JP5868282B2 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
JP5868282B2
JP5868282B2 JP2012168787A JP2012168787A JP5868282B2 JP 5868282 B2 JP5868282 B2 JP 5868282B2 JP 2012168787 A JP2012168787 A JP 2012168787A JP 2012168787 A JP2012168787 A JP 2012168787A JP 5868282 B2 JP5868282 B2 JP 5868282B2
Authority
JP
Japan
Prior art keywords
power
voltage
unit
storage unit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012168787A
Other languages
Japanese (ja)
Other versions
JP2014027859A (en
Inventor
文屋 潤
潤 文屋
田村 憲一
憲一 田村
松原 則幸
則幸 松原
中島 浩二
浩二 中島
智和 丸山
智和 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012168787A priority Critical patent/JP5868282B2/en
Publication of JP2014027859A publication Critical patent/JP2014027859A/en
Application granted granted Critical
Publication of JP5868282B2 publication Critical patent/JP5868282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電力供給システムに関する。   The present invention relates to a power supply system.

商用電源から供給される交流電力を直流電力に変換して負荷に供給する電力供給システムでは、商用電源の停電時等、商用電源から切り離された場合に備えたバックアップ用の電源として、リチウムイオン電池等の二次電池を用いたものがある。このような電力供給システムとしては、例えば、通常時(非停電時)に負荷装置に対して電力を供給する直流出力装置の他に、二次電池であるリチウムイオン電池を充電するための充電電源部を設け、停電時等で直流出力供給装置の出力電圧が低下した時にリチウムイオン電池から負荷装置に対して電力を供給するものがある(例えば、特許文献1)。   In a power supply system that converts AC power supplied from a commercial power source into DC power and supplies it to a load, a lithium-ion battery is used as a backup power source in case of disconnection from the commercial power source, such as during a power failure There are those using a secondary battery such as. As such a power supply system, for example, a charging power source for charging a lithium ion battery as a secondary battery in addition to a direct current output device that supplies power to a load device in a normal time (non-power failure) There is a device that supplies power to a load device from a lithium ion battery when the output voltage of the DC output supply device decreases due to a power failure or the like (for example, Patent Document 1).

特開2006−223050号公報JP 2006-223050 A

上記従来技術では、停電時等で直流出力供給装置の出力電圧が低下した時にリチウムイオン電池から負荷装置に対して電力が供給されるという電力供給ラインの切替えを、ダイオードによって受動的に実現している。このダイオードによる切替えを実現するために、直流出力供給装置の出力電圧はリチウムイオン電池の出力電圧よりも高く設定される。これより、通常時(非停電時)には、直流出力供給装置から負荷装置に対して電力が供給され、停電時には、ダイオードを介してリチウムイオン電池から負荷装置に対して電力が供給される。このため、上記従来技術では、通常時と停電時とでは、負荷装置に印加される電圧を一定に保つことができず、負荷装置の安定動作を損なう可能性がある、という問題があった。また、負荷装置に印加される電圧を一定に保つために、新たにリニアレギュレータやスイッチングレギュレータ等の電源回路を設けた場合には、回路の大型化やコスト増加に与える影響が大きい、という問題があった。   In the above prior art, the switching of the power supply line in which power is supplied from the lithium ion battery to the load device when the output voltage of the DC output supply device decreases due to a power failure or the like is passively realized by a diode. Yes. In order to realize the switching by the diode, the output voltage of the DC output supply device is set higher than the output voltage of the lithium ion battery. As a result, power is supplied from the DC output supply device to the load device during a normal time (when no power failure occurs), and power is supplied from the lithium ion battery to the load device via the diode during a power failure. For this reason, in the said prior art, the voltage applied to a load apparatus cannot be kept constant at the time of normal time and a power failure, and there existed a problem that the stable operation | movement of a load apparatus might be impaired. In addition, in order to keep the voltage applied to the load device constant, when a new power supply circuit such as a linear regulator or a switching regulator is provided, there is a problem that it has a large effect on the increase in circuit size and cost. there were.

本発明は、上記に鑑みてなされたものであって、回路の大型化やコスト増加に与える影響を抑制しつつ、通常時/停電時に関わらず、負荷装置に印加する電圧を略一定に保つことができ、負荷装置を安定動作させることが可能な電力供給システムを提供することを目的とする。   The present invention has been made in view of the above, and keeps the voltage applied to the load device substantially constant regardless of the normal time / power failure while suppressing the influence on the increase in circuit size and cost. An object of the present invention is to provide a power supply system capable of stably operating a load device.

上述した課題を解決し、目的を達成するため、本発明にかかる電力供給システムは、商用電源から供給される交流電力を直流電力に変換して負荷に供給する電力供給システムであって、前記商用電源の出力電圧を整流する整流回路と、前記整流回路の出力を第1の電圧に変換して直流共通部に直流電力を供給する第1の電力変換部と、記第1の電力変換部からの電流を阻止する一方向性素子を介して前記直流共通部に直流電力を供給する蓄電部と、前記整流回路の出力を前記第1の電圧よりも小さい第2の電圧に変換し、前記第2の電圧によって前記蓄電部を充電し、前記一方向性素子を介して前記直流共通部に電気的に接続される第2の電力変換部と、前記商用電源の非停電時において、前記第1の電力変換部から前記直流共通部を介して直流電力が供給され、前記商用電源の停電時において、前記蓄電部から前記一方向性素子および前記直流共通部を介して直流電力が供給され、前記商用電源の非停電時において、前記第1の電力変換部から前記直流共通部を介して前記負荷に直流電力を供給する際に、前記直流共通部から前記負荷に印加される電圧を、前記第1の電圧と前記蓄電部の電圧との差分に前記一方向性素子の電圧降下分を加えた分だけ降下させる電圧降下部と、前記第1の電力変換部、前記第2の電力変換部、および前記電圧降下部を制御する制御回路と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a power supply system according to the present invention is a power supply system that converts AC power supplied from a commercial power source into DC power and supplies the DC power to a load. a rectifier circuit for rectifying the output voltage of the power supply, the first power conversion unit for supplying DC power output by converting the first voltage into a DC common section of the rectifier circuit, before Symbol first power conversion unit A power storage unit that supplies DC power to the DC common unit via a unidirectional element that blocks current from the output, and converts the output of the rectifier circuit to a second voltage that is smaller than the first voltage , A second power conversion unit that charges the power storage unit with a second voltage and is electrically connected to the DC common unit via the unidirectional element; 1 power conversion unit through the DC common unit DC power is supplied, and at the time of a power failure of the commercial power source, DC power is supplied from the power storage unit via the unidirectional element and the DC common unit, and when the commercial power source is not powered down, the first power When supplying DC power from the power conversion unit to the load via the DC common unit, the voltage applied from the DC common unit to the load is the difference between the first voltage and the voltage of the power storage unit. A voltage drop unit that drops the amount of voltage drop of the unidirectional element added to, a control circuit that controls the first power conversion unit, the second power conversion unit, and the voltage drop unit, It is characterized by providing.

