JP5870140B2 - 双方向フォトサイリスタチップ、ソリッドステートリレー - Google Patents

双方向フォトサイリスタチップ、ソリッドステートリレー Download PDF

Info

Publication number
JP5870140B2
JP5870140B2 JP2014059712A JP2014059712A JP5870140B2 JP 5870140 B2 JP5870140 B2 JP 5870140B2 JP 2014059712 A JP2014059712 A JP 2014059712A JP 2014059712 A JP2014059712 A JP 2014059712A JP 5870140 B2 JP5870140 B2 JP 5870140B2
Authority
JP
Japan
Prior art keywords
diffusion region
gate
anode
photothyristor
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014059712A
Other languages
English (en)
Other versions
JP2015185642A (ja
Inventor
鞠山 満
満 鞠山
松本 浩司
浩司 松本
敬一 澤井
敬一 澤井
成次 鈴木
成次 鈴木
尚生 一條
尚生 一條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2014059712A priority Critical patent/JP5870140B2/ja
Priority to CN201510130205.6A priority patent/CN104952889B/zh
Publication of JP2015185642A publication Critical patent/JP2015185642A/ja
Application granted granted Critical
Publication of JP5870140B2 publication Critical patent/JP5870140B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Thyristors (AREA)

Description

この発明は、双方向フォトサイリスタチップ、上記双方向フォトサイリスタチップを用いたソリッドステートリレー(以下、SSRと略称する)に関する。
従来より、交流で使用するSSRとして、図15に示すような回路構成を有するものがある。このSSR8は、LED(発光ダイオード)等の発光素子1および点弧用の双方向フォトサイリスタ2から成る光点弧カプラ3と、負荷を実制御するための双方向サイリスタ(以下、メインサイリスタと言う場合もある)4と、抵抗器5や容量6等で成るスナバ回路7とで構成されている。
また、上記SSR8を構成する光点弧カプラ3の等価回路図は、図16に示す通りである。双方向フォトサイリスタ2は、CH(チャネル)1のフォトサイリスタ9とCH2のフォトサイリスタ10とで構成されている。そして、CH1のフォトサイリスタ9は、PNPトランジスタQ1のベースをNPNトランジスタQ2のコレクタに接続する一方、PNPトランジスタQ1のコレクタをNPNトランジスタQ2のベースに接続して構成されている。同様に、CH2のフォトサイリスタ10は、PNPトランジスタQ3のベースをNPNトランジスタQ4のコレクタに接続する一方、PNPトランジスタQ3のコレクタをNPNトランジスタQ4のベースに接続して構成されている。
さらに、上記CH1側においては、PNPトランジスタQ1のエミッタが直接電極T1に接続されている。一方、NPNトランジスタQ2のエミッタは直接に、ベースはゲート抵抗11を介して、電極T2に接続されている。同様に、CH2側においては、PNPトランジスタQ3のエミッタが直接電極T2に接続されている。一方、NPNトランジスタQ4のエミッタは直接に、ベースはゲート抵抗12を介して、電極T1に接続されている。
上記構成を有する光点弧カプラ3は、以下のように動作する。すなわち、図16において、電極T1‐電極T2間に素子のオン電圧(約1.5V)よりも高い電圧の電源電圧がバイアスされている条件下で、先ず、電極T1側が電極T2側よりも正電位にある場合は、LED1からの光信号を双方向フォトサイリスタ2が受光すると、CH1側のNPNトランジスタQ2がオン状態となる。そうすると、CH1側のPNPトランジスタQ1のベース電流が引き出されることになり、このPNPトランジスタQ1がオンする。続いて、PNPトランジスタQ1のコレクタ電流によってCH1側のNPNトランジスタQ2にベース電流が供給され、正帰還によりCH1側のPNPN部がオンして、電極T1から電極T2へ交流回路の負荷に応じたオン電流が流れる。その場合、CH2側では、バイアス印加の向きが逆であるからPNPN部の正帰還が起こらず、1次光電流のみが流れる。
一方、上記電極T2側が電極T1側よりも正電位にある場合には、CH2側のPNPN部が、上述の場合と全く同様に正帰還動作してオンし、CH1側では1次光電流のみが流れる。
こうして、上記CH1側のPNPN部またはCH2側のPNPN部がオン動作すると、この電流がメインサイリスタ4のゲートに流れ込み、メインサイリスタ4をオンさせるのである。
上述のような上記光トリガ用の双方向フォトサイリスタ2と、負荷を実制御するための双方向サイリスタであるメインサイリスタ4とのハイブリッド構成を有するSSR8は、電流容量を大きくできるという特徴を有している。その理由は、バーティカル型のチップ構造を採用しているために、電流経路がPNPN素子の面積に比例して増えるためチップサイズを小さくできるからである。つまり、コストに対する効率がよい構造であるといえる。
これに対し、不利な点は、(1) バーティカル型のチップ構造を得るために、アイソレーションやメサ構造を採用する必要があり、作り難い。(2) 上記(1)のためにプロセスコストが高い。(3) メインサイリスタ4は、光でトリガができない(メインサイリスタ4のトリガ電流としては約10mAが必要であり、光励起で発生するキャリア電流では大幅に不足するため)。
近年、電子業界を取り巻く経済環境は益々厳しくなってきており、電子機器のコストの削減や軽便性の向上が益々強く望まれるようになってきている。このような要求に対応するために、図15に示すような構成を有する従来のSSRにおいて、例えば、部品点数を削減するため、メインサイリスタ4を省略して図14に示すような回路構成のSSRを作製し、上記光トリガ用の双方向フォトサイリスタのみでダイレクトに負荷を制御する試みがなされている。
このように、メインサイリスタを省略した回路構成のSSRを作製でき、ダイレクトに負荷を制御できる上記光トリガ用の双方向フォトサイリスタとして、特許第4065825号公報(特許文献1)に開示された双方向フォトサイリスタチップがある。
図17は、上記特許文献1に開示された双方向フォトサイリスタチップにおける概略パターンレイアウトを示す。また、図18および図19は、図17におけるB‐B’矢視断面概略図である。尚、図18は光オン時の状態を示し、図19は光オフ時である電圧反転時(転流時)の状態を示す。
上記従来の双方向フォトサイリスタチップにおいては、平面的には、図17に示すように、中心線A‐A’とこの中心線に直交する線分B‐B’との交点に対して180度の回転対称に、つまり上記交点に対して点対称のパターンを有している。また、断面的には、図18および図19に示すように、中心線A‐A’と直交する垂直方向の線分C‐C’に対して左右対称に構成されている。以下、中心線A‐A’および線分C‐C’に対して左側のフォトサイリスタをCH1のフォトサイリスタ20aと称する一方、右側のフォトサイリスタをCH2のフォトサイリスタ20bと称する。
図17,図18および図19において、21はN型シリコン基板、22は高濃度N型拡散領域22aと高濃度P型拡散領域22bとから構成されたショートダイオード(チャネル分離領域)、23はアノード拡散領域(P型)、24はゲート拡散領域(P型)、25はカソード拡散領域(N型)、26はゲート抵抗領域、27はチャネルストッパとしての高濃度N型拡散領域、23a,24a,27aはAl電極である。また、T1,T2はリードフレーム、28a,28b,28a’,28b’はAuワイヤ、29はショットキーバリアダイオードである。
上記構成によれば、双方向フォトサイリスタにおける重要な設計パラメータである転流特性を大幅に向上させることができる。したがって、本双方向フォトサイリスタをSSRの光点孤カプラとして用いることによって、メインサイリスタを省略することが可能になるのである。
ここで、上記「転流特性」とは、転流失敗を起こすこと無く制御可能な最大の動作電流値Icomを表す特性のことである。そして、上記特許文献1に開示された双方向フォトサイリスタチップにおいては、N型シリコン基板21の表面側にショートダイオード22を有している。したがって、図19に示すように、ショートダイオード22によって、転流時において、N型シリコン基板21内の少数キャリア30が回収される。その結果、上記CH2側の正帰還作用によってCH2のフォトサイリスタ20bがオンするという誤動作(転流失敗)が抑制されて、転流特性が改善されるのである。
上述のように、上記特許文献1に開示された双方向フォトサイリスタチップは、光トリガを目的とした双方向フォトサイリスタであって、負荷を実制御するためのドライバー素子の目的としても作製されており、それらの目的に適したラテラル構造を有している。そのために、プレーナー構造のために作り易く、プロセスコストが安価であるという利点がある。
しかしながら、上記従来の特許文献1に開示された双方向フォトサイリスタチップにおいては、以下のような問題がある。
すなわち、上記双方向フォトサイリスタチップのようなラテラル構造のPNPN素子の場合には、電流経路が、互いに対向しているアノード拡散領域(P型)23と、ゲート拡散領域(P型)24とカソード拡散領域(N型)25との複合体(以下、「ゲート拡散領域24/カソード拡散領域25」と記載する)とのうちのCH1のフォトサイリスタ20aまたはCH2のフォトサイリスタ20bの領域に位置する片側と、その幅(奥行き)とに依存するために、チップサイズ(∝コスト)に対する電流効率が悪いと言う問題がある。
そのため、上記特許文献1に開示された双方向フォトサイリスタにおいては、高電流化を図る必要がある。
上記高電流化を図るためには、上記双方向フォトサイリスタのチップサイズを増大させて、電流が流れ込む面の距離(アノード拡散領域23,ゲート拡散領域24およびカソード拡散領域25の幅)を長くすれば可能になる。しかしながら、チップコストが増大することになってしまう。
特許第4065825号公報
そこで、この発明の課題は、ラテラル構造のPNPN素子を有すると共に高電流化を図ることが可能な双方向フォトサイリスタチップ、上記双方向フォトサイリスタチップを用いたSSRを提供することにある。
上記課題を解決するため、この発明の双方向フォトサイリスタチップは、
1つの半導体チップの表面に、互いに離間して形成された第1フォトサイリスタ部および第2フォトサイリスタ部を備え、
上記各フォトサイリスタ部は、一方向に延在すると共にN型またはP型のうち一方の導電型を持つアノード拡散領域と、N型またはP型のうち他方の導電型を持つ基板と、上記アノード拡散領域に対向する上記一方の導電型を持つゲート拡散領域と、このゲート拡散領域内に上記アノード拡散領域に対向して形成されると共に上記他方の導電型を持つカソード拡散領域とを含むPNPN部を有しており、
上記アノード拡散領域と上記ゲート拡散領域とにおける互いに対向する二つの側辺と、上記カソード拡散領域における上記アノード拡散領域と対向する側辺とのうち、少なくとも何れか一つの側辺の平面形状が、上記アノード拡散領域から上記ゲート拡散領域および上記カソード拡散領域に向かって供給される電流が、上記アノード拡散領域の延在方向である上記一方向の中央部へ集中するのを緩和する形状になっており、
上記カソード拡散領域における上記アノード拡散領域と対向する第1の側辺の平面形状は、上記ゲート拡散領域における上記アノード拡散領域と対向する第2の側辺から上記第1の側辺までの上記一方向と直交する他方向への距離が、上記一方向の中央部において最大になるような形状になっており、
上記カソード拡散領域は上記一方向の中央部で二分割されており、互いに対向する分割面には、当該分割面の間隔が上記ゲート拡散領域の上記第2の側辺からの上記他方向への距離に応じて小さくなるように傾斜が設けられている
ことを特徴としている。
また、この発明のSSRは、
上記この発明の双方向フォトサイリスタチップと、LEDとで構成された光点孤カプラと、
スナバ回路と
で構成されていることを特徴としている。
以上より明らかなように、この発明の双方向フォトサイリスタチップは、上記アノード拡散領域から上記ゲート拡散領域および上記カソード拡散領域に向かって供給される電流が、上記一方向の中央部に集中することを緩和することができる。すなわち、上記アノード拡散領域と上記ゲート拡散領域/上記カソード拡散領域との間に突入電流であるサージ電流が流れた場合に、電流が上記一方向の中央部に集中するのを緩和することができる。
したがって、この発明によれば、上記ゲート拡散領域/上記カソード拡散領域の接合破壊を防止して突入電流サージ耐圧を上げることができ、ラテラル構造のPNPN素子を有する双方向フォトサイリスタチップの高電流化を図って電流効率を高めることができる。
また、この発明のSSRは、LEDからの光信号に応じてダイレクトに負荷を制御するために、ラテラル構造のPNPN素子を有する双方向フォトサイリスタチップを用いた場合であっても、電流効率を上げることが可能な光点弧カプラを用いている。したがって、負荷を制御するためのメインサイリスタを省略することが可能になり、部品点数の少ない安価で高性能なSSRを実現できる。
この発明の双方向フォトサイリスタチップにおける概略パターンレイアウトを示す図である。 図1におけるD‐D'矢視断面図である。 光オン時の状態を示す図1のD‐D'矢視断面図である。 光オフ時である転流時の状態を示す図1のD‐D'矢視断面図である。 アノード拡散領域とゲート拡散領域とカソード拡散領域とのパターン概略図である。 突入電流のサージ耐量とチップ面積との関係を示す図である。 図5とは異なるパターン概略図である。 図5および図7とは異なるパターン概略図である。 図5,図7および図8とは異なるパターン概略図である。 図5,図7〜図9とは異なるパターン概略図である。 図5,図7〜図10とは異なるパターン概略図である。 図5,図7〜図11とは異なるパターン概略図である。 図5,図7〜図12とは異なるパターン概略図である。 メインサイリスタを省略したSSRの回路図である。 交流で使用するSSRの回路図である。 図15に示すSSRを構成する光点弧カプラの等価回路図である。 従来の双方向フォトサイリスタにおける概略パターンレイアウトを示す図である。 光オン時の状態を示す図17のB‐B'矢視断面図である。 光オフ時である転流時の状態を示す図17のB‐B'矢視断面図である。
以下、この発明を図示の実施の形態により詳細に説明する。
・第1実施の形態
図1は、本実施の形態の双方向フォトサイリスタチップにおける概略パターンレイアウトを示し、図2は図1におけるD‐D'矢視断面概略図である。
本実施の形態の双方向フォトサイリスタチップは、図1および図2に示すように、チップを構成するN型シリコン基板41の表面に、互いに離間して形成されたCH1の第1フォトサイリスタ42aとCH2の第2フォトサイリスタ42bとで構成されている。
上記第1フォトサイリスタ42aおよび第2フォトサイリスタ42bは、夫々、P型のアノード拡散領域43と、アノード拡散領域43に対向するP型のゲート拡散領域44と、ゲート拡散領域44内にアノード拡散領域43に対向して形成されたN型のカソード拡散領域45を有している。こうして、アノード拡散領域43からカソード拡散領域45に向かってPNPN部が形成される。尚、46はゲート抵抗領域である。
また、上記チップの周辺に沿って、チャネルストッパとしての高濃度N型拡散領域47が形成されている。さらに、高濃度N型拡散領域47上に破線で示すようにAl電極47aが形成されている。また、アノード拡散領域43を覆うようにAl電極(破線表示)43aが形成され、ゲート拡散領域44,カソード拡散領域45およびゲート抵抗領域46を覆うようにAl電極(破線表示)44aが形成されている。
上記双方向フォトサイリスタは、平面的には、図1に示すように、中心線E‐E’とこの中心線に直交する線分D‐D’との交点に対して180度の回転対称に、つまり上記交点に対して略点対称のパターンを有している。また、断面的には、図2に示すように、中心線E‐E’と直交する垂直方向の線分F‐F’に対して略左右対称に構成されている。すなわち、中心線E‐E’および線分F‐F’に対して左側のフォトサイリスタが上記CH1の第1フォトサイリスタ42aであり、右側のフォトサイリスタが上記CH2の第2フォトサイリスタ42bである。
さらに、上記CH1の第1フォトサイリスタ42aのアノード拡散領域43上のAl電極43aと、CH2の第2フォトサイリスタ42bのカソード拡散領域45上のAl電極44aとが、Auワイヤ48a,48bによってリードフレームT1に接続されている。また、CH1の第1フォトサイリスタ42aにおけるカソード拡散領域45上のAl電極44aと、CH2の第2フォトサイリスタ42bにおけるアノード拡散領域43上のAl電極43aとが、Auワイヤ48a’,48b’によってリードフレームT2に接続されている。こうして、CH1の第1フォトサイリスタ42aとCH2の第2フォトサイリスタ42bとが、逆並列にワイヤーボンドで配線されている。
さらに、本双方向フォトサイリスタチップでは、上記第1フォトサイリスタ42aおよび第2フォトサイリスタ42bにおいて、アノード拡散領域43およびカソード拡散領域45の長手方向を第1方向、この第1方向に垂直な方向であってN型シリコン基板41の表面に略平行な方向を第2方向とした場合に、上記第2方向において、チップ最外周のダイシング面のうちゲート拡散領域44に対向するダイシング面と当該ゲート拡散領域44との間の距離Xを、400μm以内に設定している。
以下、図3および図4を参照しながら、転流特性IcomがX≦400μmの領域で改善される理由について説明する。図3および図4は、図2と同じ、図1のD‐D'矢視断面概略図であり、上記距離Xは「X≦400μm」である。但し、図3は光オン時の状態を示し、図4は光オフ時である電圧反転時(転流時)の状態を示す。
図3に示すように、上記CH1側における第1フォトサイリスタ42aのオン時に発生した少数キャリア49は、図4に示す転流時には、本双方向フォトサイリスタの電位勾配によって、CH1の第1フォトサイリスタ42aにおけるアノード拡散領域43、あるいは、CH2の第2フォトサイリスタ42bにおけるゲート拡散領域44に回収される。その場合に、CH2側のゲート拡散領域44に回収される少数キャリアの量がある臨界値を超えると、CH2の第2フォトサイリスタ42bにおける上記PNPN部を構成するNPNトランジスタがオンし、CH2の第2フォトサイリスタ42bの正帰還を促して、第2フォトサイリスタ42bがオンして、上記「転流失敗」を招くことになる。
そこで、上記「転流失敗」を抑制するためには、できる限り動作電流の臨界値Icomを増大させる必要がある。そして、Icomを増大させるためには、CH2側のゲート拡散領域44に回収される少数キャリアの量を抑制する必要がある。
