JP5884049B2 - 点灯装置およびそれを備えた照明器具 - Google Patents

点灯装置およびそれを備えた照明器具 Download PDF

Info

Publication number
JP5884049B2
JP5884049B2 JP2011265720A JP2011265720A JP5884049B2 JP 5884049 B2 JP5884049 B2 JP 5884049B2 JP 2011265720 A JP2011265720 A JP 2011265720A JP 2011265720 A JP2011265720 A JP 2011265720A JP 5884049 B2 JP5884049 B2 JP 5884049B2
Authority
JP
Japan
Prior art keywords
switching element
lighting device
circuit
dimming
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011265720A
Other languages
English (en)
Other versions
JP2013118133A (ja
Inventor
佐奈 江崎
佐奈 江崎
明則 平松
明則 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011265720A priority Critical patent/JP5884049B2/ja
Priority to US13/692,003 priority patent/US8872437B2/en
Priority to EP12195190.9A priority patent/EP2603059A1/en
Priority to CN201210518473.1A priority patent/CN103139986B/zh
Publication of JP2013118133A publication Critical patent/JP2013118133A/ja
Application granted granted Critical
Publication of JP5884049B2 publication Critical patent/JP5884049B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/165Controlling the light source following a pre-assigned programmed sequence; Logic control [LC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Description

本発明は、半導体発光素子を調光点灯可能な点灯装置およびそれを備えた照明器具に関する。
近年、LED(Light Emitting Diode)や有機EL(Electro Luminescence)などの半導体発光素子を光源とする照明器具が普及してきている。この種の照明器具には、たとえば図15に示すような構成の点灯装置(LED点灯装置)が用いられる(たとえば特許文献1参照)。
この点灯装置は、直流電源91に対して直列に接続される(第1の)スイッチング素子92およびインダクタ93と、スイッチング素子92のオフ時にインダクタ93および光源負荷(発光ダイオード)94と共に閉回路を形成するダイオード95とを備えている。この点灯装置は自励式であって、スイッチング素子92がオンオフ動作することにより、スイッチング素子92のオン時にインダクタ93に蓄積された電磁エネルギーを、スイッチング素子92のオフ時にダイオード95を介して光源負荷94に放出する。
また、この点灯装置は、スイッチング素子92に流れる電流を検出する抵抗96をさらに備え、抵抗96で検出した電流に応じてスイッチング素子92のオン期間を変化させるので、自励式の点灯回路により光源負荷94に流れる電流を一定の電流に制御できる。ただし、特許文献1に記載の点灯装置は調光機能を有しておらず、光源負荷94を調光点灯させることができない。
一方、特許文献2には、交流電源(主電源電圧)の周波数(50/60Hz)に同期する100Hzまたは120Hzのバースト周波数で、光源負荷(LED照明モジュール)への供給電力をオンオフすることが記載されている。この点灯装置(電源アセンブリ)は、光源負荷への供給電力がオン状態となるパルスの長さを制御することにより、調光制御が可能であるが、調光点灯のための具体的な回路構成は特許文献2には開示されていない。
特開2005−294063号公報 特表2003−522393号公報
ところで、特許文献2に記載のようにパルスの長さ(オン時間)を制御することにより調光を行う構成の点灯装置では、調光比が小さくなる(暗くなる)と、バースト周波数の1周期におけるオン時間が短くなって、ちらつきを生じる可能性がある。そのため、この点灯装置では、選択可能な調光比の範囲をあまり広く設定することができない。
本発明は上記事由に鑑みて為されており、比較的簡単な構成で、光源負荷の調光範囲を広げることが可能な点灯装置およびそれを備えた照明器具を提供することを目的とする。
本発明の点灯装置は、直流電源に直列接続されて高周波でオンオフ制御されるスイッチ
ング素子と、前記スイッチング素子に直列に接続されて当該スイッチング素子のオン時に前記直流電源から電流が流れるインダクタと、前記スイッチング素子のオン時に前記インダクタに蓄積された電磁エネルギーを前記スイッチング素子のオフ時に半導体発光素子からなる光源負荷に放出するダイオードと、前記スイッチング素子のオンオフ動作を制御する制御回路と、前記スイッチング素子に流れる電流を検出する電流検出部と、前記スイッチング素子の駆動信号により充電されるコンデンサとを備え、前記制御回路は、前記スイッチング素子の制御モードとして、前記インダクタに臨界モードまたは不連続モードで電流が流れるように予め決められている発振周波数およびオン時間で前記スイッチング素子をオンオフ動作させる第1の制御モードと、前記スイッチング素子の発振周波数を固定し前記スイッチング素子のオン時間を変化させる第2の制御モードと、前記スイッチング素子のオン時間を固定し前記スイッチング素子の発振周波数を変化させる第3の制御モードとを有し、調光比を複数に分けてなる区間ごとに前記第2の制御モードと前記第3の制御モードとが割り当てられており、前記第1の制御モードを選択することにより前記光源負荷を全点灯させ、調光比が指定されると当該調光比が該当する前記区間に応じて前記第2の制御モードと前記第3の制御モードとの一方を選択して前記光源負荷を前記調光比で調光点灯させ、前記制御回路は、前記電流検出部で検出される電流が第1の所定値に達すると前記スイッチング素子をオフさせ、前記コンデンサの両端電圧が所定の閾値以下になると前記スイッチング素子をオンさせており、前記第1の所定値を変化させることにより前記スイッチング素子のオン時間を変化させ、前記コンデンサの放電速度を決める第2の所定値を変化させることにより前記スイッチング素子の発振周波数を変化させることを特徴とする。
この点灯装置において、前記制御回路は、前記第1の所定値および前記第2の所定値のうち少なくとも一方をゼロ以下とすることにより、前記スイッチング素子のオンオフ動作を停止させて前記光源負荷を消灯させることがより望ましい。
この点灯装置において、前記制御回路は、外部からの調光信号を受信して、当該調光信号によって決まる前記調光比に応じて前記スイッチング素子の制御モードを選択することがより望ましい。
この点灯装置において、前記制御回路は、前記スイッチング素子の発振周波数を1kHz以上の範囲で設定することがより望ましい。
本発明の照明器具は、上記点灯装置と、当該点灯装置から電力供給される光源負荷とを備えることを特徴とする。
本発明は、比較的簡単な構成で、光源負荷の調光範囲を広げることが可能になるという利点がある。
実施形態1に係る点灯装置の構成を示す回路図である。 実施形態1に係る点灯装置の全点灯状態の動作説明図である。 実施形態1に係る点灯装置の第1の調光状態の動作説明図である。 実施形態1に係る点灯装置の第2の調光状態の動作説明図である。 実施形態1に係る点灯装置の第3の調光状態の動作説明図である。 実施形態1に係る点灯装置の構成を示す回路図である。 実施形態1に係る点灯装置の制御回路の構成を示す回路図である。 実施形態1に係る点灯装置の構成を示す回路図である。 実施形態1に係る点灯装置の動作説明図である。 実施形態2に係る点灯装置の構成を示す回路図である。 実施形態2に係る点灯装置の動作説明図である。 実施形態2に係る点灯装置の動作説明図である。 上記点灯装置を備えた照明器具を示す断面図である。 上記点灯装置の他の構成の要部を示す回路図である。 従来の点灯装置の構成を示す回路図である。
(実施形態1)
本実施形態の点灯装置1は、図1に示すように、商用電源などの交流電源2(図8参照)に接続される電源コネクタ11と、発光ダイオード(LED)などの半導体発光素子からなる光源負荷3にリード線31を介して接続される出力コネクタ12とを備えている。光源負荷3は、点灯装置1から供給される直流電流により点灯する。光源負荷3は、複数個(たとえば30個)の発光ダイオードを直列あるいは並列、または直並列接続してなるLEDモジュールであってもよい。
この点灯装置1は、フィルタ回路14および直流電源回路15からなる直流電源生成部と、降圧チョッパ回路(バックコンバータ)16と、制御回路4とを主構成として備えている。以下、点灯装置1の基本的な構成について図1を参照して説明する。
電源コネクタ11には、電流ヒューズ13およびフィルタ回路14を介して直流電源回路15が接続されている。フィルタ回路14は、電流ヒューズ13を介して電源コネクタ11に並列接続されたサージ電圧吸収素子141およびフィルタコンデンサ142と、フィルタコンデンサ143と、コモンモードチョークコイル144とで構成されており、ノイズをカットする。フィルタコンデンサ143は直流電源回路15の入力端間に接続されており、コモンモードチョークコイル144は両フィルタコンデンサ142,143間に挿入されている。
直流電源回路15は、ここでは全波整流器151と平滑コンデンサ152とからなる整流平滑回路であるが、これに限らず、たとえば昇圧チョッパ回路を用いた力率改善回路であってもよい。この構成により、フィルタ回路14および直流電源回路15からなる直流電源生成部は、交流電源2からの交流電圧(100V、50/60Hz)を直流電圧(略140V)に変換し、その出力端(平滑コンデンサ152の両端)から出力する。直流電源回路15の出力端(平滑コンデンサ152の両端)には降圧チョッパ回路16が接続され、降圧チョッパ回路16の出力端は出力コネクタ12に接続されている。
降圧チョッパ回路16は、直流電源回路(直流電源)15の出力端間に直列接続されたダイオード(回生ダイオード)161およびスイッチング素子162と、ダイオード161の両端間において光源負荷3と直列に接続されるインダクタ163とを備えている。ここで、ダイオード161は、そのカソードを直流電源回路15の正極側の出力端に接続する向きで設けられている。つまり、スイッチング素子162は、ダイオード161に並列接続されたインダクタ163および光源負荷3の直列回路と、直流電源回路15の負極側の出力端との間に挿入される形になる。ダイオード161の機能については後述する。
また、降圧チョッパ回路16は、出力端間(一対の出力コネクタ12間)に、光源負荷3と並列接続され、光源負荷3への出力の脈動(リップル)を抑制する出力コンデンサ(図1,6では破線で示す)164を備えている。ただし、この出力コンデンサ164は適宜省略可能である。
制御回路4は降圧チョッパ回路16のスイッチング素子162を高周波でオンオフ駆動する。図1の例ではスイッチング素子162はMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)からなり、制御回路4はスイッチング素子162のゲート−ソース間にゲート信号を与えることにより、スイッチング素子162をオンオフ動作させる。具体的には、制御回路4は、H(High)レベルとL(Low)レベルとを交互に繰り返す矩形波状のゲート信号(図2(b)参照)を出力し、スイッチング素子162は、ゲート信号がHレベルの期間にオンとなり、ゲート信号がLレベルの期間にオフとなる。なお、図1の例では制御回路4のゲート信号の出力端子は、抵抗41,42の直列回路を介して直流電源回路14の負極側の出力端に接続されており、両抵抗41,42の接続点がスイッチング素子162のゲート端子に接続されている。
ところで、この制御回路4は、スイッチング素子162の制御モードとして、第1の制御モード、第2の制御モード、第3の制御モードの3つのモードを有している。制御回路4は、外部から指定される調光比に応じて第2の制御モード、第3の制御モードを選択し、これにより、指定された調光比にて光源負荷3を調光点灯させる。ここで、調光比は複数の区間に分けられ、第2の制御モードと第3の制御モードとは調光比の区間ごとに予め割り当てられている。
第1の制御モードでは、制御回路4は、インダクタ163に電流が不連続に流れる断続モードとなるように、予め決められている発振周波数およびオン時間(1周期当たりのオン時間)でスイッチング素子162をオンオフ動作させる。ここでいう断続モードは、インダクタ163に流れる電流に休止区間(ゼロになる区間)が生じるモードであって、インダクタ163に流れる電流がゼロになるとスイッチング素子162をオンする臨界モードも含んでいる。つまり、断続モードは、インダクタ163に流れる電流が一瞬だけゼロになるモード(臨界モード)と、インダクタ163に流れる電流の1周期ごとに電流がゼロとなる状態が所定期間継続するモード(不連続モード)とを含んでいる。
第2の制御モードでは、制御回路4は、調光比の同一区間内においてスイッチング素子162の発振周波数を略固定とし、スイッチング素子162のオン時間を変化させる。第3の制御モードでは、制御回路4は、第2の制御モードとは逆に、調光比の同一区間内においてスイッチング素子162のオン時間を略固定とし、スイッチング素子162の発振周波数を変化させる。
制御回路4は、第1の制御モードを選択することによって、光源負荷3を全点灯させる。一方、制御回路4は、調光比が指定されると、指定された調光比が該当する区間に応じて第2の制御モードと第3の制御モードとの一方を選択することにより光源負荷3を指定された調光比で調光点灯させる。ここで、第2の制御モードでは発振周波数が同一区間内において略固定となるので、第2の制御モードが割り当てられた区間には、発振周波数が既定値として予め割り当てられている。第3の制御モードではオン時間が同一区間内において略固定となるので、第3の制御モードが割り当てられた区間には、オン時間が既定値として予め割り当てられている。
たとえば、第2の制御モードに対応する区間の調光比が指定された場合、制御回路4は、第2の制御モードを選択して、発振周波数をこの区間に割り当てられている既定値(発振周波数)に略固定し、オン時間を変化させて光源負荷3を調光点灯させる。対して、第3の制御モードに対応する区間の調光比が指定された場合、制御回路4は、第3の制御モードを選択して、オン時間をこの区間に割り当てられている既定値(オン時間)に略固定し、発振周波数を変化させて光源負荷3を調光点灯させる。
次に、上記点灯装置1の動作について、光源負荷3を全点灯させる全点灯状態と、光源負荷3を調光点灯させる第1〜第3の調光状態との各点灯状態に分けて説明する。ここでいう第1の調光状態は第2の制御モードによる点灯状態である。また、第2の調光状態は第1の調光状態からさらに第3の制御モードを選択した点灯状態、第3の調光状態は第2の調光状態からさらに第2の制御モードを選択した点灯状態である。つまり、点灯装置1は、全点灯状態から第2の制御モードが選択されると第1の調光状態に移行し、第1の調光状態から第3の制御モードが選択されると第2の調光状態に移行し、第2の調光状態から第2の制御モードが選択される第3の調光状態に移行する。言い換えれば、第1の調光状態は全点灯状態から第2の制御モードのみが選択された状態であり、第2の調光状態は全点灯状態から第2の制御モードに加えて第3の制御モードが多段的に選択された状態である。第3の調光状態は、全点灯状態から第2の制御モードに加えて第3の制御モード、さらに第2の制御モードが多段的に選択された状態である。
図2は、全点灯状態における点灯装置1の動作を示している。図2では、横軸を時間軸として、インダクタ163に流れる電流I1を(a)に示し、制御回路4からスイッチング素子162のゲート端子に印加されるゲート信号(駆動信号)を(b)に示している(図3〜5も同様)。また、図2では、スイッチング素子162がオンのオン区間(つまりゲート信号がHレベルの期間)を「Ton」で表し、スイッチング素子162がオフのオフ区間(つまりゲート信号がLレベルの期間)を「Toff」で表している(図3〜5も同様)。
全点灯状態において、スイッチング素子162のオン区間には、直流電源回路15から、直流電源回路15、光源負荷3、インダクタ163、スイッチング素子162、直流電源回路15の経路で電流が流れインダクタ163に電磁エネルギーが蓄積される。一方、スイッチング素子162のオフ区間には、インダクタ163に蓄積された電磁エネルギーが放出され、インダクタ163、ダイオード161、光源負荷3、インダクタ163の経路で電流が流れる。
ここで、全点灯状態では、制御回路4は第1の制御モードにより、予め決められている発振周波数およびオン時間(1周期当たりのオン時間)でスイッチング素子162をオンオフ動作させている。全点灯状態においては、点灯装置1は、図2(a)に示すようにインダクタ163を流れる電流I1がゼロになった後でスイッチング素子162がオンするいわゆる臨界モードまたは不連続モードで動作する。このときのスイッチング素子162の発振周波数はf1、オン時間はt1である。
図3は、第1の調光状態における点灯装置1の動作を示している。
第1の調光状態においては、制御回路4は、主としてスイッチング素子162のオン時間を制御し、発振周波数f2については全点灯状態の発振周波数f1と略等しくする。つまり、制御回路4は、全点灯状態からスイッチング素子162の発振周波数を固定したままで、スイッチング素子162のオン時間のみを短くするように変化させている。ここでは、点灯装置1は、第1の調光状態においても、図3(a)に示すようにインダクタ163を流れる電流I1がゼロになった後でスイッチング素子162がオンするいわゆる不連続モードで動作する。
このように第1の調光状態においては、点灯装置1はスイッチング素子162のオン時間が短くなるため、全点灯状態に比較してインダクタ163を流れる電流I1のピークが減少し、インダクタ163に蓄積される電磁エネルギーも減少する。その結果、全点灯状態に比較して、点灯装置1から光源負荷3に供給される電流は減少し、光源負荷3は光出力が低下する(暗くなる)。このときのスイッチング素子162のオン時間t2は全点灯状態のオン時間t1より短く(t1>t2)、発振周波数f2は全点灯状態の発振周波数f1と略同じである(f1≒f2)。
図4は、第2の調光状態における点灯装置1の動作を示している。
第2の調光状態においては、制御回路4は、主としてスイッチング素子162の発振周波数を制御し、オン時間t3については第1の調光状態のオン時間t2と略等しくする。つまり、制御回路4は、第1の調光状態からスイッチング素子162のオン時間を固定したままで、スイッチング素子162の発振周波数のみを低くするように変化させている。ここでは、点灯装置1は、第2の調光状態においても、図4(a)に示すようにインダクタ163に電流I1が断続的に流れる不連続モードで動作する。
このように第2の調光状態においては、点灯装置1はスイッチング素子162の発振周波数が低下し、スイッチング素子162のオフ時間(1周期当たりのオフ時間)が長くなる。そのため、点灯装置1は、第1の調光状態に比較してインダクタ163を流れる電流I1のピークがさらに減少し、インダクタ163に蓄積される電磁エネルギーもさらに減少する。その結果、第1の調光状態に比較して、点灯装置1から光源負荷3に供給される電流はさらに減少し、光源負荷3は光出力がさらに低下する(さらに暗くなる)。このときのスイッチング素子162のオン時間t3は全点灯状態のオン時間t2と略同じであり(t2≒t3)、発振周波数f3は第1の調光状態の発振周波数f2より低くなる(f2>f3)。
図5は、第3の調光状態における点灯装置1の動作を示している。
第3の調光状態においては、制御回路4は、主としてスイッチング素子162のオン時間を制御し、発振周波数f4については第2の調光状態の発振周波数f3と略等しくする。つまり、制御回路4は、第2の調光状態からスイッチング素子162の発振周波数を固定したままで、スイッチング素子162のオン時間のみを短くするように変化させている。
このように第3の調光状態においては、点灯装置1はスイッチング素子162のオン時間が一層短くなるため、第2の調光状態に比較してインダクタ163を流れる電流I1のピークがさらに減少し、インダクタ163に蓄積される電磁エネルギーもさらに減少する。その結果、第2の調光状態に比較して、点灯装置1から光源負荷3に供給される電流はさらに減少し、光源負荷3は光出力がさらに低下する(さらに暗くなる)。このときのスイッチング素子162のオン時間t4は第2の調光状態のオン時間t3より短く(t3>t4)、発振周波数f4は第2の調光状態の発振周波数f3と略同じである(f3≒f4)。
結果的に、光源負荷3は全点灯状態で最も明るく、第3の調光状態で最も暗くなる。
なお、本実施形態においては、制御回路4が、第2の制御モードでスイッチング素子162のオン時間を連続的に変化させ、第3の制御モードでスイッチング素子162の発振周波数を連続的に変化させる場合を例示している。ただし、この例に限らず、制御回路4は、第2の制御モードでスイッチング素子162のオン時間を段階的(不連続)に変化させ、第3の制御モードでスイッチング素子162の発振周波数を段階的(不連続)に変化させてもよい。
次に、制御回路4の具体的な構成についてさらに詳しく説明する。
本実施形態では、制御回路4は、図6に示すように制御用の集積回路(IC)40およびその周辺部品によって構成されている。集積回路40として、ここではSTマイクロエレクトロニクス社製の「L6562」を用いている。この集積回路(L6562)40は、本来、PFC回路(力率改善制御用の昇圧チョッパ回路)の制御用ICであり、内部に乗算回路など、降圧チョッパ回路16の制御には不要な構成要素も含んでいる。その反面、この集積回路40は、入力電流の平均値を入力電圧の包絡線と相似形とする制御のために、入力電流のピーク値を制御する機能と、ゼロクロス制御機能とを1チップ内に具備しており、これらの機能を降圧チョッパ回路16の制御に転用している。
また、点灯装置1は、ツェナダイオード701および平滑コンデンサ702を有し集積回路40に制御用電源を供給する制御用電源回路7を備えており、制御用電源回路7の出力電圧を集積回路40の電源端子(8番ピンP8)に印加している。
図7は、本実施形態で用いる集積回路40の内部構成を簡略化して示している。1番ピン(INV)P1は集積回路40内蔵の誤差増幅器(エラーアンプ)401の反転入力端子、2番ピン(COMP)P2は誤差増幅器401の出力端子、3番ピン(MULT)P3は乗算回路402の入力端子である。また、4番ピン(CS)P4はチョッパ電流検出端子、5番ピン(ZCD)P5はゼロクロス検出端子、6番ピン(GND)P6はグランド端子、7番ピン(GD)P7はゲートドライブ端子、8番ピン(Vcc)P8は電源端子である。
集積回路40は、8番ピンP8と6番ピンP6との間に、所定電圧以上の制御電源電圧が供給されると、制御電源403により基準電圧Vref1,Vref2が生成され、且つ内部の各回路が動作可能となる。集積回路40は、電源投入時、スタータ404によりフリップフロップ405のセット入力端子(図7中「S」)にスタートパルスが供給され、フリップフロップ405の出力(図7中「Q」)がHレベルとなり、駆動回路406を介して7番ピンP7がHレベルになる。
7番ピンP7がHレベルになると、図6に示す抵抗41,42で分圧された駆動電圧(ゲート信号)が、スイッチング素子162のゲート−ソース間に印加される。なお、スイッチング素子162のソース端子と直流電源回路15の負極との間に挿入されている抵抗43は、スイッチング素子162を流れる電流検出用の小抵抗であって、ゲート・ソース間の駆動電圧には殆ど影響しない。
駆動電圧が印加されることによりスイッチング素子162がオンになると、平滑コンデンサ152の正極から光源負荷3、インダクタ163、スイッチング素子162、抵抗43を介して平滑コンデンサ152の負極へ電流が流れる。このとき、インダクタ163に流れるチョッパ電流は、インダクタ163が磁気飽和しない限り略直線的に上昇する電流となり、この電流は電流検出部としての抵抗43により検出される。電流検出用の抵抗43の両端間には、抵抗44およびコンデンサ62の直列回路が接続されており、抵抗44とコンデンサ62との接続点は集積回路40の4番ピンP4に接続されている。これにより、抵抗43にて検出された電流値に相当する電圧が集積回路40の4番ピンP4に入力される。
集積回路40は、4番ピンP4に入力された電圧値が、内部の抵抗407およびコンデンサ408からなるノイズフィルタを介して、コンパレータ409の「+」入力端子に印加される。コンパレータ409は、1番ピンP1の印加電圧と3番ピンP3の印加電圧とにより決定される参照電圧が「−」入力端子に印加され、その出力がフリップフロップ405のリセット端子(図7中「R」)に入力されている。なお、ノイズフィルタを構成する抵抗407はたとえば40kΩ、コンデンサ408はたとえば5pFである。
そのため、集積回路40は、4番ピンP4の電圧が参照電圧を超えると、コンパレータ409の出力がHレベルとなり、フリップフロップ405のリセット端子にリセット信号が入力されてフリップフロップ405の出力がLレベルとなる。このとき、集積回路40は7番ピンP7がLレベルになるので、図6のダイオード45がオンになり、抵抗46を介してスイッチング素子162がゲート−ソース間電荷が引き抜かれ、スイッチング素子162は速やかにオフする。スイッチング素子162がオフすると、インダクタ163に蓄積されていた電磁エネルギーが、ダイオード161を介して光源負荷3に放出される。
本実施形態では、抵抗47,48,49およびコンデンサ50,51が、後述する信号発生回路21(図8参照)からの矩形波信号S1を平均化しており、3番ピンP3には矩形波信号S1のデューティ比に応じた大きさの電圧が印加されている。これにより、コンパレータ409の参照電圧は、矩形波信号S1のデューティ比に応じて変化する。ここで、矩形波信号S1のデューティ比が大きくなる(Hレベルの時間が長くなる)と、参照電圧が大きくなるのでスイッチング素子162のオン時間は長くなる。一方、矩形波信号S1のデューティ比が小さくなる(Hレベルの時間が短くなる)と、参照電圧が小さくなるのでスイッチング素子162のオン時間は短くなる。
言い換えれば、制御回路4は、抵抗(電流検出部)43で検出される電流が、矩形波信号S1によって決まる第1の所定値(参照電圧に相当)に達すると、スイッチング素子162をオフさせる。この第1の所定値を変化させることにより、スイッチング素子162のオン時間は変化するので、本実施形態における第1の調光状態と第3の調光状態では、この原理を利用してスイッチング素子162のオン時間を可変としている。
スイッチング素子162のオフ時間は、図6に示すように集積回路40の7番ピンP7と5番ピンP5との間に直列接続されたダイオード52と抵抗53およびコンデンサ54の並列回路と、コンデンサ55と、トランジスタ56と、抵抗57とによって決定される。コンデンサ55は5番ピンP5とグランドとの間に接続され、トランジスタ56および抵抗57は直列接続されコンデンサ55と並列に接続されている。ここで、抵抗58,59,60およびコンデンサ61が後述する信号発生回路21(図8参照)からの矩形波信号S2を平均化しており、矩形波信号S2のデューティ比に応じた大きさの電圧がトランジスタ56のベース−エミッタ間に印加されている。
集積回路40は、図7に示すように5番ピンP5に接続されたクランプ回路410を内蔵しており、5番ピンP5がここでは最大5.7Vでクランプされる。5番ピンP5が「−」入力端子に接続されたコンパレータ411は、5番ピンP5の入力電圧が基準電圧Vref2(ここでは0.7V)以下になったときに出力がHレベルになる。そのため、7番ピンP7がHレベル(通常略10〜15V)のとき、5番ピンP5は5.7Vにクランプされているが、7番ピンP7がLレベルになると、ダイオード52がターンオフしコンデンサ55がトランジスタ56および抵抗57を通して0.7Vまで放電する。
このポイントでコンパレータ411の出力はHレベルとなる。そのため、コンパレータ411の出力端子に論理和回路412を介して接続されたフリップフロップ405がセットされ、フリップフロップ405の出力もHレベルとなる。これにより、7番ピンP7が再びHレベルとなってスイッチング素子162がオンとなる。それ以降も、制御回路4は同じ動作を繰り返すことによって、スイッチング素子162を高周波でオンオフ駆動する。
ここにおいて、矩形波信号S2のデューティ比が大きい(Hレベルの時間が長い)ほど、トランジスタ56のベース−エミッタ間電圧が高くなり、トランジスタ56に流れる電流も大きくなるので、コンデンサ55は早く放電される。そのため、スイッチング素子162のオフ時間は短くなり、スイッチング素子162の発振周波数が高くなる。逆に、矩形波信号S2のデューティ比が小さく(Hレベルの時間が短く)なると、トランジスタ56のベース−エミッタ間電圧が低くなり、トランジスタ56に流れる電流も減少するので、コンデンサ55からの放電も遅れることになる。そのため、スイッチング素子162のオフ時間は長くなり、スイッチング素子162の発振周波数が低くなる。
言い換えれば、制御回路4は、スイッチング素子の駆動信号により充電されるコンデンサ55の両端電圧が所定の閾値(基準電圧Vref2)以下になると、スイッチング素子162をオンさせる。ここで、制御回路4は、矩形波信号S2によって決まる第2の所定値(トランジスタ56のベース−エミッタ間電圧)により、コンデンサ33の放電速度が決定されており、第2の所定値を変化させることにより、スイッチング素子162の発振周波数が変化する。そこで、本実施形態における第2の調光状態では、この原理を利用してスイッチング素子162の発振周波数を可変としている。
次に、図1または図6の点灯装置1に、調光比を決定するための調光信号を受けて矩形波信号S1,S2を発生する構成を付加した点灯装置1の全体構成について、図8を参照して説明する。なお、図8では、上述したフィルタ回路14と直流電源回路15とをまとめて直流電源生成部140として図示しており、直流電源生成部140におけるコンデンサ145,146は回路グランド(コンデンサ152の負極)を高周波的にフレームグランドに接続する。
図8において、点灯装置1は、図1または図6の構成に加え、調光信号線5を接続するための信号線コネクタ17と、整流回路18と、絶縁回路19と、波形整形回路20と、信号発生回路21とを備えている。調光信号線5には、たとえば周波数が1kHz、振幅が10Vでデューティ比可変の矩形波電圧信号からなる調光信号が供給されている。
整流回路18は、信号線コネクタ17に接続されており、調光信号線5の配線を無極性化するための回路であって、この整流回路18が設けられていることにより点灯装置1は調光信号線5を逆接続しても正常に動作する。つまり、整流回路18は、信号線コネクタ17に接続された全波整流器181と、全波整流器181の出力に直列接続された抵抗等のインピーダンス素子182およびツェナダイオード183とを備えている。これにより、整流回路18は、入力された調光信号を全波整流器181で全波整流し、抵抗等のインピーダンス要素182を介してツェナダイオード183の両端に矩形波電圧信号を発生する。
絶縁回路19は、フォトカプラ191を備え、調光信号線5と点灯装置1の制御回路4とを絶縁しながら、矩形波電圧信号を制御回路4に伝達する機能を有している。波形整形回路20は、絶縁回路19のフォトカプラ191から出力された信号を波形整形して、PWM(Pulse Width Modulation)信号として出力する。したがって、調光信号線5を介して長い距離を伝送された矩形波電圧信号(調光信号)は、波形に歪みが生じていることがあるが、この波形整形回路20によって歪みの影響は除去される。
ここにおいて、従来のインバータ方式の蛍光灯調光点灯装置においては、波形整形回路の後段にさらにCR積分回路(平滑回路)などのローパスフィルタ回路を設け、アナログの調光電圧を生成し、この調光電圧に応じてインバータの周波数などを可変制御している。これに対して、本実施形態の点灯装置1は、波形整形後のPWM信号を信号発生回路21に入力している。
信号発生回路21は、図示は省略するがマイコン(マイクロコンピュータ)とその周辺部品とで構成されている。マイコンは、入力されるPWM信号のオン時間を内部のタイマで計測し、2種類の矩形波信号S1,S2を制御回路4に出力する。マイコンから出力される矩形波信号S1,S2は、上述したように制御回路4内の抵抗およびコンデンサにて平滑されるので、矩形波のデューティ比が大きい(Hレベルの時間が長い)ほど制御回路4における入力値は大きくなる。つまり、矩形波信号S1のデューティ比が大きいほど、矩形波信号S1を平滑した3番ピンP3の電圧V1は大きくなり、矩形波信号S2のデューティ比が大きいほど、矩形波信号S2を平滑したトランジスタ56のベース−エミッタ間電圧V2は大きくなる。
次に、PWM信号が変化したときの点灯装置1の動作について図9を参照して説明する。図9は、PWM信号のデューティ比(オンデューティ)を横軸として、制御回路4の集積回路40の3番ピンP3に印加される電圧V1を(a)に示し、トランジスタ56のベース−エミッタ間電圧V2を(b)に示している。なお、PWM信号は調光信号に対して整流や波形整形が施されているだけであるから、PWM信号のデューティ比は調光信号のデューティ比に相当する。
図9に示すように、PWM信号のデューティ比が0〜5%の区間では、3番ピンP3の電圧V1とトランジスタ56のベース−エミッタ間電圧V2とは、各々初期値に設定されている(V1=v10,V2=v20)。よって、この区間で点灯装置1は全点灯状態となり、降圧チョッパ回路16のスイッチング素子162の発振周波数はf1、オン時間はt1となる。
PWM信号のデューティ比が5〜30%の区間には、第2の制御モードが割り当てられている。この区間では、信号発生回路21はPWM信号のデューティ比の増加に伴い矩形波信号S1のデューティ比を小さくすることにより、3番ピンP3の電圧V1がv11(<v10)まで低下する。電圧V1が低下すると、スイッチング素子162のオン時間が短くなって負荷電流(光源負荷3へ供給される電流)は減少する。このとき、スイッチング素子162の発振周波数を略一定に保つために、信号発生回路21は、矩形波信号S2のデューティ比を若干小さくして電圧V2を若干低下させ、コンデンサ55の放電を遅らせてスイッチング素子162のオフ時間を若干長くしてもよい。この状態が第1の調光状態である。
PWM信号のデューティ比が30〜80%の区間には、第3の制御モードが割り当てられている。この区間では、信号発生回路21はPWM信号のデューティ比の増加に伴い矩形波信号S2のデューティ比を小さくすることにより、ベース−エミッタ間電圧V2がv21(<v20)まで低下する。電圧V2が低下すると、トランジスタ56の引き込み電流が減少しコンデンサ55の放電時間が長くなるので、スイッチング素子162のオフ時間が長くなり、発振周波数が低くなって負荷電流は減少する。このとき、3番ピンP3の電圧V1はv11の値を保っているので、スイッチング素子162のオン時間は一定となる。この状態が第2の調光状態である。
PWM信号のデューティ比が80〜90%の区間には、第2の制御モードが割り当てられている。この区間では、信号発生回路21はPWM信号のデューティ比の増加に伴い矩形波信号S1のデューティ比を小さくすることにより、3番ピンP3の電圧V1がv12(<v11)まで低下する。電圧V1が低下すると、スイッチング素子162のオン時間がさらに短くなって負荷電流はさらに減少する。このとき、スイッチング素子162の発振周波数を略一定に保つために、信号発生回路21は、矩形波信号S2のデューティ比を若干小さくして電圧V2を若干低下させ、コンデンサ55の放電を遅らせてスイッチング素子162のオフ時間を若干長くしてもよい。この状態が第3の調光状態である。
PWM信号のデューティ比が90〜100%の区間では、信号発生回路21は矩形波信号S1,S2のデューティ比を一定に保つことにより、第3の調光状態を維持するように設定されている。あるいは、点灯装置1は、PWM信号のデューティ比が90〜100%の区間では、3番ピンP3の電圧V1とベース−エミッタ間電圧V2との少なくとも一方をLレベルにして降圧チョッパ回路16の動作を停止させ、光源負荷3を消灯させてもよい。つまり、制御回路4は、矩形波信号S1で決まる第1の所定値(参照電圧に相当)と、矩形波信号S2で決まる第2の所定値(ベース−エミッタ間電圧V2)との少なくとも一方をゼロ以下として、スイッチング素子162のオンオフ動作を停止させてもよい。
また、制御回路4は、スイッチング素子162の発振周波数を1kHz以上、望ましくは数kHz以上の範囲で設定する。これにより、発振周波数が低下する第2または第3の調光状態でも、光源負荷3の点滅周波数は高くなり、たとえばカメラ撮影時に光源負荷3の点滅とシャッタスピード(露光時間)とが干渉することを回避できる。
以上説明した本実施形態の点灯装置1によれば、制御回路4は、スイッチング素子162のオン時間を変化させる第2の制御モードと、発振周波数を変化させる第3の制御モードとを任意に多段的に選択することによって、光源負荷3を調光点灯させている。したがって、点灯装置1は、第2の制御モードのみ、あるいは第3の制御モードのみで光源負荷3を調光点灯させる場合に比べて、光源負荷3をちらつかせることなく光源負荷3の調光範囲を広げることができる。その結果、点灯装置1は、比較的広範囲に亘って光源負荷3の明るさを精密に(細かく)調節することが可能である。
しかも、調光状態における調光比の調節は、マイコンを主構成とする信号発生回路21によって行われるので、比較的簡単な構成で、光源負荷3の明るさを精密に(細かく)調節可能な点灯装置1を実現することができる。
また、点灯装置1は、光源負荷3の全点灯時、制御回路4がスイッチング素子162のオン時間および発振周波数が固定の第1の制御モードにて動作し、インダクタ163に電流が不連続に流れる臨界または不連続モードでスイッチング素子162がオンオフする。そのため、点灯装置1は、スイッチング素子162のオン時間と発振周波数との少なくとも一方を変化させて光源負荷3を調光点灯させる際にも、インダクタ163に電流が不連続に流れる臨界または不連続モードでスイッチング素子162がオンオフする。要するに、点灯装置1は、調光比にかかわらず常に断続モード(臨界モードまたは不連続モード)でスイッチング素子162をオンオフ動作させることになる。
ここで、断続モードでは、インダクタ163を流れる電流がゼロのタイミングでスイッチング素子162がオンするので、インダクタ163に休止区間なく電流が連続的に流れる連続モードに比べて、スイッチング素子162でのロス(損失)を低減できる。つまり、本実施形態の点灯装置1は、スイッチング素子162が常に断続モードで動作することにより、連続モードで動作する場合に比べて、スイッチング素子162でのロスを低減でき、高い回路効率を実現できるという利点がある。
なお、点灯装置1に入力される調光信号は、本実施形態ではデューティ比可変の矩形波であるが、これに限らずたとえば電圧値可変の直流電圧であってもよい。この場合、マイコンからなる信号発生回路21は、調光信号の振幅(電圧値)に基づいて矩形波信号S1,S2のデューティ比を調整して調光制御を実現する。また、点灯装置1は、調光信号線5から調光信号を入力する構成に限らず、たとえば赤外線受光モジュールを設け、赤外線通信により調光信号を受信する構成であってもよい。
(実施形態2)
本実施形態の点灯装置1は、図10に示すように制御回路4および制御用電源回路7の構成が実施形態1の点灯装置1と相違する。また、図10の例では、5V、1kHzの矩形波電圧信号を調光信号として出力する外部調光器6が、調光信号線5を介して点灯装置1の信号線コネクタ17に接続されている。以下、実施形態1と同様の構成については、共通の符号を付して適宜説明を省略する。
直流電源回路15は、本実施形態では全波整流器151の出力端に力率改善回路としての昇圧チョッパ回路を備えている。昇圧チョッパ回路は、全波整流器151の出力端間にインダクタ153とスイッチング素子154とが直列に接続され、スイッチング素子154の両端間にダイオード155と平滑コンデンサ152とが直列に接続された一般的な構成である。これにより、直流電源回路15の出力端(平滑コンデンサ152の両端)には、交流電源2からの供給電圧を昇圧し平滑した直流電圧(略410V)が発生する。なお、昇圧チョッパ回路は、STマイクロエレクトロニクス社製の「L6562」からなる集積回路156とその周辺部品とで構成された制御回路にてスイッチング素子154をオンオフ制御することにより動作する。この種の昇圧チョッパ回路の動作は周知であるから、ここでは動作の説明は省略する。
本実施形態では、制御用電源回路7は、図10に示すように平滑コンデンサ152に接続されるIPD素子71と、その周辺部品とで構成されている。IPD素子71は、所謂インテリジェント・パワー・デバイスであって、たとえばパナソニック社製の「MIP2E2D」が用いられる。IPD素子71は、ドレイン端子とソース端子とコントロール端子とを有する3ピンの集積回路であって、その内部に、パワーMOSFETからなるスイッチング素子711と、このスイッチング素子711をオンオフ制御する制御部712とを内蔵している。制御用電源回路7は、このIPD素子71内蔵のスイッチング素子711と、インダクタ72と、平滑コンデンサ73と、ダイオード74とで降圧チョッパ回路を構成している。また、制御用電源回路7は、ツェナダイオード75と、ダイオード76と、平滑コンデンサ77と、コンデンサ78とでIPD素子71の電源回路を構成している。
上記構成により、制御用電源回路7は平滑コンデンサ73の両端に一定電圧(たとえば略15V)を発生し、この一定電圧が、後述する集積回路(3端子レギュレータ79,マイコン80,ドライバ回路81)の制御用電源を供給する電源電圧VC1となる。したがって、IPD素子71が動作を開始するまでは、平滑コンデンサ73が充電されていないため、他の集積回路(3端子レギュレータ79,マイコン80,ドライバ回路81)はいずれも動作しない。
以下、制御用電源回路7の動作について説明する。
電源投入初期において、平滑コンデンサ152が全波整流器151の出力電圧により充電されると、IPD素子71のドレイン端子→コントロール端子→平滑コンデンサ77→インダクタ72→平滑コンデンサ73の経路で電流が流れる。これにより、平滑コンデンサ73は図10に示す極性で充電され、IPD素子71に動作電圧を供給する。これにより、IPD素子71が動作を開始し、内蔵のスイッチング素子711がオンオフ動作する。
IPD素子71内蔵のスイッチング素子711がオンのとき、平滑コンデンサ152→IPD素子71のドレイン端子→ソース端子→インダクタ72→平滑コンデンサ73の経路で電流が流れ、平滑コンデンサ73が充電される。スイッチング素子711がオフに切り替わると、インダクタ72に蓄積されている電磁エネルギーがダイオード74を介して平滑コンデンサ73に放出される。これにより、IPD素子71とインダクタ72とダイオード74と平滑コンデンサ73とからなる回路が降圧チョッパ回路として動作し、平滑コンデンサ73の両端には、平滑コンデンサ152の電圧を降圧した電源電圧VC1が発生する。
また、IPD素子71内蔵のスイッチング素子711がオフのとき、ダイオード74を介して回生電流が流れるが、インダクタ72の両端電圧は、平滑コンデンサ73の両端電圧とダイオード74の順方向電圧との和の電圧にクランプされる。この和電圧から、ツェナダイオード75のツェナ電圧とダイオード76の順方向電圧とを差し引いた電圧が、平滑コンデンサ77の両端電圧となる。IPD素子71に内蔵された制御部712は、平滑コンデンサ77の両端電圧が一定となるように、スイッチング素子711のオンオフ動作を制御する。これにより、結果として平滑コンデンサ73の両端電圧も一定(電源電圧VC1)となる。
平滑コンデンサ73の両端に電源電圧VC1が発生すると、3端子レギュレータ79がマイコン80に5Vの電源供給を開始することにより、降圧チョッパ回路16のスイッチング素子162のオンオフ制御も開始される。マイコン80は、外部調光器6から調光信号が入力され、この調光信号に従って調光制御を行う。
制御回路4は、図10に示すように、マイコン80を備えており、内部のプログラムにより、降圧チョッパ回路16のスイッチング素子162を駆動するための矩形波信号を発生する。マイコン80は、22番ピンP22に入力される外部調光器6からの調光信号のオン時間(パルス幅)に応じて、スイッチング素子162を駆動するための矩形波信号を19番ピンP19から出力するように、プログラムが設定されている。さらに、制御回路4は、マイコン80の19番ピンP19からの出力(矩形波信号)を受けてスイッチング素子162を実際に駆動するドライバ回路81を備えている。これにより、マイコン80は、外部調光器6からの調光信号を受けて、スイッチング素子162を制御することにより光源負荷3に流れる電流を制御して調光制御を実現する。
本実施形態では、3端子レギュレータ79はたとえば東芝社製の「TA78L05」、マイコン80はRENESAS社製の8ビットマイコン「78K0/Ix2」、ドライバ回路81はMAXIM社製の「MAX15070A」である。なお、図10の例では、光源負荷3への出力の脈動(リップル)を抑制する出力コンデンサ164を破線で示している。
ところで、本実施形態の点灯装置1は、調光信号のデューティ比(調光比)に応じて、光源負荷3を全点灯させる全点灯状態と、光源負荷3を調光点灯させる第1、第2の調光状態とを切り替えて動作する。ここでいう第1の調光状態は、スイッチング素子162のオン時間を略固定とし、スイッチング素子162の発振周波数を変化させる第3の制御モードによる点灯状態である。また、第2の調光状態は、第1の調光状態からさらに、スイッチング素子162の発振周波数を略固定とし、スイッチング素子162のオン時間を変化させる第2の制御モードを選択した点灯状態である。
次に、本実施形態に係る点灯装置1の動作について、図11および図12を参照して説明する。図11では、横軸が外部調光器6からの調光信号(PWM信号)のデューティ比(オンデューティ)、縦軸が負荷電流(光源負荷3へ供給される電流の実効値)および308mAを全点灯(100%)としたときの調光比(図中の括弧内)を表している。
まず、調光信号のデューティ比が0〜5%の区間では、マイコン80は、スイッチング素子162を駆動するための一定の矩形波信号を19番ピンP19より出力する。本実施形態では、このときの矩形波信号は、発振周波数が30kHzでオン時間が5.8μs、電圧値が5Vに設定されている。ドライバ回路81は、この矩形波信号が入力されることにより、電圧値を15Vに増幅し、降圧チョッパ回路16のスイッチング素子162のゲートに入力し、スイッチング素子162をオンオフ駆動する。
このとき、点灯装置1は全点灯状態で動作しており、光源負荷3には平均が308mAの電流が流れる(調光比100%)。点灯装置1は、調光信号のデューティ比が5%に達するまでは、この状態(全点灯状態)を継続する。図12は、横軸を時間軸として、この状態(全点灯状態)での光源負荷3の両端電圧を(a)に示し、光源負荷3に流れる電流を(b)に示している。図12(b)の電流からわかるように、スイッチング素子162のオンオフ動作は不連続モードになっており、電流がゼロのタイミングでスイッチング素子162がオンするので、スイッチング素子162でのスイッチング損失(ロス)は少なくなる。
次に、調光信号のデューティ比が5〜80%の区間には、第3の制御モードが割り当てられている。この区間では、マイコン80は、調光信号のデューティ比の増加に伴い、19番ピンP19から出力する矩形波信号の発振周波数を徐々に低くする。本実施形態では、マイコン80は、矩形波信号のオン時間を既定値(5.8μs)で略一定とし、オフ時間を調光信号のデューティ比の増加に伴い徐々に長くする。ここで、調光信号のデューティ比が80%になると19番ピンP19から出力される矩形波信号の発振周波数が8kHzなるように、マイコン80のプログラムが設定されている。このとき、点灯装置1は第1の調光状態で動作しており、光源負荷3に流れる電流の平均は163mA(調光比53%)を下限として調節される。図12は、横軸を時間軸として、この状態(第1の調光状態)での光源負荷3の両端電圧を(c)に示し、光源負荷3に流れる電流を(d)に示している。
調光信号のデューティ比が80%以上の区間には、第2の制御モードが割り当てられている。この区間では、マイコン80は、調光信号のデューティ比の増加に伴い、19番ピンP19から出力する矩形波信号のオン時間を徐々に短くする。本実施形態では、マイコン80は、発振周波数は既定値(8kHz)で略一定のまま、オン時間を調光信号のデューティ比に応じて変化させる。ここで、調光信号のデューティ比が95%になると19番ピンP19から出力される矩形波信号のオン時間が0.5μsとなるように、マイコン80のプログラムが設定されている。このとき、点灯装置1は第2の調光状態で動作しており、光源負荷3に流れる電流の平均は2.5mA(調光比0.8%)を下限として調節される。図12は、横軸を時間軸として、この状態(第2の調光状態)での光源負荷3の両端電圧を(e)に示し、光源負荷3に流れる電流を(f)に示している。
また、本実施形態では、点灯装置1は、PWM信号のデューティ比が95%以上の区間では、マイコン80の19番ピンP19からの出力をLレベルにして降圧チョッパ回路16の動作を停止させ、光源負荷3を消灯させている(図11参照)。
以上説明した本実施形態の点灯装置1によれば、制御回路4は、スイッチング素子162のオン時間を変化させる第2の制御モードと、発振周波数を変化させる第3の制御モードとを任意に多段的に選択することによって、光源負荷3を調光点灯させている。したがって、点灯装置1は、第2の制御モードのみ、あるいは第3の制御モードのみで光源負荷3を調光点灯させる場合に比べて、光源負荷3をちらつかせることなく光源負荷3の調光範囲を広げることができる。その結果、点灯装置1は、比較的広範囲に亘って光源負荷3の明るさを精密に(細かく)調節することが可能である。
しかも、調光状態における調光比の調節は、制御回路4のマイコン80によって行われるので、比較的簡単な構成で、光源負荷3の明るさを精密に(細かく)調節可能な点灯装置1を実現することができる。
その他の構成および機能は実施形態1と同様である。
ところで、上記各実施形態で説明した点灯装置1は、半導体発光素子(LEDモジュール)からなる光源負荷3と共に照明器具を構成する。照明器具10は、図13に示すように、LEDモジュール(光源負荷3)30の器具筐体32とは別のケースに電源ユニットとしての点灯装置1を収納し、リード線31を介してLEDモジュール30と点灯装置1とが接続されている。これにより、照明器具10は、LEDモジュール30の薄型化が可能となり、別置型の電源ユニットとしての点灯装置1の設置場所の自由度が高くなる。
図13の例では、器具筐体32は、下面が開放された金属製の有底円筒状の筐体であって、開放面(下面)が光拡散板33にて覆われている。LEDモジュール30は、基板34の一面に複数個(ここでは4個)のLED35が実装されてなり、器具筐体32内に光拡散板33と対向する向きで配置されている。器具筐体32は、天井100に埋め込まれており、天井裏に配置された電源ユニットとしての点灯装置1に、リード線31およびコネクタ36を介して接続されている。
なお、照明器具10は、電源ユニットとしての点灯装置1がLEDモジュール30とは別体のケースに収納される電源別置型の構成に限らず、LEDモジュール30と同一の筐体に点灯装置1を収納した電源一体型の構成であってもよい。
また、上記各実施形態で説明した点灯装置1は、照明器具10に限らず、各種の光源、たとえば液晶ディスプレイのバックライトや、複写機、スキャナ、プロジェクタなどに用いられてもよい。また、点灯装置1からの電力供給を受けて発光する光源負荷3は、発光ダイオード(LED)に限らず、たとえば有機EL素子や半導体レーザ素子などの半導体発光素子であってもよい。
さらにまた、上記各実施形態では、降圧チョッパ回路16は、直流電源回路15の出力端の低電位(負極)側にスイッチング素子162、高電位(正極)側にダイオード161が接続されているが、この構成に限らない。すなわち、降圧チョッパ回路16は、図14(a)に示すように、スイッチング素子162が直流電源回路15の出力端の高電位側に接続された構成であってもよい。
また、点灯装置1は、降圧チョッパ回路16を適用した構成に限らず、図14(b)〜(d)に示すように、降圧チョッパ回路以外の各種のスイッチング電源回路を直流電源回路15と出力コネクタ12との間に有していてもよい。図14(b)は昇圧チョッパ回路、図14(c)はフライバックコンバータ回路、図14(d)は昇降圧チョッパ回路を適用した場合を示している。
図14(b)の昇圧チョッパ回路は、直流電源回路15の出力端間にインダクタ163およびスイッチング素子162を直列接続し、スイッチング素子162の両端間にダイオード161および出力コンデンサ164を直列接続して構成されている。図14(c)のフライバックコンバータ回路は、直流電源回路15の出力端間にトランス166の一次巻線およびスイッチング素子162を直列接続し、トランス166の二次巻線にダイオード161および出力コンデンサ164を直列接続して構成されている。図14(d)の昇降圧チョッパ回路は、直流電源回路15の出力端間にインダクタ163およびスイッチング素子162を直列接続し、インダクタ163の両端間にダイオード161および出力コンデンサ164を直列接続して構成されている。
1 点灯装置
3 光源負荷
4 制御回路
10 照明器具
15 直流電源回路(直流電源)
16 降圧チョッパ回路
161 ダイオード
162 スイッチング素子
163 インダクタ
43 抵抗(電流検出部)
55 コンデンサ

Claims (5)

  1. 直流電源に直列接続されて高周波でオンオフ制御されるスイッチング素子と、前記スイッチング素子に直列に接続されて当該スイッチング素子のオン時に前記直流電源から電流が流れるインダクタと、前記スイッチング素子のオン時に前記インダクタに蓄積された電磁エネルギーを前記スイッチング素子のオフ時に半導体発光素子からなる光源負荷に放出するダイオードと、前記スイッチング素子のオンオフ動作を制御する制御回路と、前記スイッチング素子に流れる電流を検出する電流検出部と、前記スイッチング素子の駆動信号により充電されるコンデンサとを備え、
    前記制御回路は、
    前記スイッチング素子の制御モードとして、前記インダクタに臨界モードまたは不連続モードで電流が流れるように予め決められている発振周波数およびオン時間で前記スイッチング素子をオンオフ動作させる第1の制御モードと、前記スイッチング素子の発振周波数を固定し前記スイッチング素子のオン時間を変化させる第2の制御モードと、前記スイッチング素子のオン時間を固定し前記スイッチング素子の発振周波数を変化させる第3の制御モードとを有し、調光比を複数に分けてなる区間ごとに前記第2の制御モードと前記第3の制御モードとが割り当てられており、
    前記第1の制御モードを選択することにより前記光源負荷を全点灯させ、調光比が指定されると当該調光比が該当する前記区間に応じて前記第2の制御モードと前記第3の制御モードとの一方を選択して前記光源負荷を前記調光比で調光点灯させ
    前記制御回路は、
    前記電流検出部で検出される電流が第1の所定値に達すると前記スイッチング素子をオフさせ、前記コンデンサの両端電圧が所定の閾値以下になると前記スイッチング素子をオンさせており、
    前記第1の所定値を変化させることにより前記スイッチング素子のオン時間を変化させ、前記コンデンサの放電速度を決める第2の所定値を変化させることにより前記スイッチング素子の発振周波数を変化させる
    ことを特徴とする点灯装置。
  2. 前記制御回路は、前記第1の所定値および前記第2の所定値のうち少なくとも一方をゼロ以下とすることにより、前記スイッチング素子のオンオフ動作を停止させて前記光源負荷を消灯させることを特徴とする請求項1に記載の点灯装置。
  3. 前記制御回路は、外部からの調光信号を受信して、当該調光信号によって決まる前記調光比に応じて前記スイッチング素子の制御モードを選択することを特徴とする請求項1または2に記載の点灯装置。
  4. 前記制御回路は、前記スイッチング素子の発振周波数を1kHz以上の範囲で設定することを特徴とする請求項1ないし3のいずれか1項に記載の点灯装置。
  5. 請求項1ないし4のいずれか1項に記載の点灯装置と、当該点灯装置から電力供給される光源負荷とを備えることを特徴とする照明器具。
JP2011265720A 2011-12-05 2011-12-05 点灯装置およびそれを備えた照明器具 Active JP5884049B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011265720A JP5884049B2 (ja) 2011-12-05 2011-12-05 点灯装置およびそれを備えた照明器具
US13/692,003 US8872437B2 (en) 2011-12-05 2012-12-03 Lighting apparatus and illuminating fixture with the same
EP12195190.9A EP2603059A1 (en) 2011-12-05 2012-12-03 Lighting apparatus and illuminating fixture with the same
CN201210518473.1A CN103139986B (zh) 2011-12-05 2012-12-05 点亮装置和具备该点亮装置的照明器具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011265720A JP5884049B2 (ja) 2011-12-05 2011-12-05 点灯装置およびそれを備えた照明器具

Publications (2)

Publication Number Publication Date
JP2013118133A JP2013118133A (ja) 2013-06-13
JP5884049B2 true JP5884049B2 (ja) 2016-03-15

Family

ID=47678466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011265720A Active JP5884049B2 (ja) 2011-12-05 2011-12-05 点灯装置およびそれを備えた照明器具

Country Status (4)

Country Link
US (1) US8872437B2 (ja)
EP (1) EP2603059A1 (ja)
JP (1) JP5884049B2 (ja)
CN (1) CN103139986B (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131431B2 (en) 2014-09-28 2021-09-28 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
JP2013118131A (ja) * 2011-12-05 2013-06-13 Panasonic Corp 点灯装置およびそれを備えた照明器具
US20150154917A1 (en) * 2011-12-21 2015-06-04 Seoul Semiconductor Co., Ltd. Backlight module, method for driving same and display device using same
KR101474078B1 (ko) * 2012-12-21 2014-12-17 삼성전기주식회사 디밍 제어 장치 및 조명 구동 장치, 디밍 제어 방법
GB2514380A (en) * 2013-05-22 2014-11-26 Bernard Frederick Fellerman LED driver circuit
CN103260318B (zh) * 2013-05-30 2015-03-11 矽力杰半导体技术(杭州)有限公司 可调光的led驱动电路及其调光方法
JP6175729B2 (ja) 2013-12-16 2017-08-09 パナソニックIpマネジメント株式会社 点灯装置およびそれを用いた照明器具
TWI469680B (zh) * 2014-01-16 2015-01-11 Lextar Electronics Corp 介面電路
US9681507B2 (en) * 2014-03-10 2017-06-13 Cree, Inc. Switched-mode converter control for lighting applications
US9618162B2 (en) * 2014-04-25 2017-04-11 Cree, Inc. LED lamp
US10560989B2 (en) 2014-09-28 2020-02-11 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
JP6516178B2 (ja) * 2014-10-20 2019-05-22 パナソニックIpマネジメント株式会社 調光制御ユニット、照明システム、及び設備機器
US11519565B2 (en) 2015-03-10 2022-12-06 Jiaxing Super Lighting Electric Appliance Co., Ltd LED lamp and its power source module
US11754232B2 (en) 2015-03-10 2023-09-12 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED lamp and power source module thereof related applications
US9897265B2 (en) 2015-03-10 2018-02-20 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp having LED light strip
KR102133612B1 (ko) * 2015-03-30 2020-08-05 매그나칩 반도체 유한회사 트리거 회로 및 이를 포함하는 조명 장치
WO2016162858A1 (en) * 2015-04-10 2016-10-13 Universita' Degli Studi Di Salerno Purifying apparatus based on photocatalysis through modulation of light emission
CN105096893B (zh) * 2015-09-09 2017-08-04 深圳市华星光电技术有限公司 驱动电路以及液晶显示装置
DE102016107578B4 (de) * 2016-04-25 2023-06-01 Vossloh-Schwabe Deutschland Gmbh Betriebsschaltung und Verfahren zum Betreiben wenigstens eines Leuchtmittels
CN106793278B (zh) * 2016-12-12 2019-08-16 昂宝电子(上海)有限公司 具有随时间变化的电压-电流特性的两端子集成电路
CN105979626B (zh) 2016-05-23 2018-08-24 昂宝电子(上海)有限公司 包括锁相电源的具有时变电压电流特性的双端子集成电路
US9900943B2 (en) 2016-05-23 2018-02-20 On-Bright Electronics (Shanghai) Co., Ltd. Two-terminal integrated circuits with time-varying voltage-current characteristics including phased-locked power supplies
CN108243542B (zh) * 2016-12-26 2021-07-27 精工爱普生株式会社 发光控制电路、光源装置以及投射型影像显示装置
CN107230456A (zh) * 2017-08-10 2017-10-03 京东方科技集团股份有限公司 一种显示装置及亮度调节方法
JP7107041B2 (ja) 2018-07-10 2022-07-27 セイコーエプソン株式会社 液滴吐出装置及び液滴吐出装置のメンテナンス方法
WO2021146984A1 (zh) * 2020-01-22 2021-07-29 浙江阳光美加照明有限公司 一种照明设备及其照明控制系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1166604B1 (en) 2000-02-03 2006-06-14 Koninklijke Philips Electronics N.V. Supply assembly for a led lighting module
JP4538719B2 (ja) 2004-03-31 2010-09-08 東芝ライテック株式会社 Led点灯装置および照明器具
DE102007031038A1 (de) * 2007-07-04 2009-01-08 Tridonicatco Schweiz Ag Schaltung zum Betrieb von Leuchtdioden (LEDs)
US8344638B2 (en) 2008-07-29 2013-01-01 Point Somee Limited Liability Company Apparatus, system and method for cascaded power conversion
KR101512054B1 (ko) * 2008-12-08 2015-04-14 삼성디스플레이 주식회사 광원 구동 방법, 이를 수행하기 위한 광원 장치 및 이 광원장치를 포함하는 표시 장치
CN101902851A (zh) * 2009-05-25 2010-12-01 皇家飞利浦电子股份有限公司 发光二极管驱动电路
US8344657B2 (en) * 2009-11-03 2013-01-01 Intersil Americas Inc. LED driver with open loop dimming control
JP5480671B2 (ja) * 2010-03-03 2014-04-23 パナソニック株式会社 Led点灯装置
EP2554017B1 (en) * 2010-04-02 2014-01-15 Marvell World Trade Ltd. Led controller with compensation for die-to-die variation and temperature drift
US8531123B2 (en) 2010-12-20 2013-09-10 O2Micro, Inc. DC/DC converter with multiple outputs
JP2013122846A (ja) * 2011-12-09 2013-06-20 Panasonic Corp 点灯装置

Also Published As

Publication number Publication date
JP2013118133A (ja) 2013-06-13
CN103139986A (zh) 2013-06-05
US20130141003A1 (en) 2013-06-06
US8872437B2 (en) 2014-10-28
EP2603059A1 (en) 2013-06-12
CN103139986B (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5884049B2 (ja) 点灯装置およびそれを備えた照明器具
JP5884050B2 (ja) 点灯装置およびそれを備えた照明器具
US9585209B2 (en) Lighting apparatus and illuminating fixture with the same
US8653755B2 (en) Lighting apparatus and illuminating fixture with the same
US8729827B2 (en) Semiconductor light emitting element drive device and lighting fixture with the same
US9030113B2 (en) Semiconductor light emitting element drive device and lighting fixture with the same
EP2410821B1 (en) Lighting device of semiconductor light-emitting element and illumination fixture using the same
US8698409B2 (en) Lighting device and lighting fixture using the same
JP5624427B2 (ja) 調光点灯装置及びそれを用いた照明装置
JP5603719B2 (ja) 半導体発光素子の点灯装置およびそれを用いた照明器具
JP5645254B2 (ja) 半導体発光素子の点灯装置およびそれを用いた照明器具
JP5768226B2 (ja) 半導体発光素子の点灯装置およびそれを用いた照明器具
JP2013118130A (ja) 点灯装置および照明器具
JP5486436B2 (ja) 半導体発光素子の点灯装置およびそれを用いた照明器具
JP5140202B2 (ja) Led点灯装置
JP2012182155A (ja) Led点灯装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140908

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151009

R151 Written notification of patent or utility model registration

Ref document number: 5884049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151