本発明によれば、通常時/停電時に関わらず、負荷装置に印加する電圧を略一定に保つことができ、負荷装置を安定動作させることが可能となる、という効果を奏する。   According to the present invention, the voltage applied to the load device can be kept substantially constant regardless of the normal time / power failure, and the load device can be stably operated.

図1は、実施の形態1にかかる電力供給システムの一構成例を示す図である。FIG. 1 is a diagram of a configuration example of the power supply system according to the first embodiment. 図2は、実施の形態1にかかる電力供給システムの非停電時(通常時)における電流経路を示す図である。FIG. 2 is a diagram illustrating a current path when the power supply system according to the first embodiment is not in a power outage (normal time). 図3は、実施の形態1にかかる電力供給システムの停電時における電流経路を示す図である。FIG. 3 is a diagram illustrating a current path during a power failure in the power supply system according to the first embodiment. 図4は、実施の形態2にかかる電力供給システムの一構成例を示す図である。FIG. 4 is a diagram of a configuration example of the power supply system according to the second embodiment. 図5は、実施の形態3にかかる電力供給システムの一構成例を示す図である。FIG. 5 is a diagram of a configuration example of the power supply system according to the third embodiment.

以下に添付図面を参照し、本発明の実施の形態にかかる電力供給システムについて説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。   Hereinafter, a power supply system according to an embodiment of the present invention will be described with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.

実施の形態1.
図1は、実施の形態1にかかる電力供給システムの一構成例を示す図である。図1に示す例では、商用電源1から供給される交流電力を直流電力に変換して負荷8に供給する例を示している。実施の形態1にかかる電力供給システム100は、商用電源1から正常に電力が供給されている通常時(非停電時)と、商用電源1の停電等により商用電源1から切り離された状態(以下、「停電時」という)とで異なる動作を行う。
Embodiment 1 FIG.
FIG. 1 is a diagram of a configuration example of the power supply system according to the first embodiment. In the example shown in FIG. 1, an example is shown in which AC power supplied from the commercial power source 1 is converted to DC power and supplied to the load 8. The power supply system 100 according to the first exemplary embodiment is disconnected from the commercial power supply 1 due to a normal power supply (normal power failure) when the commercial power supply 1 is normally supplied with power and a power failure of the commercial power supply 1 (hereinafter referred to as the power supply system 100) , "When power failure occurs").

図1に示すように、実施の形態1にかかる電力供給システム100は、商用電源1の出力電圧を整流する整流回路2と、整流回路2への入力電流Iを検出する入力電流検出部11と、整流回路2の出力を第1の所定電圧Vaに変換して直流共通部13に直流電力を供給する第1の電力変換部3と、整流回路2の出力を第1の所定電圧Vaよりも小さい第2の所定電圧Vbに変換する第2の電力変換部4と、商用電源1の非停電時(通常時)において、第2の所定電圧Vbにより充電されると共に、商用電源1の停電時において、第1の電力変換部3からの電流を阻止する一方向性素子(ダイオード)6を介して直流共通部13に直流電力を供給する蓄電部5と、直流共通部13から負荷8に直流電力を供給可能に構成され、直流共通部13から負荷8に直流電力を供給する際に、商用電源1の非停電時(通常時)において直流共通部13から負荷8に印加される電圧を降下させる電圧降下部14と、入力電流検出部11の入力電流検出値に基づいて、商用電源1の停電を検出し、商用電源1の非停電時(通常時)において、第1の電力変換部3および第2の電力変換部4の出力をオン制御し、商用電源1の停電時において、第1の電力変換部3および第2の電力変換部4の出力をオフ制御すると共に、商用電源1の非停電時(通常時)および停電時において直流共通部13から負荷8に印加する電圧を略一致させるように、電圧降下部14を制御する制御回路9とを備えている。なお、上述した構成では、商用電源1の停電を検出する停電検出手段の一つとして、入力電流検出部11を設け、この入力電流検出部11の入力電流検出値に基づいて、商用電源1の停電を検出する例について説明したが、商用電源1の停電検出手段はこれに限らず、停電か否かを検出する公知の停電検出手段を設けて商用電源1の停電検出を行えばよい。この商用電源1の停電検出手段により本発明が限定されるものではない。   As shown in FIG. 1, the power supply system 100 according to the first embodiment includes a rectifier circuit 2 that rectifies the output voltage of the commercial power supply 1, and an input current detector 11 that detects an input current I to the rectifier circuit 2. The first power conversion unit 3 that converts the output of the rectifier circuit 2 to the first predetermined voltage Va and supplies the DC power to the DC common unit 13, and the output of the rectifier circuit 2 than the first predetermined voltage Va The second power conversion unit 4 that converts the second predetermined voltage Vb to a small value and the commercial power source 1 are charged with the second predetermined voltage Vb at the time of non-power failure (normal time), and at the time of the power failure of the commercial power source 1 , A power storage unit 5 that supplies DC power to the DC common unit 13 via a unidirectional element (diode) 6 that blocks current from the first power conversion unit 3, and a DC to the load 8 from the DC common unit 13. It is configured to be able to supply power and the DC common part 13 When supplying DC power to the load 8, the voltage drop unit 14 that drops the voltage applied from the DC common unit 13 to the load 8 when the commercial power source 1 is not powered (normal time), and the input current detection unit 11 Based on the input current detection value, a power failure of the commercial power supply 1 is detected, and the outputs of the first power conversion unit 3 and the second power conversion unit 4 are turned on when the commercial power supply 1 is not powered (normal time). In the event of a power failure of the commercial power source 1, the outputs of the first power conversion unit 3 and the second power conversion unit 4 are controlled to be off, and the DC common is used when the commercial power source 1 is not powered (normal time) and during a power failure. A control circuit 9 that controls the voltage drop unit 14 is provided so that the voltages applied from the unit 13 to the load 8 are substantially matched. In the configuration described above, an input current detection unit 11 is provided as one of the power failure detection means for detecting a power failure of the commercial power source 1, and the commercial power source 1 is configured based on the input current detection value of the input current detection unit 11. Although the example which detects a power failure was demonstrated, the power failure detection means of the commercial power source 1 should just detect the power failure of the commercial power source 1 by providing not only this but the well-known power failure detection means which detects whether it is a power failure. The present invention is not limited by the power failure detection means of the commercial power source 1.

本実施の形態では、電圧降下部14は、1つあるいは直列接続された複数のダイオード15からなるダイオード回路17と、このダイオード回路17に並列接続され、導通状態とすることでダイオード回路17をバイパスするバイパススイッチ16とから構成される。なお、図1に示す例では、2つのダイオード15を直列接続し、ダイオード回路17を構成した例を示している。   In the present embodiment, the voltage drop unit 14 bypasses the diode circuit 17 by connecting the diode circuit 17 composed of one or a plurality of diodes 15 connected in series and the diode circuit 17 in parallel to be in a conductive state. And a bypass switch 16. In the example shown in FIG. 1, an example in which two diodes 15 are connected in series to form a diode circuit 17 is shown.

ここで、蓄電部5は、例えばリチウムイオン電池等の二次電池であり、この蓄電部5の充電電流の上限値はImaxで規定されている。したがって、第2の電力変換部4は、出力電流Ibが蓄電部5の充電電流上限値Imax以下となるように構成されている(Ib≦Imax)。なお、第1の電力変換部3の出力電流Iaおよび蓄電部5から直流電力が供給される際の蓄電部電流Ibttは、負荷8の消費電力量に応じて変動する。   Here, the power storage unit 5 is a secondary battery such as a lithium ion battery, for example, and the upper limit value of the charging current of the power storage unit 5 is defined by Imax. Therefore, second power conversion unit 4 is configured such that output current Ib is equal to or lower than charging current upper limit value Imax of power storage unit 5 (Ib ≦ Imax). Note that the output current Ia of the first power conversion unit 3 and the storage unit current Ibtt when the DC power is supplied from the storage unit 5 vary according to the power consumption of the load 8.

また、本実施の形態では、第1の所定電圧Vaおよび第2の所定電圧Vbの大小関係をVb<Vaとする。これにより、商用電源1の非停電時(通常時)において第1の電力変換部3および第2の電力変換部4の出力がオン制御されている場合には、第1の電力変換部3から直流共通部13および電圧降下部14を介して負荷8に直流電力が供給され、商用電源1の停電時において第1の電力変換部3および第2の電力変換部4の出力がオフ制御されている場合には、蓄電部5からダイオード6、直流共通部13、および電圧降下部14を介して負荷8に直流電力が供給される。   In the present embodiment, the magnitude relationship between the first predetermined voltage Va and the second predetermined voltage Vb is Vb <Va. Thereby, when the outputs of the first power conversion unit 3 and the second power conversion unit 4 are on-controlled at the time of non-power failure of the commercial power supply 1 (normal time), the first power conversion unit 3 DC power is supplied to the load 8 via the DC common unit 13 and the voltage drop unit 14, and the outputs of the first power conversion unit 3 and the second power conversion unit 4 are off-controlled at the time of a power failure of the commercial power supply 1. When the power is present, DC power is supplied from the power storage unit 5 to the load 8 via the diode 6, the DC common unit 13, and the voltage drop unit 14.

つぎに、上述した構成における制御回路9の動作について、図2〜図5を参照して説明する。図2は、実施の形態1にかかる電力供給システムの非停電時(通常時)における電流経路を示す図である。また、図3は、実施の形態1にかかる電力供給システムの停電時における電流経路を示す図である。   Next, the operation of the control circuit 9 in the configuration described above will be described with reference to FIGS. FIG. 2 is a diagram illustrating a current path when the power supply system according to the first embodiment is not in a power outage (normal time). FIG. 3 is a diagram illustrating a current path at the time of a power failure of the power supply system according to the first embodiment.

図2に示すように、非停電時(通常時)には、制御回路9により第1の電力変換部3および第2の電力変換部4の出力がオン制御される。このとき、図2において破線矢印で示す経路で電流が流れ、整流回路2の出力が第1の電力変換部3により第1の所定電圧Vaに変換されて直流共通部13に供給される。また、図2において一点鎖線矢印で示す経路で電流が流れ、整流回路2の出力が第2の電力変換部4により第2の所定電圧Vbに変換されて出力電流Ibで蓄電部5に供給され、蓄電部5の充電が行われる。   As shown in FIG. 2, the outputs of the first power conversion unit 3 and the second power conversion unit 4 are on-controlled by the control circuit 9 during a non-power failure (normal time). At this time, a current flows through a path indicated by a broken-line arrow in FIG. 2, and the output of the rectifier circuit 2 is converted into the first predetermined voltage Va by the first power conversion unit 3 and supplied to the DC common unit 13. In addition, a current flows through a path indicated by a one-dot chain line arrow in FIG. 2, and the output of the rectifier circuit 2 is converted to the second predetermined voltage Vb by the second power conversion unit 4 and supplied to the power storage unit 5 by the output current Ib. The power storage unit 5 is charged.

また、図3に示すように、停電時には、制御回路9により第1の電力変換部3および第2の電力変換部4の出力がオフ制御される。このとき、第1の電力変換部3および第2の電力変換部4の出力電圧は略零となり、第1の電力変換部3および第2の電力変換部4から直流共通部13および蓄電部5への電力供給は行われず、図3において二点鎖線矢印で示す経路で電流が流れ、蓄電部5に充電された直流電力が直流共通部13に供給される。   As shown in FIG. 3, the outputs of the first power converter 3 and the second power converter 4 are turned off by the control circuit 9 during a power failure. At this time, the output voltages of the first power conversion unit 3 and the second power conversion unit 4 become substantially zero, and the DC common unit 13 and the power storage unit 5 from the first power conversion unit 3 and the second power conversion unit 4. Is not supplied, current flows through a path indicated by a two-dot chain line arrow in FIG. 3, and DC power charged in the power storage unit 5 is supplied to the DC common unit 13.

ここで、非停電時(通常時)における直流共通部13の電圧Vs1は、図2に示すように、第1の電力変換部3から出力される第1の所定電圧Vaとなり(Vs1=Va)、停電時における直流共通部13の電圧Vs2は、図3に示すように、蓄電部5から出力される蓄電部電圧Vbttからダイオード6の電圧降下分αを減じた電圧となる(Vs2=Vbtt−α)。つまり、直流共通部13から直接負荷8に電力供給する構成とした場合、非停電時(通常時)と停電時とで負荷8の入力電圧が異なる値となる。   Here, the voltage Vs1 of the DC common unit 13 at the time of non-power failure (normal time) is the first predetermined voltage Va output from the first power converter 3 as shown in FIG. 2 (Vs1 = Va). As shown in FIG. 3, the voltage Vs2 of the DC common unit 13 at the time of a power failure is a voltage obtained by subtracting the voltage drop α of the diode 6 from the power storage unit voltage Vbtt output from the power storage unit 5 (Vs2 = Vbtt−). α). That is, when the direct-current common unit 13 directly supplies power to the load 8, the input voltage of the load 8 is different between a non-power failure (normal time) and a power failure.

さらに、本実施の形態では、非停電時(通常時)における第2の電力変換部4の出力電圧である第2の所定電圧Vbは、第1の電力変換部3の出力電圧である第1の所定電圧Vaよりも小さい値としているため、第2の所定電圧Vbにより充電された蓄電部5の蓄電部電圧Vbttも同様に、第1の所定電圧Vaよりも小さい値となる(Vbtt<Va)。したがって、停電時における直流共通部13の電圧Vs2は、非停電時(通常時)における直流共通部13の電圧Vs1よりも小さい値となる(Vs2<Vs1)。   Further, in the present embodiment, the second predetermined voltage Vb that is the output voltage of the second power conversion unit 4 at the time of non-power failure (normal time) is the first voltage that is the output voltage of the first power conversion unit 3. Therefore, the power storage unit voltage Vbtt of the power storage unit 5 charged with the second predetermined voltage Vb is also lower than the first predetermined voltage Va (Vbtt <Va). ). Therefore, the voltage Vs2 of the DC common unit 13 at the time of a power failure is smaller than the voltage Vs1 of the DC common unit 13 at the time of a non-power failure (normal time) (Vs2 <Vs1).

例えば、負荷8が冷却ファンである場合、入力電圧が変動すると、冷却ファンの風量を一定に保つことができず、冷却性能を一定に保つことができない。上述したように、直流共通部13から直接負荷8に電力供給する構成とした場合、非停電時(通常時)と停電時とで負荷8の入力電圧が異なる値となるため、非停電時(通常時)と停電時とで冷却性能に差異を生じることとなる。つまり、負荷8に印加する電圧を一定に保つことができず、負荷8の安定動作を損なう可能性がある。   For example, when the load 8 is a cooling fan, if the input voltage fluctuates, the air volume of the cooling fan cannot be kept constant, and the cooling performance cannot be kept constant. As described above, when power is directly supplied to the load 8 from the DC common unit 13, the input voltage of the load 8 is different between a non-power failure time (normal time) and a power failure time. There will be a difference in cooling performance between normal operation and power outage. That is, the voltage applied to the load 8 cannot be kept constant, and the stable operation of the load 8 may be impaired.

したがって、本実施の形態では、商用電源1の非停電時(通常時)および停電時において負荷8に印加する電圧を略一致させるように、直流共通部13の後段に、商用電源1の非停電時(通常時)において負荷8に印加する電圧を降下させる電圧降下部14を具備した構成としている。   Therefore, in the present embodiment, the non-power failure of the commercial power source 1 is provided in the subsequent stage of the DC common unit 13 so that the voltages applied to the load 8 at the time of the non-power failure (normal time) of the commercial power source 1 and the power failure are substantially matched. The voltage drop unit 14 that drops the voltage applied to the load 8 at the time (normal time) is provided.

より具体的には、商用電源1の非停電時(通常時)における直流共通部13の電圧Vs1を降下させるダイオード回路17を設け、このダイオード回路17の電圧降下分βが、β≒(Va−Vbtt)+αとなるように、ダイオード回路17を構成し(図示した例では、2つのダイオード15を直列接続して構成)、商用電源1の停電時にこのダイオード回路17をバイパスするバイパススイッチ16をダイオード回路17に並列接続して、電圧降下部14を構成している。   More specifically, a diode circuit 17 is provided for dropping the voltage Vs1 of the DC common unit 13 when the commercial power supply 1 is not powered (normal time), and the voltage drop β of the diode circuit 17 is β≈ (Va− The diode circuit 17 is configured so that Vbtt) + α (in the illustrated example, the two diodes 15 are connected in series), and the bypass switch 16 that bypasses the diode circuit 17 in the event of a power failure of the commercial power supply 1 is a diode. A voltage drop unit 14 is configured in parallel with the circuit 17.

そして、商用電源1の非停電時(通常時)には、制御回路9がバイパススイッチ16を非導通状態に制御することにより、図2に示すように、電圧降下部14の出力電圧Vo1は、第1の所定電圧Vaからダイオード回路17の電圧降下分βを減じた電圧となり(Vo1=Va−β)、商用電源1の停電時には、制御回路9がバイパススイッチ16を導通状態に制御することにより、図3に示すように、電圧降下部14の出力電圧Vo2は、直流共通部13の電圧Vs2と等しく、蓄電部電圧Vbttからダイオード6の電圧降下分αを減じた電圧となる(Vo2=Vs2=Vbtt−α)。ここで、ダイオード回路17の電圧降下分βは、上述したように、β≒(Va−Vbtt)+αとしているので、商用電源1の非停電時(通常時)における電圧降下部14の出力電圧Vo1と商用電源1の停電時における電圧降下部14の出力電圧Vo2とを略一致させることができる(Vo1≒Vo2)。   When the commercial power supply 1 is not powered (normally), the control circuit 9 controls the bypass switch 16 to be in a non-conductive state, so that the output voltage Vo1 of the voltage drop unit 14 is as shown in FIG. The voltage is obtained by subtracting the voltage drop β of the diode circuit 17 from the first predetermined voltage Va (Vo1 = Va−β), and the control circuit 9 controls the bypass switch 16 to be in a conductive state at the time of a power failure of the commercial power supply 1. As shown in FIG. 3, the output voltage Vo2 of the voltage drop unit 14 is equal to the voltage Vs2 of the DC common unit 13, and is a voltage obtained by subtracting the voltage drop α of the diode 6 from the storage unit voltage Vbtt (Vo2 = Vs2). = Vbtt-α). Here, since the voltage drop β of the diode circuit 17 is β≈ (Va−Vbtt) + α as described above, the output voltage Vo1 of the voltage drop unit 14 when the commercial power supply 1 is not powered (normal time). And the output voltage Vo2 of the voltage drop unit 14 at the time of a power failure of the commercial power supply 1 can be substantially matched (Vo1≈Vo2).

このように構成することにより、商用電源1の非停電時(通常時)/停電時に関わらず、負荷8に印加する電圧を略一定に保つことができ、負荷8を安定動作させることができる。   With this configuration, the voltage applied to the load 8 can be kept substantially constant regardless of whether the commercial power source 1 is not powered (normal time) / power failure, and the load 8 can be stably operated.

以上説明したように、実施の形態1の電力供給システムによれば、整流回路の出力を第1の所定電圧に変換して直流共通部に直流電力を供給する第1の電力変換部と、整流回路の出力を第1の所定電圧よりも小さい第2の所定電圧に変換する第2の電力変換部と、第2の所定電圧により充電される蓄電部とを具備し、商用電源から正常に電力が供給されている通常時(非停電時)に蓄電部を充電しておき、商用電源の停電時においてダイオードを介して蓄電部から直流共通部に直流電力を供給し、直流共通部から負荷に直流電力を供給する構成において、直流共通部の後段に、商用電源の非停電時(通常時)において負荷に印加する電圧を降下させる電圧降下部を具備した構成とし、新たにリニアレギュレータやスイッチングレギュレータ等の電源回路を設けることなく、商用電源の非停電時(通常時)および停電時において負荷に印加する電圧を略一致させるようにしたので、回路の大型化やコスト増加に与える影響を抑制しつつ、商用電源1の非停電時(通常時)/停電時に関わらず、負荷に印加する電圧を略一定に保つことができ、負荷を安定動作させることが可能となる。   As described above, according to the power supply system of the first embodiment, the first power conversion unit that converts the output of the rectifier circuit into the first predetermined voltage and supplies DC power to the DC common unit, and the rectification A second power converter that converts the output of the circuit to a second predetermined voltage that is lower than the first predetermined voltage; and a power storage unit that is charged by the second predetermined voltage; The power storage unit is charged during normal operation (when there is no power failure), DC power is supplied from the power storage unit to the DC common unit via the diode during a power failure, and the DC common unit supplies the load. In a configuration that supplies DC power, a configuration that includes a voltage drop unit that drops the voltage applied to the load at the time of non-power failure of the commercial power supply (normal time) after the DC common unit is newly added, linear regulator and switching regulator etc Without providing a power supply circuit, the voltage applied to the load at the time of non-power outage (normal time) and power outage of the commercial power supply was made to be approximately the same, while suppressing the effect on the increase in circuit size and cost, Regardless of whether the commercial power supply 1 is not powered (normal time) / power failure, the voltage applied to the load can be kept substantially constant, and the load can be stably operated.

実施の形態2.
図4は、実施の形態2にかかる電力供給システムの一構成例を示す図である。なお、実施の形態1と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
Embodiment 2. FIG.
FIG. 4 is a diagram of a configuration example of the power supply system according to the second embodiment. In addition, the same code | symbol is attached | subjected to the component which is the same as that of Embodiment 1, or equivalent, and the detailed description is abbreviate | omitted.

図4に示すように、実施の形態2にかかる電力供給システム100aでは、実施の形態1において説明した構成に加え、蓄電部5の蓄電部電圧Vbttを検出する蓄電部電圧検出部7を備えている。   As shown in FIG. 4, the power supply system 100 a according to the second embodiment includes a power storage unit voltage detection unit 7 that detects the power storage unit voltage Vbtt of the power storage unit 5 in addition to the configuration described in the first embodiment. Yes.

蓄電部5の蓄電部電圧Vbttは、蓄電量に応じて変動するが、この蓄電部電圧Vbttの変動が大きい場合に、蓄電量が少なく、蓄電部電圧Vbttが小さい状態に合わせてダイオード回路17の電圧降下分βを設定すると、蓄電量が多く、蓄電部電圧Vbttが大きい状態で、商用電源1が停電した場合に、バイパススイッチ16を導通状態に制御すると、商用電源1の非停電時(通常時)および停電時において負荷8に印加する電圧差が大きくなる。   The power storage unit voltage Vbtt of the power storage unit 5 varies according to the amount of power storage, but when the power storage unit voltage Vbtt is large, the power storage unit voltage Vbtt is small and the power storage unit voltage Vbtt is small. When the voltage drop β is set, when the commercial power source 1 fails in a state where the power storage amount is large and the power storage unit voltage Vbtt is large, if the bypass switch 16 is controlled to be in a conductive state, And the voltage difference applied to the load 8 at the time of power failure increases.

本実施の形態では、図4に示すように、蓄電部電圧検出部7により蓄電部5の蓄電部電圧Vbttを検出する構成とし、制御回路9aには、蓄電部電圧検出部7により検出される蓄電部電圧検出値Vbttに対する所定の蓄電部電圧閾値V1を設定し、商用電源1の停電時において、蓄電部電圧検出値Vbttがこの蓄電部電圧閾値V1以上となった場合には、バイパススイッチ16を非導通状態に制御し、蓄電部電圧検出値Vbttが蓄電部電圧閾値V1未満である場合には、バイパススイッチ16を導通状態に制御する。   In the present embodiment, as shown in FIG. 4, the power storage unit voltage detection unit 7 detects the power storage unit voltage Vbtt of the power storage unit 5, and the control circuit 9a detects the power storage unit voltage detection unit 7. A predetermined power storage unit voltage threshold value V1 for the power storage unit voltage detection value Vbtt is set, and when the power storage unit voltage detection value Vbtt becomes equal to or higher than the power storage unit voltage threshold value V1 during a power failure of the commercial power supply 1, the bypass switch 16 Is controlled to a non-conductive state, and when the power storage unit voltage detection value Vbtt is less than the power storage unit voltage threshold V1, the bypass switch 16 is controlled to be a conductive state.

このように構成することにより、蓄電部5の蓄電量に応じた蓄電部電圧Vbttの変動が大きい場合に、蓄電部5の蓄電量が少なく、蓄電部電圧Vbttが小さい状態に合わせてダイオード回路17の電圧降下分βを設定しておくことにより、商用電源1の停電時において、蓄電部5の蓄電量が多く、蓄電部電圧検出値Vbttが蓄電部電圧閾値V1以上である場合には、バイパススイッチ16が非導通状態に制御され、蓄電部5の蓄電量が減少し、蓄電部電圧検出値Vbttが蓄電部電圧閾値V1未満となった場合には、バイパススイッチ16が導通状態に制御されるため、商用電源1の停電時において、蓄電部5の蓄電量の減少により蓄電部電圧Vbttが変動した場合でも、負荷8に印加する電圧を一定の範囲内に保つことが可能となる。   With this configuration, when the fluctuation of the power storage unit voltage Vbtt according to the power storage amount of the power storage unit 5 is large, the diode circuit 17 is adapted to the state where the power storage unit 5 has a small power storage amount and the power storage unit voltage Vbtt is small. By setting the voltage drop β of the power supply unit 1, when the commercial power source 1 has a power failure, the power storage unit 5 has a large amount of power storage, and the power storage unit voltage detection value Vbtt is equal to or higher than the power storage unit voltage threshold V1. When switch 16 is controlled to the non-conductive state, the amount of power stored in power storage unit 5 decreases, and power storage unit voltage detection value Vbtt is less than power storage unit voltage threshold V1, bypass switch 16 is controlled to the conductive state. Therefore, even when the power storage unit voltage Vbtt fluctuates due to a decrease in the amount of power stored in the power storage unit 5 during a power failure of the commercial power source 1, the voltage applied to the load 8 can be kept within a certain range. .

以上説明したように、実施の形態2の電力供給システムによれば、実施の形態1において説明した構成に加え、蓄電部の蓄電部電圧Vbttを検出する蓄電部電圧検出部を備え、蓄電部電圧検出値Vbttが蓄電部電圧閾値V1以上となった場合には、バイパススイッチを非導通状態に制御し、蓄電部電圧検出値Vbttが蓄電部電圧閾値V1未満である場合には、バイパススイッチを導通状態に制御するようにしたので、商用電源の停電時において、蓄電部の蓄電量の減少により蓄電部電圧Vbttが変動した場合でも、負荷に印加する電圧を一定の範囲内に保つことが可能となり、負荷を安定動作させることが可能となる。また本実施の形態においても、実施の形態1と同様、新たな電源回路を設ける必要が無いため回路の大型化やコスト増加に与える影響を抑制することも可能となる。   As described above, according to the power supply system of the second embodiment, in addition to the configuration described in the first embodiment, the power storage unit voltage detection unit that detects the power storage unit voltage Vbtt of the power storage unit is provided, When the detected value Vbtt is equal to or higher than the power storage unit voltage threshold V1, the bypass switch is controlled to be in a non-conductive state, and when the power storage unit voltage detected value Vbtt is less than the power storage unit voltage threshold V1, the bypass switch is turned on. Since the state is controlled, it is possible to keep the voltage applied to the load within a certain range even when the power storage unit voltage Vbtt fluctuates due to a decrease in the amount of power stored in the power storage unit during a power failure of the commercial power supply. The load can be stably operated. Also in the present embodiment, as in the first embodiment, since it is not necessary to provide a new power supply circuit, it is possible to suppress the influence on the increase in circuit size and cost.

実施の形態3.
図5は、実施の形態3にかかる電力供給システムの一構成例を示す図である。なお、実施の形態2と同一または同等の構成部には同一符号を付して、その詳細な説明は省略する。
Embodiment 3 FIG.
FIG. 5 is a diagram of a configuration example of the power supply system according to the third embodiment. In addition, the same code | symbol is attached | subjected to the component which is the same as that of Embodiment 2, or equivalent, and the detailed description is abbreviate | omitted.

図5に示すように、実施の形態3にかかる電力供給システム100bでは、実施の形態1において説明した電圧降下部14に代えて、直列接続された複数のダイオード15a,15b,15cと、このダイオード15a,15b,15cの1つ以上に並列接続され、全てを導通状態とすることで全てのダイオード15a,15b,15cをバイパスする複数のバイパススイッチ16a,16bとから構成された電圧降下部14aを備えている。なお、図5に示す例では、3つのダイオード15a,15b,15cを直列接続し、ダイオード15aにバイパススイッチ16aを並列接続し、残る2つのダイオード15b,15cが直列接続されたダイオード直列回路18にバイパススイッチ16bを並列接続した例を示している。   As shown in FIG. 5, in the power supply system 100b according to the third embodiment, instead of the voltage drop unit 14 described in the first embodiment, a plurality of diodes 15a, 15b, 15c connected in series, and the diode A voltage drop unit 14a composed of a plurality of bypass switches 16a and 16b that are connected in parallel to one or more of 15a, 15b, and 15c and bypass all the diodes 15a, 15b, and 15c by making all of them conductive. I have. In the example shown in FIG. 5, three diodes 15a, 15b, 15c are connected in series, a bypass switch 16a is connected in parallel to the diode 15a, and the remaining two diodes 15b, 15c are connected in series to the diode series circuit 18. The example which connected the bypass switch 16b in parallel is shown.

また、実施の形態3にかかる電力供給システム100bの制御回路9bでは、蓄電部電圧検出部7により検出される蓄電部電圧検出値Vbttに対する所定の蓄電部電圧閾値として、複数の蓄電部電圧閾値V1,V2,…を設定し、商用電源1の停電時において、蓄電部電圧検出値Vbttに応じて、各バイパススイッチ16a,16bの導通/非導通を制御する。   In the control circuit 9b of the power supply system 100b according to the third embodiment, a plurality of power storage unit voltage thresholds V1 are used as predetermined power storage unit voltage thresholds for the power storage unit voltage detection value Vbtt detected by the power storage unit voltage detection unit 7. , V2,... Are set, and the conduction / non-conduction of the bypass switches 16a and 16b is controlled according to the power storage unit voltage detection value Vbtt at the time of a power failure of the commercial power source 1.

ここで、図5に示す例における制御回路9bの制御例について説明する。図5に示す例では、3段階の蓄電部電圧閾値V1,V2,V3を設定し、これらの大小関係をV1<V2<V3とする。商用電源1の停電時において、蓄電部電圧検出値Vbttが蓄電部電圧閾値V1未満である場合には、制御回路9bは、全てのバイパススイッチ16a,16bを導通状態に制御する。また、蓄電部電圧検出値Vbttが蓄電部電圧閾値V1以上であり、且つ蓄電部電圧閾値V2未満である場合には、制御回路9bは、バイパススイッチ16bを導通状態に制御する。また、蓄電部電圧検出値Vbttが蓄電部電圧閾値V2以上であり、且つ蓄電部電圧閾値V3未満である場合には、制御回路9bは、バイパススイッチ16aを導通状態に制御する。また、蓄電部電圧検出値Vbttが蓄電部電圧閾値V3以上である場合には、制御回路9bは、全てのバイパススイッチ16a,16bを非導通状態に制御する。   Here, a control example of the control circuit 9b in the example shown in FIG. 5 will be described. In the example shown in FIG. 5, three-stage power storage unit voltage thresholds V1, V2, and V3 are set, and the magnitude relationship between them is V1 <V2 <V3. When the power storage unit voltage detection value Vbtt is less than the power storage unit voltage threshold V1 at the time of a power failure of the commercial power supply 1, the control circuit 9b controls all the bypass switches 16a and 16b to be in a conductive state. In addition, when storage unit voltage detection value Vbtt is equal to or greater than storage unit voltage threshold V1 and less than storage unit voltage threshold V2, control circuit 9b controls bypass switch 16b to be in a conductive state. In addition, when storage unit voltage detection value Vbtt is equal to or greater than storage unit voltage threshold V2 and less than storage unit voltage threshold V3, control circuit 9b controls bypass switch 16a to be in a conductive state. Further, when power storage unit voltage detection value Vbtt is equal to or higher than power storage unit voltage threshold V3, control circuit 9b controls all bypass switches 16a and 16b to be in a non-conductive state.

上述のように構成、制御することにより、蓄電部電圧Vbttが変動した場合でも、負荷8に印加する電圧を、実施の形態2よりも狭い一定の範囲内に保つことが可能となる。   By configuring and controlling as described above, the voltage applied to the load 8 can be kept within a certain range narrower than that of the second embodiment even when the power storage unit voltage Vbtt varies.

以上説明したように、実施の形態3の電力供給システムによれば、直列接続された複数のダイオードと、このダイオードの1つ以上に並列接続され、全てを導通状態とすることで全てのダイオードをバイパスする複数のバイパススイッチとから構成された電圧降下部を備え、蓄電部電圧検出部により検出される蓄電部電圧検出値Vbttに対する所定の蓄電部電圧閾値として、複数の蓄電部電圧閾値V1,V2,…を設定し、商用電源の停電時において、蓄電部電圧検出値Vbttに応じて、各バイパススイッチの導通/非導通を制御するようにしたので、蓄電部電圧Vbttが変動した場合でも、負荷に印加する電圧を、実施の形態2よりも狭い一定の範囲内に保つことが可能となり、負荷をより安定動作させることが可能となる。   As described above, according to the power supply system of the third embodiment, a plurality of diodes connected in series and one or more of these diodes are connected in parallel, and all the diodes are made conductive by making them all conductive. A plurality of power storage unit voltage thresholds V1 and V2 are provided as predetermined power storage unit voltage thresholds with respect to the power storage unit voltage detection value Vbtt detected by the power storage unit voltage detection unit. ,... Are set, and during the power failure of the commercial power supply, the conduction / non-conduction of each bypass switch is controlled according to the storage unit voltage detection value Vbtt, so even if the storage unit voltage Vbtt fluctuates, The voltage to be applied to can be kept within a certain range narrower than that of the second embodiment, and the load can be operated more stably.

なお、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。   Note that the configuration shown in the above embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and a part thereof is omitted without departing from the gist of the present invention. Needless to say, it is possible to change the configuration.

1 商用電源、2 整流回路、3 第1の電力変換部、4 第2の電力変換部、5 蓄電部、6 一方向性素子(ダイオード)、7 蓄電部電圧検出部、8 負荷、9,9a,9b 制御回路、11 入力電流検出部、13 直流共通部、14,14a 電圧降下部、15,15a,15b,15c ダイオード、16,16a,16b バイパススイッチ、17 ダイオード回路、18 ダイオード直列回路、100,100a,100b 電力供給システム。   DESCRIPTION OF SYMBOLS 1 Commercial power supply, 2 Rectifier circuit, 3 1st power converter, 4 2nd power converter, 5 Power storage part, 6 Unidirectional element (diode), 7 Power storage part voltage detection part, 8 Load, 9, 9a , 9b Control circuit, 11 Input current detection unit, 13 DC common unit, 14, 14a Voltage drop unit, 15, 15a, 15b, 15c Diode, 16, 16a, 16b Bypass switch, 17 Diode circuit, 18 Diode series circuit, 100 , 100a, 100b Power supply system.

Claims (6)

商用電源から供給される交流電力を直流電力に変換して負荷に供給する電力供給システムであって、
前記商用電源の出力電圧を整流する整流回路と、
前記整流回路の出力を第1の電圧に変換して直流共通部に直流電力を供給する第1の電力変換部と、
記第1の電力変換部からの電流を阻止する一方向性素子を介して前記直流共通部に直流電力を供給する蓄電部と、
前記整流回路の出力を前記第1の電圧よりも小さい第2の電圧に変換し、前記第2の電圧によって前記蓄電部を充電し、前記一方向性素子を介して前記直流共通部に電気的に接続される第2の電力変換部と、
前記商用電源の非停電時において、前記第1の電力変換部から前記直流共通部を介して直流電力が供給され、前記商用電源の停電時において、前記蓄電部から前記一方向性素子および前記直流共通部を介して直流電力が供給され、前記商用電源の非停電時において、前記第1の電力変換部から前記直流共通部を介して前記負荷に直流電力を供給する際に、前記直流共通部から前記負荷に印加される電圧を、前記第1の電圧と前記蓄電部の電圧との差分に前記一方向性素子の電圧降下分を加えた分だけ降下させる電圧降下部と、
前記第1の電力変換部、前記第2の電力変換部、および前記電圧降下部を制御する制御回路と、
を備えることを特徴とする電力供給システム。
A power supply system that converts AC power supplied from a commercial power source into DC power and supplies the load to a load.
A rectifier circuit for rectifying the output voltage of the commercial power supply;
A first power conversion unit that converts the output of the rectifier circuit into a first voltage and supplies DC power to the DC common unit;
A power storage unit for supplying DC power to the DC common portion via a unidirectional element to prevent current from the previous SL first power conversion unit,
The output of the rectifier circuit is converted into a second voltage smaller than the first voltage, the power storage unit is charged with the second voltage, and the DC common unit is electrically connected via the unidirectional element. A second power converter connected to
DC power is supplied from the first power conversion unit via the DC common unit when the commercial power source is not blacked out, and the one-way element and the DC are supplied from the power storage unit when the commercial power source is blacked out. When the DC power is supplied through the common unit, and the DC power is supplied from the first power conversion unit to the load through the DC common unit when the commercial power supply is not powered down, the DC common unit A voltage drop unit that drops the voltage applied to the load from the difference between the first voltage and the voltage of the power storage unit by adding a voltage drop of the unidirectional element;
A control circuit that controls the first power conversion unit, the second power conversion unit, and the voltage drop unit;
A power supply system comprising:
前記制御回路は、前記商用電源の非停電時において、前記第1の電力変換部および前記第2の電力変換部の出力をオン制御し、前記商用電源の停電時において、前記第1の電力変換部および前記第2の電力変換部の出力をオフ制御することを特徴とする請求項1に記載の電力供給システム。   The control circuit turns on the outputs of the first power conversion unit and the second power conversion unit when the commercial power source is not powered down, and the first power conversion is performed during the power failure of the commercial power source. 2. The power supply system according to claim 1, wherein the outputs of the first power converter and the second power converter are turned off. 前記電圧降下部は、1つあるいは直列接続された複数のダイオードからなるダイオード回路と、前記ダイオード回路に並列接続され、導通状態とすることで前記ダイオード回路をバイパスするバイパススイッチとから構成され、
前記制御回路は、少なくとも前記商用電源の非停電時において、前記バイパススイッチを非導通状態に制御することを特徴とする請求項2に記載の電力供給システム。
The voltage drop unit includes a diode circuit including one or a plurality of diodes connected in series, and a bypass switch that is connected in parallel to the diode circuit and bypasses the diode circuit by being in a conductive state.
The power supply system according to claim 2, wherein the control circuit controls the bypass switch to be in a non-conducting state at least during a non-power failure of the commercial power source.
前記蓄電部の電圧を検出する蓄電部電圧検出部をさらに備え、
前記制御回路は、前記商用電源の停電時において、前記蓄電部電圧検出部の蓄電部電圧検出値に応じて、前記バイパススイッチの導通/非導通を制御することを特徴とする請求項3に記載の電力供給システム。
A power storage unit voltage detection unit for detecting a voltage of the power storage unit;
The said control circuit controls conduction | electrical_connection / non-conduction of the said bypass switch according to the electrical storage part voltage detection value of the said electrical storage part voltage detection part at the time of the power failure of the said commercial power supply. Power supply system.
前記制御回路は、前記蓄電部電圧検出値が所定の蓄電部電圧閾値以上である場合に、前記バイパススイッチを非導通状態に制御し、前記蓄電部電圧検出値が前記蓄電部電圧閾値未満である場合に、前記バイパススイッチを導通状態に制御することを特徴とする請求項4に記載の電力供給システム。   The control circuit controls the bypass switch to a non-conductive state when the power storage unit voltage detection value is equal to or higher than a predetermined power storage unit voltage threshold, and the power storage unit voltage detection value is less than the power storage unit voltage threshold. In this case, the power supply system according to claim 4, wherein the bypass switch is controlled to be in a conductive state. 前記蓄電部の電圧を検出する蓄電部電圧検出部をさらに備え、
前記電圧降下部は、直列接続された複数の前記ダイオードと、前記ダイオードの1つ以上に並列接続され、全てを導通状態とすることで全ての前記ダイオードをバイパスする複数の前記バイパススイッチとから構成され、
前記制御回路は、前記商用電源の停電時において、前記蓄電部電圧検出部の蓄電部電圧検出値に応じて、前記各バイパススイッチの導通/非導通を制御することを特徴とする請求項2に記載の電力供給システム。
A power storage unit voltage detection unit for detecting a voltage of the power storage unit;
The voltage drop unit includes a plurality of the diodes connected in series and a plurality of the bypass switches that are connected in parallel to one or more of the diodes and bypass all the diodes by bringing all of them into a conductive state. And
The control circuit controls conduction / non-conduction of each bypass switch according to a power storage unit voltage detection value of the power storage unit voltage detection unit during a power failure of the commercial power supply. The power supply system described.
JP2012168787A 2012-07-30 2012-07-30 Power supply system Active JP5868282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012168787A JP5868282B2 (en) 2012-07-30 2012-07-30 Power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012168787A JP5868282B2 (en) 2012-07-30 2012-07-30 Power supply system

