JP5882585B2 - Image blur correction apparatus, optical apparatus, and control method thereof - Google Patents

Image blur correction apparatus, optical apparatus, and control method thereof Download PDF

Info

Publication number
JP5882585B2
JP5882585B2 JP2011023995A JP2011023995A JP5882585B2 JP 5882585 B2 JP5882585 B2 JP 5882585B2 JP 2011023995 A JP2011023995 A JP 2011023995A JP 2011023995 A JP2011023995 A JP 2011023995A JP 5882585 B2 JP5882585 B2 JP 5882585B2
Authority
JP
Japan
Prior art keywords
shake
drive
inclination
image blur
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011023995A
Other languages
Japanese (ja)
Other versions
JP2012163770A (en
Inventor
暁彦 上田
暁彦 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011023995A priority Critical patent/JP5882585B2/en
Publication of JP2012163770A publication Critical patent/JP2012163770A/en
Application granted granted Critical
Publication of JP5882585B2 publication Critical patent/JP5882585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、像ぶれ補正装置が搭載される光学機器に加わる振れに起因する像振れを補正する、カメラ等に配置される像ぶれ補正装置、光学機器およびその制御方法に関するものである。   The present invention relates to an image blur correction device arranged in a camera or the like, an optical device, and a control method thereof for correcting image blur caused by shake applied to an optical device in which the image blur correction device is mounted.

現在のカメラはカメラに加わる手振れによる像振れを補正するシステムも研究されており、撮影者の撮影ミスを誘発する要因は殆ど無くなってきている。   A system for correcting image blur due to camera shake applied to the camera has been studied for the current camera, and the cause of the photographer's shooting mistake has almost disappeared.

像ぶれ補正性能の向上の方法として、特許文献1に、補正レンズに微小振幅信号を駆動信号に重畳させて微小振動を生じさせる方法が開示されている。   As a method for improving the image blur correction performance, Patent Document 1 discloses a method of generating a minute vibration by superimposing a minute amplitude signal on a driving lens on a correction lens.

特開2002−350918号公報JP 2002-350918 A

しかしながら、上述の特許文献1に開示された従来技術では、補正レンズ駆動時に常に所定量の微小振動を生じさせる信号を重畳させるため、消費電流が増加する。さらに、補正レンズの微小振動により騒音が生じてしまう。   However, in the conventional technique disclosed in Patent Document 1 described above, a signal that causes a predetermined amount of minute vibrations is always superimposed when the correction lens is driven, so that current consumption increases. Furthermore, noise is generated by minute vibration of the correction lens.

(発明の目的)
本発明の目的は、微小振幅駆動を行いつつも、微小振幅駆動による消費電流の増加、騒音を減少させることができる像ぶれ補正装置、光学機器およびその制御方法を提供することである。
(Object of invention)
An object of the present invention is to provide an image blur correction apparatus, an optical apparatus, and a control method thereof that can increase current consumption and reduce noise by performing minute amplitude driving.

上記目的を達成するために、本発明の像ぶれ補正装置は、機器の振れを検出する振れ検出手段と、前記振れ検出手段の検出結果に基づいて光軸に直交する方向に駆動される振れ補正手段と、前記振れ補正手段を前記振れ検出手段の検出結果とは独立に交番駆動する交番駆動手段と、前記機器のあおり方向の傾きを検出する傾き検出手段によって、前記機器があおり方向に所定角度以上傾いていることが検出された場合には、前記傾きに基づいて前記交番駆動手段の駆動条件を制御する制御手段と、を有する像ぶれ補正装置であって、
前記傾き検出手段は、前記振れ補正手段の駆動電流値を検出し、
前記制御手段は、前記傾き検出手段により検出された前記駆動電流値と前記機器の初期位置の傾きでの駆動電流値との差を前記傾きとして扱い、前記傾きに基づいて前記交番駆動手段の駆動条件を設定することを特徴とするものである。
In order to achieve the above object, an image blur correction apparatus according to the present invention includes a shake detection unit that detects a shake of a device, and a shake correction that is driven in a direction orthogonal to the optical axis based on a detection result of the shake detection unit. The device has a predetermined angle in the tilt direction by means of an alternating drive unit that alternately drives the shake correction unit independently of the detection result of the shake detection unit, and an inclination detection unit that detects the tilt of the tilt direction of the device. An image blur correction apparatus having control means for controlling the driving condition of the alternating drive means based on the tilt when it is detected that the tilt is more than
The inclination detection means detects a drive current value of the shake correction means;
The control means treats the difference between the drive current value detected by the inclination detection means and the drive current value at the inclination of the initial position of the device as the inclination, and drives the alternating drive means based on the inclination. A condition is set .

本発明によれば、微小振幅駆動を行いつつも、微小振幅駆動による消費電流の増加、騒音を減少させることができる。   According to the present invention, it is possible to increase current consumption and reduce noise due to minute amplitude driving while performing minute amplitude driving.

本発明の実施例1である像ぶれ補正装置を示す概略図である。1 is a schematic diagram illustrating an image blur correction apparatus that is Embodiment 1 of the present invention. FIG. 実施例1に係る傾きと交番駆動信号の関係を示す図である。It is a figure which shows the relationship between the inclination which concerns on Example 1, and an alternating drive signal. 実施例1の動作の一例を示すフローチャートである。3 is a flowchart illustrating an example of an operation according to the first exemplary embodiment. 実施例1の動作の他の例を示すフローチャートである。6 is a flowchart illustrating another example of the operation of the first embodiment. 本発明の実施例2である像ぶれ補正装置を示す分解展開図である。FIG. 6 is an exploded development view illustrating an image blur correction apparatus that is Embodiment 2 of the present invention. 実施例2の正面図である。6 is a front view of Example 2. FIG. 実施例2の断面図である。6 is a cross-sectional view of Example 2. FIG.

本発明を実施するための形態は、以下の実施例1および2に記載される通りである。   The mode for carrying out the invention is as described in Examples 1 and 2 below.

以下、図1〜図4を参照して、本発明の実施例1である像ぶれ補正装置について説明する。   Hereinafter, an image blur correction apparatus that is Embodiment 1 of the present invention will be described with reference to FIGS.

像ぶれ補正装置は、振れ検出手段としての振れ検出センサ4(4a,4b)と、振れ補正手段としての補正レンズ1aを保持するホルダー1と、ホルダー1を摺動可能に支持するベース部材2とを有する。振れ検出センサ4は像ぶれ補正装置が搭載される機器の振れを検出し、補正レンズ1aは振れ検出センサ4の検出結果に基づいて、光軸に直交する方向に駆動されるものである。また、ホルダー1に一体に取り付けられた永久磁石1b(1b−1,1b−2)と、ベース部材2に固定されるコイル3(3a,3b)と、コイル3への通電を制御する駆動部7(7a,7b)とを有する。さらに、ホルダー1の位置を検出する位置検出手段10(10a,10b)と、交番駆動信号生成部8と、振れ補正手段の負荷を検知する負荷検出部5(傾き検出手段)とを有する。   The image blur correction device includes a shake detection sensor 4 (4a, 4b) as a shake detection unit, a holder 1 that holds a correction lens 1a as a shake correction unit, and a base member 2 that slidably supports the holder 1. Have The shake detection sensor 4 detects shake of a device in which the image blur correction device is mounted, and the correction lens 1a is driven in a direction orthogonal to the optical axis based on the detection result of the shake detection sensor 4. In addition, the permanent magnet 1b (1b-1, 1b-2) integrally attached to the holder 1, the coil 3 (3a, 3b) fixed to the base member 2, and a drive unit for controlling energization to the coil 3 7 (7a, 7b). Furthermore, it has the position detection means 10 (10a, 10b) which detects the position of the holder 1, the alternating drive signal production | generation part 8, and the load detection part 5 (tilt detection means) which detects the load of a shake correction means.

永久磁石1b、コイル3、駆動部7、交番駆動信号生成部8は、振れ検出センサ4の検出結果とは独立に補正レンズ1aを交番駆動する交番駆動手段を構成する。ただし、永久磁石1b、コイル3、駆動部7は、振れ補正駆動手段と共用されている。そして、負荷検出部5の情報から交番駆動条件を設定して交番駆動信号生成部8へ入力を行う制御手段である制御部6と、振れ補正駆動信号生成部9とを有する。制御部6は、正位置(初期位置)でホルダー1を保持するための駆動電流値を記憶する記憶部6aと、記憶部6に記憶された駆動電流値と負荷検出部5で検出された負荷電流値(駆動電流値)の差を算出する差算出器6bとを有する。   The permanent magnet 1 b, the coil 3, the drive unit 7, and the alternating drive signal generation unit 8 constitute an alternating drive unit that alternately drives the correction lens 1 a independently of the detection result of the shake detection sensor 4. However, the permanent magnet 1b, the coil 3, and the drive unit 7 are shared with shake correction drive means. And it has the control part 6 which is a control means which sets an alternating drive condition from the information of the load detection part 5, and inputs it to the alternating drive signal generation part 8, and the shake correction drive signal generation part 9. The control unit 6 includes a storage unit 6 a that stores a drive current value for holding the holder 1 in the normal position (initial position), a drive current value stored in the storage unit 6, and a load detected by the load detection unit 5. And a difference calculator 6b for calculating a difference between current values (drive current values).

ホルダー1は、合成樹脂材料で形成され、後述するベース部材2と摺動する摺動軸としてのガイド部1c(1c−1,1c−2,1c−3)を備え、補正レンズ1aが接着または熱カシメで固定され、永久磁石1bが接着等により固定される。   The holder 1 is formed of a synthetic resin material, and includes a guide portion 1c (1c-1, 1c-2, 1c-3) as a sliding shaft that slides with a base member 2 to be described later. The permanent magnet 1b is fixed by adhesion or the like by heat caulking.

永久磁石1bは、Nd−Fe−B系希土類磁性粉またはフェライト系とポリアミドなどの熱可塑性樹脂バインダー材との混合物を射出成形することにより形成されたプラスチックマグネットで形成される。着磁方向は光軸方向であり、後述するコイル3と磁気回路を形成し、ホルダー1を光軸に直交する方向に駆動する。   The permanent magnet 1b is formed of a plastic magnet formed by injection molding a mixture of Nd—Fe—B rare earth magnetic powder or ferrite and a thermoplastic resin binder such as polyamide. The magnetization direction is the optical axis direction, forms a magnetic circuit with a coil 3 to be described later, and drives the holder 1 in a direction perpendicular to the optical axis.

ベース部材2は、合成樹脂材料で中空円盤形状に形成されて、ホルダー1を光軸に対して垂直な方向には摺動可能に、光軸方向の移動は規制するように保持する保持部2a(2a−1,2a−2,2a−3)を備える。そして、永久磁石1bと光軸方向に対向するベース部材2の面にはコイル3が固定される。   The base member 2 is formed of a synthetic resin material in a hollow disk shape, and holds the holder 1 so that the holder 1 can be slid in a direction perpendicular to the optical axis and the movement in the optical axis direction is restricted. (2a-1, 2a-2, 2a-3). The coil 3 is fixed to the surface of the base member 2 that faces the permanent magnet 1b in the optical axis direction.

振れ検出センサ4a,4bは、本実施例1では角速度を検出する振動ジャイロで構成される。第1の振れ検出センサ4aは図1の矢印yの方向であるカメラの縦振れを検出し、第2の振れ検出センサ4bは図1の矢印xの方向であるカメラの横方向の振れを検出する。これら第1の振れ検出センサ4a、第2の振れ検出センサ4bから出力された信号は、振れ補正駆動信号生成部9においてフィルタ処理、積分処理、敏感度補正などの各種演算による信号処理が施されて振れ補正駆動信号に生成され、後述する駆動部7a,7bに入力される。   In the first embodiment, the shake detection sensors 4a and 4b are constituted by vibration gyros that detect angular velocities. The first shake detection sensor 4a detects the vertical shake of the camera in the direction of the arrow y in FIG. 1, and the second shake detection sensor 4b detects the horizontal shake of the camera in the direction of the arrow x in FIG. To do. The signals output from the first shake detection sensor 4a and the second shake detection sensor 4b are subjected to signal processing by various calculations such as filter processing, integration processing, and sensitivity correction in the shake correction drive signal generation unit 9. Are generated as shake correction drive signals and input to drive units 7a and 7b described later.

駆動部7a,7bは、前記振れ検出センサ4a,4bからの信号を振れ補正駆動信号生成部9が信号処理することにより生成された振れ補正駆動信号に基づいて、コイル3a,3bに電圧を印加する。   The drive units 7a and 7b apply voltages to the coils 3a and 3b based on the shake correction drive signal generated by the shake correction drive signal generation unit 9 processing the signals from the shake detection sensors 4a and 4b. To do.

位置検出手段10は、ホール素子またはMR素子等の磁気検出手段で構成され、ホルダー1に固定された永久磁石1bと光軸方向に対向する位置で不図示の固定部材に固定され、ホルダー1の光軸に直交する方向の移動量を検出する。ホルダー1は位置検出手段10の信号を基に、振れを補正する目標位置まで移動するようにフィードバック制御で駆動される。   The position detection means 10 is composed of magnetic detection means such as a Hall element or MR element, and is fixed to a fixing member (not shown) at a position facing the permanent magnet 1b fixed to the holder 1 in the optical axis direction. The amount of movement in the direction orthogonal to the optical axis is detected. The holder 1 is driven by feedback control so as to move to a target position for correcting shake based on a signal from the position detection means 10.

負荷検出部5は、本実施例1ではコイル3a,3bに通電される駆動電流値または電圧値から駆動負荷を検出する。位置検出手段10の信号をもとに、ホルダー1を光軸中心に保持するようにフィードバック制御駆動すると、前記コイル3a,3bには駆動部7a、7bにより電圧が印加される。ホルダー1を光軸中心に保持するために必要な力は、ホルダー1を保持させるために必要な負荷によって異なる。主な負荷はホルダー1の駆動方向の重さとガイド部1cにかかる摩擦力であり、像ぶれ補正装置の光軸の向きに応じて負荷が変わる。像ぶれ補正装置の光軸が水平方向のとき(以下、正位置)の負荷は、ホルダー1の自重が主な負荷のため各光軸の向きと比較してもっとも大きい。また、光軸が垂直方向のとき(以下、上向きまたは下向き)の負荷は、各光軸の向きと比較してもっとも小さい。その理由は、ホルダー1の自重はベース部材2の保持部2aに支持されているため負荷にならず、ホルダー1の自重を水平方向に駆動するときの摩擦力が主な負荷となるためである。ホルダー1のガイド部1cに生じる摩擦力を考えると、像ぶれ補正装置の光軸が水平方向のときには、水平方向にホルダー1の自重負荷がかからないため、垂直方向の摩擦力は各光軸の向きと比較してもっとも小さい。また、像ぶれ補正装置の光軸が垂直方向のとき(上向きまたは下向き)には、垂直方向にホルダー1の自重負荷がかかるため、水平方向の摩擦力は各光軸の向きと比較してもっとも大きくなる。   In the first embodiment, the load detection unit 5 detects a driving load from a driving current value or a voltage value supplied to the coils 3a and 3b. When feedback control driving is performed so as to hold the holder 1 at the center of the optical axis based on the signal from the position detecting means 10, a voltage is applied to the coils 3a and 3b by the driving units 7a and 7b. The force required to hold the holder 1 at the center of the optical axis varies depending on the load required to hold the holder 1. The main load is the weight in the driving direction of the holder 1 and the frictional force applied to the guide portion 1c, and the load changes according to the direction of the optical axis of the image blur correction device. The load when the optical axis of the image blur correction apparatus is in the horizontal direction (hereinafter referred to as the positive position) is the largest compared to the direction of each optical axis because the weight of the holder 1 is the main load. In addition, the load when the optical axis is in the vertical direction (hereinafter, upward or downward) is the smallest compared to the direction of each optical axis. The reason is that the weight of the holder 1 is supported by the holding portion 2a of the base member 2 and is not a load, and a frictional force when driving the weight of the holder 1 in the horizontal direction is a main load. . Considering the frictional force generated in the guide portion 1c of the holder 1, when the optical axis of the image blur correcting device is in the horizontal direction, the weight of the holder 1 is not applied in the horizontal direction, so the vertical frictional force is the direction of each optical axis. The smallest compared to. Further, when the optical axis of the image blur correction device is in the vertical direction (upward or downward), the weight of the holder 1 is applied in the vertical direction, so that the horizontal frictional force is the most compared with the direction of each optical axis. growing.

一般に、摩擦力は静止摩擦から動摩擦にかわるときに非線形に変化する。このため、ホルダー1のガイド部1cに生じる静止摩擦力が大きいと、ホルダー1の素早い動き出しと正確な制御が難しくなる。本実施例1では、負荷検出部5は像ぶれ補正装置の正位置(初期位置)、上向きまたは下向き等の各姿勢差に応じたコイル電流値または電圧値を検出することにより駆動負荷、特に摩擦力を検出できる。そのため、後述する制御部6により、各姿勢での摩擦力に応じた電圧または周波数での交番駆動が可能になる(図2参照)。   Generally, the frictional force changes nonlinearly when changing from static friction to dynamic friction. For this reason, if the static frictional force generated in the guide portion 1c of the holder 1 is large, it is difficult to quickly start the holder 1 and accurately control it. In the first embodiment, the load detection unit 5 detects a coil current value or a voltage value corresponding to each posture difference such as a positive position (initial position), an upward direction, or a downward direction of the image blur correction device, and thereby a driving load, particularly a friction. Can detect force. Therefore, the alternating drive at the voltage or frequency according to the frictional force in each attitude | position is attained by the control part 6 mentioned later (refer FIG. 2).

さらに、温度環境が高温または低温の場合には、ホルダー1とベース部材2の材料の膨張または収縮によって摩擦力の変化が生じるが、これは、負荷検出部5(傾き検出手段)により検出可能である。本実施例1の検出方法では、フィードバック制御時のコイル3a、3bへの電流値または電圧値の検出により、各姿勢での駆動負荷に加えて、低温時や高温時等の温度環境変化による駆動負荷も検出できる。   Further, when the temperature environment is high or low, the frictional force changes due to the expansion or contraction of the material of the holder 1 and the base member 2, which can be detected by the load detection unit 5 (tilt detection means). is there. In the detection method of the first embodiment, by detecting the current value or the voltage value to the coils 3a and 3b during feedback control, in addition to the driving load in each posture, driving by a temperature environment change at a low temperature or a high temperature is performed. The load can also be detected.

交番駆動条件の設定を行う制御部6の記憶部6aは、光軸が水平の場合(正位置=初期位置)での駆動電流値または電圧値を記憶している。差算出器6bは、負荷検出部5により検出された、光軸があおり方向(正位置の場合はピッチ方向、縦位置の場合はヨー方向)にある角度に傾いた位置での駆動電流値または電圧値と、上記記憶値との差を算出する。制御部6は、前記差をあおり方向の傾きとして扱い、さらに増幅などの信号処理を行い、交番駆動条件である電圧または周波数を設定する(図2)。これによって、光軸があおり方向に所定角度以上傾いた場合は交番駆動を開始し、あおり方向の傾き角度に応じて電圧または周波数を設定することが可能である。   The storage unit 6a of the control unit 6 that sets alternating drive conditions stores a drive current value or a voltage value when the optical axis is horizontal (normal position = initial position). The difference calculator 6b detects the drive current value at a position detected by the load detection unit 5 and inclined at an angle in the direction in which the optical axis is tilted (pitch direction in the case of the normal position and yaw direction in the case of the vertical position). The difference between the voltage value and the stored value is calculated. The control unit 6 treats the difference as a tilt in the tilt direction, further performs signal processing such as amplification, and sets a voltage or frequency that is an alternating drive condition (FIG. 2). As a result, when the optical axis is tilted by a predetermined angle or more in the tilting direction, alternating driving can be started, and the voltage or frequency can be set according to the tilting angle in the tilting direction.

微小振幅駆動である交番駆動の効果は、可動部の振幅が大きいほど良いわけではない。振幅を大きくし、交番駆動させると、被写体像の解像度が落ちてカメラのオートフォーカス(自動焦点調整)性能を悪くしたり、カメラ外装に振動が伝わったりすることで、撮影者に不快感を与えてしまう。そのため、交番駆動の振幅量は、カメラのオートフォーカスに設定された最小錯乱円径以下に抑えるのがよい。また、交番駆動の周波数を可動部であるホルダー1の固有振動数に合わせると、可動部の振幅が最大となるが、可動部が共振して振幅を制御することが難しく、また、騒音が大きくなるため撮影者に不快感を与えてしまう。そのため、交番駆動の周波数は可動部であるホルダー1の固有振動数より大きくて振幅が安定する周波数が良い。本実施例1では、交番駆動の電圧または周波数を像ぶれ補正装置の光軸の傾き、または高温時や低温時の温度環境変化、駆動負荷、に適した交番駆動条件を設定できるため、低消費電力かつ低騒音にすることができる。   The effect of alternating drive, which is minute amplitude drive, is not as good as the amplitude of the movable part is large. Increasing the amplitude and driving alternately reduces the resolution of the subject image and degrades the camera's autofocus (automatic focus adjustment) performance, or imparts vibration to the camera exterior, giving the photographer an uncomfortable feeling. End up. Therefore, it is preferable to suppress the amplitude amount of the alternating drive to be equal to or less than the minimum circle of confusion set for the autofocus of the camera. Further, when the frequency of the alternating drive is matched with the natural frequency of the holder 1 which is a movable part, the amplitude of the movable part becomes maximum, but it is difficult to control the amplitude because the movable part resonates, and the noise is large. Therefore, the photographer is uncomfortable. For this reason, the frequency of the alternating drive is preferably a frequency that is larger than the natural frequency of the holder 1 that is a movable part and the amplitude is stabilized. In the first embodiment, the alternating drive voltage or frequency can be set to an alternating drive condition suitable for the inclination of the optical axis of the image blur correction device, the temperature environment change at high or low temperatures, and the drive load. Electric power and low noise can be achieved.

次に微小振幅駆動を行う像ぶれ補正装置のフローチャートを説明する(図3)。   Next, a flowchart of an image blur correction apparatus that performs minute amplitude driving will be described (FIG. 3).

ステップS101でカメラのレリーズ釦(不図示)の半押しにより発生するSW1をONにすると、撮影準備動作が指示され、位置検出手段10の位置情報に基づいて、ホルダー1の位置が光軸中心になるようにコイル通電を行う(S102)。ステップS103では、コイル通電時の駆動電流値または電圧値を検出し、ステップS104で、像ぶれ補正装置が正位置(初期位置)である予め記憶された駆動電流値との差を算出し、差がある閾値未満の場合には、交番駆動を行わず振れ補正駆動を行う。差が閾値以上の場合はステップS105へと進んで、ステップS104での差の情報に基づいて交番駆動条件として交番駆動の電圧または周波数を設定する。ステップS106で交番駆動条件を交番駆動信号生成部8へ入力し、交番駆動信号を生成して駆動部7へ入力することにより交番駆動を行う。この交番駆動は、レリーズ釦のSW1押下による撮影準備動作の指示の後に開始される。ステップS107では振れ検出手段4に基づく振れ補正駆動信号が制御部6に重畳して入力し、交番駆動開始後に振れ補正駆動も行う。ステップS108では、カメラのレリーズ釦の全押しにより発生するSW2の待機状態となる。   In step S101, when SW1 generated by half-pressing a release button (not shown) of the camera is turned on, a shooting preparation operation is instructed, and the position of the holder 1 is centered on the optical axis based on the position information of the position detection means 10. The coil is energized so as to become (S102). In step S103, the drive current value or voltage value when the coil is energized is detected, and in step S104, the difference between the image blur correction device and the previously stored drive current value at the normal position (initial position) is calculated. When the value is less than a certain threshold value, the shake correction driving is performed without performing the alternating driving. If the difference is greater than or equal to the threshold value, the process proceeds to step S105, where the alternating drive voltage or frequency is set as the alternating drive condition based on the difference information in step S104. In step S106, the alternating drive condition is input to the alternating drive signal generation unit 8, and the alternating drive signal is generated and input to the drive unit 7 to perform the alternating drive. This alternating drive is started after an instruction for a shooting preparation operation by pressing SW1 of the release button. In step S107, a shake correction drive signal based on the shake detection means 4 is input to the control unit 6 in a superimposed manner, and shake correction drive is also performed after the alternating drive is started. In step S108, a standby state of SW2 generated by fully pressing the release button of the camera is set.

図3では、交番駆動と交番駆動開始後の振れ補正駆動をSW2のオン(撮影動作の指示)の前に行ったが、図4に示すフローチャートのように、SW2のオンの後(撮影動作の指示の後)に行ってもよい。   In FIG. 3, the alternating drive and the shake correction drive after the start of the alternating drive are performed before the switch SW2 is turned on (instruction of the photographing operation), but after the switch SW2 is turned on (the photographing operation is performed) as shown in the flowchart of FIG. You may go after the instruction).

以上、本発明の実施例1について説明したが、本発明はこの実施例1に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although Example 1 of this invention was demonstrated, this invention is not limited to this Example 1, and a various deformation | transformation and change are possible within the range of the summary.

以下、図5〜図7を参照して、本発明の実施例2である像ぶれ補正装置について説明する。実施例2の構成は、基本的に実施例1の構成と同じであるので、実施例2の説明においては、実施例1の構成を流用し、異なる部分のみ説明し、同一部分の説明は省略する。   Hereinafter, an image blur correction apparatus that is Embodiment 2 of the present invention will be described with reference to FIGS. Since the configuration of the second embodiment is basically the same as the configuration of the first embodiment, in the description of the second embodiment, the configuration of the first embodiment is used, only different portions are described, and the description of the same portions is omitted. To do.

像ぶれ補正装置は、ベース部材としての地板11、基板12、位置検出手段13、駆動手段としてのコイル14と永久磁石15、補正レンズを保持する保持部材としてのホルダー16、補正レンズ17、回転規制部材としての回転規制板18で構成される(図5)。   The image blur correction apparatus includes a base plate 11 as a base member, a substrate 12, position detection means 13, a coil 14 and permanent magnet 15 as drive means, a holder 16 as a holding member for holding a correction lens, a correction lens 17, and a rotation restriction. It is comprised by the rotation control board 18 as a member (FIG. 5).

地板11は、合成樹脂材料で中空円盤形状に形成されて、開口部11a、光軸回り方向の一方向に開口を有する嵌合部11b、後述の回転規制板18と係合する係合軸11cを有する。また、後述の基板12の位置決め穴部12aと係合する係合軸11d、後述のコイル14の内径穴部14aに挿入される位置決め軸11eとを有する。   The base plate 11 is formed of a synthetic resin material in a hollow disk shape, and has an opening 11a, a fitting portion 11b having an opening in one direction around the optical axis, and an engagement shaft 11c that engages with a rotation restricting plate 18 described later. Have Moreover, it has the engaging shaft 11d engaged with the positioning hole part 12a of the below-mentioned board | substrate 12, and the positioning shaft 11e inserted in the internal diameter hole part 14a of the coil 14 mentioned later.

嵌合部11bは後述のホルダー16のガイドバー16a(摺動軸)より光軸中心からの距離が大きい梁部11b−1と小さい梁部11b−2を持った構造である。これにより、嵌合部1bの一部が光軸回りの一方向に開口を有する構造となる。そのため、後述するホルダー16のガイドバー16aを嵌合部11bに光軸方向に当接させた後、光軸回りに回転することで、光軸方向の移動を規制し、光軸に垂直な方向に移動可能に支持することができる。   The fitting portion 11b has a structure having a beam portion 11b-1 having a larger distance from the center of the optical axis and a small beam portion 11b-2 than a guide bar 16a (sliding shaft) of the holder 16 described later. Thereby, a part of the fitting portion 1b has a structure having an opening in one direction around the optical axis. Therefore, after a guide bar 16a of the holder 16 to be described later is brought into contact with the fitting portion 11b in the optical axis direction, the movement in the optical axis direction is restricted by rotating around the optical axis, and the direction perpendicular to the optical axis Can be movably supported.

さらに、前記嵌合部11bは光軸に直交する方向にガイド穴11b−3を有する構造である。係合軸11c、11dは光軸方向に延出し、それぞれ少なくとも2つの軸を有する。   Furthermore, the fitting part 11b has a structure having a guide hole 11b-3 in a direction orthogonal to the optical axis. The engagement shafts 11c and 11d extend in the optical axis direction and each have at least two axes.

基板12はハード基板またはフレキシブルプリント基板であり、地板11の係合軸11dとの位置決め穴12aを有し、後述する位置検出手段13とコイル14の端子が同一平面上に集中して配線される。   The board 12 is a hard board or a flexible printed board, has a positioning hole 12a with the engaging shaft 11d of the base plate 11, and a position detection means 13 and a terminal of the coil 14 described later are concentrated and wired on the same plane. .

位置検出手段13は、ホール素子またはMR素子等の磁気検出手段で構成され、後述するホルダー16と一体の永久磁石15が光軸方向に重なる位置に配置され、後述するホルダー16の光軸に直交する方向の移動を検出する。   The position detection means 13 is composed of a magnetic detection means such as a Hall element or an MR element, and is disposed at a position where a permanent magnet 15 integrated with a holder 16 described later overlaps in the optical axis direction, and is orthogonal to the optical axis of the holder 16 described later. Detect movement in the direction of

永久磁石15は、Nd−Fe−B系希土類磁性粉またはフェライト系とポリアミドなどの熱可塑性樹脂バインダー材との混合物を射出成形することにより形成されたプラスチックマグネットで形成される。着磁方向は光軸方向であり、後述するコイル14と磁気回路を形成し、ホルダー16を駆動する。   The permanent magnet 15 is formed of a plastic magnet formed by injection molding a mixture of Nd—Fe—B rare earth magnetic powder or ferrite and a thermoplastic resin binder such as polyamide. The magnetization direction is the optical axis direction, forms a magnetic circuit with a coil 14 to be described later, and drives the holder 16.

ホルダー16は、合成樹脂材料で形成され、地板11のガイド穴11b−3と摺動するガイドバー16a、後述の回転規制板18の係合穴18bと摺動可能な軸部と光軸方向の移動を規制する庇部からなる係合部16bを備える。ホルダー16には、後述する補正レンズ17が固定されるとともに、永久磁石15が接着等で固定される。   The holder 16 is formed of a synthetic resin material, and slides with a guide hole 16b-3 of the main plate 11 and slides with a guide bar 16a, an engagement hole 18b of a rotation restricting plate 18 described later, a slidable shaft portion, and an optical axis direction. The engaging part 16b which consists of a collar part which controls a movement is provided. A correction lens 17 (to be described later) is fixed to the holder 16, and a permanent magnet 15 is fixed by adhesion or the like.

ここで、ガイドバー16aは、金属等の摺動性の良い材料で形成し、ホルダー16に一体に形成してもよい。   Here, the guide bar 16 a may be formed of a material having good slidability such as metal and may be formed integrally with the holder 16.

補正レンズ17はガラスまたはプラスチック材料で形成され、ホルダー16に接着または熱カシメで固定される。   The correction lens 17 is formed of glass or a plastic material, and is fixed to the holder 16 by adhesion or heat caulking.

回転規制板18は、リン青銅等のバネ性を有した材料で中空円盤形状に形成され、開口部18a、ホルダー16の係合部16bと係合する係合穴18b、鍔部18c、地板11の係合軸11cと係合する係合穴18dとを有する。また、回転規制板18は、地板11よりも被写体側に配置される。   The rotation restricting plate 18 is formed in a hollow disk shape with a spring material such as phosphor bronze, and has an engagement hole 18b, a flange 18c, and a base plate 11 that engage with the opening 18a and the engagement portion 16b of the holder 16. And an engagement hole 18d that engages with the engagement shaft 11c. Further, the rotation restricting plate 18 is disposed closer to the subject than the base plate 11.

次に、組立方法について説明する。地板11の位置決め軸11dを基板12の位置決め穴部12aに挿入し、接着等により地板11と基板12を固定する。コイル14の内径穴部14aを地板11の位置決め軸11eに挿入し、接着等でコイル14を地板11に固定する。コイル14の端子は基板12に実装する。   Next, the assembly method will be described. The positioning shaft 11d of the base plate 11 is inserted into the positioning hole 12a of the substrate 12, and the base plate 11 and the substrate 12 are fixed by adhesion or the like. The inner diameter hole portion 14a of the coil 14 is inserted into the positioning shaft 11e of the base plate 11, and the coil 14 is fixed to the base plate 11 by adhesion or the like. The terminal of the coil 14 is mounted on the substrate 12.

位置検出手段13の端子部は、基板12に実装するが、端子部以外は、地板11または基板12に接着等により固定する。   Although the terminal part of the position detection means 13 is mounted on the board | substrate 12, it fixes to the base plate 11 or the board | substrate 12 by adhesion | attachment etc. except a terminal part.

回転規制板18は、係合穴部18bをホルダー16の係合軸16bに組み込む。次に、回転規制板18が一体になったホルダー16を光軸回りに回転させて、ガイドバー16aを光軸回りに回転させる。かつ、回転規制板18の鍔部18cの光軸方向に対して垂直な面と地板11の位置決め軸11cの光軸方向に垂直な面を押し当てた状態から、ホルダー16を回転させる。そして、ガイドバー16aを地板11のガイド穴11b−3に挿入し、かつ、回転規制板18の係合穴18dに地板11の係合軸11cに挿入する(図6)。これにより、回転規制板18の光軸回りの回転方向の移動が規制され、ホルダー16の光軸方向の駆動が地板11のガイド穴11b−3により規制される(図7)。   The rotation restricting plate 18 incorporates the engagement hole 18 b into the engagement shaft 16 b of the holder 16. Next, the holder 16 with which the rotation restricting plate 18 is integrated is rotated around the optical axis, and the guide bar 16a is rotated around the optical axis. And the holder 16 is rotated from the state which pressed the surface perpendicular | vertical with respect to the optical axis direction of the collar part 18c of the rotation control board 18 and the surface perpendicular | vertical to the optical axis direction of the positioning axis | shaft 11c of the base plate 11. FIG. Then, the guide bar 16a is inserted into the guide hole 11b-3 of the base plate 11, and is inserted into the engagement shaft 11c of the base plate 11 into the engagement hole 18d of the rotation restricting plate 18 (FIG. 6). Thereby, the movement of the rotation restricting plate 18 around the optical axis is restricted, and the drive of the holder 16 in the optical axis direction is restricted by the guide hole 11b-3 of the base plate 11 (FIG. 7).

次に、ホルダー16の駆動を説明する。図6の20pの方向の駆動と20yの方向の駆動は同様のため、20yの方向の駆動のみ説明する。永久磁石15の磁束はコイル14に向かって垂直に貫いているため、コイル14に電流を流すと、ホルダー16は矢印20yの1方向に駆動される(図6)。コイル14を前述とは逆方向に電流を流すと、ホルダー16は矢印20yのもう1方の方向に駆動される。   Next, driving of the holder 16 will be described. Since the driving in the 20p direction and the driving in the 20y direction in FIG. 6 are the same, only the driving in the 20y direction will be described. Since the magnetic flux of the permanent magnet 15 penetrates perpendicularly toward the coil 14, when a current is passed through the coil 14, the holder 16 is driven in one direction indicated by the arrow 20y (FIG. 6). When a current is passed through the coil 14 in the opposite direction, the holder 16 is driven in the other direction of the arrow 20y.

本実施例2の構成では、ホルダー16のガイドバー16aは地板11のガイド穴11b−3内を移動するため、駆動時にすべり摩擦を生じるが、微小振幅駆動である交番駆動を行った状態から駆動することで静止摩擦から動摩擦にするので、摩擦力を低減できる。   In the configuration of the second embodiment, the guide bar 16a of the holder 16 moves in the guide hole 11b-3 of the base plate 11 and thus generates sliding friction during driving, but is driven from a state where alternating driving that is minute amplitude driving is performed. By doing so, the frictional force can be reduced since the static friction is changed to the dynamic friction.

実施例1および2では、振れ補正手段として補正レンズ1a,17を用いているが、光軸に直交する方向に移動可能な撮像素子を用いても良い。   In the first and second embodiments, the correction lenses 1a and 17 are used as shake correction means, but an image sensor that can move in a direction orthogonal to the optical axis may be used.

以上、本発明の実施例2について説明したが、本発明はこの実施例2に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although Example 2 of this invention was demonstrated, this invention is not limited to this Example 2, and a various deformation | transformation and change are possible within the range of the summary.

上記実施例では、デジタルカメラに具備される像ぶれ補正装置を例にして説明を続けてきた。しかし、デジタルカメラに限らず、デジタルビデオカメラ、一眼レフカメラもしくはレンズ交換式のビデオカメラ用の交換レンズ、監視カメラ、Webカメラ等の光学機器、撮像装置にも適用可能である。さらには、双眼鏡や携帯電話等の携帯端末にも展開が可能である。また、ステッパーなどの光学装置に含まれる偏光装置、光軸回動装置における収差補正への利用も可能である。   In the above-described embodiments, the description has been continued by taking the image blur correction device provided in the digital camera as an example. However, the present invention can be applied not only to digital cameras but also to digital video cameras, single-lens reflex cameras, interchangeable lenses for interchangeable lens video cameras, optical devices such as surveillance cameras, web cameras, and imaging devices. Furthermore, it can also be applied to portable terminals such as binoculars and mobile phones. Further, it can be used for aberration correction in a polarizing device and an optical axis rotating device included in an optical device such as a stepper.

1 ホルダー
2 ベース部材
4 振れ検出手段
5 負荷検出部
6 交番駆動手段
7 駆動部
11 位置検出手段
DESCRIPTION OF SYMBOLS 1 Holder 2 Base member 4 Shake detection means 5 Load detection part 6 Alternating drive means 7 Drive part 11 Position detection means

Claims (7)

機器の振れを検出する振れ検出手段と、前記振れ検出手段の検出結果に基づいて光軸に直交する方向に駆動される振れ補正手段と、前記振れ補正手段を前記振れ検出手段の検出結果とは独立に交番駆動する交番駆動手段と、前記機器のあおり方向の傾きを検出する傾き検出手段によって、前記機器があおり方向に所定角度以上傾いていることが検出された場合には、前記傾きに基づいて前記交番駆動手段の駆動条件を制御する制御手段と、を有する像ぶれ補正装置であって、
前記傾き検出手段は、前記振れ補正手段の駆動電流値を検出し、
前記制御手段は、前記傾き検出手段により検出された前記駆動電流値と前記機器の初期位置の傾きでの駆動電流値との差を前記傾きとして扱い、前記傾きに基づいて前記交番駆動手段の駆動条件を設定することを特徴とする像ぶれ補正装置。
What is a shake detection unit that detects a shake of a device, a shake correction unit that is driven in a direction orthogonal to an optical axis based on a detection result of the shake detection unit, and a detection result of the shake detection unit When it is detected by the alternating drive means that independently drives alternately and the inclination detection means that detects the inclination of the tilt direction of the device, the device is based on the inclination when it is detected that the device is inclined at a predetermined angle or more in the tilt direction. Control means for controlling the driving conditions of the alternating drive means, and an image blur correction device comprising:
The inclination detection means detects a drive current value of the shake correction means;
The control means treats the difference between the drive current value detected by the inclination detection means and the drive current value at the inclination of the initial position of the device as the inclination, and drives the alternating drive means based on the inclination. An image blur correction apparatus characterized by setting conditions.
前記傾き検出手段は更に、前記振れ補正手段の温度環境変化による駆動負荷を検出し、前記制御手段は、前記傾きと前記温度環境変化による駆動負荷に基づいて前記交番駆動手段の駆動条件を設定することを特徴とする請求項1に記載の像ぶれ補正装置。   The inclination detecting means further detects a driving load due to a temperature environment change of the shake correcting means, and the control means sets a driving condition of the alternating driving means based on the inclination and the driving load due to the temperature environment change. The image blur correction apparatus according to claim 1, wherein: 前記振れ補正手段としての補正レンズまたは撮像素子を保持し、摺動軸を持つホルダーと、
前記ホルダーの摺動軸を摺動可能に支持するベース部材と、前記ホルダーに一体に取り付けられる永久磁石と、前記ベース部材に固定されるコイルとを有し、
前記コイルへの通電により前記ホルダーが駆動されることを特徴とする請求項1又は2に記載の像ぶれ補正装置。
A holder that holds a correction lens or an image sensor as the shake correction unit and has a sliding shaft;
A base member that slidably supports the sliding shaft of the holder, a permanent magnet that is integrally attached to the holder, and a coil that is fixed to the base member;
The image blur correction apparatus according to claim 1, wherein the holder is driven by energization of the coil.
前記交番駆動手段は、前記機器による撮影準備動作の指示の後に交番駆動を開始し、前記振れ補正手段は、前記交番駆動開始後に振れ補正駆動がなされることを特徴とする請求項1乃至3のいずれか1項に記載の像ぶれ補正装置。   4. The alternating drive unit according to claim 1, wherein the alternating drive unit starts alternating drive after an instruction of a photographing preparation operation by the device, and the shake correction unit performs shake correction drive after the alternating drive starts. The image blur correction device according to any one of the preceding claims. 前記交番駆動手段は、前記機器による撮影動作の指示の後に交番駆動を開始し、
前記振れ補正手段は、前記交番駆動開始後に振れ補正駆動がなされることを特徴とする請求項1乃至4のいずれか1項に記載像ぶれ補正装置。
The alternating drive means starts alternating drive after an instruction of photographing operation by the device,
5. The image blur correction apparatus according to claim 1, wherein the shake correction unit performs shake correction driving after the start of the alternating drive. 6.
請求項1乃至5のいずれか1項に記載の像ぶれ補正装置を搭載した光学機器。   An optical apparatus equipped with the image blur correction device according to claim 1. 光軸に直交する方向に移動可能な振れ補正手段を有する像ぶれ補正装置の制御方法であって、
機器の振れを検出する振れ検出ステップと、前記振れ検出ステップの検出結果に基づいて、前記振れ補正手段を駆動する駆動ステップと、前記振れ補正手段を前記振れ検出ステップの検出結果とは独立に交番駆動する交番駆動ステップと、前記機器のあおり方向の傾きを検出する傾き検出ステップと、前記傾き検出ステップによって前記機器があおり方向に所定角度以上傾いていることが検出された場合には、前記傾きに基づいて交番駆動ステップでの駆動条件を制御する制御ステップとを備え、
前記傾き検出ステップは、前記振れ補正手段の駆動電流値を傾き検出手段にて検出し、
前記制御ステップは、前記傾き検出手段により検出された前記駆動電流値と前記機器の初期位置の傾きでの駆動電流値との差を前記傾きとして扱い、前記傾きに基づいて交番駆動手段の駆動条件を設定することを特徴とする像ぶれ補正装置の制御方法。
A control method of an image blur correction apparatus having a shake correction means movable in a direction perpendicular to the optical axis,
A shake detection step for detecting a shake of the device, a drive step for driving the shake correction means based on the detection result of the shake detection step, and the shake correction means for alternating the detection result of the shake detection step. An alternating drive step for driving; an inclination detection step for detecting an inclination of the device in the tilt direction; and when the tilt detection step detects that the device is inclined at a predetermined angle or more in the tilt direction, And a control step for controlling the drive condition in the alternating drive step based on
In the inclination detecting step, a driving current value of the shake correcting means is detected by an inclination detecting means ,
The control step treats the difference between the drive current value detected by the tilt detection means and the drive current value at the tilt of the initial position of the device as the tilt, and the driving condition of the alternating drive means based on the tilt A method for controlling an image blur correction apparatus, characterized in that:
JP2011023995A 2011-02-07 2011-02-07 Image blur correction apparatus, optical apparatus, and control method thereof Expired - Fee Related JP5882585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011023995A JP5882585B2 (en) 2011-02-07 2011-02-07 Image blur correction apparatus, optical apparatus, and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011023995A JP5882585B2 (en) 2011-02-07 2011-02-07 Image blur correction apparatus, optical apparatus, and control method thereof

Publications (2)

Publication Number Publication Date
JP2012163770A JP2012163770A (en) 2012-08-30
JP5882585B2 true JP5882585B2 (en) 2016-03-09

Family

ID=46843207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011023995A Expired - Fee Related JP5882585B2 (en) 2011-02-07 2011-02-07 Image blur correction apparatus, optical apparatus, and control method thereof

Country Status (1)

Country Link
JP (1) JP5882585B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6145377B2 (en) * 2013-09-30 2017-06-14 日本電産サンキョー株式会社 Optical device for photography
JP6278664B2 (en) * 2013-11-19 2018-02-14 日本電産コパル株式会社 Lens drive device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4288726B2 (en) * 1998-08-21 2009-07-01 株式会社ニコン Blur correction apparatus and blur correction method
JP2005173093A (en) * 2003-12-10 2005-06-30 Canon Inc Image shake correction device for camera
JP5332438B2 (en) * 2008-02-22 2013-11-06 株式会社リコー Imaging device

Also Published As

Publication number Publication date
JP2012163770A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
US9798157B2 (en) Image stabilizing apparatus, lens barrel, and image pickup apparatus
JP2018124582A (en) Image stabilizer correction device and image stabilizer correction circuit, as well as image stabilizer correction method
WO2015156135A1 (en) Drive device and imaging device
JP7325216B2 (en) Vibration isolation control device and method, and imaging device
JP2009098274A (en) Optical apparatus having image blurring correction device
JP2009300614A (en) Imaging device
JP2014026147A (en) Holding mechanism for holding moving body that moves in in-plane direction, and imaging device including the holding mechanism
US10241349B2 (en) Image stabilization apparatus, lens apparatus, and imaging apparatus
US9563068B2 (en) Image shake correction device, control method thereof, and image pickup apparatus
JP2015135479A (en) Image tremor correction device and imaging device
JP5287226B2 (en) Imaging device
JP4983151B2 (en) camera
JP5882585B2 (en) Image blur correction apparatus, optical apparatus, and control method thereof
JP4843933B2 (en) Camera shake correction system and photographing apparatus
JP5866960B2 (en) IMAGING DEVICE AND IMAGING DEVICE POSITION SHIFT CORRECTION METHOD
JP2010204157A (en) Image blur correction device and optical apparatus
JP6172971B2 (en) Driving device and imaging device
JP2008158233A (en) Blur correcting device and optical device
JP2014089357A (en) Camera shake correction device
JP5053693B2 (en) Image blur correction apparatus or optical apparatus and image pickup apparatus including the same
JP5707801B2 (en) Imaging apparatus and electronic apparatus
JP2012003023A (en) Lens drive device and imaging device
WO2007136053A1 (en) Blur correction device, optical device using the same, method for manufacturing the same and method for operating the same
JP5029269B2 (en) Imaging device
JP2012123126A (en) Optical device and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160204

R151 Written notification of patent or utility model registration

Ref document number: 5882585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees