JP5891005B2 - Organic inorganic composite thin film solar cell - Google Patents

Organic inorganic composite thin film solar cell Download PDF

Info

Publication number
JP5891005B2
JP5891005B2 JP2011239501A JP2011239501A JP5891005B2 JP 5891005 B2 JP5891005 B2 JP 5891005B2 JP 2011239501 A JP2011239501 A JP 2011239501A JP 2011239501 A JP2011239501 A JP 2011239501A JP 5891005 B2 JP5891005 B2 JP 5891005B2
Authority
JP
Japan
Prior art keywords
inorganic
type semiconductor
semiconductor compound
organic
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011239501A
Other languages
Japanese (ja)
Other versions
JP2013098334A (en
Inventor
佐々木 拓
拓 佐々木
明伸 早川
明伸 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2011239501A priority Critical patent/JP5891005B2/en
Publication of JP2013098334A publication Critical patent/JP2013098334A/en
Application granted granted Critical
Publication of JP5891005B2 publication Critical patent/JP5891005B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、光電変換効率に優れる有機無機複合薄膜太陽電池、及び、該有機無機複合薄膜太陽電池の製造方法に関する。 The present invention relates to an organic / inorganic composite thin film solar cell having excellent photoelectric conversion efficiency and a method for producing the organic / inorganic composite thin film solar cell.

太陽電池は、化石燃料の枯渇問題や地球温暖化問題を背景に、クリーンエネルギー源として近年大変注目されてきており、研究開発が盛んに行なわれるようになってきている。
従来、実用化されてきたのは、単結晶Si、多結晶Si、アモルファスSi等に代表されるシリコン系太陽電池であるが、高価であることや原料Siの不足問題等が表面化するにつれて、次世代太陽電池への要求が高まりつつある。このような背景の中で、有機薄膜太陽電池は、安価で毒性が低く、原材料不足の懸念もないことから、シリコン系太陽電池に次ぐ次世代の太陽電池として大変注目を集めている。
In recent years, solar cells have attracted a great deal of attention as a clean energy source against the background of fossil fuel depletion and global warming, and research and development have been actively conducted.
Conventionally, silicon solar cells represented by single crystal Si, polycrystal Si, amorphous Si, etc. have been put into practical use. However, as the cost and raw material Si shortage problems surface, The demand for next generation solar cells is increasing. Under such circumstances, organic thin-film solar cells are attracting much attention as next-generation solar cells after silicon solar cells because they are inexpensive, have low toxicity, and have no fear of shortage of raw materials.

有機薄膜太陽電池は、基本的にはN型半導体層とP型半導体層とを積層させた構造となっている。
しかしながら、P型半導体層では、入射光によって光キャリアが生成したとしても、拡散距離が約20nm程度で失活してしまうことから、P型半導体層の中でも、P/N接合界面付近しか光電変換に寄与することができず、充分なエネルギー変換効率を得ることができないという問題があった。
The organic thin film solar cell basically has a structure in which an N-type semiconductor layer and a P-type semiconductor layer are stacked.
However, in the P-type semiconductor layer, even if photocarriers are generated by incident light, the P-type semiconductor layer is deactivated at a diffusion distance of about 20 nm. There is a problem that sufficient energy conversion efficiency cannot be obtained.

これに対して、P型半導体層と、N型半導体層とを複合化した層を用いることが検討されており、例えば、特許文献1には、P型半導体として有機半導体化合物とN型半導体として無機半導体化合物とを共蒸着によって形成した光電変換活性層を用いる有機無機複合薄膜太陽電池が開示されている。
特許文献1では、このように有機半導体化合物と無機半導体化合物とがランダムに複合化された複合化層では、P/N接合界面が層全体に張り巡らされた構造となるため、複合化層全体が光キャリア生成に対して寄与し、大きな光電流が得られるとしている。
しかしながら、特許文献1記載の複合化層は、無機半導体化合物が互いに離散的に存在しており、電子の輸送に必要な無機半導体化合物同士の接続や、電極との接続に乏しく、充分なエネルギー変換効率を得ることができないという問題があった。
On the other hand, use of a layer in which a P-type semiconductor layer and an N-type semiconductor layer are combined has been studied. For example, Patent Document 1 discloses an organic semiconductor compound and an N-type semiconductor as a P-type semiconductor. An organic-inorganic composite thin film solar cell using a photoelectric conversion active layer formed by co-evaporation with an inorganic semiconductor compound is disclosed.
In Patent Document 1, a composite layer in which an organic semiconductor compound and an inorganic semiconductor compound are randomly combined in this manner has a structure in which a P / N junction interface is stretched over the entire layer. Contributes to photocarrier generation, and a large photocurrent can be obtained.
However, in the composite layer described in Patent Document 1, the inorganic semiconductor compounds are discretely present, and the connection between the inorganic semiconductor compounds necessary for transporting electrons and the connection with the electrodes are poor, and sufficient energy conversion is achieved. There was a problem that efficiency could not be obtained.

更に、これとは別に有機半導体化合物中に無機半導体化合物粒子を分散、充填させて、P/N接合界面の確保と電子の輸送に必要な無機半導体化合物同士の接続、及び電極との接続を両立させ、変換効率を向上させる試みもなされている。
例えば、特許文献2には、有機半導体化合物と、平均粒子径が異なる二種類のロッド状の無機半導体化合物結晶を特定の割合で含む混合液をスピンコートにより電極上へ塗布し、光電変換活性層を形成する方法が開示されている。このような方法によると、無機半導体化合物粒子が密に充填された光電変換活性層を形成することができ、エネルギー変換効率が向上する旨が記載されている。加えて、印刷プロセスによって形成することができ、形成コストの大幅削減も期待できるとしている。
しかしながら、特許文献2記載の複合化層を用いても、P/N接合界面における無機半導体化合物粒子中を輸送されている電荷と有機半導体化合物中の正孔との再結合などにより、エネルギー変換効率の飛躍的な向上には繋がらないという問題があった。そのため、更なる最適な複合化層の構造や、有機半導体化合物及び無機半導体化合物の性能改善が必要とされていた。
Furthermore, apart from this, inorganic semiconductor compound particles are dispersed and filled in the organic semiconductor compound to achieve both the securing of the P / N junction interface and the connection between the inorganic semiconductor compounds necessary for electron transport and the connection with the electrode. Attempts have also been made to improve conversion efficiency.
For example, in Patent Document 2, a liquid mixture containing an organic semiconductor compound and two types of rod-shaped inorganic semiconductor compound crystals having different average particle sizes in a specific ratio is applied onto an electrode by spin coating, and a photoelectric conversion active layer A method of forming is disclosed. It is described that according to such a method, a photoelectric conversion active layer in which inorganic semiconductor compound particles are closely packed can be formed, and energy conversion efficiency is improved. In addition, it can be formed by a printing process, and it can be expected to greatly reduce the formation cost.
However, even if the composite layer described in Patent Document 2 is used, the energy conversion efficiency is increased due to recombination of charges transported in the inorganic semiconductor compound particles and holes in the organic semiconductor compound at the P / N junction interface. There was a problem that it did not lead to a dramatic improvement. For this reason, further improvements in the structure of the composite layer and the performance of organic semiconductor compounds and inorganic semiconductor compounds have been required.

特開2002−100793号公報JP 2002-1000079 A 特許第4120362号公報Japanese Patent No. 4120362

本発明は、光電変換効率に優れる有機無機複合薄膜太陽電池、及び、該有機無機複合薄膜太陽電池の製造方法を提供することを目的とする。 An object of this invention is to provide the manufacturing method of an organic inorganic composite thin film solar cell excellent in photoelectric conversion efficiency, and this organic inorganic composite thin film solar cell.

本発明は、有機P型半導体化合物中に、無機N型半導体化合物粒子が存在する光電変換活性層を有する有機無機複合薄膜太陽電池であって、前記有機P型半導体化合物中に、更に無機P型半導体化合物粒子が存在しており、前記無機P型半導体化合物粒子の含有量が、有機P型半導体化合物及び無機P型半導体化合物粒子の合計に対して5〜50重量%であり、前記無機P型半導体化合物粒子は、カルコパイライト系化合物又はCZTSからなる有機無機複合薄膜太陽電池である。
以下に本発明を詳述する。
The present invention is an organic-inorganic composite thin film solar cell having a photoelectric conversion active layer in which inorganic N-type semiconductor compound particles are present in an organic P-type semiconductor compound, and further comprising an inorganic P-type in the organic P-type semiconductor compound and semiconductor compound particles are present, the content of the inorganic P-type semiconductor compound particles, Ri 5 to 50 wt% der the total of the organic P-type semiconductor compound and an inorganic P-type semiconductor compound particles, the inorganic P type semiconductor compound particles is an organic-inorganic composite film solar cell Ru chalcopyrite compound or CZTS Tona.
The present invention is described in detail below.

本発明者らは、有機P型半導体化合物中に、無機N型半導体化合物粒子が存在する光電変換活性層に、更に所定量の無機P型半導体化合物粒子を存在させることで、太陽光の光電変換波長域を拡大することが可能となり、その結果、変換効率を大幅に向上できることを見出し、本発明を完成させるに至った。 The present inventors have made photoelectric conversion of sunlight by further allowing a predetermined amount of inorganic P-type semiconductor compound particles to be present in the photoelectric conversion active layer in which inorganic N-type semiconductor compound particles are present in the organic P-type semiconductor compound. The wavelength range can be expanded, and as a result, it has been found that the conversion efficiency can be greatly improved, and the present invention has been completed.

本発明の有機無機複合薄膜太陽電池は、有機P型半導体化合物中に、無機N型半導体化合物粒子、及び、所定量の無機P型半導体化合物粒子が存在する光電変換活性層を有する。 The organic-inorganic composite thin film solar cell of the present invention has a photoelectric conversion active layer in which inorganic N-type semiconductor compound particles and a predetermined amount of inorganic P-type semiconductor compound particles are present in an organic P-type semiconductor compound.

本発明の有機無機複合薄膜太陽電池の一例を図1に示す。
有機無機複合薄膜太陽電池1は、陰極2、光電変換活性層4、ホール輸送層7、透明電極8、ガラス基板9とからなり、光電変換活性層4は、有機P型半導体化合物5中に、無機N型半導体化合物粒子6が存在する構造となっている。更に、有機P型半導体化合物5中には、無機P型半導体化合物粒子3が存在している。
本発明の有機無機複合薄膜太陽電池1では、光電変換活性層4に、無機N型半導体化合物粒子6に加えて、無機P型半導体化合物粒子3が存在することで、有機P型半導体化合物での光キャリア生成に加え、無機N型半導体化合物粒子による光キャリア生成も得ることが出来る。これにより、太陽光の光電変換波長域を拡大することが可能となり、その結果、有機無機複合薄膜太陽電池10の変換効率を大幅に向上できる。
An example of the organic-inorganic composite thin film solar cell of the present invention is shown in FIG.
The organic-inorganic composite thin film solar cell 1 includes a cathode 2, a photoelectric conversion active layer 4, a hole transport layer 7, a transparent electrode 8, and a glass substrate 9. The photoelectric conversion active layer 4 is formed in an organic P-type semiconductor compound 5. The inorganic N-type semiconductor compound particles 6 are present. Furthermore, inorganic P-type semiconductor compound particles 3 are present in the organic P-type semiconductor compound 5.
In the organic-inorganic composite thin film solar cell 1 of the present invention, the inorganic P-type semiconductor compound particle 3 is present in the photoelectric conversion active layer 4 in addition to the inorganic N-type semiconductor compound particle 6. In addition to photocarrier generation, photocarrier generation by inorganic N-type semiconductor compound particles can also be obtained. Thereby, it becomes possible to expand the photoelectric conversion wavelength range of sunlight, and as a result, the conversion efficiency of the organic-inorganic composite thin film solar cell 10 can be greatly improved.

上記光電変換活性層中の有機P型半導体化合物は、電子供与体としての役割を有する。
上記有機半導体化合物としては、例えば、フタロシアニン系顔料、インジゴ、チオインジゴ系顔料、キナクリドン系顔料、メロシアニン化合物、シアニン化合物、スクアリウム化合物、また有機電子写真感光体に用いられる電荷移動剤、電気伝導性有機電荷移動錯体、導電性高分子等が挙げられる。
The organic P-type semiconductor compound in the photoelectric conversion active layer has a role as an electron donor.
Examples of the organic semiconductor compound include a phthalocyanine pigment, an indigo, a thioindigo pigment, a quinacridone pigment, a merocyanine compound, a cyanine compound, a squalium compound, a charge transfer agent used in an organic electrophotographic photoreceptor, and an electrically conductive organic charge. Examples thereof include a transfer complex and a conductive polymer.

上記フタロシアニン系顔料としては、中心金属がCu、Zn、Co、Ni、Pb、Pt、Fe、Mg等の2価のもの、無金属フタロシアニン、アルミニウムクロロフタロシアニン、インジウムクロロフタロシアニン、ガリウムクロロフタロシアニン等のハロゲン原子が配位した3価金属のフタロシアニン、その他バアナジルフタロシアニン、チタニルフタロシアニン等の酸素が配位したフタロシアニン等があるが、特にこれに限定されるものではない。 Examples of the phthalocyanine pigment include halogens such as divalent pigments such as Cu, Zn, Co, Ni, Pb, Pt, Fe, and Mg, metal-free phthalocyanine, aluminum chlorophthalocyanine, indium chlorophthalocyanine, and gallium chlorophthalocyanine. Although there are phthalocyanines coordinated with oxygen, such as trivalent metal phthalocyanine coordinated with atoms, baanadyl phthalocyanine, titanyl phthalocyanine, and the like, there is no particular limitation thereto.

上記電荷移動剤としては、ヒドラジン化合物、ピラゾリン化合物、トリフェニルメタン化合物、トリフェニルアミン化合物等があるが、特にこれらに限定されるものではない。 Examples of the charge transfer agent include, but are not limited to, hydrazine compounds, pyrazoline compounds, triphenylmethane compounds, and triphenylamine compounds.

上記電気伝導性有機電荷移動錯体としては、テトラチオフルバレン、テトラフェニルテトラチオフラバレン等があるが特にこれに限定されるものではない。 Examples of the electroconductive organic charge transfer complex include tetrathiofulvalene and tetraphenyltetrathioflavalene, but are not particularly limited thereto.

上記導電性高分子としては、例えば、ポリフェニレン、ポリフェニレンビニレン、ポリチオフェン、ポリアニリン、ポリピロール、ポリフルオレン等が挙げられる。なかでも、ポリ(3−アルキルチオフェン)、ポリパラフェニレンビニレン誘導体等のように、有機溶媒に可溶なものが好ましい。 Examples of the conductive polymer include polyphenylene, polyphenylene vinylene, polythiophene, polyaniline, polypyrrole, and polyfluorene. Among them, those that are soluble in an organic solvent such as poly (3-alkylthiophene) and polyparaphenylene vinylene derivatives are preferable.

上記無機N型半導体化合物粒子は、平均粒子径の好ましい下限が1nm、好ましい上限が50nmである。上記無機N型半導体化合物粒子の平均粒子径が1nm未満であると、分散状態を制御するのが困難となり、凝集体となりやすいためP/N接合界面の表面積が少なくなることで光キャリアの失活が起こりやすくなる。上記無機N型半導体化合物粒子の平均粒子径が50nmを超えると、P/N接合界面の表面積が少なくなることで光キャリアの失活が起こりやすくなる。上記無機N型半導体化合物粒子の平均粒子径の更に好ましい下限は2nm、更に好ましい上限は25nmである。 The inorganic N-type semiconductor compound particles have a preferable lower limit of the average particle diameter of 1 nm and a preferable upper limit of 50 nm. If the average particle size of the inorganic N-type semiconductor compound particles is less than 1 nm, it becomes difficult to control the dispersion state, and aggregates tend to be aggregated, so that the surface area of the P / N junction interface is reduced, thereby deactivating photocarriers. Is likely to occur. When the average particle size of the inorganic N-type semiconductor compound particles exceeds 50 nm, the surface area of the P / N junction interface is reduced, so that the deactivation of the photocarriers easily occurs. The more preferable lower limit of the average particle diameter of the inorganic N-type semiconductor compound particles is 2 nm, and the more preferable upper limit is 25 nm.

上記無機N型半導体化合物粒子としては、例えば、酸化チタン、酸化亜鉛、酸化タングステン、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウム、酸化バナジウムなど公知の半導体の一種または二種以上を用いることができる。なかでも、酸化亜鉛が好ましい。 As the inorganic N-type semiconductor compound particles, for example, one or more known semiconductors such as titanium oxide, zinc oxide, tungsten oxide, barium titanate, strontium titanate, cadmium sulfide, and vanadium oxide can be used. Of these, zinc oxide is preferable.