Publications (2)

Publication Number Publication Date
JP2014027859A JP2014027859A (en) 2014-02-06
JP5868282B2 true JP5868282B2 (en) 2016-02-24

Family

ID=50200996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168787A Active JP5868282B2 (en) 2012-07-30 2012-07-30 Power supply system

Country Status (1)

Country Link
JP (1) JP5868282B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6096825B2 (en) * 2015-04-07 2017-03-15 三菱電機株式会社 Power supply system
JP6180465B2 (en) * 2015-06-23 2017-08-16 三菱電機株式会社 Power supply system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619130A (en) * 1984-06-23 1986-01-16 三菱電機株式会社 Power source with power interruption compensator
JPS63314144A (en) * 1987-06-16 1988-12-22 Nissin Electric Co Ltd Series connected type voltage variation compensating device
JPH0783560B2 (en) * 1989-07-31 1995-09-06 三菱電機株式会社 Uninterruptible power supply controller
JPH03207226A (en) * 1989-12-29 1991-09-10 Toshiba Corp Battery switching system
JP3425299B2 (en) * 1996-07-01 2003-07-14 東京電力株式会社 Distributed power supply
JP2000323365A (en) * 1999-05-12 2000-11-24 Shizuki Electric Co Inc Dc supplying device
JP2007312544A (en) * 2006-05-19 2007-11-29 Fujitsu Access Ltd Backup power-supply device
JP2008022641A (en) * 2006-07-13 2008-01-31 Fujitsu Access Ltd Backup power-supply apparatus
JP5313810B2 (en) * 2009-08-19 2013-10-09 三菱電機株式会社 Uninterruptible power system

Also Published As

Publication number Publication date
JP2014027859A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
US9154000B2 (en) Uninterruptible power supply apparatus including a control circuit that executes a first mode when supply of a first AC electric power from a commercial AC power supply is resumed at a time of discharge end
EP2670015B1 (en) Power control device and power control method
US10054966B2 (en) Battery backup units and systems including bypassing circuitry for regulating outputs
US10447045B2 (en) Power control device, power control method, and power control system
CN106464006B (en) Uninterruptible power supply device
CN101800343A (en) Electronic equipment, secondary cell and the charging of control secondary cell and the method for discharge
US9647492B2 (en) Direct current uninterruptible power supply system and device
US20170187234A1 (en) Uninterruptible power source device
JP5868282B2 (en) Power supply system
EP3419142A1 (en) Power storage system and power storage method
JP2015164015A (en) Direct-current feeding system, direct-current power supply device, and feeding control method
JP2016111724A (en) Dc power supply device
JP2016185030A (en) Power storage system
JP6076215B2 (en) Power supply system
CN109980709B (en) Charging power supply system with low standby power consumption and control method thereof
JP6145777B2 (en) Power converter
JP5911396B2 (en) Power supply system
US9960636B2 (en) Power supply system and direct-current converter thereof
KR101610869B1 (en) Power supply apparatus, driving method thereof, and security system incluing the same
KR20150070590A (en) Circuit for driving synchronous rectifier and power supply apparatus including the same
US9653945B2 (en) Converter between solar panel, source and load
US9335774B1 (en) Non-isolated intermediate bus converter
JP6058096B1 (en) Power supply system
JP2016131458A (en) Power supply system with balance function for float charging
Pospisilik et al. Improved design of the uninterruptable power supply unit for powering of network devices

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160105

R150 Certificate of patent or registration of utility model

Ref document number: 5868282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250