ここで、上記CH1の第1フォトサイリスタ42aにおけるチップ外周のダイシング面とゲート拡散領域44との間の距離Xを縮小すると、図3に示すようにオン時にCH1側で発生した少数キャリア49が、CH2側に移動する前に、図4に示すように、CH1側のダイシング面に回収されることになる。
したがって、上記チップ外周のダイシング面とゲート拡散層44との距離Xは、本双方向フォトサイリスタにおける上記転流特性以外の特性(例えば、耐圧等の特性)を満足した上で、最大限に縮小することが望ましい。特に、X≦400μmとすることが望ましい。
このように、本実施の形態においては、上記第1フォトサイリスタ42aおよび第2フォトサイリスタ42bは、上記第2方向において、チップ最外周のダイシング面とゲート拡散領域44との間の距離Xを、400μm以内に設定している。
したがって、例えば、オン時に上記CH1側で発生した少数キャリア49が、CH2側に移動する前に、図4に示すように、CH1側のダイシング面に回収されることになる。その結果、上記ショットキーバリアダイオードや上記チャネル分離領域が無くても、上記転流特性を大幅に向上させることができる。
そのために、チップ面積の増大を抑制し、且つ1チップで光点孤して負荷を制御する機能を有してSSRのメインサイリスタを省略できる、安価な双方向フォトサイリスタチップを得ることができるのである。
ところで、上記構成における双方向フォトサイリスタチップにおいて、高電流化を図るためには、突入電流のサージ耐量を上げて定格電流値を上げる必要がある。一般的には、定格電流値の10倍の突入電流サージ耐量が必要とされ、例えば定格電流値が0.3Aである定格品の場合には、3Aの突入電流サージ耐量が必要とされている。
図1に示す本双方向フォトサイリスタチップのパターンレイアウトにおいて、CH1の第1フォトサイリスタ42aまたはCH2の第2フォトサイリスタ42bにおける互いに対向する一直線状の側辺を有するアノード拡散領域43とゲート拡散領域44/カソード拡散領域45との間に突入電流であるサージ電流を流すと、図3に示すように、アノード拡散領域43の側部から横の方向(ラテラル方向)へ流れる電流が、ゲート拡散領域44/カソード拡散領域45の上記第1方向中央部に集中して接合破壊が発生してしまう。したがって、本双方向フォトサイリスタチップの高電流化を図る上で、チップの上記第1方向中央部への電流集中を緩和する必要がある。
この発明は、上記アノード拡散領域43とゲート拡散領域44とカソード拡散領域45とのパターン構造の変更によって、上記チップの上記第1方向中央部への電流集中の緩和を図るものである。
先ず、本実施の形態においては、上記カソード拡散領域45におけるアノード拡散領域43に対向する側辺の形状を変更することによって、上記チップの上記第1方向中央部への電流集中を緩和する。
図5は、図1に示すパターンレイアウトにおける上記第1フォトサイリスタ42a側のアノード拡散領域43とゲート拡散領域44とカソード拡散領域45とのパターン概略図を示す。図5において、アノード拡散領域43およびゲート拡散領域44のパターンは、図1に示すパターンレイアウトの場合と同様に矩形を成している。これに対し、カソード拡散領域45のパターンは、アノード拡散領域43に対向する側辺45aの上記第1方向中央部に、矩形状の切り欠き部50を形成している。
こうすることによって、上記アノード拡散領域43と、ゲート拡散領域44/カソード拡散領域45(ゲート拡散領域44とカソード拡散領域45との複合体)との間に突入電流が流れた場合に、アノード拡散領域43からゲート拡散領域44/カソード拡散領域45に供給される電流のうち上記第1方向中央部に集中している電流の一部が、切り欠き部50における中央壁50aよりもPゲート接合面からの距離が近い両側壁50b,50cに向かって流れる。尚、上記「Pゲート接合面」とは、P型のゲート拡散領域44におけるN型シリコン基板41との接合面であり、ゲート拡散領域44のアノード拡散領域43に対向する側面である。
こうして、上記ゲート拡散領域44/カソード拡散領域45の上記第1方向中央部に集中している電流が両側壁50b,50cに分散されることによって、上記第1方向中央部への電流集中が緩和される。その結果、ゲート拡散領域44/カソード拡散領域45の接合破壊が防止されて、突入電流サージ耐圧を上げることができるのである。
ここで、上記ゲート拡散領域44/カソード拡散領域45の接合破壊は、破壊の初動においては、接合が相対的に最も浅いカソード拡散領域45が破壊され、その後破壊はゲート拡散領域44に波及する。ゲート拡散領域44/カソード拡散領域45の何れの箇所まで接合破壊が進むかは突入電流量に依存し、カソード拡散領域45のみの破壊で接合破壊が留まる場合もある。
図6は、突入電流のサージ耐量と双方向フォトサイリスタチップのチップ面積との関係を示す。本実施の形態におけるカソード拡散領域45のパターンを用いることによって、チップ面積が1mm2〜8mm2において、サージ耐量を上げることができる。尚、サージ耐量は、チップ面積に比例して上がることはない。その理由は、電流集中箇所に偏りがあるためである。
以上のごとく、本実施の形態においては、双方向フォトサイリスタチップは、平面的には、図1に示すように、中心線E‐E’とこの中心線に直交する線分D‐D’との交点に対して180度の回転対称に、つまり上記交点に対して点対称のパターンを有しており、断面的には、図2に示すように、中心線E‐E’と直交する垂直方向の線分F‐F’に対して左右対称に構成されている。そして、中心線E‐E’および線分F‐F’に対して左側にCH1の第1フォトサイリスタ42aを形成し、右側にCH2の第2フォトサイリスタ42bを形成している。
そして、上記第1フォトサイリスタ42aおよび第2フォトサイリスタ42bは、夫々、P型のアノード拡散領域43と、アノード拡散領域43に対向するP型のゲート拡散領域44と、ゲート拡散領域44内にアノード拡散領域43に対向して形成されたN型のカソード拡散領域45を有している。また、上記第2方向において、チップ最外周のダイシング面とゲート拡散領域44との間の距離Xを、400μm以内に設定している。
したがって、例えば、オン時に上記CH1側で発生した少数キャリア49を、CH2側に移動する前にCH1側のダイシング面に回収することができる。その結果、チップ面積の増大させること無くSSRのメインサイリスタを省略でき、安価な双方向フォトサイリスタチップを得ることができる。
さらに、上記カソード拡散領域45のパターンは、アノード拡散領域43に対向する側辺45aの上記第1方向中央部に、矩形状の切り欠き部50を形成している。そのため、アノード拡散領域43とゲート拡散領域44/カソード拡散領域45との間に突入電流が流れた場合に、アノード拡散領域43からゲート拡散領域44/カソード拡散領域45に供給される電流のうち上記第1方向中央部に集中している電流を、切り欠き部50の両側壁50b,50cに分散させることができ、ゲート拡散領域44/カソード拡散領域45の上記第1方向中央部への電流集中を緩和することができる。
したがって、上記ゲート拡散領域44/カソード拡散領域45の接合破壊を防止して突入電流サージ耐圧を上げることができ、高電流化を図ることができるのである。
尚、本実施の形態においては、上記カソード拡散領域45の側辺45aの上記第1方向中央部に、矩形状の切り欠き部50を形成している。しかしながら、上記切り欠き部の形状は矩形に限定されるものではなく、半円形や楕円形等であっても良い。要は、ゲート拡散領域44における上記Pゲート接合面から側辺45aまでの上記第2方向への距離が、上記第1方向中央部において最大になるような形状であれば良いのである。
・第2実施の形態
本実施の形態の双方向フォトサイリスタチップにおける基本のパターンレイアウトは、上記第1実施の形態において図1に示すパターンレイアウトと同じである。また、基本の縦断面図は、上記第1実施の形態において図2に示すD‐D'矢視断面概略図と同じである。
したがって、本実施の形態の双方向フォトサイリスタチップにおいても、チップ面積の増大を抑制し、且つ1チップで光点孤して負荷を制御する機能を有してSSRのメインサイリスタを省略できる、安価な双方向フォトサイリスタチップを得ることができるのである。
尚、上述のことは、以下の総ての実施の形態においても同様である。
本実施の形態においては、上記第1実施の形態の場合と同様に、上記カソード拡散領域45におけるアノード拡散領域43に対向する側辺の形状を変更することによって、上記チップの上記第1方向中央部への電流集中を緩和するものである。
図7は、図1に示すパターンレイアウトにおける上記第1フォトサイリスタ42a側のアノード拡散領域43とゲート拡散領域44とカソード拡散領域45とのパターン概略図を示す。図7において、アノード拡散領域43およびゲート拡散領域44のパターンは、図1に示すパターンレイアウトの場合と同様に矩形を成している。これに対し、カソード拡散領域45のパターンは、上記第1方向中央で51aと51bとに二分割されている。そして、第1カソード拡散領域51aと第2カソード拡散領域51bとにおける互いに対向する上記分割面である端面52a,52bに、上記Pゲート接合面からの距離が近い程両端面52a,52bの間隔が広がるような傾斜を設けている。つまり、上記Pゲート接合面からの距離に反比例して両端面52a,52b間の距離が小さくなっている。
こうすることによって、上記カソード拡散領域45におけるゲート拡散領域44との接合面であるカソード接合面の長さを効率よく増大させることができる。そして、アノード拡散領域43とゲート拡散領域44/カソード拡散領域45との間に突入電流が流れた場合に、アノード拡散領域43からゲート拡散領域44/カソード拡散領域45に供給される電流のうち上記第1方向中央部に集中している電流の一部が、第1カソード拡散領域51aの端面52aと第2カソード拡散領域51bの端面52bとにおける上記Pゲート接合面からの距離が近いPゲート接合面側の領域に向かって流れる。
こうして、上記ゲート拡散領域44/カソード拡散領域45の上記第1方向中央部に集中している電流が、上記両端面52a,52bにおけるPゲート接合面側の領域に広がって分散されることによって、上記第1方向中央部への電流集中が緩和される。その結果、ゲート拡散領域44/カソード拡散領域45の接合破壊が防止されて、突入電流サージ耐圧を上げることができるのである。
以上のごとく、本実施の形態においては、双方向フォトサイリスタチップは、上記第1実施の形態の場合と同様に、チップ面積の増大させること無くSSRのメインサイリスタを省略でき、安価な双方向フォトサイリスタチップを得ることができる。
さらに、上記カソード拡散領域45のパターンは、上記第1方向中央で51aと51bとに二分割し、互いに対向する第1カソード拡散領域51aの端面52aと第2カソード拡散領域51bの端面52bとに、上記Pゲート接合面からの距離に反比例して両端面52a,52b間の距離が小さくなるような傾斜を設けている。
したがって、上記アノード拡散領域43とゲート拡散領域44/カソード拡散領域45との間に突入電流が流れた場合に、ゲート拡散領域44/カソード拡散領域45の上記第1方向中央部に集中している電流を上記両端面52a,52bにおけるPゲート接合面側の領域に広がって分散させることができ、上記第1方向中央部への電流集中を緩和することができる。
その結果、上記ゲート拡散領域44/カソード拡散領域45の接合破壊を防止して突入電流サージ耐圧を上げることができ、高電流化を図ることができるのである。
・第3実施の形態
本実施の形態においては、上記第1実施の形態の場合と同様に、上記カソード拡散領域45におけるアノード拡散領域43に対向する側辺の形状を変更することによって、上記チップの上記第1方向中央部への電流集中を緩和するものである。
図8において、上記第1フォトサイリスタ42a側のアノード拡散領域43およびゲート拡散領域44のパターンは、図1に示すパターンレイアウトの場合と同様に矩形を成している。これに対して、カソード拡散領域45のパターンは、アノード拡散領域43に対向する側辺45aが、上記第1方向中央における上記Pゲート接合面からの距離が上記第1方向両端部より長くなるように、上記中央部が窪んだ円弧状の形状になっている。
こうすることによって、上記アノード拡散領域43とゲート拡散領域44/カソード拡散領域45との間に突入電流が流れた場合に、アノード拡散領域43からゲート拡散領域44/カソード拡散領域45に供給される電流のうち上記第1方向中央部に集中している電流の一部が、カソード拡散領域45における上記Pゲート接合面からの距離が短い上記両端部に向かって流れることになる。
こうして、上記ゲート拡散領域44/カソード拡散領域45の上記第1方向中央部に集中している電流が、カソード拡散領域45の上記両端部側に広がって分散されることによって、上記第1方向中央部への電流集中が緩和される。その結果、ゲート拡散領域44/カソード拡散領域45の接合破壊が防止されて、突入電流サージ耐圧を上げることができる。その結果、高電流化を図ることができるのである。
すなわち、本実施の形態によれば、チップ面積の増大を抑制し、安価で且つ高電流化を図ることが可能な双方向フォトサイリスタチップを得ることができるのである。
・第4実施の形態
本実施の形態においては、上記ゲート拡散領域44におけるアノード拡散領域43に対向する側辺44bの形状を変更することによって、上記チップの上記第1方向中央部への電流集中を緩和するものである。
図9において、上記第1フォトサイリスタ42a側のアノード拡散領域43およびカソード拡散領域45のパターンは、図1に示すパターンレイアウトの場合と同様に矩形を成している。これに対して、ゲート拡散領域44のパターンは、アノード拡散領域43に対向する側辺44bが、上記第1方向中央における上記カソード接合面からの距離が上記第1方向両端部より長くなるように、上記中央部が突出した円弧状の形状になっている。
こうすることによって、上記アノード拡散領域43とゲート拡散領域44/カソード拡散領域45との間に突入電流が流れた場合に、アノード拡散領域43からゲート拡散領域44/カソード拡散領域45に供給される電流は、アノード拡散領域43からの距離がより近い上記第1方向中央部に集中する。そして、上記第1方向中央部に集中している電流の一部が、カソード拡散領域45における上記Pゲート接合面からの距離が短い上記両端部側に向かって流れることになる。
こうして、上記ゲート拡散領域44/カソード拡散領域45の上記第1方向中央部に集中している電流が、カソード拡散領域45の上記両端部側に広がって分散されることによって、上記第1方向中央部への電流集中が緩和される。その結果、ゲート拡散領域44/カソード拡散領域45の接合破壊が防止されて、突入電流サージ耐圧を上げることができる。その結果、高電流化を図ることができるのである。
すなわち、本実施の形態によれば、チップ面積の増大を抑制し、安価で且つ高電流化を図ることが可能な双方向フォトサイリスタチップを得ることができるのである。
・第5実施の形態
本実施の形態においては、上記ゲート拡散領域44およびカソード拡散領域45におけるアノード拡散領域43に対向する側辺44b,45aの形状を変更することによって、上記チップの上記第1方向中央部への電流集中を緩和するものである。
図10において、上記第1フォトサイリスタ42a側のアノード拡散領域43のパターンは、図1に示すパターンレイアウトの場合と同様に矩形を成している。これに対して、ゲート拡散領域44およびカソード拡散領域45のパターンは、アノード拡散領域43に対向する側辺44bおよび側辺45aが、上記第1方向中央におけるアノード拡散領域43からの距離が上記第1方向両端部より長くなるように、上記中央部が窪んだ円弧状の形状になっている。但し、カソード拡散領域45の側辺45aにおける上記Pゲート接合面からの距離は、上記第1方向全域に亘って略等しくなっている。
こうすることによって、上記ゲート拡散領域44とカソード拡散領域45とにおけるアノード拡散領域43からの距離が、上記第1方向中央部の「長」から両端部の「短」に向かって滑らかに変化しているので、アノード拡散領域43とゲート拡散領域44/カソード拡散領域45との間に突入電流が流れた場合に、アノード拡散領域43からゲート拡散領域44/カソード拡散領域45に供給される電流が上記第1方向に略均一になり、上記第1方向中央部への電流集中が緩和される。
したがって、上記ゲート拡散領域44/カソード拡散領域45の接合破壊が防止されて突入電流サージ耐圧を上げることができ、高電流化を図ることができるのである。
すなわち、本実施の形態によれば、チップ面積の増大を抑制し、安価で且つ高電流化を図ることが可能な双方向フォトサイリスタチップを得ることができるのである。
・第6実施の形態
本実施の形態においては、上記アノード拡散領域43におけるゲート拡散領域44に対向する側辺43bの形状を変更することによって、上記チップの上記第1方向中央部への電流集中を緩和するものである。
図11において、上記第1フォトサイリスタ42a側のゲート拡散領域44およびカソード拡散領域45のパターンは、図1に示すパターンレイアウトの場合と同様に矩形を成している。これに対して、アノード拡散領域43のパターンは、ゲート拡散領域44に対向する側辺43bが、上記第1方向中央におけるゲート拡散領域44からの距離が上記第1方向両端部よりも長くなるように、上記中央部が窪んだ円弧状の形状になっている。
こうすることによって、上記アノード拡散領域43におけるゲート拡散領域44からの距離が、上記第1方向中央部の「長」から両端部の「短」に向かって滑らかに変化しているので、アノード拡散領域43とゲート拡散領域44/カソード拡散領域45との間に突入電流が流れた場合に、アノード拡散領域43からゲート拡散領域44/カソード拡散領域45に供給される電流が上記第1方向に略均一になり、上記第1方向中央部への電流集中が緩和される。
したがって、上記ゲート拡散領域44/カソード拡散領域45の接合破壊を防止して突入電流サージ耐圧を上げることができ、高電流化を図ることができるのである。
すなわち、本実施の形態によれば、チップ面積の増大を抑制し、安価で且つ高電流化を図ることが可能な双方向フォトサイリスタチップを得ることができるのである。
・第7実施の形態
本実施の形態においては、上記アノード拡散領域43におけるゲート拡散領域44に対向する側辺43bと、ゲート拡散領域44およびカソード拡散領域45におけるアノード拡散領域43に対向する側辺44b,45aとの形状を変更することによって、上記チップの上記第1方向中央部への電流集中を緩和するものである。
図12において、上記第1フォトサイリスタ42a側のアノード拡散領域43のパターンは、ゲート拡散領域44に対向する側辺43bが上記中央部が窪んだ円弧状の形状になっている。同様に、ゲート拡散領域44およびカソード拡散領域45のパターンは、アノード拡散領域43に対向する側辺44bおよび側辺45aが上記中央部が窪んだ円弧状の形状になっている。但し、カソード拡散領域45の側辺45aにおける上記Pゲート接合面からの距離は、上記第1方向全域に亘って略等しくなっている。
こうすることによって、上記アノード拡散領域43とゲート拡散領域44/カソード拡散領域45との間の距離が、上記第1方向中央部の「長」から両端部の「短」に向かって滑らかに、且つ上記第5実施の形態および上記第6実施の形態よりも大きく変化しているので、アノード拡散領域43とゲート拡散領域44/カソード拡散領域45との間に突入電流が流れた場合に、アノード拡散領域43からゲート拡散領域44/カソード拡散領域45に供給される電流が上記第1方向により均一になり、上記第1方向中央部への電流集中が緩和される。
したがって、上記ゲート拡散領域44/カソード拡散領域45の接合破壊を防止して突入電流サージ耐圧を上げることができ、高電流化を図ることができるのである。
尚、本実施の形態は、上記第6実施の形態におけるアノード拡散領域43のパターン構成を、上記第5実施の形態におけるゲート拡散領域44およびカソード拡散領域45のパターンに適用した場合に相当している。しかしながら、この発明は、上記第5実施の形態に限定されるものではなく、上記第1実施の形態〜上記第4実施の形態の何れの実施の形態に適用しても一向に構わない。
・第8実施の形態
本実施の形態においては、上記アノード拡散領域43上のAl電極43aとカソード拡散領域45上のAl電極44aに対するAuワイヤ48a,48a’を接続する位置によって、上記チップの上記第1方向中央部への電流集中を緩和するものである。
図13は、図1に示すパターンレイアウトにおける第1フォトサイリスタ42a側のアノード拡散領域43とゲート拡散領域44とカソード拡散領域45とのパターン概略図を示す。ここで、本実施の形態におけるアノード拡散領域43とゲート拡散領域44とカソード拡散領域45とのパターンは、上記第1実施の形態において図5に示すパターンと同一のパターンを有している。したがって、カソード拡散領域45の上記第1方向中央部に集中する電流を切り欠き部50の両側壁50b,50cに分散させることができ、カソード拡散領域45の上記第1方向中央部への電流集中を緩和することができる。
さらに、本実施の形態においては、上記N型シリコン基板41のチップにおける上記第1方向中央を通り、且つ上記線分D‐D’(図1参照)に平行な線分をチップセンターラインCLとし、チップセンターラインCLからカソード拡散領域45の両端面45b,45cまでの距離のうちの最短距離をLとした場合に、チップセンターラインCLからの距離がL/2であってチップセンターラインCLと平行な線分G‐G’および線分H‐H’を考える。そして、アノード拡散領域43における線分G‐G’と線分H‐H’との交差位置に、アノード拡散領域43上のAl電極43a(図1参照)をリードフレームT1(図1参照)にワイヤボンディングするAuワイヤ48a用の金属ボール53a,53bを形成する。同様に、カソード拡散領域45における線分G‐G’と線分H‐H’との交差位置に、カソード拡散領域45上のAl電極44a(図1参照)をリードフレームT2(図1参照)にワイヤボンディングするAuワイヤ48a’用の金属ボール54a,54bを形成するのである。
つまり、本実施の形態においては、上記アノード拡散領域43のリードフレームT1への接続と、カソード拡散領域45のリードフレームT2への接続とを、チップセンターラインCLの両側におけるチップセンターラインCLからL/2の距離の2箇所で行うのである。
したがって、本実施の形態によれば、上記リードフレームT1から上記アノード拡散領域43への電流の供給位置、および、カソード拡散領域45からリードフレームT2への電流の流出位置を、チップセンターラインCLの両側におけるチップセンターラインCLからL/2の等距離の2箇所に分散させることができる。
すなわち、本実施の形態においては、上記カソード拡散領域45における側辺45aの上記第1方向中央部に矩形状の切り欠き部50を形成して、カソード拡散領域45の上記第1方向中央部に集中する電流を切り欠き部50の両側壁50b,50cに分散させることに加えて、上記アノード拡散領域43への電流の供給位置およびカソード拡散領域45からの電流の流出位置を、上記第1方向中央部からL/2の距離の2箇所に分散させるようにしている。そのために、アノード拡散領域43とゲート拡散領域44/カソード拡散領域45との間に突入電流が流れた場合に、アノード拡散領域43からゲート拡散領域44/カソード拡散領域45に供給される電流が上記第1方向中央部に集中することをさらに防止して、上記第1方向中央部への電流集中を更に緩和することができるのである。
尚、本実施の形態においては、ボールボンディングを例に挙げて説明したが、ウェッジボンディングの場合でも同様である。
また、本実施の形態においては、上記アノード拡散領域43のリードフレームT1への接続とカソード拡散領域45のリードフレームT2への接続とを、チップセンターラインCLの両側におけるチップセンターラインCLからL/2の距離の2箇所で行う構成を、上記第1実施の形態に適用した場合を例に説明した。しかしながら、この発明はこれに限定されるものではなく、第2実施の形態〜第7実施の形態の何れの実施の形態に適用しても一向に構わない。
・第9実施の形態
本実施の形態は、上記第1実施の形態から上記第8実施の形態までの何れかにおける双方向フォトサイリスタチップを用いた光点孤カプラ、および、その光点孤カプラを用いたSSRに関する。
図14は、本実施の形態におけるSSRの回路構成を示す。本実施の形態におけるSSRは、図15に示すような構成を有する従来のSSRにおいて、例えば、部品点数を削減するために、メインサイリスタ4を省略したものである。そこで、図14においては、図15に示すSSRと同じ部材には、図15と同じ番号を付している。
本実施の形態における光トリガ用の双方向フォトサイリスタ2としては、高電流化を図ることができるラテラル構造のPNPN素子を有する、上記第1実施の形態から上記第8実施の形態までの何れかの実施の形態における双方向フォトサイリスタチップを用いている。したがって、この双方向フォトサイリスタ2と発光素子1とで成る光点弧カプラ3では、発光素子1からの光信号に応じてダイレクトに負荷を制御するために、ラテラル構造のPNPN素子を有する双方向フォトサイリスタチップ2を用いた場合であっても、電流効率を上げることができる。
さらに、本実施の形態におけるSSR8は、上記発光素子1からの光信号に応じてダイレクトに負荷を制御することを可能にする、電流効率の高い光点弧カプラ3と、スナバ回路7とを用いている。したがって、負荷を制御するためのメインサイリスタを省略することが可能になり、部品点数の少ない安価で高性能なSSR8を実現できるのである。
尚、上記各実施の形態においては、図1および図2に示すように、CH1の第1フォトサイリスタ42aとCH2の第2フォトサイリスタ42bとは、共に、アノード拡散領域43がゲート拡散領域44よりも中心線E‐E’側に配置されている。
しかしながら、この発明は、必ずしも上記アノード拡散領域43がゲート拡散領域44よりも中心線E‐E’側に配置されている必要はない。CH1の第1フォトサイリスタ42aとCH2の第2フォトサイリスタ42bとは、共に、ゲート拡散領域44がアノード拡散領域43よりも中心線E‐E’側に配置されていても差し支えない。
この場合も図1および図2に示す双方向フォトサイリスタチップの場合と同様に、チップ最外周のダイシング面とゲート拡散領域44との間の距離Xを400μm以内に設定することによって、例えば、オン時に上記CH1側で発生した少数キャリアが、CH2側に移動する前に、CH1側のダイシング面に回収されることになる。したがって、上記ショットキーバリアダイオードや上記チャネル分離領域が無くても、転流特性を大幅に向上させることができるのである。
また、上記各実施の形態においては、上記第1フォトサイリスタ42a側のアノード拡散領域43とゲート拡散領域44とカソード拡散領域45とのパターンについて説明しているが、第2フォトサイリスタ42b側も第1フォトサイリスタ42a側と同様である。
以上のごとく、この発明の双方向フォトサイリスタチップは、
1つの半導体チップの表面に、互いに離間して形成されている第1フォトサイリスタ部42aおよび第2フォトサイリスタ部42bを備え、
上記各フォトサイリスタ部42a,42bは、一方向に延在すると共にN型またはP型のうち一方の導電型を持つアノード拡散領域43と、N型またはP型のうち他方の導電型を持つ基板41と、上記アノード拡散領域43に対向する上記一方の導電型を持つゲート拡散領域44と、このゲート拡散領域44内に上記アノード拡散領域43に対向して形成されると共に上記他方の導電型を持つカソード拡散領域45とを含むPNPN部を有しており、
上記アノード拡散領域43と上記ゲート拡散領域44とにおける互いに対向する二つの側辺43b,44bと、上記カソード拡散領域45における上記アノード拡散領域43と対向する側辺45aとのうち、少なくとも何れか一つの側辺の平面形状が、上記アノード拡散領域43から上記ゲート拡散領域44および上記カソード拡散領域45に向かって供給される電流が、上記アノード拡散領域43の延在方向である上記一方向の中央部へ集中するのを緩和する形状になっている
ことを特徴としている。
上記構成によれば、上記アノード拡散領域43から上記ゲート拡散領域44および上記カソード拡散領域45に向かって供給される電流が、上記一方向の中央部に集中することを緩和することができる。すなわち、上記アノード拡散領域43と上記ゲート拡散領域44/上記カソード拡散領域45との間に突入電流であるサージ電流が流れた場合に、電流が上記一方向の中央部に集中するのを緩和することができる。
したがって、この発明によれば、上記ゲート拡散領域44/上記カソード拡散領域45の接合破壊を防止して突入電流サージ耐圧を上げることができ、ラテラル構造のPNPN素子を有する双方向フォトサイリスタチップの高電流化を図って電流効率を高めることができるのである。
また、一実施の形態の双方向フォトサイリスタチップでは、
上記カソード拡散領域45における上記アノード拡散領域43と対向する第1の側辺45aの平面形状は、上記ゲート拡散領域44における上記アノード拡散領域43と対向する第2の側辺44bから上記第1の側辺45aまでの上記一方向と直交する他方向への距離が、上記一方向の中央部において最大になるような形状になっている。
この実施の形態によれば、上記ゲート拡散領域44の上記第2の側辺44bから上記カソード拡散領域45の上記第1の側辺45aまでの距離が、上記一方向の中央部において最大になっている。したがって、上記アノード拡散領域43と上記ゲート拡散領域44/上記カソード拡散領域45との間に突入電流が流れた場合に、上記アノード拡散領域43から上記ゲート拡散領域44/上記カソード拡散領域45に供給される電流のうち上記一方向の中央部に集中する電流の一部が、上記第2の側辺44bから上記第1の側辺45aまでの距離が上記一方向の中央部よりも近い両側部に分散されて、上記一方向の中央部への電流集中が緩和される。
その結果、上記ゲート拡散領域44/上記カソード拡散領域45の接合破壊が防止されて、突入電流サージ耐圧を上げることができる。
また、一実施の形態の双方向フォトサイリスタチップでは、
上記カソード拡散領域45は上記一方向の中央部で二分割されており、互いに対向する分割面52a,52bには、当該分割面52a,52bの間隔が上記ゲート拡散領域44の上記第2の側辺44bからの上記他方向への距離に応じて小さくなるように傾斜が設けられている。
この実施の形態によれば、上記一方向の中央部で二分割された上記カソード拡散領域45における互いに対向する二つの分割面52a,52bには、上記ゲート拡散領域44の上記第2の側辺44b側に向かって開くような傾斜が設けられている。したがって、上記アノード拡散領域43と上記ゲート拡散領域44/上記カソード拡散領域45との間に突入電流が流れた場合に、上記ゲート拡散領域44/上記カソード拡散領域45の上記一方向の中央部に集中している電流を上記両分割面52a,52bにおける上記ゲート拡散領域44の上記第2の側辺44b側の領域に広がるように分散させて、上記電流集中を緩和することができる。
また、一実施の形態の双方向フォトサイリスタチップでは、
上記カソード拡散領域45における上記第1の側辺45aの平面形状は、上記一方向の中央部における上記ゲート拡散領域44の上記第2の側辺44bからの上記他方向への距離が上記一方向両端部よりも長くなるように、上記中央部が窪んだ円弧状の形状になっている。
この実施の形態によれば、上記カソード拡散領域45の上記第1の側辺45aにおける上記ゲート拡散領域44の上記第2の側辺44bからの距離が、上記一方向の中央部で最大になっている。したがって、上記アノード拡散領域43と上記ゲート拡散領域44/上記カソード拡散領域45との間に突入電流が流れた場合に、上記アノード拡散領域43から上記ゲート拡散領域44/上記カソード拡散領域45に供給される電流のうち上記一方向の中央部に集中している電流の一部を、上記カソード拡散領域45における上記ゲート拡散領域44の上記第2の側辺44bからの距離が短い上記両端部に向かって広がるように分散させて、上記電流集中を緩和することができる。
また、一実施の形態の双方向フォトサイリスタチップでは、
上記ゲート拡散領域44における上記第2の側辺44bの平面形状は、上記一方向の中央部における上記アノード拡散領域43からの上記他方向への距離が上記一方向両端部よりも長くなるように、上記中央部が窪んだ円弧状の形状になっており、
上記カソード拡散領域45における上記中央部が窪んだ円弧状の上記第1の側辺45aと、上記ゲート拡散領域44における上記中央部が窪んだ円弧状の上記第2の側辺44bとの上記他方向への距離は、上記一方向全域に亘って等しくなっている。
この実施の形態によれば、上記ゲート拡散領域44における上記第2の側辺44bの平面形状は上記一方向の中央部が窪んだ円弧状の形状になっており、上記カソード拡散領域45における上記中央部が窪んだ円弧状の上記第1の側辺45aと上記第2の側辺44bとの距離は、上記一方向全域に亘って等しくなっている。したがって、上記アノード拡散領域43と上記ゲート拡散領域44/上記カソード拡散領域45との間に突入電流が流れた場合に、上記アノード拡散領域43から上記ゲート拡散領域44/上記カソード拡散領域45に供給される電流が上記一方向に略均一になり、上記一方向の中央部への電流集中が緩和される。
また、一実施の形態の双方向フォトサイリスタチップでは、
上記ゲート拡散領域44における上記アノード拡散領域43と対向している第3の側辺44bの平面形状は、上記カソード拡散領域45における上記アノード拡散領域43と対向している第4の側辺からの上記一方向と直交する他方向への距離が、上記一方向の中央部において両端部よりも長くなるように、上記中央部が突出した円弧状の形状になっている。
この実施の形態によれば、上記ゲート拡散領域44の上記アノード拡散領域43と対向している上記第3の側辺44bにおける上記アノード拡散領域43からの距離が、上記一方向の中央部で最小になっている。したがって、上記アノード拡散領域43と上記ゲート拡散領域44/上記カソード拡散領域45との間に突入電流が流れた場合に、上記アノード拡散領域43から上記ゲート拡散領域44/上記カソード拡散領域45に供給される電流は、上記アノード拡散領域43からの距離がより近い上記一方向の中央部に集中する。そして、上記第1方向中央部に集中している電流の一部が、カソード拡散領域45における上記ゲート拡散領域44からの距離が短い上記両端部側に向かって流れることになる。その結果、上記一方向の中央部への電流集中が緩和される。
また、一実施の形態の双方向フォトサイリスタチップでは、
上記アノード拡散領域43における上記ゲート拡散領域44に対向している第5の側辺43bの平面形状は、上記ゲート拡散領域44における上記アノード拡散領域43と対向している第6の側辺からの上記他方向への距離が、上記一方向の中央部において両端部よりも長くなるように、上記中央部が窪んだ円弧状の形状になっている。
この実施の形態によれば、上記アノード拡散領域43の上記第5の側辺43bにおける上記ゲート拡散領域44の上記第6の側辺からの距離が、上記一方向の中央部で最大になっている。したがって、上記アノード拡散領域43と上記ゲート拡散領域44/上記カソード拡散領域45との間に突入電流が流れた場合、上記アノード拡散領域43から上記ゲート拡散領域44/上記カソード拡散領域45に供給される電流が上記一方向に略均一になり、上記一方向の中央部への電流集中が緩和される。
また、一実施の形態の双方向フォトサイリスタチップでは、
上記半導体チップにおける上記一方向の中央を通り、且つ上記他方に延在するチップセンターラインLCを設定し、
上記チップセンターラインLCから上記カソード拡散領域45の両端面までの距離のうちの最短距離をLとし、
上記チップセンターラインLCに平行な線分であって、上記チップセンターラインLCから上記一方向に距離L/2だけ離間している第1の線分G‐G’および第2の線分H‐H’を設定し
た場合に、
上記アノード拡散領域43における上記第1の線分G‐G’と上記第2の線分H‐H’との交差位置を、上記アノード拡散領域43に対してワイヤボンディングを行う際にワイヤの先端を接続する接続位置とする一方、
上記カソード拡散領域45における上記第1の線分G‐G’と上記第2の線分H‐H’との交差位置を、上記カソード拡散領域45に対してワイヤボンディングを行う際にワイヤの先端を接続する接続位置とする。
この実施の形態によれば、上記アノード拡散領域43に対してワイヤボンディングを行う際におけるワイヤの接続位置を、上記一方向の中央から距離L/2だけ離間している位置とする。一方、上記カソード拡散領域45に対してワイヤボンディングを行う際におけるワイヤの接続位置を、上記一方向の中央から距離L/2だけ離間している位置としている。したがって、上記アノード拡散領域43に対する上記ワイヤを介した電流の供給位置および上記カソード拡散領域45に対する上記ワイヤを介した電流の流出位置を、上記一方向の中央から等距離の2箇所に分散させることができる。
すなわち、本実施の形態においては、上記アノード拡散領域43と上記ゲート拡散領域44/上記カソード拡散領域45との間に突入電流が流れた場合に、上記アノード拡散領域43から上記ゲート拡散領域44/上記カソード拡散領域45に供給される電流が上記一方向の中央部に集中することを防止して、上記一方向の中央部への電流集中を更に緩和することができる。
また、この発明の光点孤カプラは、
上記この発明の双方向フォトサイリスタチップとLEDとで構成されていることを特徴としている。
上記構成によれば、高電流化を図ることができるラテラル構造のPNPN素子を有する双方向フォトサイリスタチップを用いている。したがって、本光点弧カプラによれば、上記LEDからの光信号に応じてダイレクトに負荷を制御するために、ラテラル構造のPNPN素子を有する双方向フォトサイリスタチップを用いた場合であっても、電流効率を上げることが可能になる。
また、この発明のSSRは、
上記この発明の光点孤カプラとスナバ回路とで構成されていることを特徴としている。
上記構成によれば、LEDからの光信号に応じてダイレクトに負荷を効率よく制御することを可能にする光点弧カプラを用いている。したがって、負荷を制御するためのメインサイリスタを省略することが可能になり、部品点数の少ない安価で高性能なSSRを実現できる。
1…発光素子(LED)、
2…双方向フォトサイリスタ、
3…光点弧カプラ、
7…スナバ回路、
41…N型シリコン基板
42a…第1フォトサイリスタ
42b…第2フォトサイリスタ
43…P型アノード拡散領域
43a,44a,47a…Al電極
43b…アノード拡散領域の側辺
44…P型ゲート拡散領域
44b…ゲート拡散領域の側辺
45…N型カソード拡散領域
45a…カソード拡散領域の側辺
46…P型ゲート抵抗領域
47…高濃度N型拡散領域
48a,48b,48a’,48b’…Auワイヤ
T1,T2…リードフレーム
49…少数キャリア
50…切り欠き部
50a…切り欠き部の中央壁
50b,50c…切り欠き部の両側壁
51a…第1カソード拡散領域
51b…第2カソード拡散領域
52a,52b…端面
53a,53b,54a,54b…Auワイヤ用の金属ボール

Claims (2)

  1. 1つの半導体チップの表面に、互いに離間して形成された第1フォトサイリスタ部および第2フォトサイリスタ部を備え、
    上記各フォトサイリスタ部は、一方向に延在すると共にN型またはP型のうち一方の導電型を持つアノード拡散領域と、N型またはP型のうち他方の導電型を持つ基板と、上記アノード拡散領域に対向する上記一方の導電型を持つゲート拡散領域と、このゲート拡散領域内に上記アノード拡散領域に対向して形成されると共に上記他方の導電型を持つカソード拡散領域とを含むPNPN部を有しており、
    上記アノード拡散領域と上記ゲート拡散領域とにおける互いに対向する二つの側辺と、上記カソード拡散領域における上記アノード拡散領域と対向する側辺とのうち、少なくとも何れか一つの側辺の平面形状が、上記アノード拡散領域から上記ゲート拡散領域および上記カソード拡散領域に向かって供給される電流が、上記アノード拡散領域の延在方向である上記一方向の中央部へ集中するのを緩和する形状になっており、
    上記カソード拡散領域における上記アノード拡散領域と対向する第1の側辺の平面形状は、上記ゲート拡散領域における上記アノード拡散領域と対向する第2の側辺から上記第1の側辺までの上記一方向と直交する他方向への距離が、上記一方向の中央部において最大になるような形状になっており、
    上記カソード拡散領域は上記一方向の中央部で二分割されており、互いに対向する分割面には、当該分割面の間隔が上記ゲート拡散領域の上記第2の側辺からの上記他方向への距離に応じて小さくなるように傾斜が設けられている
    ことを特徴とする双方向フォトサイリスタチップ。
  2. 請求項1に記載の双方向フォトサイリスタチップと、発光ダイオードとで構成された光点孤カプラと、
    スナバ回路と
    で構成されていることを特徴とするソリッドステートリレー。
JP2014059712A 2014-03-24 2014-03-24 双方向フォトサイリスタチップ、ソリッドステートリレー Expired - Fee Related JP5870140B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014059712A JP5870140B2 (ja) 2014-03-24 2014-03-24 双方向フォトサイリスタチップ、ソリッドステートリレー
CN201510130205.6A CN104952889B (zh) 2014-03-24 2015-03-24 双向光控晶闸管芯片、光触发耦合器和固态继电器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014059712A JP5870140B2 (ja) 2014-03-24 2014-03-24 双方向フォトサイリスタチップ、ソリッドステートリレー

Publications (2)

Publication Number Publication Date
JP2015185642A JP2015185642A (ja) 2015-10-22
JP5870140B2 true JP5870140B2 (ja) 2016-02-24

Family

ID=54167433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014059712A Expired - Fee Related JP5870140B2 (ja) 2014-03-24 2014-03-24 双方向フォトサイリスタチップ、ソリッドステートリレー

Country Status (2)

Country Link
JP (1) JP5870140B2 (ja)
CN (1) CN104952889B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615785B (zh) * 2018-05-03 2019-09-27 电子科技大学 一种具有深n+空穴电流阻挡层的光控晶闸管
CN110233175A (zh) * 2019-07-10 2019-09-13 兰州大学 一种光控晶闸管及其触发控制系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101459A (ja) * 1981-12-11 1983-06-16 Hitachi Ltd 半導体装置
JPH01145859A (ja) * 1987-12-01 1989-06-07 Sharp Corp ラテラル型フォトサイリスタ
JP2738775B2 (ja) * 1989-08-16 1998-04-08 松下電子工業株式会社 ラテラル型サイリスタ
JP4065825B2 (ja) * 2002-12-10 2008-03-26 シャープ株式会社 双方向フォトサイリスタチップ、光点弧カプラ、および、ソリッドステートリレー
JP4065772B2 (ja) * 2002-12-18 2008-03-26 シャープ株式会社 双方向フォトサイリスタチップ
JP4067054B2 (ja) * 2004-02-13 2008-03-26 キヤノン株式会社 固体撮像装置および撮像システム
DE102009051828B4 (de) * 2009-11-04 2014-05-22 Infineon Technologies Ag Halbleiterbauelement mit Rekombinationszone und Graben sowie Verfahren zu dessen Herstellung

Also Published As

Publication number Publication date
JP2015185642A (ja) 2015-10-22
CN104952889B (zh) 2017-10-10
CN104952889A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
CN106206698B (zh) 反向导通绝缘栅双极性晶体管
JP4723816B2 (ja) 半導体装置
US9601485B2 (en) Reverse-conducting IGBT with buffer layer and separation layer for reducing snapback
US9478647B2 (en) Semiconductor device
JP5045733B2 (ja) 半導体装置
JP6022774B2 (ja) 半導体装置
US20160111529A1 (en) Semiconductor device
US20160247808A1 (en) Semiconductor device
JP5637175B2 (ja) 半導体装置
JP2006073987A (ja) 半導体素子
US20160126314A1 (en) Semiconductor device
JPWO2022137788A5 (ja)
JP5870140B2 (ja) 双方向フォトサイリスタチップ、ソリッドステートリレー
JP6954449B2 (ja) 半導体装置
JP6089000B2 (ja) 双方向フォトサイリスタチップ、および、ソリッドステートリレー
JP4756084B2 (ja) 半導体装置
JP2008258406A (ja) 半導体装置
CN113661576B (zh) 半导体装置
CN108292659B (zh) 半导体装置
JP6286981B2 (ja) 半導体装置
US11923443B2 (en) Semiconductor device
JP6561496B2 (ja) 半導体装置
JP2009076757A (ja) 逆阻止3端子サイリスタ
JP2008177482A (ja) 双方向サイリスタ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160108

R150 Certificate of patent or registration of utility model

Ref document number: 5870140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees