JP5888856B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP5888856B2
JP5888856B2 JP2011024903A JP2011024903A JP5888856B2 JP 5888856 B2 JP5888856 B2 JP 5888856B2 JP 2011024903 A JP2011024903 A JP 2011024903A JP 2011024903 A JP2011024903 A JP 2011024903A JP 5888856 B2 JP5888856 B2 JP 5888856B2
Authority
JP
Japan
Prior art keywords
light receiving
spectral characteristic
angle
imaging
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011024903A
Other languages
Japanese (ja)
Other versions
JP2012165242A5 (en
JP2012165242A (en
Inventor
郁太郎 光武
郁太郎 光武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011024903A priority Critical patent/JP5888856B2/en
Publication of JP2012165242A publication Critical patent/JP2012165242A/en
Publication of JP2012165242A5 publication Critical patent/JP2012165242A5/ja
Application granted granted Critical
Publication of JP5888856B2 publication Critical patent/JP5888856B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、画像情報を結像光学系によって一方向に長い受光部より成る受光手段に結像させて画像情報を得るのに好適な撮像装置に関する。例えば走査光学系ユニットを用いて原稿の画像情報を読取るようにした、イメージスキャナーやデジタル複写機の装置に好適な画像読取装置や被写体を固体撮像に結像するカメラ等に好適なものである。   The present invention relates to an image pickup apparatus suitable for obtaining image information by forming image information on a light receiving means composed of a light receiving portion long in one direction by an imaging optical system. For example, the present invention is suitable for an image reading apparatus suitable for an image scanner or a digital copying machine, which uses a scanning optical system unit to read image information of a document, or a camera for imaging a subject on solid-state imaging.

従来よりビデオカメラやデジタルスチルカメラ等のカメラやイメージスキャナー等の画像読取装置では画像情報を結像光学系によって受光手段に結像させ、受光手段で得られた信号より画像情報を得ている。カメラや画像読取装置等においては、対象となる画像情報を受光手段に結像するとき可視域以外の波長の光束、特に紫外光や赤外光が受光手段に到達することがある。そうすると受光手段に結像される画像情報の分光特性が観察したのと異なってくる。   2. Description of the Related Art Conventionally, an image reading apparatus such as a video camera or a digital still camera or an image scanner forms image information on a light receiving means by an imaging optical system, and obtains image information from a signal obtained by the light receiving means. In a camera, an image reading apparatus, or the like, when imaging target image information on a light receiving means, a light beam having a wavelength other than the visible range, particularly ultraviolet light or infrared light, may reach the light receiving means. Then, the spectral characteristic of the image information imaged on the light receiving means is different from that observed.

例えば受光手段で得られる画像情報の色味が実際に観察される画像情報の色味と異なってくる。このときの色味の差を軽減するための手段を光路中に設けた結像光学系が知られている(特許文献1、2)。特許文献1では、結像光学系を構成するレンズのレンズ面に赤外光をカットする光学膜を蒸着することによって赤外光を除去し、原稿面上の画像情報を高精度に読み取るようにした原稿読取装置が開示されている。特許文献2では特定波長のみを透過、または反射する高分子多層膜を有する分光特性調整手段を光路内に設けた画像読取装置が開示されている。   For example, the color of the image information obtained by the light receiving means is different from the color of the image information actually observed. An imaging optical system in which means for reducing the color difference at this time is provided in the optical path is known (Patent Documents 1 and 2). In Patent Document 1, the infrared light is removed by depositing an optical film that cuts infrared light on the lens surface of the lens constituting the imaging optical system, and the image information on the document surface is read with high accuracy. An original reading apparatus is disclosed. Patent Document 2 discloses an image reading apparatus in which a spectral characteristic adjusting unit having a polymer multilayer film that transmits or reflects only a specific wavelength is provided in an optical path.

特開2000−304918号公報JP 2000-304918 A 特開2006−74575号公報JP 2006-74575 A

曲率を持つレンズ面に対し所望の多層膜を形成し、赤外光を遮光する方法は、新たな光学素子を必要とせず、装置全体の小型化には有利であるが、レンズ面に多層膜を均一に形成するのが難しい。一方、赤外光をカットする多層膜を透明な平行基板に施した光学素子を光路中に配置する方法は、多層膜の形成が容易で比較的容易に赤外光をカットすることができる。一般に多層膜を形成した光学素子を用いて赤外光をカットする方法は、多層膜の光学性質より光学素子への光束の入射角度によって透過率が半分(50%)となる半値波長が異なってくる。   The method of forming a desired multilayer film on a lens surface having a curvature and shielding infrared light does not require a new optical element and is advantageous for downsizing the entire apparatus. Is difficult to form uniformly. On the other hand, the method in which an optical element in which a multilayer film for cutting infrared light is applied to a transparent parallel substrate is disposed in the optical path can easily form the multilayer film and cut infrared light relatively easily. In general, the method of cutting infrared light using an optical element in which a multilayer film is formed differs in the half-value wavelength at which the transmittance becomes half (50%) depending on the incident angle of the light beam to the optical element due to the optical properties of the multilayer film. come.

