JP5891121B2 - Construction pillar and method for producing construction pillar - Google Patents

Construction pillar and method for producing construction pillar Download PDF

Info

Publication number
JP5891121B2
JP5891121B2 JP2012142539A JP2012142539A JP5891121B2 JP 5891121 B2 JP5891121 B2 JP 5891121B2 JP 2012142539 A JP2012142539 A JP 2012142539A JP 2012142539 A JP2012142539 A JP 2012142539A JP 5891121 B2 JP5891121 B2 JP 5891121B2
Authority
JP
Japan
Prior art keywords
pillar
column
piece
hole
pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012142539A
Other languages
Japanese (ja)
Other versions
JP2014005666A (en
Inventor
博文 稲田
博文 稲田
雅則 齋藤
雅則 齋藤
真介 倉本
真介 倉本
祐次 益田
祐次 益田
哲治 宮田
哲治 宮田
森 康浩
康浩 森
直哉 猪又
直哉 猪又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2012142539A priority Critical patent/JP5891121B2/en
Publication of JP2014005666A publication Critical patent/JP2014005666A/en
Application granted granted Critical
Publication of JP5891121B2 publication Critical patent/JP5891121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、構真柱および構真柱の製造方法に関する。詳しくは、逆打ち工法により地下躯体を構築するための構真柱、および、この構真柱の製造方法に関する。   The present invention relates to a structural pillar and a method for manufacturing the structural pillar. Specifically, the present invention relates to a structural pillar for constructing an underground frame by a reverse driving method, and a manufacturing method of the structural pillar.

従来より、逆打ち工法により鉄筋コンクリート造の地下躯体を構築する場合、杭工事の際に場所打ち杭に構真柱を打ち込むことが行われる。
この構真柱としては、一部を鉄筋コンクリート造で本設柱としたものがある(特許文献1参照)。この構真柱(以下、RC構真柱と呼ぶ)は、鉄筋コンクリート造の本設柱となる柱部と、この柱部の下に設けられて杭に打ち込まれる鉄骨製の支持力伝達部と、を備える。
Conventionally, when constructing a reinforced concrete underground structure by the reverse casting method, a built-in column is driven into a cast-in-place pile at the time of pile construction.
As this structural pillar, there is a part of which is reinforced concrete and is a permanent pillar (see Patent Document 1). This structural pillar (hereinafter referred to as the RC structural pillar) is a pillar part that is a reinforced concrete main pillar, and a steel support force transmission part that is provided under the pillar part and is driven into a pile, Is provided.

このようなRC構真柱は、地下躯体の深度が大きくなるに従って、長さや重量が大きくなるので、工場で製作して現場に運搬することは困難となる。
そこで、RC構真柱の柱部を長さ方向に複数の柱ピースに分割し、各柱ピースを工場で製作して現場に運搬し、現場で柱ピースを組み立てることが考えられるが、このRC構真柱の組立て方法として、例えば、以下の2通りの方法が提案されている。
Such RC structural pillars increase in length and weight as the depth of the underground frame increases, making it difficult to manufacture and transport to the site.
Therefore, it is conceivable to divide the column portion of the RC structure column into a plurality of column pieces in the length direction, manufacture each column piece at the factory, transport it to the site, and assemble the column piece at the site. For example, the following two methods have been proposed as a method for assembling the structural pillar.

第1に、RC構真柱を横に寝かせた状態で地組みする方法がある。すなわち、柱ピースを横に泣かせた状態で水平方向に並べて、これら柱ピース同士の接合部分のコンクリートを現場で打設する。そして、コンクリートの養生期間が経過した後に、RC構真柱を吊り上げて建て起こして、現場打ち杭に打ち込む。   First, there is a method of laying the ground in a state in which the RC structure pillar is laid sideways. That is, the column pieces are arranged in the horizontal direction in a state of crying sideways, and concrete at the joint portion between these column pieces is placed on site. Then, after the concrete curing period has passed, the RC column is lifted and built, and driven into the piles on site.

第2に、柱ピースを上下に積層して、RC構真柱を縦方向に地組みする方法がある(特許文献1参照)。この場合、柱の主筋同士を機械式継手で接合するとともに、柱ピース同士を接続吊下げ治具で接合し、その後、RC構真柱を吊り上げて建て起こして、現場打ち杭に打ち込む。ここで、接続吊下げ治具は、具体的には、各柱ピースの外周面にボルトで固定される。   Secondly, there is a method in which pillar pieces are stacked one above the other and an RC structural pillar is grounded in the vertical direction (see Patent Document 1). In this case, the main bars of the columns are joined together by mechanical joints, the column pieces are joined together by a connection hanging jig, and then the RC structural pillar is lifted and built up and driven into the piles on site. Here, the connection suspension jig is specifically fixed to the outer peripheral surface of each column piece with a bolt.

特開2011−89320号公報JP2011-89320A

しかしながら、第1の方法では、柱ピース同士の接合部分のコンクリートの養生期間として1週間程度は必要であるため、工期が長期化する、という問題があった。また、重量が大きく長い構真柱を寝かせた状態から建て起こすことは、安全性を確保するのが難しい、という問題があった。   However, in the first method, there is a problem that the work period is prolonged because it takes about one week as the concrete curing period of the joint portion between the column pieces. In addition, it is difficult to secure safety when it is built from a state where a large and long frame is laid down.

また、第2の方法では、専用の接続吊下げ治具を製作するため、施工コストが高くなる、という問題があった。さらに、接続吊下げ治具がRC構真柱の外側に設けられるため、構真柱が杭のケーシング内に収まりにくくなり、施工性が低下する、という問題があった。   Further, the second method has a problem that the construction cost increases because a dedicated connection hanging jig is manufactured. Furthermore, since the connection hanging jig is provided on the outside of the RC structure pillar, there is a problem that the structure pillar is difficult to be accommodated in the casing of the pile and the workability is deteriorated.

本発明は、安全性を確保して工期を短縮しつつ、施工コストを削減して施工性を向上できる鉄筋コンクリート造の構真柱および構真柱の製造方法を提供することを目的とする。   An object of the present invention is to provide a reinforced concrete structure column and a method for manufacturing the column that can improve the workability by reducing the construction cost while ensuring safety and shortening the construction period.

請求項1に記載の構真柱(例えば、後述の構真柱10)の製造方法は、建物(例えば、後述の建物1)の複数の層に亘って設けられる鉄筋コンクリート造の柱部(例えば、後述の柱部11)と、当該柱部の下に設けられて前記建物の杭に打ち込まれる鉄骨製の支持力伝達部(例えば、後述の支持力伝達部12)と、を備える構真柱の製造方法であって、前記柱部は、長さ方向に複数の柱ピース(例えば、後述の柱ピース20)に分割され、最下段の柱ピースには、緊張材(例えば、後述のPC鋼棒21)が打ち込まれて定着しており、残る柱ピースには、緊張材が挿通されるシース管(例えば、後述のシース管23)が打ち込まれており、地盤面に穴部(例えば、後述の穴部31)を形成して当該穴部の底面に最下段の柱ピースをセットする第1工程(例えば、後述のステップS2)と、前記緊張材に新たに緊張材を接合して延長し、既にセットした柱ピースの上に柱ピースを積層して、前記延長した緊張材を当該積層した柱ピースのシース管に挿通する手順を繰り返して、残る全ての柱ピースを上下方向に積層配置する第2工程(例えば、後述のステップS3〜S6)と、最上段の柱ピースに反力をとって前記緊張材に緊張力を導入する第3工程(例えば、後述のステップS7)と、前記柱ピース同士の接合部および前記シース管内にグラウト材を圧入して前記柱部を完成させる第4工程(例えば、後述のステップS8)と、地盤面に穴部(例えば、後述の穴部41)を形成して当該穴部の底面に前記支持力伝達部を立てた状態でセットする第5工程(例えば、後述のステップS9)と、前記完成した柱部を吊り上げて前記支持力伝達部の直上に位置させて、この状態で当該柱部の下に支持力伝達部を連結して構真柱を完成させる第6工程(例えば、後述のステップS10)と、を備えることを特徴とする。また、第1工程では、現場内に、地盤面に穴部を設けた柱部地組ヤードを設け、第5工程では、現場内の前記柱部地組ヤードとは異なる場所に、地盤面に穴部を設けた構真柱組立てヤードを設けることを特徴とする。さらに、構真柱を完成させる第6工程の後に、場所打ち杭の杭孔を形成しておき、前記完成した構真柱を吊上げて、当該杭孔に挿入して、前記場所打杭に打ち込む第7工程を備えることを特徴とする。 The manufacturing method of the structural pillar (for example, the structural pillar 10 described later) according to claim 1 is a reinforced concrete column portion (for example, a structural pillar column (for example, a building 1 described later)) that is provided across a plurality of layers. A post-column 11) described below and a steel support force transmission unit (for example, a support force transmission unit 12 described later) provided below the column and driven into the pile of the building. In the manufacturing method, the column portion is divided into a plurality of column pieces (for example, a column piece 20 to be described later) in the length direction, and a tension material (for example, a PC steel rod to be described later) is provided in the lowermost column piece. 21) is driven and fixed, and the remaining pillar piece is driven with a sheath tube (for example, a sheath tube 23 to be described later) through which a tension material is inserted, and a hole (for example, to be described later) is formed on the ground surface. A hole 31) is formed, and the bottom pillar piece is set on the bottom surface of the hole 1 step (for example, step S2 to be described later), a new tension member joined to the tension member and extended, a pillar piece is laminated on the already set pillar piece, and the extended tension material is laminated. The second step (for example, steps S3 to S6 described later) in which all the remaining column pieces are stacked in the vertical direction by repeating the procedure of inserting the column piece into the sheath tube of the column piece, and reaction force is applied to the uppermost column piece. Then, a third step (for example, step S7 described later) for introducing tension to the tension member, and a fourth step of pressing the grout material into the joint portion between the column pieces and the sheath tube to complete the column portion. A process (for example, step S8 described later) and a fifth process for setting a hole portion (for example, a hole portion 41 described later) on the ground surface and setting the support force transmitting portion upright on the bottom surface of the hole portion (For example, step S described later And the completed column part is lifted and positioned directly above the support force transmission part, and in this state, the support force transmission part is connected under the pillar part to complete the construction column ( For example, step S10) to be described later is provided. Also, in the first step, a column part ground yard with a hole in the ground surface is provided in the field, and in the fifth step, the ground surface is placed in a place different from the pillar part ground yard in the field. It is characterized in that a construction pillar assembly yard provided with a hole is provided. Further, after the sixth step of completing the structural pillar, a pile hole of a cast-in-place pile is formed, the completed structural pillar is lifted, inserted into the pile hole, and driven into the cast-in-place pile. 7th process is provided, It is characterized by the above-mentioned.

請求項2に記載の構真柱は、建物の複数の層に亘って設けられる鉄筋コンクリート造の柱部と、当該柱部の下に設けられて前記建物の杭に打ち込まれる鉄骨製の支持力伝達部と、を備え、前記柱部は、長さ方向に複数の柱ピースに分割され、最下段の柱ピースには、緊張材が打ち込まれて定着しており、残る柱ピースには、緊張材が挿通されるシース管が打ち込まれており、前記最下段の柱ピースの緊張材は、新たに緊張材が接合されて延長され、当該延長された緊張材は、残る柱ピースのシース管に挿通されて、最上段の柱ピースに反力をとって緊張力が導入されて、この状態で、前記最上段の柱ピースに定着されていることを特徴とする。また、最上段の柱ピースの上面には、定着板が設けられ、前記延長された緊張材は、前記定着板に接続されて前記最上段の柱ピースに定着することを特徴とする。 The frame pillar according to claim 2 is a reinforced concrete column part provided across a plurality of layers of a building, and a steel support force transmission provided below the pillar part and driven into the pile of the building. The column portion is divided into a plurality of column pieces in the length direction, and a tension material is driven in and fixed to the lowermost column piece, and the remaining column piece has a tension material. Is inserted into the sheath tube of the bottom column piece, and the tension material of the lowermost column piece is newly joined with the tension material and extended, and the extended tension material is inserted into the sheath tube of the remaining column piece. Then, a tension force is introduced by applying a reaction force to the uppermost column piece, and in this state, the uppermost column piece is fixed to the uppermost column piece. Further, a fixing plate is provided on an upper surface of the uppermost column piece, and the extended tension material is connected to the fixing plate and fixed to the uppermost column piece.

この発明によれば、柱ピースを工場で予め製造しておき、これら柱ピースを上下方向に積層する。このとき、最下段の柱ピースに打ち込まれた緊張材を延長して、この延長した緊張材を各ピースのシース管を挿通する。そして、最上段の柱ピースに下方に向かって反力をとって緊張材を引っ張ることで、各柱ピースに圧縮力を加える。   According to this invention, pillar pieces are manufactured in advance at a factory, and these pillar pieces are stacked in the vertical direction. At this time, the tension material driven into the lowermost column piece is extended, and the extended tension material is inserted through the sheath tube of each piece. Then, a compressive force is applied to each column piece by pulling the tension material by applying a reaction force downward to the uppermost column piece.

構真柱を吊り上げると、柱ピース同士の接合部では、この接合部よりも下の部分の荷重が作用し、接合部の上下の柱ピースが離れる方向に力がかかる。そこで本発明では、予め緊張材に緊張力(プレストレス)を導入して、接合部の上下の柱ピースが接近する方向に力をかけた。よって、このグラウト材に引張力が作用しないので、グラウト材の注入漏れがないことを確認できれば、柱ピース同士の接合部に充填されたグラウト材が若齢であっても、クラックの発生を防止できる。これにより、短期間の養生で柱部を吊上げることが可能となり、工期を短縮できる。
なお、地上躯体工事が進行すると、構真柱にかかる鉛直荷重が大きくなる。これにより、構真柱には、今回導入したプレストレスよりも大きな圧縮力がかかるので、プレストレスによる圧縮力の増加分の割合は僅かとなる。
When the true pillar is lifted, the load below the joint acts at the joint between the pillar pieces, and a force is applied in the direction in which the upper and lower pillar pieces are separated from each other. Therefore, in the present invention, a tension force (pre-stress) is introduced into the tension material in advance, and the force is applied in a direction in which the upper and lower column pieces of the joint portion approach each other. Therefore, since tensile force does not act on this grout material, if it can be confirmed that there is no leakage of the grout material injection, cracks can be prevented even if the grout material filled in the joint between the column pieces is young. it can. Thereby, it becomes possible to lift a pillar part by a short-term curing, and a construction period can be shortened.
In addition, if ground frame construction progresses, the vertical load applied to the structural pillar increases. Thereby, since a larger compressive force than the pre-stress introduced this time is applied to the true pillar, the proportion of the increase in the compressive force due to the pre-stress is small.

また、柱ピースを上下方向に積層したので、従来のように構真柱を寝かせた状態から建て起こした場合に比べて、建て起こし作業が不要となるので、安全性を確保できるうえに、柱ピースの建て入れ調整が容易であり、心を通しやすくなる。   In addition, since the pillar pieces are stacked vertically, it is not necessary to erection as compared to the conventional case where the erection pillar is laid down, and safety can be ensured. It is easy to adjust the erection of the piece and it is easy to pass through.

また、緊張材に導入した圧縮力により柱ピース同士が互いに接合されるので、従来のように柱ピース同士を専用の治具で連結する必要がなく、施工コストを低減できる。   Further, since the column pieces are joined to each other by the compressive force introduced into the tension material, it is not necessary to connect the column pieces with a dedicated jig as in the conventional case, and the construction cost can be reduced.

また、柱ピースの外側に専用の治具を取り付けないので、構真柱を杭のケーシング内に収めやすくなり、施工性を向上できる。   Moreover, since a dedicated jig is not attached to the outside of the pillar piece, it becomes easy to fit the built-up pillar in the casing of the pile, and the workability can be improved.

また、柱部の下部を穴部の中で組み立てることで、地上の足場の高さを低くでき、高所作業を低減できる。また、柱部の下部が穴部の内壁に囲まれた状態となるので、地組み作業の際に地震が発生しても、組立て中の柱部が転倒するのを防止でき、柱部の組立て作業における安全性が高くなる。
さらに、支持力伝達部を穴部の中に立てた状態で、柱部と支持力伝達部とを連結したので、この連結作業の際に地震が発生しても、支持力伝達部が転倒するのを防止でき、柱部と支持力伝達部との連結作業における安全性が高くなる。
Moreover, by assembling the lower part of the pillar part in the hole part, the height of the scaffold on the ground can be lowered, and the work at high places can be reduced. In addition, since the lower part of the pillar part is surrounded by the inner wall of the hole part, even if an earthquake occurs during the assembly work, it is possible to prevent the pillar part being assembled from falling, and to assemble the pillar part. Increases safety in work.
In addition, since the pillar portion and the support force transmission portion are connected with the support force transmission portion standing in the hole portion, the support force transmission portion falls even if an earthquake occurs during this connection operation. Therefore, the safety in the connecting operation between the column portion and the supporting force transmission portion is increased.

本発明の一実施形態に係る構真柱が適用された建物の断面図である。1 is a cross-sectional view of a building to which a structural pillar according to an embodiment of the present invention is applied. 前記実施形態に係る構真柱の製造手順を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing procedure of the stem pillar based on the said embodiment. 前記実施形態に係る構真柱の製造手順を説明するための模式図(その1)である。It is a schematic diagram (the 1) for demonstrating the manufacturing procedure of the stem pillar which concerns on the said embodiment. 前記実施形態に係る構真柱の製造手順を説明するための模式図(その2)である。It is a schematic diagram (the 2) for demonstrating the manufacturing procedure of the stem pillar which concerns on the said embodiment. 前記実施形態に係る構真柱の製造手順を説明するための模式図(その3)である。It is a schematic diagram (the 3) for demonstrating the manufacturing procedure of the stem pillar which concerns on the said embodiment. 前記実施形態に係る構真柱の製造手順を説明するための模式図(その4)である。It is a schematic diagram (the 4) for demonstrating the manufacturing procedure of the stem pillar which concerns on the said embodiment.

以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本発明の一実施形態に係る構真柱10が適用された建物1の断面図である。
建物1は、地下3階までの地下躯体2を備えており、この地下躯体2は、逆打ち工法により、杭3の上に構築されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of a building 1 to which a structural pillar 10 according to an embodiment of the present invention is applied.
The building 1 is provided with an underground frame 2 up to the third basement floor, and this underground frame 2 is constructed on the pile 3 by a reverse driving method.

構真柱10は、鉄筋コンクリート造の柱部11と、この柱部11の下に設けられた鉄骨製の支持力伝達部12と、を備える。
この構真柱10は、杭打ち工事の際に杭穴に挿入されることで、支持力伝達部12が杭3に打ち込まれる。
The structural pillar 10 includes a reinforced concrete column portion 11 and a steel-made support force transmission portion 12 provided below the column portion 11.
This structural pillar 10 is driven into the pile 3 by inserting the support force transmitting portion 12 into the pile hole during the pile driving work.

支持力伝達部12は、杭3および地下躯体2の基礎4と一体化している。
柱部11は、地下躯体2の地下3階床(基礎の上端)レベルから1階梁下レベルまでの3層に亘って設けられた鉄筋コンクリート造の本設柱である。具体的には、この柱部11には、地下2階床梁5、地下1階床梁6、1階床梁7が接合されている。
The supporting force transmission unit 12 is integrated with the pile 3 and the foundation 4 of the underground frame 2.
The column part 11 is a reinforced concrete main pillar provided over three layers from the basement 3 floor (upper end of the foundation) level of the underground frame 2 to the level below the first floor beam. Specifically, the second basement floor beam 5, the first basement floor beam 6, and the first floor floor beam 7 are joined to the column portion 11.

柱部11は、長さ方向に複数の柱ピース20に分割され、これら柱ピース20は、工場で予め製造されたプレキャスト鉄筋コンクリート造である。以下、柱ピース20のうち最下段に位置するものを柱ピース20Aとする。
この柱部11は、PC鋼棒21が打ち込まれており、このPC鋼棒21に緊張力が導入されて、プレストレストコンクリートとなっている。
The column part 11 is divided | segmented into the some pillar piece 20 in the length direction, and these column pieces 20 are the precast reinforced concrete structures previously manufactured at the factory. Hereinafter, the pillar piece 20 that is positioned at the lowest stage is referred to as a pillar piece 20A.
A PC steel bar 21 is driven into the column part 11, and tension is introduced into the PC steel bar 21 to form prestressed concrete.

以下、構真柱10の製造手順について、図2のフローチャートを参照しながら説明する
まず、ステップS1では、図3(a)に示すように、現場内に所定のスペースを確保して、柱部11を組み立てるための柱部地組ヤード30を設ける。
Hereinafter, the manufacturing procedure of the structural pillar 10 will be described with reference to the flowchart in FIG. 2. First, in step S 1, as shown in FIG. A column basement yard 30 for assembling 11 is provided.

柱部地組ヤード30は、地盤面に形成された所定深さの穴部31と、この穴部31を囲むように地上に設置された所定高さの枠組足場33と、を備える。   The column portion ground yard 30 includes a hole 31 having a predetermined depth formed on the ground surface, and a frame scaffold 33 having a predetermined height installed on the ground so as to surround the hole 31.

穴部31は、杭打ち機で地面に削孔してスタンドパイプ311を打ち込むことで形成されている。
枠組足場33には、図示しないタラップや階段が設けられている。
The hole 31 is formed by drilling a hole in the ground with a pile driver and driving a stand pipe 311.
The frame scaffold 33 is provided with a trap and a stair (not shown).

ステップS2では、図3(b)に示すように、柱部地組ヤード30において、穴部31の底面にベース架台34を設置し、このベース架台34の上に最下段の柱ピース20Aをセットする。
最下段の柱ピース20Aには、緊張材としてのPC鋼棒21が打ち込まれて定着しており、このPC鋼棒21の先端は、柱ピース20Aの上方に突出している。
In step S2, as shown in FIG. 3B, in the column basement yard 30, a base mount 34 is installed on the bottom surface of the hole 31, and the lowermost column piece 20A is set on the base mount 34. To do.
A PC steel rod 21 as a tension material is driven and fixed to the lowermost column piece 20A, and the tip of the PC steel rod 21 protrudes above the column piece 20A.

ステップS3では、図3(c)に示すように、柱ピース20AのPC鋼棒21に、継手金物であるカプラ22を用いて、新たにPC鋼棒21を接続する。これにより、PC鋼棒21は、柱ピース20の2つ分の長さだけ延長される。   In step S3, as shown in FIG.3 (c), the PC steel bar 21 is newly connected to the PC steel bar 21 of the column piece 20A using the coupler 22 which is a fitting metal. As a result, the PC steel bar 21 is extended by the length of two column pieces 20.

ステップS4では、図4(a)に示すように、既にセットした最下段の柱ピース20A上に、ライナープレート26を挟んで柱ピース20を積層して、穴部31に反力をとって柱ピース20の建入れを調整し、この柱ピース20穴部31に固定する。   In step S4, as shown in FIG. 4A, the pillar piece 20 is stacked on the already-set lowermost pillar piece 20A with the liner plate 26 interposed therebetween, and a reaction force is applied to the hole 31 to form the pillar. The installation of the piece 20 is adjusted and fixed to the hole portion 31 of the pillar piece 20.

柱ピース20には、PC鋼棒21が挿通可能なシース管23が打ち込まれており、さらに、これら柱ピース20には、外部からシース管23の内部に至るグラウト充填孔24が所定箇所に形成されるとともに、カプラ22が収容される収納部25が形成されている。   A sheath tube 23 into which the PC steel rod 21 can be inserted is driven into the column piece 20, and further, grout filling holes 24 extending from the outside to the inside of the sheath tube 23 are formed at predetermined positions in these column pieces 20. In addition, a storage portion 25 in which the coupler 22 is stored is formed.

そこで、柱ピース20を積層する際、延長したPC鋼棒21を、この積層した柱ピース20のシース管23に挿通し、カプラ22をこの積層した柱ピース20の収納部25に収納する。
また、これにより、柱ピース20同士の間には、ライナープレート26が介装されて隙間(接合部)が形成される。
Therefore, when the column pieces 20 are stacked, the extended PC steel bar 21 is inserted into the sheath tube 23 of the stacked column pieces 20, and the coupler 22 is stored in the storage portion 25 of the stacked column pieces 20.
In addition, the liner plate 26 is interposed between the column pieces 20 to form a gap (joint portion).

ステップS5では、図4(b)に示すように、既にセットした柱ピース20の上に、ライナープレート26を挟んでさらに柱ピース20を積層する。このとき、この積層した柱ピース20のシース管23に、延長したPC鋼棒21を挿通する。
これらステップS3〜S5により、最下段の柱ピース20の上に2つの柱ピースが積層されたことになる。
In step S5, as shown in FIG. 4B, the pillar piece 20 is further laminated on the already set pillar piece 20 with the liner plate 26 interposed therebetween. At this time, the extended PC steel rod 21 is inserted into the sheath tube 23 of the stacked columnar piece 20.
By these steps S <b> 3 to S <b> 5, two pillar pieces are stacked on the lowermost pillar piece 20.

ステップS6では、図4(c)、図5(a)、図5(b)に示すように、ステップS3〜S5を繰り返して、さらに2つの柱ピース20を積層する。   In step S6, as shown in FIG.4 (c), FIG.5 (a), FIG.5 (b), step S3-S5 is repeated and two pillar pieces 20 are laminated | stacked.

ステップS7では、図5(b)に示すように、最上段の柱ピース20に反力をとってPC鋼棒21に緊張力を導入して、柱部11にプレストレスを導入し、PC鋼棒21の先端に定着板28を取り付けて、最上段の柱ピース20に定着させる。
ここで、PC鋼棒21に導入する緊張力は、例えば、構真柱10の荷重の1.5倍程度である。
In step S7, as shown in FIG. 5 (b), a reaction force is applied to the uppermost column piece 20, a tension is introduced into the PC steel rod 21, a pre-stress is introduced into the column portion 11, and the PC steel. A fixing plate 28 is attached to the tip of the bar 21 and fixed to the uppermost column piece 20.
Here, the tension force introduced into the PC steel bar 21 is, for example, about 1.5 times the load of the structural pillar 10.

ステップS8では、グラウト充填孔24を通して、柱ピース20同士の接合部、カプラ22およびシース管23内にグラウト材を圧入する。
これにより、図5(c)に示すように、柱部11が完成する。この柱部11では、柱ピース20同士の接合部は、接合目地27となる。
In step S <b> 8, the grout material is press-fitted into the joint between the column pieces 20, the coupler 22, and the sheath tube 23 through the grout filling hole 24.
Thereby, as shown in FIG.5 (c), the pillar part 11 is completed. In this pillar part 11, the joint part between the pillar pieces 20 is a joint joint 27.

ステップS9では、図6(a)に示すように、現場内に所定のスペースを確保して、柱部地組ヤード30で組み立てた柱部11を用いて構真柱10を完成させるための構真柱組立てヤード40を設ける。   In step S9, as shown in FIG. 6 (a), a structure for securing a predetermined space in the site and using the pillar part 11 assembled in the pillar part grounding yard 30 to complete the structural pillar 10 is obtained. A true pillar assembly yard 40 is provided.

構真柱組立てヤード40は、地盤面に形成された所定深さの穴部41と、この穴部41を囲むように地上に設置された所定高さの地組架台42と、この地組架台42の近傍に設けられた枠組足場43と、を備える。
穴部41は、杭打ち機で地面に削孔してスタンドパイプ411を打ち込むことで形成されている。
地組架台42は、複数本のH鋼421を互いに接合して組み立てたものである。
The true pillar assembly yard 40 includes a hole 41 having a predetermined depth formed in the ground surface, a ground frame 42 having a predetermined height installed on the ground so as to surround the hole 41, and the ground frame Frame scaffold 43 provided in the vicinity of 42.
The hole 41 is formed by drilling a hole in the ground with a pile driving machine and driving a stand pipe 411.
The ground frame 42 is constructed by joining a plurality of H steels 421 to each other.

以上の構真柱組立てヤード40において、穴部41の底面にベース架台44を設置し、このベース架台44の上に支持力伝達部12を立てた状態でセットする。   In the construction column assembly yard 40 described above, the base frame 44 is installed on the bottom surface of the hole 41, and the support force transmission unit 12 is set up on the base frame 44.

ステップS10では、柱部11をグラウト材の圧入後約24時間養生し、その後、図6(b)に示すように、吊上げ治具13を介して完成した柱部11を吊り上げて、支持力伝達部12の直上に位置させる。そしてこの柱部11を吊り上げた状態で、柱部11と支持力伝達部12とを連結して構真柱10を完成させる。
その後、この完成した構真柱10を吊り上げて、杭孔に挿入し、場所打ち杭に打ち込む。
In step S10, the column portion 11 is cured for about 24 hours after the grout material is pressed, and then the completed column portion 11 is lifted via the lifting jig 13 as shown in FIG. It is located immediately above the part 12. And in the state which this pillar part 11 was lifted, the pillar part 11 and the support force transmission part 12 are connected, and the construction pillar 10 is completed.
Thereafter, the completed structural pillar 10 is lifted, inserted into a pile hole, and driven into a cast-in-place pile.

本実施形態によれば、以下のような効果がある。
(1)構真柱10を吊り上げると、柱ピース20同士の接合部には、その接合部よりも下の部分の荷重が作用し、接合部の上下の柱ピース20が離れる方向に力がかかる。そこで本発明では、予めPC鋼棒21に緊張力(プレストレス)を導入して、接合部の上下の柱ピース20が接近する方向に力をかけた。よって、このグラウト材に引張力が作用しないので、グラウト材の注入漏れがないことを確認できれば、柱ピース20同士の接合部に充填されたグラウト材が若齢であっても、クラックの発生を防止できる。これにより、短期間の養生で柱部11を吊上げることが可能となり、工期を短縮できる。
なお、地上躯体工事が進行すると、構真柱10にかかる鉛直荷重が大きくなる。これにより、構真柱10には、今回導入したプレストレスよりも大きな圧縮力がかかるので、プレストレスによる圧縮力の増加分の割合は僅かとなる。
According to this embodiment, there are the following effects.
(1) When the structural pillar 10 is lifted, a load below the joint acts on the joint between the column pieces 20, and a force is applied in a direction in which the column pieces 20 above and below the joint are separated. . Therefore, in the present invention, a tension force (pre-stress) is introduced into the PC steel bar 21 in advance, and the force is applied in a direction in which the upper and lower column pieces 20 of the joint portion approach each other. Therefore, since tensile force does not act on this grout material, if it can be confirmed that there is no injection leakage of the grout material, even if the grout material filled in the joint portion between the column pieces 20 is young, cracks are generated. Can be prevented. Thereby, it becomes possible to lift the column part 11 by a short-term curing, and a construction period can be shortened.
Note that, as the ground frame construction progresses, the vertical load applied to the structural pillar 10 increases. As a result, a greater compressive force is applied to the structural pillar 10 than the prestress introduced this time, and therefore the rate of increase in the compressive force due to the prestress is small.

また、柱ピース20を上下方向に積層したので、従来のように構真柱を寝かせた状態から建て起こした場合に比べて、建て起こし作業が不要となるので、安全性を確保できるうえに、柱ピース20の建て入れ調整が容易であり、心を通しやすくなる。   In addition, since the pillar pieces 20 are stacked in the vertical direction, the erection work is unnecessary as compared with the case where the erection pillar is erected from the state where it is laid down as in the prior art. It is easy to adjust the installation of the pillar piece 20 and it is easy to pass through the mind.

また、PC鋼棒21に導入した圧縮力により柱ピース20同士が互いに接合されるので、従来のように柱ピース同士を専用の治具で連結する必要がなく、施工コストを低減できる。   Moreover, since the column pieces 20 are joined to each other by the compressive force introduced into the PC steel rod 21, it is not necessary to connect the column pieces with a dedicated jig as in the conventional case, and the construction cost can be reduced.

また、柱ピースの外側に専用の治具を取り付けないので、構真柱10を杭のケーシング内に収めやすくなり、施工性を向上できる。   In addition, since a dedicated jig is not attached to the outside of the pillar piece, it becomes easy to fit the built-up pillar 10 in the casing of the pile, and the workability can be improved.

また、柱部11の下部を穴部31の中で組み立てることで、地上の枠組足場33の高さを低くでき、高所作業を低減できる。また、柱部11の下部が穴部31の内壁に囲まれた状態となるので、地組み作業の際に地震が発生しても、組立て中の柱部11が転倒するのを防止でき、柱部11の組立て作業における安全性が高くなる。
さらに、支持力伝達部12を穴部41の中に立てた状態で、柱部11と支持力伝達部12とを連結したので、この連結作業の際に地震が発生しても、支持力伝達部12が転倒するのを防止でき、柱部11と支持力伝達部12との連結作業における安全性が高くなる。
Moreover, by assembling the lower part of the column part 11 in the hole part 31, the height of the above-mentioned frame scaffold 33 can be made low, and an aerial work can be reduced. In addition, since the lower part of the pillar part 11 is surrounded by the inner wall of the hole part 31, even if an earthquake occurs during the assembly work, the pillar part 11 being assembled can be prevented from falling down. The safety in assembling work of the part 11 becomes high.
Further, since the column portion 11 and the support force transmission portion 12 are connected with the support force transmission portion 12 standing in the hole portion 41, even if an earthquake occurs during this connection operation, the support force transmission is performed. The part 12 can be prevented from falling, and the safety in the connecting work between the column part 11 and the support force transmission part 12 is increased.

なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.

1…建物
2…地下躯体
3…杭
10…構真柱
11…柱部
12…支持力伝達部
13…吊上げ治具
20、20A…柱ピース
21…PC鋼棒(緊張材)
22…カプラ
23…シース管
24…グラウト充填孔
25…収納部
26…ライナープレート
27…接合目地
28…定着板
30…柱部地組ヤード
31…穴部
33…枠組足場
34…ベース架台
40…構真柱組立てヤード
41…穴部
42…地組架台
43…枠組足場
44…ベース架台
311…スタンドパイプ
411…スタンドパイプ
421…H鋼
DESCRIPTION OF SYMBOLS 1 ... Building 2 ... Underground frame 3 ... Pile 10 ... Structural pillar 11 ... Column part 12 ... Supporting force transmission part 13 ... Lifting jig 20, 20A ... Pillar piece 21 ... PC steel rod (tensile material)
DESCRIPTION OF SYMBOLS 22 ... Coupler 23 ... Sheath tube 24 ... Grout filling hole 25 ... Storage part 26 ... Liner plate 27 ... Joint joint 28 ... Fixing plate 30 ... Column part grounding yard 31 ... Hole part 33 ... Frame frame scaffold 34 ... Base mount 40 ... Structure True pillar assembly yard 41 ... hole 42 ... ground assembly frame 43 ... framework scaffolding 44 ... base mount 311 ... stand pipe 411 ... stand pipe 421 ... H steel

Claims (2)

建物の複数の層に亘って設けられる鉄筋コンクリート造の柱部と、当該柱部の下に設けられて前記建物の杭に打ち込まれる鉄骨製の支持力伝達部と、を備える構真柱の製造方法であって、
前記柱部は、長さ方向に複数の柱ピースに分割され、
最下段の柱ピースには、緊張材が打ち込まれて定着しており、
残る柱ピースには、緊張材が挿通されるシース管が打ち込まれており、
現場内に、地盤面に穴部を設けた柱部地組ヤードを設けて、当該柱部地組ヤードの穴部の底面に最下段の柱ピースをセットする第1工程と、
前記緊張材に新たに緊張材を接合して延長し、既にセットした柱ピースの上に柱ピースを積層して、前記延長した緊張材を当該積層した柱ピースのシース管に挿通する手順を繰り返して、残る全ての柱ピースを上下方向に積層配置する第2工程と、
最上段の柱ピースに反力をとって前記緊張材に緊張力を導入する第3工程と、
前記柱ピース同士の接合部および前記シース管内にグラウト材を圧入して前記柱部を完成させる第4工程と、
現場内の前記柱部地組ヤードとは異なる場所に、地盤面に穴部を設けた構真柱組立てヤードを設けて、当該構真柱組立てヤードの穴部の底面に前記支持力伝達部を立てた状態でセットする第5工程と、
前記完成した柱部を吊り上げて前記支持力伝達部の直上に位置させて、この状態で当該柱部の下に支持力伝達部を連結して構真柱を完成させる第6工程と、
場所打ち杭の杭孔を形成しておき、前記完成した構真柱を吊上げて、当該杭孔に挿入して、前記場所打杭に打ち込む第7工程と、を備えることを特徴とする構真柱の製造方法。
A method for manufacturing a timber pillar comprising: a reinforced concrete column portion provided over a plurality of layers of a building; and a steel support force transmission portion provided below the column portion and driven into a pile of the building Because
The pillar portion is divided into a plurality of pillar pieces in the length direction,
Tensile material is driven into the bottom pillar piece and is firmly established.
The remaining pillar piece is driven with a sheath tube through which the tendon is inserted.
A first step of providing a column part grounding yard with a hole on the ground surface in the site, and setting the bottom pillar piece on the bottom surface of the hole of the pillar part grounding yard ;
Repeat the procedure of joining and extending a new tendon to the tendon, laminating the pillar piece on the already set pillar piece, and inserting the extended tendon into the sheath tube of the laminated pillar piece A second step of stacking and arranging all the remaining pillar pieces in the vertical direction;
A third step of introducing a tension force to the tendon by taking a reaction force on the uppermost column piece;
A fourth step of completing the pillar portion by press-fitting a grout material into the joint portion between the pillar pieces and the sheath tube;
In a place different from the above-mentioned pillar section ground yard in the field, a built-up column assembly yard having a hole in the ground surface is provided, and the supporting force transmission section is provided on the bottom surface of the hole section of the built-up column assembly yard. A fifth step of setting in an upright state;
A sixth step of lifting the completed pillar part and positioning it directly above the supporting force transmission part, and connecting the supporting force transmission part under the pillar part in this state to complete the construction pillar;
Forming a pile hole of the cast-in-place pile, lifting the completed structural pillar, inserting it into the pile hole, and driving the cast-in- place pile into the cast-in- place pile ; Column manufacturing method.
建物の複数の層に亘って設けられる鉄筋コンクリート造の柱部と、当該柱部の下に設けられて前記建物の杭に打ち込まれる鉄骨製の支持力伝達部と、を備え、
前記柱部は、長さ方向に複数の柱ピースに分割され、
最下段の柱ピースには、緊張材が打ち込まれて定着しており、
残る柱ピースには、シース管が打ち込まれており、
前記最下段の柱ピースの緊張材は、新たに緊張材が接合されて延長され、
最上段の柱ピースの上面には、定着板が設けられ、
前記延長された緊張材は、残る柱ピースのシース管に挿通されて、前記定着板に接続されて前記最上段の柱ピースに定着しており、
前記緊張材には、最上段の柱ピースに反力をとって緊張力が導入されていることを特徴とする構真柱。
Reinforced concrete pillars provided across a plurality of layers of the building, and steel support force transmission parts provided below the pillars and driven into the piles of the building,
The pillar portion is divided into a plurality of pillar pieces in the length direction,
Tensile material is driven into the bottom pillar piece and is firmly established.
The pillar pieces remaining, are implanted shea over scan tube,
The tendon material of the bottom pillar piece is newly joined and extended with a tendon material,
A fixing plate is provided on the upper surface of the uppermost column piece,
The extended tension material is inserted into the sheath tube of the remaining column piece , connected to the fixing plate, and fixed to the uppermost column piece,
The above-mentioned tension material is constructed with a tension force introduced by applying a reaction force to the uppermost column piece.
JP2012142539A 2012-06-25 2012-06-25 Construction pillar and method for producing construction pillar Active JP5891121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012142539A JP5891121B2 (en) 2012-06-25 2012-06-25 Construction pillar and method for producing construction pillar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012142539A JP5891121B2 (en) 2012-06-25 2012-06-25 Construction pillar and method for producing construction pillar

Publications (2)

Publication Number Publication Date
JP2014005666A JP2014005666A (en) 2014-01-16
JP5891121B2 true JP5891121B2 (en) 2016-03-22

Family

ID=50103630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012142539A Active JP5891121B2 (en) 2012-06-25 2012-06-25 Construction pillar and method for producing construction pillar

Country Status (1)

Country Link
JP (1) JP5891121B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428014B2 (en) * 2014-07-18 2018-11-28 株式会社大林組 Construction method of back strut
JP6148389B1 (en) * 2016-09-28 2017-06-14 黒沢建設株式会社 Seismic control building by vertical prestressed

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604003A (en) * 1983-02-22 1986-08-05 Francoeur Ronald A Method and apparatus for retensioning prestressed concrete members
JPH09310345A (en) * 1996-05-22 1997-12-02 Sato Kogyo Co Ltd Prestressed-concrete earthquake-resisting and vibration-isolating pile
JP2011089320A (en) * 2009-10-23 2011-05-06 Taisei Corp Method for constructing precast basement column
JP5358423B2 (en) * 2009-12-18 2013-12-04 三井住友建設株式会社 Column and pile connection structure

Also Published As

Publication number Publication date
JP2014005666A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5955108B2 (en) Pile reinforcement structure of existing building and its construction method
KR100932468B1 (en) Centrifugal precast concrete pile having hollow and construction method using the same, concrete and steel beam
JP6628588B2 (en) Construction method of structures, structures
JP5713710B2 (en) Seismic isolation structure and its construction method
JP5456626B2 (en) Connection structure and method of connection between pile and steel column
JP5891121B2 (en) Construction pillar and method for producing construction pillar
JP4612422B2 (en) Construction method of structure and foundation structure used for it
JP5456627B2 (en) Connection structure and method of connection between pile and steel column
JP5865567B2 (en) Connecting slab and its construction method
JP2018138743A (en) Structure and construction method of structure
KR102084829B1 (en) Top-down method using precast-concrete colum
JP6346756B2 (en) Building construction method
JP2016075149A (en) Pile reinforcement structure for existing building, and construction method for the pile reinforcement structure
KR101521946B1 (en) Enlarged capital of steel framed reinforced concrete column
JP6083788B2 (en) Temporary support method for foundation
KR101383817B1 (en) Top down method
JP6461690B2 (en) Foundation structure and foundation construction method
JP5201719B2 (en) Column construction method and column structure
KR101657628B1 (en) Top-down method for building undergroud structure using steel pipe
JP6534026B2 (en) Seismic isolation building and its construction method
JP6138719B2 (en) Construction method of seismic reinforcement structure
KR20130051183A (en) Seismic resistant reinforcement structures and the reinforcing method using it
JP6849491B2 (en) Exposed column base structure of steel columns and its construction method
JP7028728B2 (en) Joint structure of foundation pile and foundation slab
JP6229294B2 (en) Method of rebuilding a structure having an underground structure and underground structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5891121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150