上記有機P型半導体化合物全体に対する上記無機N型半導体化合物粒子の含有量は特に限定されないが、好ましい下限は25vol%、好ましい上限は75vol%である。上記無機N型半導体化合物粒子の含有量が25vol%未満であると、電荷の輸送に必要な無機N型半導体化合物粒子同士の接続や、電極との接続に乏しく、充分なエネルギー変換効率を得ることができないことがあり、75vol%を超えると、光キャリア生成量が少なく充分なエネルギー変換効率を得ることができないことがある。 Although content of the said inorganic N type semiconductor compound particle with respect to the said whole organic P type semiconductor compound is not specifically limited, A preferable minimum is 25 vol% and a preferable upper limit is 75 vol%. When the content of the inorganic N-type semiconductor compound particles is less than 25 vol%, the connection between the inorganic N-type semiconductor compound particles necessary for charge transport and the connection with the electrodes are poor, and sufficient energy conversion efficiency is obtained. However, if it exceeds 75 vol%, the amount of photocarrier generation is small and sufficient energy conversion efficiency may not be obtained.

上記無機N型半導体化合物粒子を製造する方法としては、例えば、酸化亜鉛からなる無機N型半導体化合物粒子を製造する場合は、有機溶剤に亜鉛金属塩を添加した後、湯浴中で攪拌しながら、アルカリ化合物を添加、撹拌することにより、無機N型半導体化合物粒子分散液を得る方法等を用いることができる。
なお、上記方法を用いる場合は、湯浴の温度を変更することにより、平均粒子径/平均結晶子径の範囲を調整することができる。
また、上記無機N型半導体化合物粒子を製造する方法として、噴霧火炎熱分解法、CVD法、PVD法、粉砕法等の乾式法や、マイクロエマルション法、水熱反応法、ゾルゲル法等の湿式法等が適用可能である。
As a method for producing the inorganic N-type semiconductor compound particles, for example, when producing inorganic N-type semiconductor compound particles made of zinc oxide, a zinc metal salt is added to an organic solvent and then stirred in a hot water bath. A method of obtaining an inorganic N-type semiconductor compound particle dispersion by adding an alkali compound and stirring can be used.
In addition, when using the said method, the range of an average particle diameter / average crystallite diameter can be adjusted by changing the temperature of a hot water bath.
In addition, as a method for producing the inorganic N-type semiconductor compound particles, dry methods such as spray flame pyrolysis, CVD, PVD, and pulverization, and wet methods such as microemulsion, hydrothermal reaction, sol-gel, etc. Etc. are applicable.

上記有機P型半導体化合物中には、更に無機P型半導体化合物粒子が存在している。上記光吸収層中の無機P型半導体化合物粒子は、有機P型半導体化合物とは異なる吸収波長域を有しているため光電変換活性層の光吸収波長域増大及び拡大としての役割を有する。
上記無機P型半導体化合物粒子としては、例えば、CuIn1−xGaSe(CIGS)等のカルコパイライト系化合物、CuZnSnS(CZTS)等からなるものが挙げられる。
In addition, inorganic P-type semiconductor compound particles are present in the organic P-type semiconductor compound. Since the inorganic P-type semiconductor compound particles in the light absorption layer have an absorption wavelength range different from that of the organic P-type semiconductor compound, the inorganic P-type semiconductor compound particles have a role of increasing and expanding the light absorption wavelength range of the photoelectric conversion active layer.
As the inorganic P-type semiconductor compound particles, for example, CuIn 1-x Ga x Se 2 (CIGS) chalcopyrite compounds such, are those made of Cu 2 ZnSnS 4 (CZTS) or the like.

上記無機P型半導体化合物粒子の含有量は、有機P型半導体化合物及び無機P型半導体化合物粒子の合計に対して下限が5重量%、上限50重量%である。上記無機P型半導体化合物粒子の含有量が5重量%未満であると光電変換層中における光キャリア生成の寄与度が少なく、顕著な効果は得られない。上記無機P型半導体化合物粒子の含有量が50重量%を超えると、無機N型半導体化合物粒子と直接接合している有機P型半導体化合物の光吸収量が減少するため、有機P型半導体化合物と無機P型半導体化合物粒子間における光キャリアの失活による影響が顕著となる。上記無機P型半導体化合物粒子の含有量のより好ましい下限は10重量%、より好ましい上限は40重量%である。 The lower limit of the content of the inorganic P-type semiconductor compound particles is 5% by weight and the upper limit is 50% by weight with respect to the total of the organic P-type semiconductor compound and the inorganic P-type semiconductor compound particles. When the content of the inorganic P-type semiconductor compound particles is less than 5% by weight, the contribution of photocarrier generation in the photoelectric conversion layer is small, and a remarkable effect cannot be obtained. When the content of the inorganic P-type semiconductor compound particles exceeds 50% by weight, the amount of light absorption of the organic P-type semiconductor compound directly bonded to the inorganic N-type semiconductor compound particles is reduced. The influence by deactivation of the photocarrier between the inorganic P-type semiconductor compound particles becomes remarkable. A more preferable lower limit of the content of the inorganic P-type semiconductor compound particles is 10% by weight, and a more preferable upper limit is 40% by weight.

上記無機P型半導体化合物粒子は、平均粒子径の好ましい下限が1nm、好ましい上限は50nmである。上記無機P型半導体化合物粒子の平均粒子径が1nm未満であると分散状態を制御するのが困難となり、凝集体となりやすいため光電変換活性層中での均一な光キャリア生成が困難となる。上記無機P型半導体化合物粒子の平均粒子径が50nmを超えると、有機P型半導体化合物界面における光散乱が発生し、陰極側近傍の有機P型半導体化合物及び無機P型半導体化合物粒子へ光が届きにくく、光キャリア生成量減少の原因となる。上記無機P型半導体化合物粒子の平均粒子径のより好ましい下限は2nm、より好ましい上限は25nmである。 The inorganic P-type semiconductor compound particles have a preferable lower limit of the average particle diameter of 1 nm and a preferable upper limit of 50 nm. If the average particle size of the inorganic P-type semiconductor compound particles is less than 1 nm, it becomes difficult to control the dispersion state, and it tends to be an aggregate, so that it is difficult to generate uniform photocarriers in the photoelectric conversion active layer. When the average particle size of the inorganic P-type semiconductor compound particles exceeds 50 nm, light scattering occurs at the interface of the organic P-type semiconductor compound, and light reaches the organic P-type semiconductor compound and inorganic P-type semiconductor compound particles near the cathode side. It is difficult to cause a decrease in the amount of photocarrier generation. The more preferable lower limit of the average particle diameter of the inorganic P-type semiconductor compound particles is 2 nm, and the more preferable upper limit is 25 nm.

上記無機P型半導体化合物粒子を製造する方法としては、例えば、CZTSからなる無機P型半導体化合物粒子を製造する場合は、有機溶剤に銅、亜鉛、錫の酢酸塩を添加した後、湯浴中で攪拌しながら、硫黄粉末を添加、撹拌することにより、無機P型半導体化合物粒子分散液を得る方法等を用いることができる。
なお、上記方法を用いる場合は、湯浴の温度を変更することにより、平均粒子径の範囲を調整することができる。
また、上記無機P型半導体化合物粒子を製造する方法として、CVD法、PVD法、粉砕法等の乾式法や、マイクロエマルション法等の湿式法等が適用可能である。
As a method for producing the inorganic P-type semiconductor compound particles, for example, in the case of producing inorganic P-type semiconductor compound particles made of CZTS, after adding copper, zinc and tin acetate to an organic solvent, A method of obtaining an inorganic P-type semiconductor compound particle dispersion by adding and stirring the sulfur powder while stirring at ˜ can be used.
In addition, when using the said method, the range of an average particle diameter can be adjusted by changing the temperature of a hot water bath.
Moreover, as a method for producing the inorganic P-type semiconductor compound particles, a dry method such as a CVD method, a PVD method or a pulverization method, a wet method such as a microemulsion method, or the like is applicable.

本発明の有機無機複合薄膜太陽電池における光電変換活性層の厚みの好ましい下限は25nm、好ましい上限は5μmである。上記光電変換活性層の厚みが25nm未満であると、充分な光キャリア発生量を得ることが出来ないことがある。5μmを超えると、陽極側で発生した電荷が陰極に捕集されるまでの距離が長く電荷と正孔が再結合しやすくなることがある。 The preferable lower limit of the thickness of the photoelectric conversion active layer in the organic-inorganic composite thin film solar cell of the present invention is 25 nm, and the preferable upper limit is 5 μm. When the thickness of the photoelectric conversion active layer is less than 25 nm, a sufficient amount of photocarrier generation may not be obtained. If it exceeds 5 μm, the distance until the charge generated on the anode side is collected by the cathode is long, and the charges and holes may be easily recombined.

本発明の有機無機複合薄膜太陽電池における光電変換活性層以外の陽極、ホール輸送層、陽極については、従来公知のものを用いることができる。 As the anode other than the photoelectric conversion active layer, the hole transport layer, and the anode in the organic-inorganic composite thin film solar cell of the present invention, conventionally known ones can be used.

本発明の有機無機複合薄膜太陽電池は、例えば、有機P型半導体化合物、無機N型半導体化合物粒子及び無機P型半導体化合物粒子を含有する光電変換活性層用インクを作製する工程、及び、前記光電変換活性層用インクを塗工、乾燥させて光電変換活性層を形成する工程を有する方法によって製造することができる。このような有機無機複合薄膜太陽電池の製造方法もまた本発明の1つである。 The organic-inorganic composite thin film solar cell of the present invention includes, for example, a step of producing an ink for a photoelectric conversion active layer containing an organic P-type semiconductor compound, inorganic N-type semiconductor compound particles, and inorganic P-type semiconductor compound particles; The conversion active layer ink can be applied and dried to produce a photoelectric conversion active layer. A method for producing such an organic-inorganic composite thin film solar cell is also one aspect of the present invention.

上記光電変換活性層用インクには、無機P型半導体化合物粒子、無機N型半導体化合物粒子、有機P型半導体化合物に加えて有機溶剤を含有することが好ましい。 The ink for a photoelectric conversion active layer preferably contains an organic solvent in addition to inorganic P-type semiconductor compound particles, inorganic N-type semiconductor compound particles, and organic P-type semiconductor compounds.

上記有機溶剤としては例えば、クロロホルム、クロロベンゼン、オルト−ジクロロベンゼン、トルエン、キシレン等が挙げられる。これらの有機溶剤は単独で用いてもよく、2種以上を併用してもよい。 Examples of the organic solvent include chloroform, chlorobenzene, ortho-dichlorobenzene, toluene, xylene and the like. These organic solvents may be used alone or in combination of two or more.

上記有機溶剤の含有量は特に限定されないが、好ましい下限は75重量%、好ましい上限は99重量%である。上記有機溶剤の含有量が75重量%未満であると、インクの粘度が高くなりすぎることがある。上記有機溶剤の含有量が99重量%を超えると、充分な厚みの光電変換活性層や光吸収層が得られないことがある。 Although content of the said organic solvent is not specifically limited, A preferable minimum is 75 weight% and a preferable upper limit is 99 weight%. If the content of the organic solvent is less than 75% by weight, the viscosity of the ink may be too high. When the content of the organic solvent exceeds 99% by weight, a sufficient thickness of the photoelectric conversion active layer or the light absorption layer may not be obtained.

なお、光電変換活性層用インクを光吸収層上に塗工、乾燥させ、光電変換活性層を形成する工程における塗工方法、乾燥方法については、従来公知の方法を用いることができる。 In addition, a conventionally well-known method can be used about the coating method and the drying method in the process of coating and drying the photoelectric conversion active layer ink on a light absorption layer, and forming a photoelectric conversion active layer.

本発明によれば、光電変換効率に優れる有機無機複合薄膜太陽電池、及び、該有機無機複合薄膜太陽電池の製造方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the organic-inorganic composite thin film solar cell excellent in photoelectric conversion efficiency and the manufacturing method of this organic-inorganic composite thin film solar cell can be provided.

本発明の有機無機複合薄膜太陽電池の一例を示す断面図である。It is sectional drawing which shows an example of the organic inorganic composite thin film solar cell of this invention.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(無機P型半導体化合物粒子の作製)
酢酸銅1.0重量部と酢酸亜鉛0.5重量部と酢酸スズ0.7重量部とをオレイルアミン100重量部に溶解し、攪拌しながら硫黄粉末0.4重量部をオレイルアミン50重量部に溶解した液を滴下し、その後250℃で1時間加熱攪拌を続けることにより、複合硫化物(CZTS)ナノ粒子分散液を得た。次いで、CZTSナノ粒子分散液を遠心分離及び上澄み除去し、沈殿物を回収することによってCZTSナノ粒子(無機P型半導体化合物粒子、平均粒子径10nm)を得た。
Example 1
(Preparation of inorganic P-type semiconductor compound particles)
1.0 part by weight of copper acetate, 0.5 part by weight of zinc acetate and 0.7 part by weight of tin acetate are dissolved in 100 parts by weight of oleylamine, and 0.4 part by weight of sulfur powder is dissolved in 50 parts by weight of oleylamine with stirring. The resultant solution was added dropwise, and then heated and stirred at 250 ° C. for 1 hour to obtain a composite sulfide (CZTS) nanoparticle dispersion. Next, the CZTS nanoparticle dispersion was centrifuged and the supernatant was removed, and the precipitate was collected to obtain CZTS nanoparticles (inorganic P-type semiconductor compound particles, average particle size of 10 nm).

(無機N型半導体化合物粒子の作製)
酢酸亜鉛二水和物1重量部をメタノール35重量部に溶解し、60℃の湯浴中にて攪拌しながら、水酸化カリウム0.5重量部をメタノール15重量部に溶解した液を滴下し、滴下終了後5時間加熱攪拌を続けることにより、酸化亜鉛ナノ粒子分散液を得た。次いで、酸化亜鉛ナノ粒子分散液を遠心分離及び上澄み除去し、沈殿物を回収することによって酸化亜鉛ナノ粒子(無機N型半導体化合物粒子、平均粒子径5nm)を得た。
(Preparation of inorganic N-type semiconductor compound particles)
Dissolve 1 part by weight of zinc acetate dihydrate in 35 parts by weight of methanol and add dropwise a solution prepared by dissolving 0.5 part by weight of potassium hydroxide in 15 parts by weight of methanol while stirring in a 60 ° C. hot water bath. The zinc oxide nanoparticle dispersion liquid was obtained by continuing the heating and stirring for 5 hours after the completion of the dropping. Next, the zinc oxide nanoparticle dispersion was centrifuged and the supernatant was removed, and the precipitate was collected to obtain zinc oxide nanoparticles (inorganic N-type semiconductor compound particles, average particle diameter of 5 nm).

(有機無機複合薄膜太陽電池の作製)
ガラス基板上に陽極として厚み300nmのITO膜を形成したものを、純水、アセトン、エタノールを順に用いて各10分間超音波洗浄した後、乾燥させた。洗浄後のITO膜の表面上にホール輸送層としてポリエチレンジオキサイドチオフェン:ポリスチレンスルフォネート(PEDOT:PSS)をスピンコート法により50nmの厚みに形成した。
次に、酸化亜鉛ナノ粒子5.00重量部とCZTSナノ粒子0.50重量部とポリ(3−アルキルチオフェン)1.50重量部をクロロホルム350重量部に溶解、分散させることで、光電変換活性層インクを調製した。得られた光電変換活性層インクをホール輸送層上にスピンコート法により100nmの厚みに塗工し、乾燥させることによって光電変換活性層を形成した。更に、光電変換活性層の表面に陰極として真空蒸着によりアルミニウムを100nmの厚みに形成することにより、有機無機複合薄膜太陽電池を作製した。
なお、ポリ(3−アルキルチオフェン)とCZTSナノ粒子の合計に対するCZTSナノ粒子の含有量は、25重量%であった。
(Production of organic-inorganic composite thin film solar cells)
A glass substrate formed with an ITO film having a thickness of 300 nm as an anode was subjected to ultrasonic cleaning for 10 minutes each using pure water, acetone, and ethanol in this order, and then dried. Polyethylene dioxide thiophene: polystyrene sulfonate (PEDOT: PSS) was formed as a hole transport layer on the surface of the ITO film after washing to a thickness of 50 nm by spin coating.
Next, 5.00 parts by weight of zinc oxide nanoparticles, 0.50 parts by weight of CZTS nanoparticles, and 1.50 parts by weight of poly (3-alkylthiophene) are dissolved and dispersed in 350 parts by weight of chloroform, thereby producing photoelectric conversion activity. A layer ink was prepared. The obtained photoelectric conversion active layer ink was applied on the hole transport layer to a thickness of 100 nm by a spin coating method and dried to form a photoelectric conversion active layer. Furthermore, the organic-inorganic composite thin film solar cell was produced by forming aluminum in the thickness of 100 nm by vacuum deposition as a cathode on the surface of a photoelectric conversion active layer.
In addition, content of the CZTS nanoparticle with respect to the sum total of poly (3-alkylthiophene) and CZTS nanoparticle was 25 weight%.

(実施例2)
実施例1の(有機無機複合薄膜太陽電池の作製)において、CZTSナノ粒子の添加量を0.10重量部、ポリ(3−アルキルチオフェン)の添加量を1.90重量部としたこと以外は実施例1と同様に有機無機複合薄膜太陽電池を作製した。
なお、ポリ(3−アルキルチオフェン)とCZTSナノ粒子の合計に対するCZTSナノ粒子の含有量は、5重量%であった。
(Example 2)
In Example 1 (production of organic-inorganic composite thin film solar cell), the amount of CZTS nanoparticles added was 0.10 parts by weight, and the amount of poly (3-alkylthiophene) added was 1.90 parts by weight. In the same manner as in Example 1, an organic-inorganic composite thin film solar cell was produced.
In addition, content of the CZTS nanoparticle with respect to the sum total of poly (3-alkylthiophene) and CZTS nanoparticle was 5 weight%.

(実施例3)
実施例1の(有機無機複合薄膜太陽電池の作製)において、CZTSナノ粒子の添加量を1.00重量部及びポリ(3−アルキルチオフェン)の添加量を1.00重量部としたこと以外は実施例1と同様に有機無機複合薄膜太陽電池を作製した。
なお、ポリ(3−アルキルチオフェン)とCZTSナノ粒子の合計に対するCZTSナノ粒子の含有量は、50重量%であった。
(Example 3)
In Example 1 (production of organic-inorganic composite thin film solar cell), the addition amount of CZTS nanoparticles was 1.00 parts by weight and the addition amount of poly (3-alkylthiophene) was 1.00 parts by weight. In the same manner as in Example 1, an organic-inorganic composite thin film solar cell was produced.
In addition, content of the CZTS nanoparticle with respect to the sum total of poly (3-alkylthiophene) and CZTS nanoparticle was 50 weight%.

(比較例1)
実施例1の(有機無機複合薄膜太陽電池の作製)において、CZTSナノ粒子を添加せず、ポリ(3−アルキルチオフェン)の添加量を2.00重量部としたこと以外は実施例1と同様に有機無機複合薄膜太陽電池を作製した。
(Comparative Example 1)
In Example 1 (production of organic-inorganic composite thin film solar cell), the same as in Example 1 except that CZTS nanoparticles were not added and the amount of poly (3-alkylthiophene) added was 2.00 parts by weight. An organic-inorganic composite thin film solar cell was prepared.

(比較例2)
実施例1の(有機無機複合薄膜太陽電池の作製)において、CZTSナノ粒子の添加量を0.05重量部及びポリ(3−アルキルチオフェン)の添加量を1.95重量部としたこと以外は実施例1と同様に有機無機複合薄膜太陽電池を作製した。
なお、ポリ(3−アルキルチオフェン)とCZTSナノ粒子の合計に対するCZTSナノ粒子の含有量は、2.5重量%であった。
(Comparative Example 2)
In Example 1 (preparation of organic-inorganic composite thin film solar cell), the addition amount of CZTS nanoparticles was 0.05 parts by weight, and the addition amount of poly (3-alkylthiophene) was 1.95 parts by weight. In the same manner as in Example 1, an organic-inorganic composite thin film solar cell was produced.
In addition, content of the CZTS nanoparticle with respect to the sum total of poly (3-alkylthiophene) and CZTS nanoparticle was 2.5 weight%.

(比較例3)
CZTSナノ粒子の添加量を1.20重量部及びポリ(3−アルキルチオフェン)の添加量を0.80重量部としたこと以外は実施例1と同様に有機無機複合薄膜太陽電池を作製した。
なお、ポリ(3−アルキルチオフェン)とCZTSナノ粒子の合計に対するCZTSナノ粒子の含有量は、60重量%であった。
(Comparative Example 3)
An organic-inorganic composite thin film solar cell was produced in the same manner as in Example 1 except that the amount of CZTS nanoparticles added was 1.20 parts by weight and the amount of poly (3-alkylthiophene) added was 0.80 parts by weight.
In addition, content of the CZTS nanoparticle with respect to the sum total of poly (3-alkylthiophene) and CZTS nanoparticle was 60 weight%.

<評価>
実施例及び比較例で得られた有機無機複合薄膜太陽電池について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about the organic inorganic composite thin film solar cell obtained by the Example and the comparative example. The results are shown in Table 1.

(有機無機複合薄膜太陽電池の評価)
得られた有機無機複合薄膜太陽電池の電極間に、電源(KEYTHLEY社製、236モデル)を接続し、100mW/cmの強度のソーラーシミュレータ(山下電装社製)を用いて、有機無機複合薄膜太陽電池のエネルギー変換効率を測定した。なお、表1には、比較例1の変換効率、短絡電流密度を1.00として規格化した数値を示した。
(Evaluation of organic / inorganic composite thin film solar cells)
A power source (manufactured by KEYTHLEY, 236 model) is connected between the electrodes of the obtained organic-inorganic composite thin film solar cell, and an organic / inorganic composite thin film is used by using a solar simulator (manufactured by Yamashita Denso Co., Ltd.) having a strength of 100 mW / cm 2 The energy conversion efficiency of the solar cell was measured. Table 1 shows numerical values normalized with the conversion efficiency and the short-circuit current density of Comparative Example 1 being 1.00.

Figure 0005891005
Figure 0005891005

本発明によれば、光電変換効率に優れる有機無機複合薄膜太陽電池、及び、該有機無機複合薄膜太陽電池の製造方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the organic-inorganic composite thin film solar cell excellent in photoelectric conversion efficiency and the manufacturing method of this organic-inorganic composite thin film solar cell can be provided.

Claims (1)

有機P型半導体化合物中に、無機N型半導体化合物粒子が存在する光電変換活性層を有する有機無機複合薄膜太陽電池であって、
前記有機P型半導体化合物中に、更に無機P型半導体化合物粒子が存在しており、
前記無機P型半導体化合物粒子の含有量が、有機P型半導体化合物及び無機P型半導体化合物粒子の合計に対して5〜50重量%であり、
前記無機P型半導体化合物粒子は、カルコパイライト系化合物又はCZTSからなることを特徴とする有機無機複合薄膜太陽電池。
An organic-inorganic composite thin film solar cell having a photoelectric conversion active layer in which inorganic N-type semiconductor compound particles are present in an organic P-type semiconductor compound,
In the organic P-type semiconductor compound, there are further inorganic P-type semiconductor compound particles,
The content of the inorganic P-type semiconductor compound particles, Ri 5 to 50 wt% der the total of the organic P-type semiconductor compound and an inorganic P-type semiconductor compound particles,
The inorganic P-type semiconductor compound particles, organic-inorganic composite thin film solar cell according to chalcopyrite compound or CZTS Tona characterized Rukoto.
JP2011239501A 2011-10-31 2011-10-31 Organic inorganic composite thin film solar cell Expired - Fee Related JP5891005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239501A JP5891005B2 (en) 2011-10-31 2011-10-31 Organic inorganic composite thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239501A JP5891005B2 (en) 2011-10-31 2011-10-31 Organic inorganic composite thin film solar cell

Publications (2)

Publication Number Publication Date
JP2013098334A JP2013098334A (en) 2013-05-20
JP5891005B2 true JP5891005B2 (en) 2016-03-22

Family

ID=48619993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239501A Expired - Fee Related JP5891005B2 (en) 2011-10-31 2011-10-31 Organic inorganic composite thin film solar cell

Country Status (1)

Country Link
JP (1) JP5891005B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19905694A1 (en) * 1998-11-27 2000-08-17 Forschungszentrum Juelich Gmbh Component
EP1176646A1 (en) * 2000-07-28 2002-01-30 Ecole Polytechnique Féderale de Lausanne (EPFL) Solid state heterojunction and solid state sensitized photovoltaic cell
JP4951497B2 (en) * 2007-12-27 2012-06-13 株式会社日立製作所 Organic thin film solar cell and method for producing the same
EP2172986B1 (en) * 2008-08-27 2013-08-21 Honeywell International Inc. Solar cell having hybrid hetero junction structure

Also Published As

Publication number Publication date
JP2013098334A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
Bellani et al. Solution-processed two-dimensional materials for next-generation photovoltaics
Rhee et al. A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites
US9059418B2 (en) Method for manufacturing a nanostructured inorganic/organic heterojunction solar cell
US9349971B2 (en) Solid state heterojunction device
US20120312375A1 (en) All-Solid-State Heterojunction Solar Cell
Sun et al. PbS quantum dots embedded in a ZnS dielectric matrix for bulk heterojunction solar cell applications
Nagarjuna et al. CH3NH3PbI3 perovskite sensitized solar cells using a DA copolymer as hole transport material
JP5037730B2 (en) Ink for organic solar cell active layer, organic solar cell, and method for producing organic solar cell
Xiao et al. Eco-friendly AgBiS2 nanocrystal/ZnO nanowire heterojunction solar cells with enhanced carrier collection efficiency
WO2013118795A1 (en) Organic thin film solar cell, and method for producing organic thin film solar cell
WO2011064601A1 (en) Solid state p-n heterojunction comprising metal nanoparticles having a surface plasmon mode
Farhana et al. Enhancement of the photoconversion efficiency of Sb2S3 based solar cell by overall optimization of electron transport, light harvesting and hole transport layers
WO2019200327A1 (en) Highly efficient perovskite/cu(in, ga)se2 tandem solar cell
JP5845059B2 (en) Organic inorganic composite thin film solar cell
Dematage et al. Employment of CuI on Sb2S3 extremely thin absorber solar cell: N719 molecules as a dual role of a recombination blocking agent and an efficient hole shuttle
JP5891005B2 (en) Organic inorganic composite thin film solar cell
CN114702066B (en) Modified titanium dioxide nano-particles, preparation method thereof and perovskite solar cell
KR20180096168A (en) Bulk hetero-junction solar cell and manufacturing the same
JP2012212725A (en) Organic-inorganic composite thin-film solar cell
Pirzada et al. A Novel Fabrication Approach for improving the Efficiency of FAPbi3 Based Perovskite Solar Cells.
Juneja et al. Employment of dopant-free fluorene-based enamines as innovative hole transport materials to boost the transparency and performance of Sb2S3 based solar cells
Apam Effect of Annealing on the Morphological and Optoelectronic Properties of Ch 3 Nh 3 Pb I 3 Thin Films for Perovskite Solar Cell Applications.
JP2013157471A (en) Ink for photoelectric conversion element and photoelectric conversion element
Noel Advances in hybrid solar cells: from dye-sensitised to perovskite solar cells
EP3891819A1 (en) Radiative heat-blocking materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R151 Written notification of patent or utility model registration

Ref document number: 5891005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees