で比較した結果を示す。(n=2)The number of cells (cells on the petri dish bottom surface) that passed through each non-woven fabric was compared with the amount of DNA in the cell lysate by fluorescence intensity. (N = 2) 不織布Aを用いて細胞を培養した後、ギムザ染色を行った結果を示す。The result of Giemsa staining after culturing cells using the nonwoven fabric A is shown. 不織布Bを用いて細胞を培養した後、ギムザ染色を行った結果を示す。The result of Giemsa staining after culturing cells using the nonwoven fabric B is shown. 不織布Cを用いて細胞を培養した後、ギムザ染色を行った結果を示す。The result of Giemsa staining after culturing cells using the nonwoven fabric C is shown. 不織布Dを用いて細胞を培養した後、ギムザ染色を行った結果を示す。The result of Giemsa staining after culturing cells using the nonwoven fabric D is shown.

以下、本発明について、さらに詳細に説明する。なお、「質量」は「重量」と読み替えてもよい。   Hereinafter, the present invention will be described in more detail. “Mass” may be read as “weight”.

本発明は、不織布を含む細胞足場材に係る。該不織布の平均ポアサイズは約6〜50μmであり、該不織布を構成する繊維は生体適合性繊維であり、該繊維の平均繊維径は約0.1〜3μmである。   The present invention relates to a cell scaffold comprising a nonwoven fabric. The average pore size of the nonwoven fabric is about 6 to 50 μm, the fibers constituting the nonwoven fabric are biocompatible fibers, and the average fiber diameter of the fibers is about 0.1 to 3 μm.

本発明の細胞足場材は、種々の細胞を増殖させるために用いることができる。本発明の効果が発揮される限度において、細胞の種類は特に制限されないが、動物(特に哺乳動物)由来の細胞が好ましく、また、結合組織由来の細胞が好ましい。具体的には、骨芽細胞、繊維芽細胞、幹細胞等が例示され、より具体的には、骨芽細胞、歯根膜繊維芽細胞、歯肉繊維芽細胞、セメント芽細胞、間葉系幹細胞等が例示される。   The cell scaffold of the present invention can be used for growing various cells. The cell type is not particularly limited as long as the effect of the present invention is exhibited, but an animal (particularly, mammal) -derived cell is preferable, and a connective tissue-derived cell is preferable. Specifically, osteoblasts, fibroblasts, stem cells and the like are exemplified, and more specifically, osteoblasts, periodontal fibroblasts, gingival fibroblasts, cement blasts, mesenchymal stem cells and the like. Illustrated.

該不織布を構成する繊維は、生体適合性繊維である。生体適合性繊維とは、生体適合性ポリマーを含んでなる繊維をいう。生体適合性ポリマーの含有率は、90質量%以上が好ましく、95質量%以上がより好ましく、実質的に100%であることが(即ち、生体適合性ポリマーからなる生体適合性繊維が)さらに好ましい。   The fibers constituting the nonwoven fabric are biocompatible fibers. A biocompatible fiber refers to a fiber comprising a biocompatible polymer. The content of the biocompatible polymer is preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 100% (that is, a biocompatible fiber made of a biocompatible polymer). .

生体適合性ポリマーとは、生体に接着させた場合又は埋め込んだ場合に、異物反応が無い若しくは小さい(長期間にわたって生体に悪影響も強い刺激も与えず、本来の機能を果たしながら生体と平和共存できる)ポリマーをいう。生体吸収性ポリマーや生体分解性ポリマーが例示できる。   A biocompatible polymer means that there is no or little foreign body reaction when adhered to or embedded in a living body (it does not give adverse effects or strong stimulation to the living body over a long period of time, and can coexist peacefully with the living body while performing its original function. ) A polymer. Examples thereof include bioabsorbable polymers and biodegradable polymers.

より具体的には、生体適合性ポリマーとしては、ポリ乳酸、ポリグリコール酸、ポリ乳酸−ポリグリコール酸共重合体、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリスチレン、ポリカーボネート、ポリヘキサメチレンカーボネート、ポリアリレート、ポリビニルイソシアネート、ポリブチルイソシアネート、ポリメチルメタクリレート、ポリエチルメタクリレート、ポリノルマルプロピルメタクリレート、ポリノルマルブチルメタクリレート、ポリメチルアクリレート、ポリエチルアクリレート、ポリブチルアクリレート、ポリアクリロニトリル、ポリビニルアセテート、ポリビニルメチルエーテル、ポリビニルエチルエーテル、ポリビニルノルマルプロピルエーテル、ポリビニルイソプロピルエーテル、ポリビニルノルマルブチルエーテル、ポリビニルイソブチルエーテル、ポリビニルターシャリーブチルエーテル、ポリビニルクロリド、ポリビニリデンクロリド、ポリ(N−ビニルピロリドン)、ポリ(N−ビニルカルバゾル)、ポリ(4−ビニルピリジン)、ポリビニルメチルケトン、ポリメチルイソプロペニルケトン、ポリエチレンオキシド、ポリプロピレンオキシド、ポリシクロペンテンオキシド、ポリスチレンサルホン、テフロン(登録商標)(ポリテトラフルオロエチレン)、ポリシアノアクリレート、ポリエーテルエーテルケトン、ポリウレタン、ポリイミド、ポリ塩化ビニル、ポリエチレン(超高分子量ポリエチレン含む)、ポリプロピレン、ポリエチレンテレフタレート、ポリフッ化ビニリデン(ポリビニリデンジフルオライド)、ポリスルホン、ポリエーテルスルホン並びにこれらの共重合体等の合成ポリマー、再生セルロース、セルロースジアセテート、セルローストリアセテート、メチルセルロース、プロピルセルロース、ベンジルセルロース、フィブロイン、天然ゴム等の生体高分子とその誘導体が例示される。また、キチン、ゼラチン、コラーゲン、ポリアミノ酸(ポリリジン、ポリアルギニン)、ヒアルロン酸、セリシン、デキストラン、プルラン等も例示される。   More specifically, biocompatible polymers include polylactic acid, polyglycolic acid, polylactic acid-polyglycolic acid copolymer, polycaprolactone, polybutylene succinate, polyethylene succinate, polystyrene, polycarbonate, polyhexamethylene carbonate. , Polyarylate, polyvinyl isocyanate, polybutyl isocyanate, polymethyl methacrylate, polyethyl methacrylate, polynormal propyl methacrylate, polynormal butyl methacrylate, polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, polyacrylonitrile, polyvinyl acetate, polyvinyl methyl ether , Polyvinyl ethyl ether, polyvinyl normal propyl ether, polyvinyl isopropyl ether , Polyvinyl normal butyl ether, polyvinyl isobutyl ether, polyvinyl tertiary butyl ether, polyvinyl chloride, polyvinylidene chloride, poly (N-vinyl pyrrolidone), poly (N-vinyl carbazole), poly (4-vinyl pyridine), polyvinyl methyl ketone, Polymethylisopropenyl ketone, polyethylene oxide, polypropylene oxide, polycyclopentene oxide, polystyrene sulfone, Teflon (registered trademark) (polytetrafluoroethylene), polycyanoacrylate, polyetheretherketone, polyurethane, polyimide, polyvinyl chloride, polyethylene (Including ultra-high molecular weight polyethylene), polypropylene, polyethylene terephthalate, polyvinylidene fluoride (polyvinylidene difur) Ride), synthetic polymers such as polysulfone, polyethersulfone and copolymers thereof, regenerated cellulose, cellulose diacetate, cellulose triacetate, methylcellulose, propylcellulose, benzylcellulose, fibroin, natural rubber and other biopolymers and their derivatives Illustrated. Examples also include chitin, gelatin, collagen, polyamino acids (polylysine, polyarginine), hyaluronic acid, sericin, dextran, pullulan and the like.

これらのうち、ポリ乳酸、ポリグリコール酸、ポリ乳酸−ポリグリコール酸共重合体、ポリヒドロキシ酪酸、ポリカプロラクトン、ポリエチレンアジペート、ポリブチレンアジペート、ポリブチレンサクシネート、ポリエチレンサクシネート及びポリシアノアクリレート、並びにこれらの共重合体などの脂肪族ポリエステル、ポリブチレンカーボネート、ポリエチレンカーボネートなどの脂肪族ポリカーボネートを好ましい例として挙げることができ、更に好ましくはポリ乳酸、ポリグリコール酸、ポリ乳酸−ポリグリコール酸共重合体、ポリカプロラクトンが挙げられる。なかでもポリ乳酸が特に好ましい。生体適合性ポリマーは、1種単独で又は2種以上を組み合わせて用いることができる。   Among these, polylactic acid, polyglycolic acid, polylactic acid-polyglycolic acid copolymer, polyhydroxybutyric acid, polycaprolactone, polyethylene adipate, polybutylene adipate, polybutylene succinate, polyethylene succinate and polycyanoacrylate, and these Aliphatic polyesters such as copolymers, aliphatic polycarbonates such as polybutylene carbonate and polyethylene carbonate can be mentioned as preferred examples, more preferably polylactic acid, polyglycolic acid, polylactic acid-polyglycolic acid copolymer, Polycaprolactone is mentioned. Of these, polylactic acid is particularly preferred. A biocompatible polymer can be used individually by 1 type or in combination of 2 or more types.

なお、本発明の効果を損なわない範囲で、他のポリマーや化合物を併用(例えばポリマー共重合体、ポリマーブレンド、リン脂質、その他化合物等、及びこれらの混合物)してもよい。   In addition, other polymers and compounds may be used together (for example, a polymer copolymer, a polymer blend, a phospholipid, other compounds, and a mixture thereof) as long as the effects of the present invention are not impaired.

該不織布を構成する繊維の平均繊維径は、約0.1〜3μmであり、好ましくは約0.3〜2.9μm、より好ましくは約0.5〜2.8μm、さらに好ましくは約1〜2.5μmである。なお、ここでの繊維径は繊維の直径をいう。また、当該平均繊維径は、該不織布の電子顕微鏡撮影映像から各繊維の直径を測定し、ランダムに選択した50本の繊維径から算出した平均値をいう。   The average fiber diameter of the fibers constituting the nonwoven fabric is about 0.1 to 3 μm, preferably about 0.3 to 2.9 μm, more preferably about 0.5 to 2.8 μm, and still more preferably about 1 to 2.5 μm. In addition, the fiber diameter here means the diameter of a fiber. Moreover, the said average fiber diameter says the average value computed from the diameter of 50 fibers selected from the diameter of each fiber measured from the electron microscope image of this nonwoven fabric.

また、該不織布の平均ポアサイズ(細孔径)は、約6〜50μmであり、好ましくは約6.5〜40μmであり、より好ましくは約7〜30μmであり、さらに好ましくは約7〜20μmであり、よりさらに好ましくは約7.5〜10μmである。なお、ここでの不織布の平均ポアサイズは、プロピレン,1,1,2,3,3,3酸化ヘキサフッ素(商品名「Galwick」)を用いたハーフドライ法(ASTM E1294−89)により測定して求められる値をいう。当該測定にはcapillary flow porometer(Porous Materials Inc、CFP-1200-AEL)を用いることができる。   The average pore size (pore diameter) of the nonwoven fabric is about 6 to 50 μm, preferably about 6.5 to 40 μm, more preferably about 7 to 30 μm, and further preferably about 7 to 20 μm. More preferably, the thickness is about 7.5 to 10 μm. In addition, the average pore size of the nonwoven fabric here is measured by a half dry method (ASTM E1294-89) using propylene, 1,1,2,3,3,3 hexafluorooxide (trade name “Galwick”). This is the required value. For the measurement, a capillary flow porometer (Porous Materials Inc, CFP-1200-AEL) can be used.

該不織布の空隙率は、約94〜97%であることが好ましい。当該空隙率は、次の式により求めることができる。なお、原料として用いる生体適合性ポリマーの密度は、気体置換法(JIS R1620;アルゴンガスを用いた測定方法)により求めた値を用いる。   The porosity of the nonwoven fabric is preferably about 94 to 97%. The porosity can be obtained by the following formula. In addition, the value calculated | required by the gas displacement method (JISR1620; measuring method using argon gas) is used for the density of the biocompatible polymer used as a raw material.

空隙率(%)=〔1−{見かけ密度(g/cm)/原料の密度(g/cm)}〕×100 Porosity (%) = [1- {apparent density (g / cm 3 ) / raw material density (g / cm 3 )}] × 100

ここで、見かけ密度(g/cm)は、次の式により求めた値である。
見かけ密度(g/cm)={サンプル重量(g)/サンプル体積(cm)}
Here, the apparent density (g / cm 3 ) is a value obtained by the following equation.
Apparent density (g / cm 3 ) = {sample weight (g) / sample volume (cm 3 )}

サンプルとは、該不織布の一部である。具体的には、該不織布を長方形に切断(約4cm程度)したものである。なお、該サンプルの重量がサンプル重量であり、該サンプルの縦、横、及び厚みを測定し、縦、横、厚みの長さを乗じて求めた体積がサンプル体積である。該サンプルの厚みは、切断面を撮影した電子顕微鏡画像から測定した値である。電子顕微鏡として、例えば株式会社日立ハイテクノロジー、S−3200N,S−3000Nを用い得る。また、原料の密度とは、不織布の原料の密度をいう。例えば、不織布を構成する繊維が、ポリ乳酸からなる繊維である場合は、ポリ乳酸の密度をいう。 A sample is a part of the nonwoven fabric. Specifically, the nonwoven fabric is cut into a rectangle (about 4 cm 2 ). The weight of the sample is the sample weight, and the volume obtained by measuring the length, width, and thickness of the sample and multiplying the length by the length, width, and thickness is the sample volume. The thickness of the sample is a value measured from an electron microscope image obtained by photographing the cut surface. As an electron microscope, for example, Hitachi High-Technologies Corporation, S-3200N, S-3000N can be used. Moreover, the density of the raw material means the density of the raw material of the nonwoven fabric. For example, when the fiber which comprises a nonwoven fabric is a fiber which consists of polylactic acid, the density of polylactic acid is said.

本発明の細胞足場材に含まれる不織布は、エレクトロスピニング法により製造することができる。エレクトロスピニング法は、不織布を製造する手法の一つとして周知の方法である。具体的には、ポリマー(及び、必要に応じて分散補助剤)を揮発性溶媒(例えばクロロホルム、ジクロロメタン、ヘキサフルオロイソプロピルアルコール、又はこれらの混合溶液等)に溶解した溶液を、電極間で形成された静電場中に吐出し、溶液を電極(アース電極)に向けて曵糸することにより、繊維状物質を製造する方法である。エレクトロスピニング法のごく簡単な概要を図1に示す。なお、図1は例示である。公知のエレクトロスピニング法であり、本発明の不織布を製造できる方法であれば、本発明に用いることができる。図1を簡単に説明する。高電圧を、シリンジ(先端にノズル装着)中のポリマー溶解溶液に付加すると、ポリマー溶液のドロップが鋭い円錐となる。そして、さらに電圧が増すと、溶液はアース電極(例えば銅、アルミ等)に向かって飛ぶ(噴霧される)ことになり、アース電極上で薄い繊維の膜(即ち不織布)を形成する。つまり、図1では、アース電極がコレクターを兼ねる。   The nonwoven fabric contained in the cell scaffold of the present invention can be produced by an electrospinning method. The electrospinning method is a well-known method as one of methods for producing a nonwoven fabric. Specifically, a solution in which a polymer (and a dispersion aid if necessary) is dissolved in a volatile solvent (for example, chloroform, dichloromethane, hexafluoroisopropyl alcohol, or a mixed solution thereof) is formed between the electrodes. This is a method for producing a fibrous substance by discharging the solution into an electrostatic field and spinning the solution toward an electrode (ground electrode). A very brief overview of the electrospinning method is shown in FIG. FIG. 1 is an example. Any known electrospinning method that can produce the nonwoven fabric of the present invention can be used in the present invention. FIG. 1 will be described briefly. When a high voltage is applied to the polymer solution in the syringe (nozzle attached to the tip), the polymer solution drop becomes a sharp cone. When the voltage is further increased, the solution flies (sprays) toward the ground electrode (eg, copper, aluminum, etc.), and forms a thin fiber film (ie, non-woven fabric) on the ground electrode. In other words, in FIG. 1, the ground electrode also serves as the collector.

本発明において、エレクトロスピニング法に使用する生体適合性ポリマー溶解溶液中の生体適合性ポリマーの濃度は、適宜設定できるが、通常1〜30質量%程度、好ましくは2〜25質量%程度、より好ましくは3〜20質量%程度である。   In the present invention, the concentration of the biocompatible polymer in the biocompatible polymer solution used for the electrospinning method can be appropriately set, but is usually about 1 to 30% by mass, preferably about 2 to 25% by mass, and more preferably. Is about 3 to 20% by mass.

また、電極間の距離(図1ではシリンジとアース電極間の距離)は、帯電量、ノズル寸法、紡糸液流量、紡糸液濃度等に依存しており、適宜設定することができるが、例えば印加電圧が10kV程度のときには5〜50cm程度が好ましく、10〜30cm程度がより好ましい。また、印加される静電気電位は、通常3〜100kV程度、好ましくは5〜50kV程度、さらに好ましくは5〜30kV程度である。   Further, the distance between the electrodes (the distance between the syringe and the ground electrode in FIG. 1) depends on the charge amount, the nozzle size, the spinning solution flow rate, the spinning solution concentration, etc., and can be set as appropriate. When the voltage is about 10 kV, about 5 to 50 cm is preferable, and about 10 to 30 cm is more preferable. The applied electrostatic potential is usually about 3 to 100 kV, preferably about 5 to 50 kV, and more preferably about 5 to 30 kV.

本発明の不織布を含む細胞足場材は、上述した特定の平均ポアサイズ、並びに特定の繊維及び平均繊維径を有する不織布を含むことにより、非常に良好な細胞増殖効率を達成することができる。   The cell scaffold containing the nonwoven fabric of the present invention can achieve very good cell growth efficiency by including a nonwoven fabric having the above-mentioned specific average pore size and specific fibers and average fiber diameter.

本発明の細胞足場材は、特に、骨再生用材料として用いるのに適している。よって、本発明は、上記の細胞足場材を含む骨再生材料も包含する。外的要因(例えば事故)により骨が損傷した場合や、内的要因(例えば骨粗鬆症、歯周病)により骨が少なく又は無くなった場合に、本発明の細胞足場材を適用することで、(具体的には、患部に埋めたり貼付したりすることで)骨の早期再生を達成することができる。   The cell scaffold of the present invention is particularly suitable for use as a bone regeneration material. Therefore, this invention also includes the bone regeneration material containing said cell scaffold material. By applying the cell scaffold of the present invention when bone is damaged due to an external factor (for example, an accident) or when bone is reduced or lost due to an internal factor (for example, osteoporosis, periodontal disease), (specifically In particular, early bone regeneration can be achieved by embedding or sticking to the affected area.

制限はされないが、本発明の細胞足場材は、特にインプラント治療における歯槽骨の再生のために好ましく用いることができる。例えばGBR法(骨再生誘導法:guided bone regeneration)において、歯槽骨が不足している部分(患部)に詰めて骨再生を促進させるために用いることができるし、GBR膜の代わりに用いることもできる。   Although not limited, the cell scaffold of the present invention can be preferably used for the regeneration of alveolar bone particularly in implant treatment. For example, in the GBR method (guided bone regeneration method), it can be used to promote bone regeneration by filling the portion where the alveolar bone is deficient (affected site), or it can be used instead of the GBR membrane. it can.

またさらに、本発明の細胞足場材は、骨再生用材料として用い得ることから、例えば以下に記載する治療、術式又は用途に用いることができる。
<歯周組織再生、口腔外科領域>
骨縁下欠損、クラスII根分岐部病変、退縮型欠損、裂開型欠損における組織再生誘導法;顎堤の骨造成術、歯槽提増大術、インプラント周囲の骨造成術における骨再生誘導法;顎堤形成術;上顎洞底挙上術におけるサイナスリフト法;抜歯窩の保存におけるソケットプリザベーション法;鼻腔底挙上術;骨延長手術、骨壊死部分の掻爬後の骨充填、骨組織のがん病巣掻爬後の骨充填、外傷による骨折の治療のための骨充填における骨再建術;ブリッジ下の歯肉増大、歯肉退縮への根面被服、歯間乳頭再建、その他歯肉増大など審美目的での施術、等
<整形外科領域>
骨延長手術;骨壊死部分の掻爬後、骨組織のがん病巣掻爬後、外傷による骨折の治療、脊椎圧迫骨折、偽関節治療における骨再建術;骨延長手術:骨粗鬆症の治療における薬効成分のキャリアー材としての使用、等
<皮膚再生用途>
やけど、挫傷、褥瘡、切り傷等の治療、人工皮膚の製造など
<口腔粘膜再生用途>
口腔炎、口腔内の傷、白板症等の治療など
Furthermore, since the cell scaffold of the present invention can be used as a material for bone regeneration, it can be used, for example, for the treatment, surgical procedure or application described below.
<Periodontal tissue regeneration and oral surgery>
Tissue regeneration induction method for subbony defects, class II root bifurcation lesions, retraction defects, dehiscence defects; bone regenerative surgery for alveolar ridge, alveolar ridge augmentation, bone regeneration guidance for implants around bone implants; Clinicoplasty; sinus lift method in maxillary sinus floor elevation; socket preservation method in preservation of extraction socket; nasal floor elevation; bone extension surgery, bone filling after curettage of osteonecrosis, cancer of bone tissue Bone filling after lesion curettage, bone reconstruction for bone filling to treat fractures due to trauma; gingival enlargement under the bridge, root coverage for gingival recession, interdental papillary reconstruction, and other aesthetic treatments Etc. <Orthopedics>
Bone extension surgery: After curettage of osteonecrotic part, after cancer lesion curettage of bone tissue, fracture treatment by trauma, spinal compression fracture, bone reconstruction in treatment of pseudo-joint; bone extension surgery: carrier of medicinal ingredients in the treatment of osteoporosis Use as a material, etc. <Skin regeneration application>
Treatment of burns, contusions, pressure ulcers, cuts, artificial skin, etc. <For oral mucosa regeneration>
Treatment of oral inflammation, oral wounds, leukoplakia, etc.

以下、本発明を具体的に説明するが、本発明は下記の例に限定されるものではない。なお、実験に際して当該技術分野の教科書等(例えばMolecular Cloning: A Laboratory Manual (3 Vol. Set) ;Cold Spring Harbor Laboratory Press)を適宜参照してもよい。
不織布の製造
ポリ乳酸(フナコシ、Poly (L−Lactic Acid) 重量平均分子量300,000)を、ヘキサフルオロイソプロピルアルコール(HFIP):ジクロロメタン(DM)=8:2の混合溶液に溶解し、表1に示す各ポリ乳酸溶液を10gずつ調製した。調製したポリ乳酸溶液をシリンジ(Henke SASS WOLF、5mL)に充填し、針(テルモ、ノンベベル針21G1.1/2)をシリンジに装着して、エレクトロスピニング装置にセットした。シリンジからターゲットとなるアースとの距離を10cmとし、印加電圧10kVにて、アースに向けポリ乳酸を噴霧し(噴霧量0.6μL/sec、噴霧時間3時間)、各不織布を作成した。表1の通り、ポリ乳酸溶液濃度を変えて各不織布(不織布A〜D)を作成した。
Hereinafter, the present invention will be specifically described, but the present invention is not limited to the following examples. In the experiment, textbooks in the relevant technical field (for example, Molecular Cloning: A Laboratory Manual (3 Vol. Set); Cold Spring Harbor Laboratory Press) may be referred to as appropriate.
Production of Nonwoven Fabric Polylactic acid (Funakoshi, Poly (L-Lactic Acid) weight average molecular weight 300,000) was dissolved in a mixed solution of hexafluoroisopropyl alcohol (HFIP): dichloromethane (DM) = 8: 2, 10 g of each polylactic acid solution shown was prepared. The prepared polylactic acid solution was filled in a syringe (Henke SASS WOLF, 5 mL), and a needle (Terumo, non-bevel needle 21G1.1 / 2) was attached to the syringe and set in an electrospinning apparatus. Each non-woven fabric was prepared by spraying polylactic acid toward the ground at an applied voltage of 10 kV (spray amount 0.6 μL / sec, spray time 3 hours) at a distance of 10 cm from the syringe to the target ground. As shown in Table 1, the nonwoven fabrics (nonwoven fabrics A to D) were prepared by changing the polylactic acid solution concentration.

Figure 0005896612
Figure 0005896612

不織布の物性評価
以下の手順により、上記4種の不織布(不織布A〜D)の厚み、見かけ密度、空隙率(%)、ポアサイズ及び各不織布を構成する繊維の繊維径を測定した。
<厚み、見かけ密度、空隙率>
各不織布をそれぞれ長方形に切断(約4cm程度)し、測定サンプルとした。当該測定サンプルの重量を測定した。さらに当該測定サンプルの縦及び横の長さをノギスで測定した。また、当該測定サンプルの厚みを、当該サンプルの切断面の電子顕微鏡(株式会社日立ハイテクノロジー、S−3200N,S−3000N)画像から求めた。そして、縦、横、厚みの長さを乗じて体積(cm)を求めた。なお、厚みは、20箇所の測定値の平均値を用いた。
Evaluation of Physical Properties of Nonwoven Fabric The thickness, apparent density, porosity (%), pore size, and fiber diameter of the fibers constituting each nonwoven fabric were measured by the following procedures.
<Thickness, apparent density, porosity>
Each nonwoven fabric was cut into rectangles (about 4 cm 2 ) and used as measurement samples. The weight of the measurement sample was measured. Further, the vertical and horizontal lengths of the measurement sample were measured with calipers. Moreover, the thickness of the measurement sample was determined from an electron microscope (Hitachi High Technology, S-3200N, S-3000N) image of the cut surface of the sample. The volume (cm 3 ) was determined by multiplying the length, width, and thickness. In addition, the thickness used the average value of the measured value of 20 places.

サンプル重量と体積から、かさ密度を次の式により求めた。   From the sample weight and volume, the bulk density was determined by the following equation.

見かけ密度(g/cm)=サンプル重量(g)/サンプル体積(cmApparent density (g / cm 3 ) = sample weight (g) / sample volume (cm 3 )

さらに、求めた見かけ密度値から、次の式により空隙率を求めた。なお、次式の“原料密度”は、用いたポリ乳酸の密度(JIS R1620で測定)であり、具体的には1.26g/cmである。 Furthermore, the porosity was calculated | required by the following formula from the calculated | required apparent density value. The “raw material density” in the following formula is the density of polylactic acid used (measured by JIS R1620), and specifically 1.26 g / cm 3 .

空隙率(%)={1−(見かけ密度/原料密度)}×100 Porosity (%) = {1− (apparent density / raw material density)} × 100

<平均ポアサイズ>
各不織布を直径2.5cmにカットし、プロピレン,1,1,2,3,3,3酸化ヘキサフッ素(商品名「Galwick」)に浸した。そして、ポアサイズをcapillary flow porometer(Porous Materials Inc、CFP-1200-AEL)を用いてハーフドライ法(ASTM E1294−89)により測定した。
<Average pore size>
Each non-woven fabric was cut to a diameter of 2.5 cm and immersed in propylene, 1,1,2,3,3,3 hexafluorooxide (trade name “Galwick”). The pore size was measured by a half-dry method (ASTM E1294-89) using a capillary flow porometer (Porous Materials Inc, CFP-1200-AEL).

<平均繊維径>
走査型電子顕微鏡(株式会社日立ハイテクノロジー、S−3400N)を用いて各不織布断面を撮影し、500倍の電顕撮影映像からImage J(ver.1.43u)(NIH開発の画像処理ソフトフェア)により繊維径を測定した。繊維50本の繊維径の平均値を、各不織布の平均繊維径とした。
<Average fiber diameter>
Each non-woven fabric cross-section was photographed using a scanning electron microscope (Hitachi High-Technology Co., Ltd., S-3400N). Image J (ver. 1.43u) (image processing software developed by NIH) ) To measure the fiber diameter. The average value of the fiber diameters of 50 fibers was defined as the average fiber diameter of each nonwoven fabric.

以上の物性評価の結果を表2に示す。   The results of the above physical property evaluation are shown in Table 2.

Figure 0005896612
Figure 0005896612

不織布の細胞増殖性評価
<細胞培養>
各評価サンプル(上記不織布A〜D)を、48穴シャーレ(住友ベークライト(株)、SUMILON、MS−80480)の底面と同じ大きさにカットし、48穴シャーレの底に設置した。評価サンプルをペニシリンカップ(ステンレス管)で押さえ、10%FBS/MEM培地(抗生物質とグルタミン酸を加えた10%FBS/MEM培地、以下10%FBS/MEM培地)を500μL加え湿らせた。プレート遠心機にて5min遠心した(2500rpm、室温)。減圧脱気し、5min遠心(2500rpm、室温)した。さらに200μLの10%FBS/MEM培地を加え、37℃、5%COインキュベーター内で、1hr以上インキュベートした。培地を500μL吸い取り廃棄した。事前に培養したMG−63(由来:ヒト骨肉腫、ヒューマンサイエンス研究資源バンク、Lot.05262004)を1.6×10cells/mLとなるように10%FBS/MEM培地に懸濁し、100μLずつ各wellに播種した(1.6×10cells/well)。5時間放置した後、200μLの10%FBS/MEM培地を加え、培養を開始した。培養5時間後、3日後、8日後のサンプルを細胞増殖性評価に使用した。細胞浸潤性評価には、5時間後のサンプルを取り出したシャーレを用いた。
Non-woven cell growth evaluation <cell culture>
Each evaluation sample (the above-mentioned nonwoven fabrics A to D) was cut into the same size as the bottom surface of a 48-hole petri dish (Sumitomo Bakelite Co., Ltd., SUMILON, MS-80480) and placed on the bottom of the 48-hole petri dish. The evaluation sample was held with a penicillin cup (stainless steel tube), and 500 μL of 10% FBS / MEM medium (10% FBS / MEM medium added with antibiotics and glutamic acid, hereinafter 10% FBS / MEM medium) was added and moistened. The plate was centrifuged for 5 min in a plate centrifuge (2500 rpm, room temperature). The mixture was degassed under reduced pressure and centrifuged for 5 min (2500 rpm, room temperature). Furthermore, 200 μL of 10% FBS / MEM medium was added, and incubated at 37 ° C. in a 5% CO 2 incubator for 1 hour or more. 500 μL of the medium was sucked and discarded. Pre-cultured MG-63 (derived from human osteosarcoma, Human Science Research Resource Bank, Lot. 05262004) is suspended in 10% FBS / MEM medium to 1.6 × 10 5 cells / mL, and 100 μL each. Each well was seeded (1.6 × 10 4 cells / well). After leaving it for 5 hours, 200 μL of 10% FBS / MEM medium was added to start the culture. Samples after 5 hours, 3 days, and 8 days of culture were used for evaluation of cell proliferation. For the evaluation of cell invasiveness, a petri dish from which a sample after 5 hours was taken out was used.

<細胞増殖性評価>
既定の日数培養した細胞が付着した各評価サンプルを取り出し、それぞれPBS(リン酸緩衝生理食塩水)の入ったシャーレに加えた。PBSを含んだ状態の重量を測定し、乾燥重量とPBSを含んだ状態の評価サンプル重量から吸水量(PBSを含んだ状態の評価サンプル重量から、評価サンプルの実験に供される前の乾燥重量(シャーレ底面と同じ大きさにカットした時点で測定)を減じた量)を求めた。
<Evaluation of cell proliferation>
Each evaluation sample to which the cells cultured for a predetermined number of days adhered was taken out and added to a petri dish containing PBS (phosphate buffered saline). Measure the weight of the sample containing PBS and absorb the amount of water absorbed from the dry weight and the sample weight of the sample containing PBS (from the sample weight of sample sample containing PBS, the dry weight before being used for the evaluation sample experiment) The amount obtained by subtracting (measured when cut to the same size as the bottom of the petri dish) was determined.

サンプルの吸水量とTE緩衝液(Tris/Tris-HCl 10 mM、 EDTA 1mM)を合わせた溶液量が700μLとなるようにTE緩衝液を各シャーレに加えた。2回凍結融解(−80℃で凍結させ、室温で融解させる操作を2回繰り返した)を行い、その後超音波処理を30分行って、細胞を破砕した。TE緩衝液中にDNAを溶出させた100μLの細胞溶解液(凍結融解及び超音波処理を行って得た細胞破砕液)を96穴蛍光測定用プレート(Nunc black microwell、cat.137101)に加え測定サンプルとした。   The TE buffer solution was added to each petri dish so that the total amount of the sample water absorption and the TE buffer solution (Tris / Tris-HCl 10 mM, EDTA 1 mM) was 700 μL. Freeze-thaw (freezing at −80 ° C. and thawing at room temperature twice) was performed twice, followed by sonication for 30 minutes to disrupt the cells. Measurement was performed by adding 100 μL of cell lysate (cell lysate obtained by freeze-thawing and sonication) in which DNA was eluted in TE buffer to a 96-well fluorescence measurement plate (Nunc black microwell, cat. 137101). A sample was used.

ピコグリーン(インビトロジェン)をTE緩衝液で希釈(100μLを20mLに希釈)し、測定サンプルに100μL加え、5分間、室温でインキュベートした。蛍光プレートリーダー(Molecular devices spectra Max gemin XPS)を用い、励起光480nm・測定波長520nmで、蛍光強度を測定した。ピコグリーンは、2本鎖DNA特異的染色剤であるため、得られた蛍光強度はDNA量(ひいては細胞数)を反映する。そして、DNA量は細胞増殖量を反映する。従って、得られた蛍光強度は、細胞増殖量を反映する。結果を図2に示す。   Picogreen (Invitrogen) was diluted with TE buffer (100 μL was diluted to 20 mL), 100 μL was added to the measurement sample, and incubated at room temperature for 5 minutes. Using a fluorescent plate reader (Molecular devices spectra Max gemin XPS), the fluorescence intensity was measured at excitation light of 480 nm and measurement wavelength of 520 nm. Since pico green is a double-stranded DNA-specific stain, the obtained fluorescence intensity reflects the amount of DNA (and hence the number of cells). The amount of DNA reflects the amount of cell proliferation. Therefore, the obtained fluorescence intensity reflects the amount of cell proliferation. The results are shown in FIG.

<細胞浸潤性(通過性)評価>
細胞の浸潤性の評価として、培養5時間後の不織布を取り出した後のシャーレに付着する細胞数をDNAの蛍光強度として定量した。具体的には、次のようにして行った。すなわち、不織布を取り出した後のシャーレを500μLのPBSにて洗浄した。50μLの0.25%EDTA−トリプシン液(0.25%トリプシン、1mM EDTA)を加え、細胞をシャーレより剥がした。得られた細胞にPBS150μLとTE緩衝液を500μLとを加え細胞回収液とした。2回凍結融解(−80℃で凍結させ、室温で融解させる操作を2回繰り返した)を行い、その後超音波処理を30分行って、細胞を破砕した。TE緩衝液中にDNAを溶出させた100μLの細胞溶解液(凍結融解及び超音波処理を行って得た細胞破砕液)を96穴蛍光測定用プレート(Nunc black microwell、cat.137101)に加え、5分間室温でインキュベートして測定サンプルとした。
<Evaluation of cell invasiveness (passability)>
As an evaluation of the invasiveness of cells, the number of cells adhering to the petri dish after taking out the nonwoven fabric after 5 hours of culture was quantified as the fluorescence intensity of DNA. Specifically, it was performed as follows. That is, the petri dish after taking out the nonwoven fabric was washed with 500 μL of PBS. 50 μL of 0.25% EDTA-trypsin solution (0.25% trypsin, 1 mM EDTA) was added, and the cells were detached from the petri dish. To the obtained cells, 150 μL of PBS and 500 μL of TE buffer were added to obtain a cell recovery solution. Freeze-thaw (freezing at −80 ° C. and thawing at room temperature twice) was performed twice, followed by sonication for 30 minutes to disrupt the cells. 100 μL of cell lysate (cell lysate obtained by freeze-thawing and sonication) in which DNA was eluted in TE buffer was added to a 96-well fluorescence measurement plate (Nunc black microwell, cat. 137101), The sample was incubated for 5 minutes at room temperature.

ピコグリーン(インビトロジェン)をTE緩衝液で希釈(100μLを20mLに希釈)し、測定サンプルに100μL加え、5分間、室温でインキュベートした。蛍光プレートリーダー(Molecular devices spectra Max gemin XPS)を用い、励起光480nm・測定波長520nmで、蛍光強度を測定した。結果を図3に示す。   Picogreen (Invitrogen) was diluted with TE buffer (100 μL was diluted to 20 mL), 100 μL was added to the measurement sample, and incubated at room temperature for 5 minutes. Using a fluorescent plate reader (Molecular devices spectra Max gemin XPS), the fluorescence intensity was measured at excitation light of 480 nm and measurement wavelength of 520 nm. The results are shown in FIG.

また、さらに、以下のようにしてギムザ染色を行うことによっても、細胞の浸潤性を検討した。   Furthermore, the infiltration of cells was also examined by performing Giemsa staining as follows.

各評価サンプル(不織布A〜D)を48穴シャーレ(住友ベークライト(株)、SUMILON、MS−80480)の底面と同じ大きさにカットし、48穴シャーレの底に置いた。評価サンプルの上にペニシリンカップ(ステンレス管)を置き、10%FBS/Osteoblast Medium(抗生物質とアスコルビン酸を加えた10%FBS/Osteoblast Medium、以下10%FBS/Osteoblast Medium)を600μL加えた。プレート遠心機にて5min遠心した(2500rpm、室温)。減圧脱気し、さらに5min遠心(2500rpm、室温)した。37℃、5%COインキュベーター内で、1hr以上インキュベートした。培地を200μL吸い取り廃棄した。事前に培養した正常ヒト骨芽細胞(LONZA社、Lot.6F4360)を1.1×10cells/mLとなるように10%FBS/Osteoblast Mediumに懸濁し、150μLずつ各wellに播種した(1.65×10cells/well)。播種翌日のサンプルに対し、ギムザ染色を行った。 Each evaluation sample (nonwoven fabrics A to D) was cut to the same size as the bottom of a 48-well petri dish (Sumitomo Bakelite Co., Ltd., SUMILON, MS-80480) and placed on the bottom of the 48-hole petri dish. A penicillin cup (stainless steel tube) was placed on the evaluation sample, and 600 μL of 10% FBS / Osteoblast Medium (10% FBS / Osteoblast Medium added with antibiotics and ascorbic acid, hereinafter 10% FBS / OsteoBlast Medium) was added. The plate was centrifuged for 5 min in a plate centrifuge (2500 rpm, room temperature). The mixture was degassed under reduced pressure, and further centrifuged (2500 rpm, room temperature) for 5 min. Incubation was continued for 1 hr or more in a 37 ° C., 5% CO 2 incubator. The medium was sucked and discarded. Normal human osteoblasts (LONZA, Lot. 6F4360) cultured in advance were suspended in 10% FBS / Osteoblast Medium so as to be 1.1 × 10 5 cells / mL, and 150 μL each was seeded in each well (1 .65 × 10 4 cells / well). Giemsa staining was performed on the sample the day after sowing.

ギムザ染色は、具体的には次のように行った。培養後、培養上清を捨て、600μLのPBSにて洗浄した(2回)。10%中性ホルムアミド600mLを用いた30分固定した。固定したサンプルをPBSで洗浄した(3回)。4%ギムザ染色液/PBS(pH6.4)を600μL加え、30分間染色した。ギムザ液を廃棄し、蒸留水800μLで洗浄した(3回)。サンプルを乾燥しデジタルマイクロスコープ((株)キーエンス、VHX−500F)にて観察した。結果を図4に示す。   Specifically, Giemsa staining was performed as follows. After cultivation, the culture supernatant was discarded and washed with 600 μL of PBS (twice). Fix with 600 mL of 10% neutral formamide for 30 minutes. The fixed sample was washed with PBS (3 times). 600 μL of 4% Giemsa staining solution / PBS (pH 6.4) was added and stained for 30 minutes. The Giemsa solution was discarded and washed with 800 μL of distilled water (3 times). The sample was dried and observed with a digital microscope (Keyence Corporation, VHX-500F). The results are shown in FIG.

以上の結果から、細胞の湿潤性は平均ポアサイズが大きい程向上することがわかった(図3及び図4)。しかし、細胞の増殖性については、ポアサイズが大きいほど良好な訳ではなく、平均ポアサイズが6〜50μm程度、平均繊維径が0.1〜3μm程度の特定の不織布が好ましいことがわかった(図2)。   From the above results, it was found that the wettability of the cells was improved as the average pore size was increased (FIGS. 3 and 4). However, the cell proliferation is not as good as the pore size is large, and it has been found that a specific nonwoven fabric having an average pore size of about 6 to 50 μm and an average fiber diameter of about 0.1 to 3 μm is preferable (FIG. 2). ).

Claims (3)

不織布を含む細胞足場材であって、
該不織布の平均ポアサイズが7.5〜10μmであり、
該不織布を構成する繊維がポリ乳酸及び/又はポリ乳酸−ポリグリコール酸共重合体からなる繊維であり、
該繊維の平均繊維径が1〜3μmである、
細胞足場材。
A cell scaffold comprising a non-woven fabric,
The average pore size of the nonwoven fabric is 7.5 to 10 μm,
The fibers constituting the nonwoven fabric are fibers made of polylactic acid and / or polylactic acid-polyglycolic acid copolymer ,
The average fiber diameter of the fibers is 1 to 3 μm.
Cell scaffold material.
骨芽細胞増殖用である、請求項に記載の細胞足場材。 It is for osteoblast proliferation, cell scaffold material according to claim 1. 請求項1又は2に記載の細胞足場材を含む骨再生用材料。 A bone regeneration material comprising the cell scaffold according to claim 1 or 2 .
JP2011059899A 2011-03-17 2011-03-17 Cell scaffold material Active JP5896612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011059899A JP5896612B2 (en) 2011-03-17 2011-03-17 Cell scaffold material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011059899A JP5896612B2 (en) 2011-03-17 2011-03-17 Cell scaffold material

Publications (2)

Publication Number Publication Date
JP2012192105A JP2012192105A (en) 2012-10-11
JP5896612B2 true JP5896612B2 (en) 2016-03-30

Family

ID=47084603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011059899A Active JP5896612B2 (en) 2011-03-17 2011-03-17 Cell scaffold material

Country Status (1)

Country Link
JP (1) JP5896612B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5939565B2 (en) * 2012-02-21 2016-06-22 学校法人同志社 Tissue regeneration substrate
JP6006610B2 (en) * 2012-10-19 2016-10-12 グンゼ株式会社 Bioabsorbable tissue reinforcement
JP7423081B2 (en) * 2021-09-27 2024-01-29 学校法人藤田学園 Bone repair devices and surgical kits

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9704749D0 (en) * 1997-03-07 1997-04-23 Univ London Tissue Implant
JP2005211477A (en) * 2004-01-30 2005-08-11 Gunze Ltd Support for regenerative medicine
CA2630783C (en) * 2005-12-02 2015-10-13 Sunstar Suisse Sa Biocompatible material having biocompatible non-woven nano- or micro-fiber fabric produced by electrospinning method, and method for production of the material
JP5038639B2 (en) * 2006-03-06 2012-10-03 帝人株式会社 Cultured artificial bone
EP1994949A4 (en) * 2006-03-06 2012-07-18 Teijin Ltd Scaffold material
AU2007251370B2 (en) * 2006-05-12 2013-05-23 Smith & Nephew Plc Scaffold
GB0702847D0 (en) * 2007-02-14 2007-03-28 Smith & Nephew Scaffold with increased pore size
JP2009136652A (en) * 2007-11-16 2009-06-25 Takiron Co Ltd Filling material for bone defect part

Also Published As

Publication number Publication date
JP2012192105A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5925185B2 (en) Non-woven fabric containing bone filling material
US20210128792A1 (en) Electrospun matrix and method
US8338402B2 (en) Scaffold
Lee et al. Development of artificial dermis using 3D electrospun silk fibroin nanofiber matrix
AU2007251370B2 (en) Scaffold
Guan et al. Promoted dermis healing from full-thickness skin defect by porous silk fibroin scaffolds (PSFSs)
Safi et al. Preparing polycaprolactone scaffolds using electrospinning technique for construction of artificial periodontal ligament tissue
CN108261557B (en) Nanofiber membrane for wound healing and preparation method and application thereof
JP5896612B2 (en) Cell scaffold material
JP2016524967A (en) Functionalized three-dimensional scaffold using microstructure for tissue regeneration
Ring et al. Analysis of neovascularization of PEGT/PBT-copolymer dermis substitutes in balb/c-mice
JP5038639B2 (en) Cultured artificial bone
CN114099775A (en) HAp-SF artificial periosteum loading SDF-1 alpha/CGRP and preparation method thereof
Nashchekina et al. Distribution of bone-marrow stromal cells in a 3D scaffold depending on the seeding method and the scaffold inside a surface modification
JP6230332B2 (en) Non-woven fabric containing bone filling material
CN103505760B (en) Airway epithelium-porous silk fibroin protein complex, and preparation method and application thereof
Modi et al. Translational Studies of Nanofibers-Based Scaffold for Skin and Bone Tissue Regeneration
Chong Improving 3D Scaffolds for Skin Tissue Engineering using Advanced Biotechnology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160301

R150 Certificate of patent or registration of utility model

Ref document number: 5896612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250