従ってこのような多層膜を有した光学素子を結像光学系に用いると、光軸上と軸外の位置において赤外光をカットする半値波長が異なってきて、画面中心と画面周辺において色味が異なってくる。   Therefore, when such an optical element having a multilayer film is used in an imaging optical system, the half-value wavelength for cutting infrared light differs between the optical axis and off-axis positions. Will be different.

この結果、画面全体で良好なる画質を得ることが難しくなる。例えば画像読取装置における結像光学系によって読み取るカラー画像情報は画面中心と画面周辺で色味が異なってきて画像情報を高精度に読み取ることが困難になる。またカメラにおいては画面中心と画面周辺とで色味が異なってきて高画質のカラー画質を得るのが困難になる。   As a result, it becomes difficult to obtain good image quality over the entire screen. For example, color image information read by the imaging optical system in the image reading apparatus has different colors at the screen center and the screen periphery, making it difficult to read the image information with high accuracy. In addition, in the camera, the color is different between the center of the screen and the periphery of the screen, making it difficult to obtain a high-quality color image.

このため多層膜を用いた分光特性調整手段を光路中に用いて赤外光が受光手段に入射するのを軽減させる結像光学系においては、結像光学系に種々な画角の光束が入射しても赤外カットの半値波長のシフト量が画面全体にわたり少ないことが重要になってくる。   For this reason, in an imaging optical system that reduces the incidence of infrared light on the light receiving means by using a spectral characteristic adjustment means using a multilayer film in the optical path, light beams of various angles of view are incident on the imaging optical system. Even so, it is important that the half-wavelength shift amount of the infrared cut is small over the entire screen.

本発明は、画角による赤外カットの半値波長のシフト量が少なく、画面中心から画面周辺に至る広い範囲にわたり良好なる画質の画像情報が得られる撮像装置の提供を目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an imaging apparatus in which the amount of shift of the half-wavelength of infrared cut depending on the angle of view is small, and image information with good image quality can be obtained over a wide range from the screen center to the screen periphery.

上記目的を達成するため、本発明に係る撮像装置は、物体からの光束を集光する結像光学系と、前記物体からの光束を受光する受光部と、を有する撮像装置であって、前記受光部は、前記結像光学系の光軸に垂直な第1の方向に長い矩形状であり、前記物体から前記受光部までの光路中に配置され、前記物体からの光束の分光特性を変化させる多層膜面を含む調整手段を有し、前記第1の方向に垂直な断面内における前記光軸と前記多層膜面の面法線とのなす角度をα、前記光軸と前記受光部に入射する最軸外主光線とのなす角度をθ、とするとき、
0.3θ<α<80°
なる条件を満足することを特徴としている。
In order to achieve the above object, an imaging apparatus according to the present invention is an imaging apparatus having an imaging optical system that collects a light beam from an object, and a light receiving unit that receives the light beam from the object. The light receiving unit has a rectangular shape that is long in a first direction perpendicular to the optical axis of the imaging optical system, and is disposed in the optical path from the object to the light receiving unit, and changes the spectral characteristics of the light beam from the object. An adjusting means including a multilayer film surface to be formed, wherein an angle formed by the optical axis and a surface normal of the multilayer film surface in a cross section perpendicular to the first direction is α, and the optical axis and the light receiving unit When the angle formed by the incident off-axis chief ray is θ,
0.3θ <α < 80 °
It is characterized by satisfying the following conditions.

本発明によれば、画角による赤外カットの半値波長のシフト量が少なく、画面中心から画面周辺に至る広い範囲にわたり良好なる画質の画像情報が得られる撮像装置が得られる。   According to the present invention, it is possible to obtain an imaging apparatus in which the amount of shift of the half-wavelength of infrared cut depending on the angle of view is small, and image information with good image quality can be obtained over a wide range from the screen center to the screen periphery.

本発明の実施例1の画像読取装置の要部概略図である。1 is a schematic diagram of a main part of an image reading apparatus according to a first embodiment of the present invention. 分光特性調整手段の分光特性の説明図である。It is explanatory drawing of the spectral characteristic of a spectral characteristic adjustment means. 分光特性調整手段の回転による入射角変化の説明図である。It is explanatory drawing of the incident angle change by rotation of a spectral characteristic adjustment means. 分光特性調整手段の分光特性の説明図である。It is explanatory drawing of the spectral characteristic of a spectral characteristic adjustment means. 分光特性調整手段の回転角と入射角度差の変化の説明図である。It is explanatory drawing of the change of the rotation angle of a spectral characteristic adjustment means, and an incident angle difference. アス量の導出についての説明図である。It is explanatory drawing about derivation | leading-out of amount of asses. 実施例2のカメラの要部概略図である。FIG. 6 is a schematic diagram of a main part of a camera according to a second embodiment. 分光特性調整手段の分光特性の説明図である。It is explanatory drawing of the spectral characteristic of a spectral characteristic adjustment means.

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。本発明の撮像装置は、被写体や原稿面上の原稿データ等の画像情報を結像光学系によって、一方向に長い矩形状の受光部を有する1次元センサーやイメージセンサー等の受光手段に結像させて画像情報を得るカメラや画像読取装置である。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The image pickup apparatus of the present invention forms image information such as a subject or document data on a document surface on a light receiving means such as a one-dimensional sensor or an image sensor having a rectangular light receiving portion that is long in one direction by an imaging optical system. A camera or an image reading device for obtaining image information.

撮像装置は、光路中に入射光束の分光特性を変化させて出射させる機能を有する多層膜を平行平板に施した分光特性調整手段を有している。分光特性調整手段は、一方向(カメラのときは水平方向又は画像読取装置のときは主走査方向)であって結像光学系の光軸に対し垂直方向の軸を回転軸として、光軸に対して傾いて配置されている。光軸に対する分光特性調整手段の面法線とのなす角度をα、受光手段に入射する光束のうち、最軸外主光線(画面周辺に入射する光束の主光線)と光軸とのなす角度をθとするとき、
0.3θ<α
なる条件を満足している。
The imaging apparatus has spectral characteristic adjusting means in which a multilayer film having a function of changing the spectral characteristic of an incident light beam and emitting it in an optical path is applied to a parallel plate. The spectral characteristic adjusting means is arranged in one direction (horizontal direction in the case of a camera or main scanning direction in the case of an image reading apparatus) and is set to an optical axis with an axis perpendicular to the optical axis of the imaging optical system as a rotation axis. It is inclined and arranged. The angle between the optical axis and the surface normal of the spectral characteristic adjusting means is α, and the angle between the optical axis and the most off-axis principal ray (the principal ray of the light incident on the periphery of the screen) of the light flux incident on the light receiving means. Is θ,
0.3θ <α
Is satisfied.

画像読取装置のとき受光手段は、主走査方向に複数の画素を配列した1次元センサーを、光軸に対し直交し、かつ主走査方向と直交する副走査方向に複数配列した構成よりなっている。カメラのとき受光手段は水平方向に長い矩形状のイメージセンサーより成っている。   In the case of an image reading apparatus, the light receiving means has a configuration in which a plurality of one-dimensional sensors in which a plurality of pixels are arranged in the main scanning direction are arranged in the sub-scanning direction orthogonal to the optical axis and orthogonal to the main scanning direction. . In the case of a camera, the light receiving means consists of a rectangular image sensor that is long in the horizontal direction.

[実施例1]
図1は本発明の実施例1の撮像装置をキャリッジ一体型の画像読取装置(フラットベッドスキャナー)に適用したときの要部概略図である。
[Example 1]
FIG. 1 is a schematic view of a main part when the image pickup apparatus according to the first embodiment of the present invention is applied to a carriage-integrated image reading apparatus (flatbed scanner).

図1において、1は画像読取装置の本体である。102は原稿台ガラスであり、その面上に原稿101が載置されている。108はキャリッジであり、照明手段としての照明光源107、複数の反射ミラー(103a〜103e)103、結像光学系(結像レンズ)105、分光特性調整手段104、そして読取手段106等を保持している。キャリッジ108はモータなどの副走査機構Moにより図1中の副走査方向(A方向)へ走査し、読取手段106によって原稿101の画像情報を2次元的に読み取っている。尚、キャリッジ108は、原稿台ガラス101と相対的に副走査方向へ移動させれば良い。   In FIG. 1, reference numeral 1 denotes a main body of the image reading apparatus. Reference numeral 102 denotes an original platen glass on which an original 101 is placed. Reference numeral 108 denotes a carriage which holds an illumination light source 107 as illumination means, a plurality of reflection mirrors (103a to 103e) 103, an imaging optical system (imaging lens) 105, a spectral characteristic adjustment means 104, a reading means 106, and the like. ing. The carriage 108 scans in the sub-scanning direction (A direction) in FIG. 1 by a sub-scanning mechanism Mo such as a motor, and the reading unit 106 reads the image information of the document 101 two-dimensionally. The carriage 108 may be moved in the sub scanning direction relative to the document table glass 101.

読み取られた画像情報は不図示のインターフェイスを通じて外部機器であるパーソナルコンピューターなどに送られる。照明手段107は図中記載の主走査方向に並んだ冷陰極管又はハロゲンランプからなり、各反射ミラー103a〜103eは各々順に原稿101からの光束の光路をキャリッジ108内部で折り曲げている。結像レンズ105は原稿101の1次元方向又は矩形領域からの光束をラインセンサー又はイメージセンサーよりなる読取手段106面上に結像させている。   The read image information is sent to an external device such as a personal computer through an interface (not shown). The illuminating means 107 is composed of cold cathode tubes or halogen lamps arranged in the main scanning direction shown in the drawing, and the reflecting mirrors 103a to 103e respectively bend the light path of the light beam from the document 101 inside the carriage 108 in order. The imaging lens 105 forms an image of a light beam from a one-dimensional direction or a rectangular area of the document 101 on the surface of the reading unit 106 formed of a line sensor or an image sensor.

読取手段106は、複数の受光部として夫々がR、G、B光を受光する主走査方向に複数の画素を配列した少なくとも3つのラインセンサー(1次元センサー)を有している。読取手段106の画素の並び方向(紙面垂直方向)が主走査方向(結像光学系105の光軸に垂直な第1の方向)である。即ち、第1の方向に長い矩形状の上記複数の受光部は、結像光学系105の光軸と第1の方向とに垂直な第2の方向に配列されている。分光特性調整手段104は多層膜を透明基板に形成して構成されており、結像レンズ105と読取手段106との間の光路内に、その多層膜構成面が主走査方向に平行な軸を中心に回転して光軸105aに対して所定の角度αで配置されている。尚、分光特性調整手段104は原稿101と読取手段106との間の光路中であれば、どこに配置しても良い。 The reading means 106 has at least three line sensors (one-dimensional sensors) in which a plurality of pixels are arranged in the main scanning direction for receiving R, G, and B light, respectively, as a plurality of light receiving units . The direction in which the pixels of the reading unit 106 are arranged (the direction perpendicular to the paper surface) is the main scanning direction (the first direction perpendicular to the optical axis of the imaging optical system 105) . In other words, the plurality of rectangular light receiving sections that are long in the first direction are arranged in a second direction perpendicular to the optical axis of the imaging optical system 105 and the first direction. The spectral characteristic adjusting means 104 is formed by forming a multilayer film on a transparent substrate, and the multilayer film constituting surface has an axis parallel to the main scanning direction in the optical path between the imaging lens 105 and the reading means 106. It rotates about the center and is arranged at a predetermined angle α with respect to the optical axis 105a. The spectral characteristic adjusting unit 104 may be disposed anywhere in the optical path between the document 101 and the reading unit 106.

分光特性調整手段104は波長約700nm以上の波長領域の光(赤外光)を減光することで、本来可視領域ではない赤外光を読取手段106の1つのラインセンサーのR列が受光するのを防止し、出力画像の色味が原稿の色味と異なることを防止している。本実施例における分光特性調整手段104は赤外領域の光を減じるよう設定され、0゜および23゜の入射光に対する分光透過率は図2のようになっており、入射角によって半値波長のシフトが起こっている。   The spectral characteristic adjusting unit 104 attenuates light (infrared light) in a wavelength region having a wavelength of about 700 nm or more, so that the R row of one line sensor of the reading unit 106 receives infrared light that is not originally in the visible region. Thus, the color of the output image is prevented from differing from the color of the document. The spectral characteristic adjusting means 104 in this embodiment is set so as to reduce the light in the infrared region, and the spectral transmittance with respect to incident light at 0 ° and 23 ° is as shown in FIG. Is happening.

これは、画角(入射角度)が付くことで分光特性調整手段104中の光路長、および屈折角度が変化し、一般的に垂直入射に比べて入射角度の付いた光線の半値波長は短波長側に移動する傾向がある。ここで、分光特性調整手段104を主走査方向に平行な軸を中心に回転して配置する技術的な理由について説明する。   This is because the optical path length and the refraction angle in the spectral characteristic adjusting means 104 change as the angle of view (incident angle) is added, and generally the half-value wavelength of the light beam with the incident angle is shorter than that of normal incidence. Tend to move to the side. Here, a technical reason for disposing the spectral characteristic adjusting unit 104 by rotating around an axis parallel to the main scanning direction will be described.

主走査方向(第1の方向)に垂直な断面内で、分光特性調整手段104の多層膜構成面を光軸に対して垂直に配置した場合、本実施例における結像光学系105の主走査画角によって光軸上から最軸外にかけて約23゜の入射角差が生じる。分光特性調整手段104の半値波長は図2から入射角0゜のとき約675nm、入射角23゜の場合約639nmであり、軸上と軸外にかけてカット波長が36nm異なり、出力画像も軸上と軸外で色味の異なった画像になる可能性がある。 When the multilayer film constituting surface of the spectral characteristic adjusting means 104 is arranged perpendicular to the optical axis in a cross section perpendicular to the main scanning direction (first direction), the main scanning of the imaging optical system 105 in this embodiment is performed. Depending on the angle of view, an incident angle difference of about 23 ° occurs from the optical axis to the outermost axis. From FIG. 2, the half-value wavelength of the spectral characteristic adjusting means 104 is about 675 nm at an incident angle of 0 °, and about 639 nm at an incident angle of 23 °. There is a possibility that the image will have a different color off-axis.

そこで、分光特性調整手段の多層膜構成面を主走査方向に平行な軸を中心に10゜回転して配置すると、図3に示すように軸上での入射角は10゜、軸外での入射角は24.7゜となる。そして、分光特性調整手段104に対する軸上と軸外での入射角度の差は14.7°と小さくなる。入射角10゜と、24.7゜の場合の分光透過率は図4のようになり、画角0゜の場合半値波長は668nm、画角23°の場合半値波長は655nmである。これによって主走査方向の半値波長のシフトは赤外カット波長のシフトが約13nmとなり、分光特性調整手段104を回転しない場合に比べて50%以上低減される。 Therefore, if the multilayer film constituting surface of the spectral characteristic adjusting means is arranged by being rotated by 10 ° about an axis parallel to the main scanning direction, the incident angle on the axis is 10 ° and the off-axis angle is as shown in FIG. The incident angle is 24.7 °. The difference between the incident angle on the axis and the off-axis with respect to the spectral characteristic adjusting unit 104 is as small as 14.7 °. The spectral transmittance when the incident angle is 10 ° and 24.7 ° is as shown in FIG. 4. When the angle of view is 0 °, the half-value wavelength is 668 nm, and when the angle of view is 23 °, the half-value wavelength is 655 nm. As a result, the shift of the half-value wavelength in the main scanning direction is about 13 nm as the shift of the infrared cut wavelength, and is reduced by 50% or more compared to the case where the spectral characteristic adjusting means 104 is not rotated.

分光特性調整手段104に対する主走査方向の最軸外画角θの主光線の入射角度φは、傾け角αに対して   The incident angle φ of the principal ray at the most off-axis field angle θ in the main scanning direction with respect to the spectral characteristic adjusting means 104 is relative to the tilt angle α.

で表され、これをグラフにすると図5のようになる。図5は縦軸が分光特性調整手段104を傾けた際の軸上−軸外入射角度差であり、横軸が分光特性調整手段104の傾け角である。 When this is graphed, it is as shown in FIG. In FIG. 5, the vertical axis represents the on-axis-off-axis incident angle difference when the spectral characteristic adjusting unit 104 is tilted, and the horizontal axis is the tilt angle of the spectral characteristic adjusting unit 104.

グラフには、画角30゜の場合、画角20゜、画角10゜の場合の相関をプロットしており、分光特性調整手段104を傾けるほど軸上−軸外入射角度差が小さくなることが分かる。また、入射角度差、つまり半値波長シフトを70%に低減させるには傾け角αをα≒0.3θとすることが有効であり、さらにより望ましくはα>0.67θとして半値波長シフトを50%程度低減すると、出力画像における色味のムラがより有効に低減される。   The graph plots the correlation when the angle of view is 30 °, when the angle of view is 20 °, and when the angle of view is 10 °. As the spectral characteristic adjusting means 104 is tilted, the difference between the on-axis and off-axis incident angles becomes smaller. I understand. In order to reduce the incident angle difference, that is, the half-value wavelength shift to 70%, it is effective to set the tilt angle α to α≈0.3θ. When it is reduced by about%, the color unevenness in the output image is more effectively reduced.

また、分光特性調整手段104を傾けたことによって副走査方向の半値波長のシフトは悪化するが、一般的に画像読取装置のラインセンサーは副走査方向に各色の複数のラインセンサーが並んでいるため、主走査方向の色むらが改善できれば補正は容易である。   Although the half-value wavelength shift in the sub-scanning direction is worsened by inclining the spectral characteristic adjusting unit 104, generally, the line sensors of the image reading apparatus have a plurality of line sensors of each color arranged in the sub-scanning direction. If the color unevenness in the main scanning direction can be improved, the correction is easy.

ただし、分光特性調整手段104に入射する光線が平行光ではない場合、傾けすぎると非点収差(アス)が生じ、結像性能を低下させるため、少なくとも軸上でのアスが一定量以下になるよう設定することが望ましい。アス量は、ここでは主走査方向、副走査方向の波面収差の差で表わす。図6(A),(B)のように、分光特性調整手段104の位置における光軸105aに対する分光特性調整手段104の面法線角度をα、分光特性調整手段104の厚さをdとする。波長587.6nmの光での屈折率をnd、分光特性調整手段104に入射する軸上光束のNAをNAiとする。   However, when the light beam incident on the spectral characteristic adjusting means 104 is not parallel light, if it is too tilted, astigmatism (astigmatism) occurs, and the imaging performance is deteriorated. It is desirable to set so that The amount of asperity is represented here by the difference in wavefront aberration between the main scanning direction and the sub-scanning direction. 6A and 6B, the surface normal angle of the spectral characteristic adjusting unit 104 with respect to the optical axis 105a at the position of the spectral characteristic adjusting unit 104 is α, and the thickness of the spectral characteristic adjusting unit 104 is d. . The refractive index for light having a wavelength of 587.6 nm is denoted by nd, and the axial luminous flux incident on the spectral characteristic adjusting means 104 is denoted by NAi.

このとき分光特性調整手段104中の波長587.6nmの光での軸上主光線における主走査方向のマージナル光線701の光路長は   At this time, the optical path length of the marginal ray 701 in the main scanning direction of the axial principal ray with the light of wavelength 587.6 nm in the spectral characteristic adjusting means 104 is

となり、同様に副走査方向マージナル光線702の光路長は、上下の平均を取って Similarly, the optical path length of the marginal ray 702 in the sub-scanning direction is the average of the upper and lower sides.

と表すことができる。よってアス量はこの差の絶対値を波長で割って It can be expressed as. Therefore, the amount of asphalt is obtained by dividing the absolute value of this difference by the wavelength.

で表される。結像性能を低下させないためには、この光学系におけるアス量は5λ以下であることが望ましい。 It is represented by In order not to deteriorate the imaging performance, it is desirable that the asphalt amount in this optical system is 5λ or less.

本実施例においては、d=1.1mm、Nd=1.516、Nai=0.4782゜、α=10゜より、アス量は1λ程度であり、許容範囲内と考えることができる。   In this embodiment, since d = 1.1 mm, Nd = 1.516, Nai = 0.4782 ° and α = 10 °, the asphalt amount is about 1λ, which can be considered to be within the allowable range.

[実施例2]
図7(a)は本発明の実施例2の撮像装置をデジタルカメラに適用したときの要部概略図である。図7(a)において被写体からの光は結像レンズ801をとおしてフィルムや2次元センサー(イメージセンサー)といった受光手段802(図7に示されるように水平方向の軸804の方向(第1の方向)に長い矩形状)に結像される。分光特性調整手段803は図示しない被写体と受光手段802との間の光路上で、水平方向軸804を中心に10゜回転して配置されている。
[Example 2]
FIG. 7A is a main part schematic diagram when the image pickup apparatus according to the second embodiment of the present invention is applied to a digital camera. In FIG. 7A, light from the subject passes through the imaging lens 801 and is a light receiving means 802 such as a film or a two-dimensional sensor (image sensor) (as shown in FIG. 7, the direction of the horizontal axis 804 (first The image is formed into a rectangular shape that is long in the direction) . The spectral characteristic adjusting means 803 in the optical path between the object (not shown) and the light receiving means 802 is arranged to rotate 10 ° about a horizontal axis 804.

ここで、分光特性調整手段803を光軸801aに対して垂直に配置した場合、図7(b)のように光軸801aと交わる位置での入射角度は0゜、垂直方向端部では1゜となり、1゜の入射角差が生じる。これに対し、受光手段802の四隅に相当する最軸外の通過位置では30.01゜となり、軸上に対して30.01゜の入射角度差がつく。   Here, when the spectral characteristic adjusting means 803 is arranged perpendicular to the optical axis 801a, the incident angle at the position intersecting with the optical axis 801a is 0 ° and the vertical end is 1 ° as shown in FIG. 7B. And an incident angle difference of 1 ° is generated. On the other hand, at the most off-axis passing position corresponding to the four corners of the light receiving means 802, the angle is 30.01 °, and the incident angle difference is 30.01 ° with respect to the axis.

本実施例における分光特性調整手段803の分光透過率は、垂直入射の場合、図8のようになっており、半値となる波長は入射角0゜のとき約675nmである。分光特性調整手段803に対する入射角が大きくなると、実施例1の場合と同様に半値波長は短波長側にシフトする。このとき図10のように入射角1゜の場合約674.3nm、入射角30.01゜の場合約654nmであり、垂直方向でのカット波長差が0.7nm、対角方向でのカット波長差が21nmとなる。このカット波長差のため、出力画像において垂直方向に比べて対角方向に色むらの大きい画像になる可能性がある。   The spectral transmittance of the spectral characteristic adjusting means 803 in this embodiment is as shown in FIG. 8 in the case of normal incidence, and the half-value wavelength is about 675 nm when the incident angle is 0 °. When the incident angle with respect to the spectral characteristic adjusting unit 803 is increased, the half-value wavelength is shifted to the short wavelength side as in the case of the first embodiment. At this time, as shown in FIG. 10, when the incident angle is 1 °, it is about 674.3 nm, and when the incident angle is 30.01 °, it is about 654 nm, the cut wavelength difference in the vertical direction is 0.7 nm, and the cut wavelength in the diagonal direction. The difference is 21 nm. Due to this cut wavelength difference, there is a possibility that the output image has a large color unevenness in the diagonal direction compared to the vertical direction.

そこで、分光特性調整手段803を水平方向に平行な軸を中心に回転して配置すると、回転後最も入射角が大きくなる位置806での入射角θmaxは幾何的に求められる。すなわち分光特性調整手段803を光軸801aに対し垂直に配置した場合の分光特性調整手段803における、長辺方向端部に入射する光線の入射角をθ、短辺方向端部に入射する光線の入射角θとする。このとき、 Therefore, when the spectral characteristic adjusting means 803 is rotated around an axis parallel to the horizontal direction, the incident angle θmax at the position 806 where the incident angle becomes the largest after the rotation is obtained geometrically. That is, in the spectral characteristic adjusting unit 803 when the spectral characteristic adjusting unit 803 is arranged perpendicular to the optical axis 801a, the incident angle of the light incident on the long side direction end is θ H , and the light incident on the short side end. and incident angle θ V of. At this time,

となる。 It becomes.

図8(a)のように分光特性調整手段803を角度αとして10゜回転させた場合、入射角の最も小さい位置805の入射角度θはθ=α−θ=9゜、最も入射角が大きくなる位置806での入射角θmaxは31.34゜となる。また、α>θのとき、画角の狭い方向での入射角差は2θとなるのに対し、受光手段802の四隅に相当する位置806と入射角の最も小さい位置805との入射角度の差Δθは When the spectral characteristic adjusting means 803 is rotated by 10 ° as the angle α as shown in FIG. 8A, the incident angle θ at the position 805 having the smallest incident angle is θ = α−θ V = 9 °, and the most incident angle is. The incident angle θmax at the increasing position 806 is 31.34 °. Also, alpha> when theta V, incidence angle difference in a narrow direction angle of view whereas the 2 [Theta] V, the angle of incidence of the smallest position 805 of the incident angle and the position 806 corresponding to the four corners of the light receiving means 802 The difference Δθ is

となる。 It becomes.

これにより画角の狭い垂直方向では9°と11°の2゜の入射角差となるのに対し、受光手段802の四隅に相当する位置806と入射角の最も小さい位置805との入射角度の差Δθは22.34゜となる。 Thus a narrow vertical angle of view against to the 2 ° incidence angle difference of 9 ° and 11 °, the incident angle of the smallest position 805 of the incident angle and the position 806 corresponding to the four corners of the light receiving means 802 The difference Δθ is 22.34 °.

分光特性調整手段803のカット波長は表1から入射角9゜のとき約669nm、入射角11゜の場合約667.5nm、入射角31.34゜の場合約653.6nmである。そして垂直方向でのカット波長差が0.7nm、対角方向でのカット波長差が21nmとなる。よって垂直方向でのカット波長差が1.5nm、対角方向でのカット波長差が15.4nmとなり、分光特性調整手段803を回転させたことにより、画角の広い水平方向の半値波長差を74%程度に改善することができる。   From Table 1, the cut wavelength of the spectral characteristic adjusting means 803 is about 669 nm when the incident angle is 9 °, about 667.5 nm when the incident angle is 11 °, and about 653.6 nm when the incident angle is 31.34 °. The cut wavelength difference in the vertical direction is 0.7 nm, and the cut wavelength difference in the diagonal direction is 21 nm. Therefore, the cut wavelength difference in the vertical direction is 1.5 nm, and the cut wavelength difference in the diagonal direction is 15.4 nm. By rotating the spectral characteristic adjusting means 803, the half-value wavelength difference in the horizontal direction with a wide angle of view is reduced. It can be improved to about 74%.

受光手段802内の半値波長のムラを低減することによって色味のムラを改善することを考えると、入射角度差が最も大きい方向について、80%程度に低減できると効果があり、より効果を上げるためには70以下とすることが適当である。分光特性調整手段803を傾ける角度は、大きいほどより面内の半値波長ムラを改善することができるが、分光特性調整手段803に入射する光線の発散、集束度によっては、傾けたことによる波面収差の劣化が実施例1と同様に発生することが考えられる。このため、その撮像装置として許容できる範囲内とすればよい。   Considering to improve the unevenness of the tint by reducing the unevenness of the half-value wavelength in the light receiving means 802, it is effective if it can be reduced to about 80% in the direction where the difference in the incident angle is the largest, and the effect is further increased. For this purpose, it is appropriate to set it to 70 or less. The larger the angle at which the spectral characteristic adjusting means 803 is tilted, the more in-plane half-value wavelength unevenness can be improved. It is conceivable that the deterioration occurs as in the first embodiment. For this reason, what is necessary is just to set it as the tolerance | permissible_range as the imaging device.

以上、各実施例によれば平行平板の光学フィルタを用いつつ、画角による分光分布ムラを低減することができ、高画質の画像情報が得られるカメラや画像読取装置が得られる。   As described above, according to each embodiment, it is possible to reduce a spectral distribution unevenness due to an angle of view while using a parallel plate optical filter, and to obtain a camera and an image reading apparatus that can obtain high-quality image information.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

101 原稿 102 原稿台ガラス 103 折り返しミラー
104 分光特性調整手段 105 結像レンズ 106 読取手段
107 光源手段 108 キャリッジ 801 結像レンズ
802 受光手段 803 分光特性調整手段
DESCRIPTION OF SYMBOLS 101 Document 102 Original plate glass 103 Folding mirror 104 Spectral characteristic adjustment means 105 Imaging lens 106 Reading means 107 Light source means 108 Carriage 801 Imaging lens 802 Light receiving means 803 Spectral characteristic adjustment means

Claims (5)

物体からの光束を集光する結像光学系と、前記物体からの光束を受光する受光部と、を有する撮像装置であって、
前記受光部は、前記結像光学系の光軸に垂直な第1の方向に長い矩形状であり、
前記物体から前記受光部までの光路中に配置され、前記物体からの光束の分光特性を変化させる多層膜面を含む調整手段を有し、
前記第1の方向に垂直な断面内における前記光軸と前記多層膜面の面法線とのなす角度をα、前記光軸と前記受光部に入射する最軸外主光線とのなす角度をθ、とするとき、
0.3θ<α<80°
なる条件を満足することを特徴とする撮像装置。
An imaging apparatus having an imaging optical system that collects a light beam from an object, and a light receiving unit that receives the light beam from the object,
The light receiving portion has a rectangular shape that is long in a first direction perpendicular to the optical axis of the imaging optical system,
Adjusting means including a multilayer film surface arranged in an optical path from the object to the light receiving unit and changing a spectral characteristic of a light beam from the object;
An angle formed between the optical axis and a surface normal of the multilayer film surface in a cross section perpendicular to the first direction is α, and an angle formed between the optical axis and the most off-axis principal ray incident on the light receiving unit. θ,
0.3θ <α <80 °
An imaging device characterized by satisfying the following condition:
0.67θ<α<80°
なる条件を満足することを特徴とする請求項に記載の撮像装置。
0.67θ <α <80 °
The imaging apparatus according to claim 1 , wherein the following condition is satisfied.
前記受光部は、前記第1の方向に配列された複数の画素を含むことを特徴とする請求項1または2に記載の撮像装置。 The light receiving unit, an imaging apparatus according to claim 1 or 2, characterized in that it comprises a plurality of pixels arranged in the first direction. 前記受光部を複数有し、該複数の受光部は前記光軸と前記第1の方向とに垂直な第2の方向において配列されていることを特徴とする請求項に記載の撮像装置。 The imaging apparatus according to claim 3 , comprising a plurality of the light receiving units, wherein the plurality of light receiving units are arranged in a second direction perpendicular to the optical axis and the first direction. 前記物体を照明する照明手段と、前記物体からの光束を前記結像光学系に導く反射部材と、を有することを特徴とする請求項1乃至のいずれか1項に記載の撮像装置。 Illuminating means for illuminating the object, an imaging apparatus according to the light beam to any one of claims 1 to 4, characterized in that it has a, a reflecting member for guiding the image forming optical system from the object.
JP2011024903A 2011-02-08 2011-02-08 Imaging device Expired - Fee Related JP5888856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011024903A JP5888856B2 (en) 2011-02-08 2011-02-08 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011024903A JP5888856B2 (en) 2011-02-08 2011-02-08 Imaging device

Publications (3)

Publication Number Publication Date
JP2012165242A JP2012165242A (en) 2012-08-30
JP2012165242A5 JP2012165242A5 (en) 2014-02-20
JP5888856B2 true JP5888856B2 (en) 2016-03-22

Family

ID=46844195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024903A Expired - Fee Related JP5888856B2 (en) 2011-02-08 2011-02-08 Imaging device

Country Status (1)

Country Link
JP (1) JP5888856B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6128897B2 (en) * 2013-03-06 2017-05-17 キヤノン株式会社 Illumination device and image reading device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623368U (en) * 1992-02-25 1994-03-25 スタンレー電気株式会社 Image reader
JP2000304918A (en) * 1999-02-19 2000-11-02 Canon Inc Image forming optical system and original reader using the same
JP2006074575A (en) * 2004-09-03 2006-03-16 Canon Inc Image reader

Also Published As

Publication number Publication date
JP2012165242A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP4289914B2 (en) Imaging optical system and image reading apparatus using the same
JPWO2009011153A1 (en) Image reading device
TW460712B (en) Optical imaging system
JP4994753B2 (en) Lens unit and image reading apparatus using the same
JPH1164605A (en) Rod lens array and unmagnified image-forming optical device
US8749864B2 (en) Image reading optical system and image reading apparatus
JP5888856B2 (en) Imaging device
JPH1114803A (en) Rod lens array and unmagnified image optical device using the array
JP4349500B2 (en) Optical scanning optical system
JP2018157503A (en) Reading device
JP2003344956A (en) Image reader
JP2011244134A (en) Method for adjusting a focusing optical system and image reading apparatus using the method
JP2011244134A5 (en)
US8018627B2 (en) Shared image scanning method and picture scanner thereof
JP4415927B2 (en) Image reading optical system
JP4174287B2 (en) Two-dimensional scanning device and image display device
US20100277773A1 (en) Penta-mirror multi-reflection scanning module
JP2008078877A (en) Method for adjusting image-forming optical system for reading image
JP7216240B1 (en) Optical devices and image sensors
JP4569086B2 (en) Image reading optical apparatus and reflection surface adjusting method in the apparatus
JP5434034B2 (en) Imaging apparatus and image reading apparatus
JP2009095018A (en) Offset catadioptric system, document imaging system and image processing system
JP2003315932A (en) Optical lens device for image scanner
JPH06209397A (en) Picture reader
JP2012165242A5 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160216

R151 Written notification of patent or utility model registration

Ref document number: 5888856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees