JP5857995B2 - Manufacturing method of artificial stone - Google Patents

Manufacturing method of artificial stone Download PDF

Info

Publication number
JP5857995B2
JP5857995B2 JP2013070139A JP2013070139A JP5857995B2 JP 5857995 B2 JP5857995 B2 JP 5857995B2 JP 2013070139 A JP2013070139 A JP 2013070139A JP 2013070139 A JP2013070139 A JP 2013070139A JP 5857995 B2 JP5857995 B2 JP 5857995B2
Authority
JP
Japan
Prior art keywords
granular
artificial stone
water
layer
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013070139A
Other languages
Japanese (ja)
Other versions
JP2014193779A (en
Inventor
孝一 市川
孝一 市川
久宏 松永
久宏 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013070139A priority Critical patent/JP5857995B2/en
Publication of JP2014193779A publication Critical patent/JP2014193779A/en
Application granted granted Critical
Publication of JP5857995B2 publication Critical patent/JP5857995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Description

この発明は、製鋼スラグと高炉スラグ微粉末を主体とする原料と水の混練物をヤードに打設して水和硬化させ、この水和固化体を粗破砕して人工石材を製造する方法に関する。   TECHNICAL FIELD The present invention relates to a method for producing an artificial stone material by placing a raw material mainly composed of steelmaking slag and fine powder of blast furnace slag and water into a yard and hydrating and curing the hydrated solidified body. .

粉粒状の製鋼スラグと高炉スラグ微粉末を主体とする原料を水で混練し、これを水和硬化させた水和固化体が知られており(例えば、特許文献1)、この水和固化体は、路盤材、土木材料、港湾土木材料、その他のコンクリート代替品として使用可能である。
このような水和固化体の製造方法の一つとして、原料と水の混練物をヤードに打設し、硬化後に粗破砕して人工石材を得る方法が知られている(非特許文献1)。この方法で得られる不定形な人工石材は、港湾土木材料である被覆石、根固め石、捨石、潜堤材などに特に適している。
There is known a hydrated solidified product obtained by kneading a raw material mainly composed of powdered steelmaking slag and blast furnace slag fine powder with water and hydrating and hardening the raw material (for example, Patent Document 1). Can be used as roadbed materials, civil engineering materials, harbor civil engineering materials, and other concrete substitutes.
As one method for producing such a hydrated solid product, there is known a method in which a kneaded material and water are placed in a yard and coarsely crushed after curing to obtain an artificial stone (Non-patent Document 1). . The amorphous artificial stone material obtained by this method is particularly suitable for harbor civil engineering materials such as covering stones, rooting stones, rubble stones, and submerged dike materials.

非特許文献1に示されるような人工石材の従来の製造方法は、原料と水の混練物をヤードの広い範囲に打設して平らにならし、硬化後の水和固化体をコンクリートブレーカーなどの重機を用いて100〜300kg/個程度のサイズの塊状石材に粗破砕するものである。また、特許文献2には、この方法の生産性を向上させるために、ヤードに複数条の平行な畝を設け、畝間の溝に混練物を打設する方法が示されている。この方法では、畝間に細長い水和固化体が形成されるので、粗破砕工程では水和固化体を幅方向で2面破砕するだけで塊状石材が得られ、粗破砕作業を極めて効率的に行えることなどにより、スラグ原料の水和固化体からなる人工石材を高い生産性で製造できる。   The conventional manufacturing method of artificial stone as shown in Non-Patent Document 1 is to place a mixture of raw material and water in a wide area of the yard to level it, and to set the hydrated solidified body after curing to a concrete breaker or the like Are roughly crushed into block stones having a size of about 100 to 300 kg / piece. Patent Document 2 discloses a method in which a plurality of parallel ridges are provided in a yard and a kneaded material is placed in a groove between the ridges in order to improve the productivity of this method. In this method, since a slender hydrated solid body is formed between the ribs, in the rough crushing step, a lump stone material can be obtained simply by crushing the hydrated solid body in two directions in the width direction, and the rough crushing operation can be performed very efficiently. Therefore, an artificial stone made of a hydrated solidified slag material can be produced with high productivity.

特開2001−270746号公報JP 2001-270746 A 特開2009−107908号公報JP 2009-107908 A

「沿岸開発技術ライブラリーNo.16,鉄鋼スラグ水和固化体 技術マニュアル,製鋼スラグの有効利用技術」,平成15年3月,財団法人沿岸開発技術センター“Coastal Development Technology Library No.16, Steel Slag Hydrated Solid Technology Manual, Effective Utilization Technology of Steelmaking Slag”, March 2003, Coastal Development Technology Center

これらの人工石材の製造方法では、打設物の上面は開放された状態にある。このため、打設直後から上面部は水分が蒸発し始め、水和硬化に必要な水分が蒸発によって不足し、打設物の上面から厚さ数cmに渡る反応不良の脆弱層が形成されるという問題がある。この脆弱部は、固化した打設物(水和固化体)を破砕したり、分級して製品粒度を調整する際、ほとんどが細粒化して製品粒径未満となり、製品歩留りを低下させる。特に夏季の高温時には影響が大きく、破砕時の粉発生量を増大させるとともに、製品人工石材の強度を低下させる。このため粒度調整工程で発生する篩下の粉量が増大して規格外品となり、処理を困難にする。これを防止するためには、打設後も表面の湿分を常時保持するために散水を繰り返すか、コンクリート養生マットと呼ばれる保湿シートを用いることも考えられるが、資材コストが増大したり、作業員を増員する必要があるため、経済的な面で実施は困難である。   In these artificial stone manufacturing methods, the upper surface of the casting is open. For this reason, the upper surface portion starts to evaporate immediately after placement, and the moisture necessary for hydration hardening is insufficient due to evaporation, and a weak reaction layer of several centimeters in thickness is formed from the upper surface of the placement object. There is a problem. When the fragile portion is crushed or classified to adjust the product particle size by pulverizing the solidified cast (hydrated solidified product), most of the fragile portion becomes finer and becomes less than the product particle size, thereby reducing the product yield. In particular, the effect is great at high temperatures in summer, increasing the amount of powder generated during crushing and reducing the strength of artificial stone. For this reason, the amount of powder under the sieve generated in the particle size adjustment process increases, resulting in a nonstandard product, which makes processing difficult. In order to prevent this, it is conceivable to repeat watering in order to keep the moisture on the surface even after placement, or to use a moisture retention sheet called a concrete curing mat. Because it is necessary to increase the number of staff, it is difficult to implement in terms of economy.

したがって本発明の目的は、以上のような従来技術の課題を解決し、製鋼スラグと高炉スラグ微粉末を主体とする原料と水の混練物をヤードに打設して水和硬化させ、この水和固化体を粗破砕して人工石材を製造する際に、経済性を損なうことなく製品歩留りを高め、人工石材を高い生産性で低コストに製造することができる製造方法を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, and to put a raw material mainly composed of steelmaking slag and blast furnace slag fine powder and water into a yard to hydrate and cure the water. The purpose of the present invention is to provide a production method capable of increasing the product yield without impairing the economy and producing the artificial stone with high productivity and low cost when coarsely crushing the solidified body to produce the artificial stone. .

本発明者らは、ヤードに打設した原料と水の混練物(打設物)を養生する際に、打設物の上面の乾燥を効果的かつ経済的に防止できる方法について検討を行い、人工石材の製品出荷時の運搬や粒度調整において発生する石材粉などの粉粒物を有効利用し、この粉粒物に水分を含ませて打設物上面を被覆し、乾燥防止用の保水層とする方法を見出した。すなわち、人工石材の製品出荷時の運搬や粒度調整では、製品サイズより小さい人工石材の粉粒物(細粒を多く含む)が必ず発生するが、このような粉粒物を打設物の上面に一定の厚さで層状に敷設し、その上から散水して保水層とすれば、この層から水分が蒸発し切るまでに数日を要するため、粉粒物層で覆われた打設物上面の水分低下を抑制できることが判った。   The present inventors have studied a method that can effectively and economically prevent drying of the upper surface of the casting when curing the raw material and water kneaded material (casting material) placed in the yard, Effective use of stone particles such as stone powder generated during the transportation and particle size adjustment of artificial stone products, and this powder is covered with moisture to cover the top surface of the cast and a water retention layer to prevent drying And found a method. In other words, in the transportation and particle size adjustment of artificial stone materials at the time of product shipment, artificial stone particles (including many fine particles) that are smaller than the product size are inevitably generated. If it is laid in layers with a certain thickness and water is sprinkled from above to form a water retaining layer, it takes several days for the water to evaporate from this layer, so the cast material covered with a granular layer It was found that the lowering of moisture on the upper surface can be suppressed.

本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]製鋼スラグ及び高炉スラグ微粉末を主体とする原料と水の混練物(a)をヤードに打設し、その打設物(A)を水和硬化させた後、粗破砕して人工石材を製造する方法において、
混練物(a)をヤードに打設した後、その打設物(A)の上面を含水させた粉粒物層(B)で覆い、その状態で打設物(A)を養生する人工石材の製造方法であって、
粉粒物層(B)は、人工石材の製造工程で発生した粉粒状の石材、製造された人工石材の取り扱い時に発生した粉粒状の石材の中から選ばれる1種以上の粉粒物であって、且つ呼び径10mm篩通過分70質量%以上の粉粒物からなり、平均厚さが2cm以上であることを特徴とする人工石材の製造方法。
The present invention has been made on the basis of such findings and has the following gist.
[1] A kneaded material (a) composed mainly of steelmaking slag and blast furnace slag fine powder is placed in the yard, and the cast (A) is hydrated and hardened, then roughly crushed and artificially In the method of manufacturing stone,
After placing the kneaded material (a) in the yard, the artificial stone material for covering the upper surface of the cast material (A) with a water-containing granular layer (B) and curing the cast material (A) in this state A manufacturing method of
The granular material layer (B) is one or more types of granular materials selected from granular stone materials generated during the manufacturing process of artificial stone materials and granular stone materials generated during handling of the manufactured artificial stone materials. And an average stone thickness of 2 cm or more, and a method for producing an artificial stone material.

[2]上記[1]の製造方法において、粉粒物層(B)の含水比を20〜50%とし、その状態で打設物(A)を1日以上養生することを特徴とする人工石材の製造方法。 [2] In the production method of [1], the moisture content of the granular material layer (B) is 20 to 50%, and the cast (A) is cured for 1 day or longer in that state. Stone manufacturing method.

[3]上記[1]又は[2]の製造方法において、打設物(A)の養生完了後、打設物(A)の上面を覆う粉粒物層(B)を除去することを特徴とする人工石材の製造方法。
[4]上記[1]〜[3]のいずれかの製造方法において、養生完了後の打設物(A)を粗破砕して得られた人工石材を、任意の時点で篩にかけ、粉粒物を分離することを特徴とする人工石材の製造方法。
[5]上記[1]〜[4]のいずれかの製造方法において、打設物(A)の養生期間中に、粉粒物層(B)に1回以上散水することを特徴とする人工石材の製造方法。
[3] In the manufacturing method of [1] or [2 ] above, after the curing of the casting (A) is completed, the granular material layer (B) covering the top surface of the casting (A) is removed. A method for producing artificial stone.
[4] In the manufacturing method according to any one of [1] to [3 ] above, the artificial stone obtained by roughly crushing the cast (A) after completion of curing is sieved at an arbitrary point of time, and then granulated. A method for producing an artificial stone characterized by separating objects.
[5] In the production method according to any one of [1] to [4 ] above, the artificial material characterized by watering the granular material layer (B) at least once during the curing period of the cast article (A). Stone manufacturing method.

本発明によれば、人工石材となる水和固化体を得るための打設物の上面を含水させた保水性の高い粉粒物層で覆うことにより、養生中における打設物上層部の乾燥を抑え、強度発現不良部の発生を低減させることができ、製品歩留りを向上させて生産性を高めることができる。また、粉粒物層用の粉粒物には、製造された人工石材から発生する粉粒状の石材などを利用できるため、安価に実施することができる。したがって、経済性を損なうことなく製品歩留りを高め、人工石材を高い生産性で低コストに製造することができる。   According to the present invention, by covering the upper surface of the casting for obtaining a hydrated solidified body that is an artificial stone with a highly water-retaining powder layer, the upper part of the casting is dried during curing. Can be suppressed, the occurrence of defective strength development can be reduced, the product yield can be improved, and the productivity can be increased. Moreover, since the granular material generated from the manufactured artificial stone material etc. can be utilized for the granular material for a granular material layer, it can implement at low cost. Therefore, the product yield can be increased without impairing the economy, and the artificial stone can be manufactured with high productivity and low cost.

本発明の製造方法の一実施形態を工程順に示すもので、図(a)は平面図、図(b)は図(a)のX−X線に沿う断面図BRIEF DESCRIPTION OF THE DRAWINGS One Embodiment of the manufacturing method of this invention is shown in order of a process, A figure (a) is a top view, A figure (b) is sectional drawing which follows the XX line of Fig. (A). 本発明の製造方法の他の実施形態を示すもので、図(a)は平面図、図(b)は図(a)のX−X線に沿う断面図The other embodiment of the manufacturing method of this invention is shown, A figure (a) is a top view, A figure (b) is sectional drawing which follows the XX line of figure (a) 実施例において粉粒物層Bに用いたズリの粒度分布を示すグラフThe graph which shows the particle size distribution of the slip used for the granular material layer B in an Example 文献に示される引っかき傷幅と圧縮強度との関係を示す図Diagram showing the relationship between scratch width and compressive strength shown in the literature

本発明は、製鋼スラグ及び高炉スラグ微粉末を主体とする原料と水の混練物aをヤードに打設し、その打設物Aを水和硬化させた後、粗破砕して人工石材を製造する方法であって、混練物aをヤードに打設した後、その打設物Aの上面を含水させた粉粒物層Bで覆い(打設物Aの上に粉粒物層Bを敷設する)、その状態で打設物Aを養生するものである。なお、製鋼スラグ及び高炉スラグ微粉末を主体とするとは、それらを50質量%以上含むという意味である。
このような本発明の人工石材の製造方法によれば、含水させた保水性の高い粉粒物層が養生中の打設物上層部の乾燥を抑え、強度発現不良部の発生を低減させることができ、製品歩留りを向上させることができるとともに、粉粒物層用の粉粒物には、製造された人工石材から発生する粉粒状の石材などを利用できるため、安価に実施することができる。
In the present invention, a raw material mainly composed of steel slag and blast furnace slag fine powder and water kneaded product a are placed in a yard, and the cast product A is hydrated and hardened, and then roughly crushed to produce an artificial stone material. After the kneaded material a is placed in the yard, the upper surface of the cast material A is covered with a water-containing powder layer B (the powder layer B is laid on the cast material A). In this state, the cast object A is cured. In addition, having steelmaking slag and blast furnace slag fine powder as a main component means that they are contained in an amount of 50% by mass or more.
According to such a method for producing an artificial stone material of the present invention, the highly water-retaining powder layer suppresses the drying of the upper layer portion of the cast article during curing, and reduces the occurrence of poor strength development portions. It is possible to improve the product yield, and for the granular material for the granular material layer, the granular stone material generated from the manufactured artificial stone material can be used, so that it can be implemented at low cost. .

粉粒物層Bを構成する粉粒物bとしては、例えば、人工石材の製造工程で発生した粉粒状の石材や、製造された人工石材の取り扱い時に発生した粉粒状の石材を利用することが、系内で発生する製品粒径未満の粉粒状の石材を有効利用できるという点で好ましいが、その他の粉粒状の石材や天然砂などを単独又は混合して用いてもよい。その他の粉粒状の石材としては、例えば、石灰石工場で発生する石粉などが挙げられるが、これに限らない。また、人工石材は海域用途に用いることも多く、無鉄筋であり錆膨張を懸念する必要がないため、製造地が海浜近傍である場合などは海砂を用いても問題はない。
したがって、本発明では、以上挙げたような粉粒物bの1種以上を粉粒物層Bに利用することができる。
As the granular material b constituting the granular material layer B, for example, it is possible to use a granular stone material generated in the manufacturing process of the artificial stone material or a granular stone material generated during handling of the manufactured artificial stone material. Although it is preferable in that a granular stone material having a particle size smaller than the product particle size generated in the system can be effectively used, other granular stone materials or natural sand may be used alone or in combination. Examples of other granular stone materials include, but are not limited to, stone powder generated in a limestone factory. Artificial stones are often used for marine applications and are free of reinforcing bars, so there is no need to worry about rust expansion, so there is no problem even if sea sand is used when the production site is near the beach.
Therefore, in this invention, 1 or more types of the granular material b as mentioned above can be utilized for the granular material layer B. FIG.

ただし、上述した観点から、粉粒物層Bを構成する粉粒物bは、少なくとも一部が、人工石材の製造工程で発生した粉粒状の石材、製造された人工石材の取り扱い時に発生した粉粒状の石材のうちの1種以上であることが好ましい。これらの粉粒状の石材はいわゆる「ズリ」と呼ばれるものである。このうち、人工石材の製造工程で発生した粉粒状の石材としては、例えば、ヤードで粗破砕された石材をさらに養生する場合、その養生の前又は後で石材を篩にかけた際に発生する製品粒径未満の篩下分などが挙げられる。また、製造された人工石材の取り扱い時に発生した粉粒状の石材としては、例えば、製品出荷のための運搬時や引渡し時点で発生する製品粒径未満の篩下分(例えば、バケット型スクリーンで分離されたもの等)などが挙げられる。   However, from the viewpoint described above, at least a part of the granular material b constituting the granular material layer B is a granular stone material generated in the manufacturing process of the artificial stone material, and a powder generated during handling of the manufactured artificial stone material It is preferable that it is 1 or more types of granular stone materials. These powdery stone materials are so-called “suri”. Among these, as the granular stone material generated in the manufacturing process of artificial stone material, for example, when further curing stone material roughly crushed in the yard, products generated when the stone material is sieved before or after the curing For example, an under-sieving portion having a particle size smaller than that of the particle size may be used. In addition, as for the granular stone material generated when handling the manufactured artificial stone material, for example, the sieving fraction less than the product particle size generated at the time of transportation for product shipment or at the time of delivery (for example, separated by a bucket type screen) Etc.).

粉粒物層Bを構成する粉粒物bの粒度に特別な制限はないが、粉粒物層Bからの水分の蒸発を抑制するためには、層の中に小空隙を多く形成して、その空隙を水で飽水させることが有効である。このため粉粒物層Bを構成する粉粒物bに求められるのは、粒度分布が連続的で且つ平均粒径が小さいことである。元来、破砕や石材どうしのすりへりなどで生じるズリはこの要件を満たしやすい。具体的には、粉粒物層Bを構成する粉粒物bは、呼び径10mm篩通過分が70質量%以上の粒度が好ましく、また、呼び径10mm篩通過分が100質量%の粒度が特に好ましい。また、呼び径10mm以下の中でも、粒度分布が連続的であることが好ましく、特に、呼び径2.5mm篩通過分が20質量%以上であることがより好ましい。   Although there is no special restriction | limiting in the particle size of the granular material b which comprises the granular material layer B, in order to suppress the evaporation of the water | moisture content from the granular material layer B, many small voids are formed in a layer. It is effective to saturate the gap with water. For this reason, what is calculated | required by the granular material b which comprises the granular material layer B is that a particle size distribution is continuous and an average particle diameter is small. Inherently, slippage caused by crushing or scraping between stones tends to satisfy this requirement. Specifically, the granular material b constituting the granular material layer B preferably has a particle size with a nominal diameter of 10 mm passing through a sieve of 70% by mass, and a particle size with a nominal diameter of 10 mm passing through a sieve is 100% by mass. Particularly preferred. Further, among the nominal diameters of 10 mm or less, it is preferable that the particle size distribution is continuous, and it is more preferable that the fraction passing through the sieve having a nominal diameter of 2.5 mm is 20% by mass or more.

粉粒物層Bの含水比は特に限定するものではないが、上述したような粒度の粉粒物bで構成される粉粒物層B内の空隙を全て水で充填して飽水状態にするために、含水比は20%以上とすることが好ましい。粉粒物bの粒度が小さい方が飽水状態に達するまでの水量は多いが、含水比が50%を超えると飽和を超えてブリージングしたり、粉粒物層が流動化して流れ出す傾向が大きくなる。このため粉粒物層Bの含水比は20〜50%とすることが好ましく、25〜40%とすることがさらに好ましい。ここで、粉粒物層Bの含水比とは、粉粒物層Bに含まれる水分量をW(質量%)、固形分量をS(質量%)としたとき、含水比=(W/S)×100で求められる。   The water content ratio of the powder layer B is not particularly limited, but all the voids in the powder layer B composed of the powder particles b of the particle size as described above are filled with water and saturated. Therefore, the water content is preferably 20% or more. The smaller the particle size of the granular material b is, the more water is required to reach the saturated state. However, when the water content ratio exceeds 50%, breathing exceeds saturation and the tendency of the granular material layer to flow and flow out is large. Become. For this reason, the moisture content of the granular material layer B is preferably 20 to 50%, more preferably 25 to 40%. Here, the water content ratio of the granular material layer B is the water content ratio = (W / S) where the water content in the granular material layer B is W (mass%) and the solid content is S (mass%). ) × 100.

粉粒物層Bの水分量の調整はいずれの段階で行ってもよく、例えば、(i)打設物A上に敷設する前の粉粒物bに水を含ませておく、(ii)打設物A上に敷設した粉粒物層Bに散水する、の1つ以上を実施すればよい。また、(ii)の散水は、養生期間中も含めて適当な時間をおいて複数回行ってもよい。すなわち、粉粒物層Bは、その層厚によって保水時間を制御できるが、養生開始時点までの水分調整に加え、一定時間毎に複数回散水して水分量を増大させておくことも可能である。ヤードでの混練物aの打設が連日続くような場合で、毎日定時に散水を繰り返すことが可能な場合には、複数回の散水を行うことが好ましく、この場合は粉粒物層Bの厚さは、1回散水を想定した場合よりも薄くすることが可能となる。   The water content of the powder layer B may be adjusted at any stage. For example, (i) water is contained in the powder material b before laying on the casting A, (ii) What is necessary is just to implement one or more of watering the granular material layer B laid on the casting A. In addition, the watering of (ii) may be performed a plurality of times with an appropriate time including the curing period. That is, in the granular material layer B, the water retention time can be controlled depending on the layer thickness, but in addition to the moisture adjustment up to the start of curing, it is also possible to increase the amount of water by watering multiple times at regular intervals. is there. In the case where the placement of the kneaded material a in the yard continues every day, it is preferable to perform watering a plurality of times when watering can be repeated at a fixed time every day. The thickness can be made thinner than the case where one water spray is assumed.

粉粒物層Bに含水させる水(特に散水用の水)は、打設物Aの養生期間中に水分不足に陥ることを防ぐことが可能であれば、幅広い水源を用いることが可能である。すなわち、淡水、雨水、工業用水、水道水はもとより、海域用途での製造であれば海水でも問題はない。さらに、人工石材の製造工程で発生するスラッジ水、ミキサーでの混練時回収水などカルシウムイオンでアルカリ性を示す水も、むしろ好適であり、製造時の排水発生量の圧倒的な低減にも貢献できる。   A wide variety of water sources can be used as the water (particularly water for watering) to be contained in the granular layer B as long as it is possible to prevent water shortage during the curing period of the casting A. . That is, there is no problem with seawater as long as it is manufactured for marine use as well as fresh water, rainwater, industrial water, and tap water. Furthermore, water that shows alkalinity with calcium ions, such as sludge water generated in the manufacturing process of artificial stone and water recovered during kneading with a mixer, is also preferable, and can contribute to an overwhelming reduction in the amount of wastewater generated during manufacturing. .

粉粒物層Bの厚さに特別な制限はなく、養生の日数や散水の頻度などによって粉粒物層Bの適正な厚さは異なるが、平均厚さが2cm未満では水分蒸発が速く、特に本発明の適用が有効な夏季の高温時には所要の養生時間に対して保水量が不足する場合(特に散水回数が少ない場合)がある。したがって、粉粒物層Bの平均厚さは2cm以上とすることが好ましく、4cm以上とすることがより好ましい。
一方、粉粒物層Bの厚さが大きくなると水分保持には有利であるが、粉粒物層(保水層)厚みの占める割合が、製品である打設物Aの層厚に対して大きくなり、養生後に製品から分離する粉粒物量が増大するため不経済となる。また、層厚を増して粉粒物層B全体の含水量を増大させた場合、粉粒物層Bの下層部側、すなわち打設物Aに接している部分の方が粉粒物層Bの上層部側よりも含水が高いため、養生完了後、過剰な含水を残している場合は濡れによって打設物Aとの分離性が悪くなる場合がある。このため粉粒物層Bの厚さは20cm以下とすることが好ましく、10cm以下とすることがより好ましい。
There is no particular limitation on the thickness of the granular layer B, and the appropriate thickness of the granular layer B varies depending on the number of days of curing and the frequency of water spraying, but when the average thickness is less than 2 cm, moisture evaporation is fast. In particular, at high temperatures in summer when the application of the present invention is effective, the water retention amount may be insufficient for the required curing time (especially when the number of watering is small). Therefore, the average thickness of the granular material layer B is preferably 2 cm or more, and more preferably 4 cm or more.
On the other hand, when the thickness of the powder layer B is increased, it is advantageous for moisture retention, but the proportion of the thickness of the powder layer (water retaining layer) is larger than the layer thickness of the casting A that is the product. It becomes uneconomical because the amount of granular material separated from the product after curing increases. In addition, when the layer thickness is increased to increase the water content of the entire granular layer B, the lower layer side of the granular layer B, that is, the portion in contact with the casting A is the granular layer B. Since the water content is higher than that of the upper layer portion, the separation from the cast article A may be deteriorated due to wetting when excessive water content is left after completion of curing. For this reason, the thickness of the granular material layer B is preferably 20 cm or less, and more preferably 10 cm or less.

粉粒物層Bの敷設は、打設物Aの養生を要する期間の初期に行うのが有効であるが、(i)粉粒物層Bの粉粒物bが打設物Aに食い込んで、打設物Aの水和による強度発現を抑制したり、粉粒物bが打設物Aに低強度で付着することを防止すること、(ii)混練物aの打設後に時として行う、製品粒径に近い間隔で破壊基点を設けるための溝や穴形成(後述する「筋入れ」)作業を阻害しないこと、などのために、タイミングを調整するのが有効である。実質的には、打設物Aに筋入れを行った後、表面を荒らさないで作業できる程度まで固化した後に敷設するのが、製品粒径未満の発生量を抑えて製品歩留りを向上させるのに最も有利なタイミングである。   It is effective to lay the granular material layer B at the beginning of the period requiring the curing of the cast A, but (i) the granular material b of the granular layer B bites into the cast A. , Suppressing strength expression due to hydration of the cast A, or preventing the powder b from adhering to the cast A with low strength, and (ii) occasionally after the kneaded product a is cast. It is effective to adjust the timing so as not to hinder the operation of forming grooves and holes for providing fracture base points at intervals close to the product particle size ("stitching" described later). Substantially, after placing the placement object A and solidifying it to such an extent that the surface can be worked without roughening the surface, it is possible to suppress the generation amount less than the product particle size and improve the product yield. This is the most advantageous timing.

打設物Aの養生期間に特別な制限はないが、打設物A上面を含水した粉粒物層B(好ましくは含水比20〜50%)で覆った状態で1日以上養生することが好ましい。
打設物Aの養生完了後、打設物Aの上面を覆う粉粒物層Bを除去する。粉粒物層Bの除去は、重機(例えば、下部に爪が出ていないバケットを備えたバックホウ)や人力で掻き取ったり、型枠の側方(型枠外)に掻き出せばよい。粉粒物bとしてズリを用いる場合、元々ズリ自体の水和反応はほとんど終了しているので、粉粒物bの粒子相互間の固着や粒子の打設物Aへの固着は殆どなく、バックホウのバケットで掻き取ったり、型枠の側方(型枠外)に掻き出してやれば、粉粒物層Bの大部分の粉粒物bは容易に打設物A上から除去・分離でき、製品(人工石材)の粒度仕様を確保することができる。
Although there is no special restriction | limiting in the curing period of the casting A, It can cure for one day or more in the state which covered the granular material layer B (preferably moisture content 20 to 50%) which contained the casting A upper surface. preferable.
After curing of the casting A, the powder layer B covering the top surface of the casting A is removed. The powder layer B may be removed by heavy machinery (for example, a backhoe provided with a bucket with no nails in the lower part) or manually, or by scraping to the side of the mold (outside the mold). In the case of using a slurry as the powder b, since the hydration reaction of the slurry itself has already been almost completed, there is almost no adhesion between the particles of the powder b and the particles to the casting A, and the backhoe Scraping with a bucket or scraping to the side of the mold (outside the mold), most of the powder b in the powder layer B can be easily removed / separated from the casting A, The particle size specification of (artificial stone) can be secured.

例えば、後述する発明例4の条件で粉粒物層Bの敷設、散水を行い3日間養生した後、打設物Aの粗破砕の前にバックホウ(下部に爪が出ていないバケット)を用いて粉粒物層Bを掻き取った。その際には、打設物Aを傷付けることなく、すなわち打設物Aからの混入なしに、粉粒物層Bの粉粒物bの89質量%を分離回収することができた。回収されない粉粒物bは、粗破砕を容易にするために打設物Aに筋状に設けられた溝内に残ったものや打設物Aの上に薄く残ったものだけである。この回収された粉粒物bは、新規の打設物を含まないため、粒度も元のままであり、水和反応は終了して固結性が無いものであるので、そのまま次の打設物Aに設ける粉粒物層Bに再利用できる。粉粒物bの回収時における打設物Aの若干の混入を許容するなら、バックホウでの粉粒物回収率は90質量%以上が可能である。   For example, after laying and spraying the granular material layer B under the conditions of Invention Example 4 to be described later and curing for 3 days, a backhoe (bucket with no nails in the lower part) is used before rough crushing of the cast A Then, the granular material layer B was scraped off. At that time, 89% by mass of the granular material b of the granular material layer B could be separated and recovered without damaging the cast A, that is, without mixing from the cast A. The powders b that are not collected are only those that remain in the grooves provided in a streak pattern on the cast A or thinly remain on the cast A in order to facilitate rough crushing. Since the recovered granular material b does not include a new cast product, the particle size remains the same, and the hydration reaction is completed and there is no caking property. It can be reused for the granular material layer B provided on the product A. If a slight mixing of the cast A during the recovery of the powder b is allowed, the powder recovery rate of the backhoe can be 90% by mass or more.

打設物Aの上から粉粒物層Bを除去した後、重機を用いた打設物A(水和固化体)の粗破砕を行い、塊状石材とする。通常、この粗破砕は重機(例えば、コンクリートブレーカー)などを用いて行われる。
なお、打設物Aの水和硬化が十分でなく、圧縮強度が低い状態で粗破砕を行うと細粒分が多く発生し、製品歩留まりが低下しやすく、一方、水和硬化が進んで圧縮強度が高くなり過ぎると破砕しにくくなるとともに、小塊が発生して歩留まりも低下するので、打設物Aを粗破砕するまでの養生期間は1日〜7日程度とすることが好ましい。
打設物A(水和固化体)を粗破砕して得られた塊状石材は、ショベルカーなどで打設場所から掻き出され、さらにストックヤードなどで数週間程度養生する。通常、粗破砕して得られた塊状石材は、打設場所や養生場所からの移動時、出荷時、荷卸時などのいずれかの時点で、グリズリーや重機のスケルトンバケット等でズリなどの小径・細粒分を分離除去する分級(篩い分け)がなされ、製品となる。
After removing the powder layer B from the top of the cast A, the cast A (hydrated solid) is roughly crushed using a heavy machine to obtain a block stone. Usually, this rough crushing is performed using a heavy machine (for example, a concrete breaker).
In addition, when the casted product A is not sufficiently hydrated and hardened and coarsely crushed in a state where the compression strength is low, a large amount of fine particles are generated and the product yield tends to be lowered. When the strength becomes too high, crushing becomes difficult, and a small lump is generated to reduce the yield. Therefore, the curing period until the cast material A is roughly crushed is preferably about 1 to 7 days.
The block stone obtained by roughly crushing the cast A (hydrated solidified body) is scraped from the placement site with a shovel car or the like, and further cured for several weeks in a stock yard or the like. In general, lump stones obtained by rough crushing have a small diameter such as slurries in grizzly or heavy machinery skeleton buckets, etc. at any point in time, such as when moving from the place of placement or curing, shipping, or unloading. Classification (sieving) is performed to separate and remove the fine particles, resulting in a product.

また、打設物Aから除去できずに残存していた粉粒物bを除去するために、養生完了後の打設物Aを粗破砕して得られた人工石材を、任意の時点で篩にかけ、粉粒物bを分離することが好ましいが、打設物Aを粗破砕して得られた塊状石材からズリなどの小径・細粒分を除去する上記のような分級作業により粉粒物bを容易に分離できる。
小径・細粒分を含まないという製品仕様に合格するため、粉粒物bの分離を徹底する必要がある場合、打設物Aの粗破砕前の粉粒物層Bの掻き取りで粉粒物bの大部分を分離し、さらに上記のような分級(打設物Aを粗破砕して得られた塊状石材から小径・細粒分を除去するための分級)を組み合わせて実行すれば、粉粒物bの分離の効率が向上できて有利である。
In addition, in order to remove the granular material b that could not be removed from the cast A, the artificial stone obtained by roughly crushing the cast A after completion of curing was sieved at an arbitrary time. It is preferable to separate the granular material b, but the granular material is obtained by the above-described classification operation for removing small diameter and fine particles such as sludge from the block stone obtained by roughly crushing the cast A. b can be easily separated.
In order to pass the product specification that does not include small-diameter and fine-grained components, if it is necessary to thoroughly separate the granular material b, the granular material can be removed by scraping the granular material layer B before roughly crushing the cast A Separating a large part of the product b, and further performing classification as described above (classification for removing small-diameter and fine-grained components from the block stone obtained by roughly crushing the casting A), This is advantageous in that the efficiency of separation of the granular material b can be improved.

以下、本発明の製造方法の好ましい条件について説明する。
本発明で用いる粉粒状の製鋼スラグおよび高炉スラグ微粉末を主体とする原料は、粉粒状の製鋼スラグが水和固化体の主たる骨材となり、高炉スラグ微粉末が水和固化体の主たる結合材となる。
粉粒状の製鋼スラグの種類に特別な制限はない。製鋼スラグとしては、転炉脱炭スラグ、溶銑予備処理スラグ(例えば、脱燐スラグ、脱珪スラグ)、電気炉スラグ、二次精錬スラグ、造塊スラグなどが挙げられ、これらの2種以上を用いてもよい。なお、製鋼スラグのなかでも溶銑予備処理スラグは、free−CaOが少ないために大気エージングの終了が早いだけでなく、free−MgO相が少ないため水和膨張による割れなどが生じにくいので、特に好ましい。
Hereinafter, preferable conditions of the production method of the present invention will be described.
The raw material mainly composed of the granular steelmaking slag and blast furnace slag fine powder used in the present invention is the aggregate in which the granular steelmaking slag becomes the main aggregate of the hydrated solidified body, and the blast furnace slag fine powder is the main binder of the hydrated solidified body. It becomes.
There is no special restriction on the type of granular steelmaking slag. Steelmaking slag includes converter decarburization slag, hot metal pretreatment slag (for example, dephosphorization slag, desiliconization slag), electric furnace slag, secondary refining slag, ingot slag, etc. It may be used. Among the steelmaking slags, the hot metal pretreatment slag is particularly preferable because not only the air aging is completed quickly because there is little free-CaO, but also cracking due to hydration expansion is difficult to occur because there is little free-MgO phase. .

また、製鋼スラグは、事前に自然エージングや蒸気エージングを施したものや、炭酸化処理などの各種処理を施したものを用いてもよい。
製鋼スラグは、スラグ粒子の粒径が大きいほど、内部にfree−CaOやfree−MgOの粒を含む可能性が高くなり、水和固化体の膨張安定性にとって問題が生じる可能性が高くなるので、粒径25mm以下のものが好ましい。
また、水和固化体の主たる結合材となる高炉スラグ微粉末は、JIS
A 6206:1997に適合したものを使用することが好ましい。
In addition, the steelmaking slag may be one that has been subjected to natural aging or steam aging in advance, or one that has been subjected to various treatments such as carbonation treatment.
In steelmaking slag, the larger the particle size of the slag particles, the higher the possibility of containing free-CaO or free-MgO particles inside, and there is a higher possibility of problems in the expansion stability of the hydrated solidified body. A particle size of 25 mm or less is preferred.
Also, blast furnace slag fine powder, which is the main binder of hydrated solidified material, is JIS
It is preferable to use one that conforms to A 6206: 1997.

原料には、さらに必要に応じて、粉粒状の高炉水砕スラグ、フライアッシュ、アルカリ刺激材などの中から選ばれる1種以上を配合することができる。
前記粉粒状の高炉水砕スラグは、基本的には骨材の一部として配合されるが、弱い水硬性を有しているので、水和固化体中にあっては、アルカリ刺激材によりアルカリ刺激を受けて固化し、強度にも寄与する。
前記フライアッシュはポゾラン物質として働き、長期材齢での強度向上に役立つとともに、水和固化体全体としてのアルカリ性を低減させ、水和固化体を水に浸したときに溶出するアルカリ物質の量を低減させる働きもある。
If necessary, the raw material may further contain one or more selected from powdered granulated blast furnace granulated slag, fly ash, alkali stimulating material, and the like.
The granulated blast furnace granulated slag is basically blended as a part of the aggregate, but has a weak hydraulic property. It solidifies upon stimulation and contributes to strength.
The fly ash acts as a pozzolanic substance, helps improve the strength at long-term ages, reduces the alkalinity of the hydrated solidified body as a whole, and reduces the amount of alkaline substance eluted when the hydrated solidified body is immersed in water. There is also a function to reduce.

前記アルカリ刺激材としては、例えば、消石灰やセメント(ポルトランドセメントなど)などのCa系のものを用いことができる。高炉スラグ微粉末は潜在水硬性を有し、アルカリ刺激によって硬化が促進される。このためアルカリ刺激材を添加することで、より安定的に高い強度を得ることができる。
一般的な原料配合割合としては、例えば、製鋼スラグを60〜85質量%、高炉スラグ微粉末を5〜30質量%程度(残部は水)とし、必要に応じて他の成分(高炉水砕スラグ、フライアッシュ、アルカリ刺激材などの1種以上)を適量加える。
As the alkali stimulating material, for example, a Ca-based material such as slaked lime or cement (Portland cement or the like) can be used. The ground granulated blast furnace slag has latent hydraulic properties, and curing is accelerated by alkali stimulation. For this reason, high intensity | strength can be obtained more stably by adding an alkali stimulating material.
As a general raw material blending ratio, for example, steelmaking slag is 60 to 85 mass%, blast furnace slag fine powder is about 5 to 30 mass% (the balance is water), and other components (blast furnace granulated slag as necessary) Add one or more of fly ash, alkali stimulant, etc.).

本発明の製造方法が実施されるヤードに特別な制限はなく、普通の屋外の地面でよい。本発明において、製鋼スラグおよび高炉スラグ微粉末を主体とする原料と水の混練物aをヤードに打設する形態は任意である。したがって、例えば、非特許文献1に示されるように、原料と水の混練物aをヤードの広い範囲に打設して平らにならし、硬化後の打設物A(水和固化体)を粗破砕するようにしてもよい。ただし、生産性の面からは、特許文献2に示すような方法、すなわち、下記(i)又は(ii)の方法が特に好ましい。
(i)ヤードに複数条の平行な畝を設け、該畝間の溝に混練物aを打設する。すなわち、畝間の溝を型枠として利用する。
(ii)ヤードに畝を設けるととともに、該畝と平行な型枠板を配置し、前記畝と型枠板間の溝に混練物aを打設する。すなわち、畝・型枠板間の溝を型枠として利用する。
There is no particular limitation on the yard where the manufacturing method of the present invention is implemented, and it may be ordinary outdoor ground. In the present invention, the form in which the kneaded material a and the raw material mainly composed of steelmaking slag and blast furnace slag fine powder is placed in the yard is arbitrary. Therefore, for example, as shown in Non-Patent Document 1, the kneaded material a and the raw material water are cast in a wide range of the yard and leveled, and the cured product A (hydrated solidified product) is cured. You may make it coarsely crush. However, from the viewpoint of productivity, the method shown in Patent Document 2, that is, the following method (i) or (ii) is particularly preferable.
(I) A plurality of parallel ridges are provided in the yard, and the kneaded material a is placed in a groove between the ridges. That is, the groove between the ribs is used as a formwork.
(Ii) A ridge is provided in the yard, a mold plate parallel to the ridge is disposed, and the kneaded material a is placed in a groove between the ridge and the mold plate. That is, the groove between the ridge and the formwork plate is used as a formwork.

また、後述する実施例に示すように、ヤードに型枠用の部材(例えば、板状やIビーム状のコンクリート部材や鋼製部材)を並べて型枠を構成し、この型枠に混練物aを打設するようにしてもよい。
図1(ア)〜(エ)は、本発明の製造方法の一実施形態を工程順に示したもので、図(a)は平面図、図(b)は図(a)のX−X線に沿う断面図である。
この実施形態では、まず、図1(ア)に示すように屋外の地面1に型枠用の部材20(側板)を並べて型枠2を組み立て、この型枠2内に製鋼スラグ及び高炉スラグ微粉末を主体とする原料と水の混練物aを打設する(流し込む)。そして、この打設物Aを一定時間(例えば1〜6時間程度)放置して流動性が無くなる程度まで固化させた後、図1(イ)に示すように、その打設物Aの上面を含水させた粉粒物層Bで覆い、その状態で打設物Aを養生する。通常、粉粒物bはバックホウなどの重機を用いて打設物Aの上に敷設される。粉粒物bには予め水を含ませておいてもよいし、敷設後に散水してもよい。
In addition, as shown in the examples described later, a formwork is formed by arranging formwork members (for example, plate-like or I-beam concrete members or steel members) in a yard, and a kneaded material a May be placed.
1A to 1D show an embodiment of the manufacturing method of the present invention in the order of steps. FIG. 1A is a plan view, and FIG. 1B is an XX line in FIG. FIG.
In this embodiment, first, as shown in FIG. 1A, a formwork member 2 (side plate) is arranged on an outdoor ground 1 to assemble a formwork 2, and steelmaking slag and blast furnace slag fines are assembled in the formwork 2. A kneaded product a of water and a raw material mainly composed of powder is cast (poured). Then, after this casting object A is allowed to stand for a certain period of time (for example, about 1 to 6 hours) and solidifies to such an extent that fluidity is lost, the upper surface of the casting object A is shown in FIG. It covers with the water-containing granular layer B, and the cast A is cured in that state. Usually, the granular material b is laid on the casting A using a heavy machine such as a backhoe. The granular material b may contain water in advance, or may be sprinkled after laying.

打設物Aの養生が完了したら、図1(ウ)に示すように粉粒物層Bを重機などで除去し、次いで、型枠2(部材20)を取り外した後、図1(エ)に示すように、重機(例えば、コンクリートブレーカー)を用い、打設物A(水和固化体)の長手方向で適宜間隔をおいた位置pをその幅方向で破砕(破断)し、塊状石材3とする。この粗破砕の間隔は、製造すべき石材のサイズ(粒径)に応じて適宜決められる。これにより、打設物A(水和固化体)をその幅方向で2面破砕(破断)するだけで塊状石材3が得られるので、粗破砕作業を非常に効率的に行うことができる。
打設物A(水和固化体)を粗破砕して得られた塊状石材3は、ショベルカーなどで掻き出され、さらにストックヤードなどで一定期間養生し、製品となる。また、粗破砕して得られた塊状石材3は任意の時点で分級(篩い分け)がなされ、細粒分が分離される。
When curing of the casting A is completed, the granular material layer B is removed with a heavy machine or the like as shown in FIG. 1 (c), and then the mold 2 (member 20) is removed, and then FIG. As shown in Fig. 2, a heavy machine (for example, a concrete breaker) is used to crush (break) the position p at an appropriate interval in the longitudinal direction of the cast A (hydrated solidified body) in its width direction, and the massive stone 3 And This rough crushing interval is appropriately determined according to the size (particle size) of the stone to be produced. Thereby, since the lump stone material 3 is obtained only by crushing (breaking) the casting object A (hydrated solidified body) in the width direction, rough crushing work can be performed very efficiently.
The massive stone 3 obtained by roughly crushing the cast A (hydrated solidified body) is scraped out with a shovel car or the like, and further cured in a stock yard or the like for a certain period of time to become a product. In addition, the massive stone material 3 obtained by rough crushing is classified (sieved) at an arbitrary time, and the fine particles are separated.

また、打設物A(水和固化体)の粗破砕をより効率的に行うために、打設物Aの長手方向で適宜間隔をおいた位置、すなわち打設物Aを幅方向で破砕(破断)すべき位置に、打設物Aの幅方向に沿って溝または複数の穴部を形成してもよい(以下、このような溝または複数の穴部を形成することを「筋入れ」という場合がある。)。
図2はその一実施形態を示したもので、図(a)は平面図、図(b-1)および(b-2)は、図(a)のX−X線に沿う断面図である。
Further, in order to perform rough crushing of the cast article A (hydrated solidified body) more efficiently, the cast article A is crushed in the width direction at appropriate positions in the longitudinal direction of the cast article A (that is, the cast article A is crushed in the width direction). A groove or a plurality of hole portions may be formed along the width direction of the placement object A at a position to be broken (hereinafter referred to as “streaching” to form such a groove or a plurality of hole portions). There is a case.)
FIG. 2 shows an embodiment thereof. FIG. 2A is a plan view, and FIGS. 2B-1 and 2B-2 are cross-sectional views taken along line XX of FIG. .

図2(a)に示すような、打設物Aの長手方向で適宜間隔をおいた位置p(打設物Aを幅方向で破砕すべき位置)に、図2(b-1)の場合には打設物幅方向に沿って溝4aが形成され、また、図2(b-2)の場合には打設物幅方向に沿って複数の穴部4bが間隔的に形成されている。これらの溝4aや穴部4bの形成方法は任意であるが、例えば、打設した混練物aの流動性が無くなってから、重機(例えば、コンクリートブレーカー)の作業アームの一部を打設物Aの上面から内部に押し込むなどして形成することができる。なお、このような溝4aや穴部4bの形成は、混練物aを流動性がなくなる程度(例えば、混練物aを打設して60〜120分程度)まで固化させてから行えばよい。   In the case of FIG. 2 (b-1) at a position p (position at which the casting object A should be crushed in the width direction) at an appropriate interval in the longitudinal direction of the casting object A as shown in FIG. 2 (a). In FIG. 2 (b-2), a plurality of holes 4b are formed at intervals along the placement object width direction. . The formation method of these grooves 4a and hole portions 4b is arbitrary. For example, after the flowability of the kneaded material a placed is lost, a part of the work arm of a heavy machine (for example, a concrete breaker) is placed. It can be formed by pressing it into the inside from the upper surface of A. The groove 4a and the hole 4b may be formed after the kneaded material a is solidified to such an extent that the fluidity is lost (for example, about 60 to 120 minutes after the kneaded material a is placed).

また、溝4aや穴部4bの深さは任意であるが、打設物Aの厚さの50%以上、望ましくは60%以上とすることが好ましい。また、打設物幅方向に沿って複数の穴部4bを間隔的に形成する場合には、隣り合う穴部4bどうしの間隔(穴部外縁間の距離)は穴径の2倍以下とすることが好ましい。
図2のように、打設物Aを粗破砕(破断)すべき位置に幅方向に沿って溝4aまたは複数の穴部4bを適正に形成しておけば、コンクリートブレーカーなどの重機による一撃で打設物Aの全幅を破断させることができる。
Moreover, although the depth of the groove | channel 4a and the hole part 4b is arbitrary, it is preferable to set it as 50% or more of the thickness of the casting A, desirably 60% or more. Further, when the plurality of hole portions 4b are formed at intervals along the placement object width direction, the interval between adjacent hole portions 4b (distance between the outer edge portions of the hole portions) is set to be twice or less the hole diameter. It is preferable.
As shown in FIG. 2, if the groove 4a or the plurality of holes 4b are appropriately formed along the width direction at the position where the cast A should be roughly crushed (broken), it can be blown by a heavy machine such as a concrete breaker. The entire width of the casting A can be broken.

本実施例では、粉粒物層Bの粉粒物として、粒径20mm以下のズリ(JIS−A−1102に準拠した篩分けで得られたズリ)を用いた。図3にこのズリの粒度分布を示すが、呼び径10mm篩通過分80質量%以上の粒度である。このズリが得られた元の人工石材は、28日標準養生後の圧縮強度9.8N/mm以上を目標として製造されたものであり、粒径30mm以下の転炉スラグのエージング材(骨材)と高炉スラグ微粉末(結合材)を主体とし、さらにフライアッシュ、普通ポルトランドセメントを配合した原料(各材料を「鉄鋼スラグ水和固化体技術マニュアル(改訂版),平成20年2月」の標準範囲で配合)を水と混練し、この混練物をヤードに打設した。この打設物を打設3日で粗破砕し、約3ヶ月気中養生した後、重機で破砕して粒径を調整し、人工石材の製品としたが、上記ズリは、同製品を出荷時に分級(篩い分け)した際に発生したものを用いた。 In this example, as a granular material of the granular material layer B, a particle having a particle size of 20 mm or less (a particle obtained by sieving according to JIS-A-1102) was used. FIG. 3 shows the particle size distribution of this gap, which is a particle size having a nominal diameter of 10 mm and passing through a sieve of 80% by mass or more. The original artificial stone material from which this gap was obtained was manufactured with the target of a compressive strength of 9.8 N / mm 2 or more after standard curing on the 28th, and an aging material (bone) of converter slag having a particle size of 30 mm or less. Material) and blast furnace slag fine powder (bonding material), and fly ash and raw material containing ordinary Portland cement (each material is “Steel Slag Hydrated Solid Technology Manual (revised), February 2008”) The mixture was kneaded with water and this kneaded product was placed in a yard. This cast is roughly crushed in 3 days and cured for about 3 months in the air, then crushed with heavy machinery to adjust the particle size to produce an artificial stone product. What was sometimes generated during classification (sieving) was used.

なお、別途行った試験によると、粉粒物層Bに上記の粒径20mm以下のズリを用いた場合、粉粒物層Bに散水して表面にブリージング水が発生し始めた飽水時の含水比は22%であった。また、より粒径の小さいズリを用いた場合に同様のブリージング水が発生し始めた飽水時含水比は、粒径9.5mm以下のズリを用いた場合は25%、粒径5mm以下のズリを用いた場合は30%であった。
また、一部の実施例では、上記のズリに石灰石粉を混合したものを粉粒物として用いた。
In addition, according to a separately conducted test, when the above-mentioned particle size of 20 mm or less was used for the granular layer B, water was sprayed on the granular layer B, and breathing water began to be generated on the surface. The water content was 22%. In addition, when using a gap having a smaller particle diameter, the water content ratio during saturation when the same breathing water began to be generated is 25% when a gap having a particle diameter of 9.5 mm or less is used, and a particle diameter of 5 mm or less. When using a gap, it was 30%.
Moreover, in a part of Example, what mixed limestone powder | flour with said slip was used as a granular material.

以下、本実施例で行った人工石材の製造手順を説明する。
28日標準養生後の圧縮強度9.8N/mm以上の人工石材を目標とし、粒径30mm以下の転炉スラグのエージング材(骨材)と高炉スラグ微粉末(結合材)を主体とし、さらにフライアッシュ、普通ポルトランドセメントを配合した原料(各材料を「鉄鋼スラグ水和固化体技術マニュアル(改訂版),平成20年2月」の標準範囲で配合)を水と混練し、この混練物aを夏季に日中の屋外のヤードで打設した。
Hereafter, the manufacturing procedure of the artificial stone material performed in the present Example is demonstrated.
Targeting artificial stones with a compressive strength of 9.8 N / mm 2 or more after standard curing on the 28th, mainly consisting of aging material (aggregate) of converter slag with a particle size of 30 mm or less and blast furnace slag fine powder (binding material), In addition, raw materials containing fly ash and normal Portland cement (each material is blended in the standard range of “Technical Manual for Steel Slag Hydrated Solids (Revised Edition), February 2008)” are kneaded with water. A was set up in the outdoor yard during the daytime in the summer.

I字型のコンクリート部材(Iビーム)を並べて幅4mの打設型枠とし、この型枠内にコンクリートアジテータ車から直接混練物aを流し出して打設し、バックホウで約60cm厚みに均厚化した。なお、混練物aの打設2時間後に、50cm高さの鉄板を取り付けたバケットに固定したバックホウで筋入れを行った。
混練物aを打設してから3時間経過後、型枠内の打設物Aの上に上記ズリ(粒径20mm以下の粉粒物)を敷設して均し、打設物Aの上面を覆う粉粒物層Bを形成した。なお、粉粒物層Bの厚さが薄いものについては、人力で均した(グランド整備用のトンボを使用)。粉粒物層Bに散水車又はホースで散水し、ブリージング水が見られた時点で散水を終了した。一部の実施例では、24時間毎に散水を複数回行った。また、一部の実施例では、敷設前の粉粒物bに対して散水を行い、粉粒物層Bに対しては散水を行わなかった。また、一部の実施例では、混練物aの打設2時間後に、型枠内の打設物Aの上に上記ズリ(粒径20mm以下の粉粒物)を敷設して均し、打設物Aの上面を覆う粉粒物層Bを形成し、その直後に筋入れを行った。
なお、試験期間中の日間の最高気温は33〜36℃で、養生期間中に日間1mm以上の降雨は無かった。
I-shaped concrete members (I-beams) are arranged to form a 4 m wide cast formwork, and the kneaded material a is poured directly from the concrete agitator car into this formwork, and the thickness is approximately 60 cm thick with a backhoe. Turned into. In addition, 2 hours after placing the kneaded material a, creasing was performed with a backhoe fixed to a bucket to which an iron plate having a height of 50 cm was attached.
After 3 hours have elapsed from the placement of the kneaded material a, the above-mentioned gap (powder particles having a particle size of 20 mm or less) is laid on the cast material A in the mold and leveled, and the upper surface of the cast material A The granular material layer B which covers was formed. In addition, about the thing with the thin thickness of the granular material layer B, it equalized by human power (use the dragonfly for ground maintenance). Water was sprinkled on the granular material layer B with a watering wheel or a hose, and watering was terminated when breathing water was seen. In some examples, watering was performed multiple times every 24 hours. Moreover, in some Examples, watering was performed with respect to the granular material b before laying, and watering was not performed with respect to the granular material layer B. In some embodiments, after 2 hours of placing the kneaded material a, the above-mentioned slip (powder particles having a particle size of 20 mm or less) is laid on the placed material A in the mold, and leveled. The granular material layer B which covers the upper surface of the structure A was formed, and creasing was performed immediately after that.
The maximum daily temperature during the test period was 33 to 36 ° C., and there was no rainfall of 1 mm or more during the curing period.

型枠内での養生後、型枠をはずし、バックホウ(下部に爪が出ていないバケット)で粉粒物層Bを打設物Aの側方に掻き落とした。掻き落とした粉粒物bは、バックホウで掻き集めて、打設場所から移動させ、車載の状態で秤量した。このときの粉粒物の質量を[x1]とする。粉粒物層Bを掻き落とした打設物Aは、コンクリートブレーカーで粗破砕し、塊状石材とした。強度を発現させるために、打設7日までその場に置いて養生し、その後、製品ヤードに移送した。製品ヤードに移動する際に、バックホウに付けたスケルトンバケットによるスクリーニングにより、製品粒径未満である粒径150mm以下の小径・細粒分を分離し、これを秤量して、混練物aの打設量に対する比率を算出した。ここでは、粒径150mm以下の小径・細粒分が少ないほど、製品歩留りが高いことになる。なお、前記スケルトンバケットによるスクリーニングにより、若干量が残留したズリ(粉粒物層Bを構成していたズリ)と打設物Aの粗破砕で生じた小径・細粒分が合わせて分級されるが、粉粒物層Bを構成していたズリはスケルトンバケットの孔より充分小さく、全量が篩下になると想定して、先の[x1]と前記スクリーニングで分級された量[x2]を合計した量[X]から粉粒物層Bの敷設量を差し引いた量を、打設物Aの粗破砕で生じた小径・細粒分(粒径150mm以下)とした。また、型枠から払い出す前に粉粒物層Bの一部をサンプリングして粉粒物層Bの残留水分を測定し、この水分量で、合計量[X]から粉粒物層Bの敷設量を差し引く量を補正した。   After curing in the mold, the mold was removed, and the powder layer B was scraped off to the side of the casting A with a backhoe (bucket with no nails at the bottom). The granular material b scraped off was scraped up with a backhoe, moved from the placement site, and weighed in an on-vehicle state. The mass of the granular material at this time is defined as [x1]. The cast A from which the powder layer B was scraped was roughly crushed with a concrete breaker to obtain a block stone. In order to develop the strength, it was cured in place until 7 days after placing, and then transferred to the product yard. When moving to the product yard, screening with a skeleton bucket attached to the backhoe separates small and fine particles with a particle size of 150 mm or less, which is less than the product particle size, and weighs them to place the kneaded material a The ratio to the amount was calculated. Here, the product yield is higher as the smaller diameter and finer particle size is 150 mm or less. In addition, by the screening by the skeleton bucket, a slight residual amount (slack that constitutes the powder particle layer B) and a small diameter / fine particle part generated by the rough crushing of the placement object A are classified. However, assuming that the gap constituting the granular material layer B is sufficiently smaller than the hole of the skeleton bucket and the total amount is sieved, the above [x1] and the amount [x2] classified in the screening are added up. The amount obtained by subtracting the laying amount of the granular material layer B from the amount [X] was defined as the small and fine particles (particle size of 150 mm or less) generated by the rough crushing of the cast material A. Moreover, a part of the granular material layer B is sampled before being discharged from the mold, and the residual moisture of the granular material layer B is measured. With this moisture content, the total amount [X] of the granular material layer B is measured. The amount to subtract the laying amount was corrected.

また、粗破砕前に粉粒物層Bを手で掻き取って露出させた打設物Aの上面にマーキングし、粗破砕して打設7日後の時点(または打設後養生7日で粗破砕した時点)で、マーキングで判別した塊状石材の打設物上面由来の箇所について、日本塗り床工業会認定の引っ掻き試験器で引っ掻き傷を付け、その傷の幅を測定して打設物上面の強度を評価した。引っ掻きは荷重1.0kgに調整して実施し、強度目安としては文献「湯浅昇ら、日本建築学会大会学術講演梗概集、1999年9月、p.677」の図を用いて判断した。同図を図4として示す。
以上の測定結果を、各実施例の製造条件とともに表1に示す。表1において、「−150mm分の発生比率(%)」とは、打設物Aの粗破砕で発生した粒径150mm以下の小径・細粒分の量の混練物aの打設量に対する比率である。また、散水源とは、粉粒物層Bの含水比調整に用いた水のことである。
In addition, the powder layer B is scraped by hand before rough crushing, and is marked on the upper surface of the cast object A that has been exposed. After rough crushing and 7 days after placement (or after 7 days of curing, coarse At the time of crushing), the part derived from the top surface of the massive stone found by marking is scratched with a scratch tester approved by the Japan Painted Floor Industry Association, and the width of the wound is measured to determine the top surface of the cast object. The strength of was evaluated. The scratch was adjusted to a load of 1.0 kg, and the strength was determined using the figure in the document “Noboru Yuasa et al., Summary of the Annual Meeting of the Architectural Institute of Japan, September 1999, p.677”. This figure is shown in FIG.
The above measurement results are shown in Table 1 together with the production conditions of each example. In Table 1, “-150 mm generation ratio (%)” is the ratio of the amount of small and fine particles having a particle diameter of 150 mm or less generated by rough crushing of the cast A to the cast amount of the kneaded product a. It is. The watering source is water used for adjusting the water content ratio of the powder layer B.

Figure 0005857995
Figure 0005857995

比較例1は粉粒物層Bがないため、打設物の上部は水分不足で水和固化不良となり、小径・細粒分(粒径150mm以下)の発生が多く、製品歩留りは低い。
一方、粉粒物層Bを設置して水を保持させた発明例1〜12では、いずれも、比較例1より製品歩留まりが改善している。
上記比較例1の引っ掻き試験での傷幅は、1.52mmと大きく、図4からの推定では、せいぜい圧縮強度2N/mm程度までしか強度発現しておらず、目標である28日標準養生後の圧縮強度9.8N/mm以上に対して、本実施例の評価時点である7日後の圧縮強度としては低過ぎる。
In Comparative Example 1, since there is no powder particle layer B, the upper portion of the casted material becomes insufficiently hydrated and solidified due to insufficient moisture, and many small and fine particles (particle size of 150 mm or less) are generated, resulting in a low product yield.
On the other hand, in each of Invention Examples 1 to 12 in which the granular material layer B is installed and water is retained, the product yield is improved as compared with Comparative Example 1.
The scratch width in the scratch test of Comparative Example 1 is as large as 1.52 mm. According to the estimation from FIG. 4, the compressive strength is expressed only up to about 2 N / mm 2 , and the target 28-day standard curing is performed. The compression strength after 7 days, which is the evaluation point of this example, is too low for the later compression strength of 9.8 N / mm 2 or more.

発明例2〜5では、粉粒物層Bの厚さが大きいほど小径・細粒分(粒径150mm以下)の発生量は減少し、比較例に較べて製品歩留りが向上している。なお、粉粒物層Bの厚さが10cmの発明例2と粉粒物層Bの厚さが20cmの発明例5を比較すると、小径・細粒分(粒径150mm以下)の発生量はあまり変わらない。引っ掻き試験の傷幅に基づく図4からの推定では、両者とも圧縮強度7〜8N/mmは発現しており、比較例1に比べて強度が大きく向上している。引っ掻き試験の結果は、粉粒物層Bを厚くするほど改善されているが、発明例2,5の結果からして、粉粒物層Bの厚さが10cmを超えると改善効果はほぼ飽和する。 In Invention Examples 2 to 5, the generation amount of small and fine particles (particle size of 150 mm or less) decreases as the thickness of the granular material layer B increases, and the product yield is improved as compared with the comparative examples. In addition, when Invention Example 2 in which the thickness of the granular material layer B is 10 cm and Invention Example 5 in which the thickness of the granular material layer B is 20 cm are compared, the amount of small diameter and fine particles (particle size of 150 mm or less) generated is It does n’t change much. According to the estimation from FIG. 4 based on the scratch width of the scratch test, both have developed a compressive strength of 7 to 8 N / mm 2 , and the strength is greatly improved as compared with Comparative Example 1. Although the result of the scratch test is improved as the powder layer B is thickened, the improvement effect is almost saturated when the thickness of the powder layer B exceeds 10 cm based on the results of Invention Examples 2 and 5. To do.

発明例6は、散水を毎日(養生期間の3日中で計3回)実施した例であるが、小径・細粒分(粒径150mm以下)の発生量は最も少ない。これは散水の不均一、蒸発しやすい部分などの不均一が抑制され、打設物Aの上面全てが充分な湿分の下に養生されたためであると考えられる。
発明例7は、粉粒物層Bの敷設前に粉粒物bの山に散水して事前に含水量調整し、それをバックホウで筋入れ済みの打設物A上に敷設し、その後、散水を行わなかった例である。小径・細粒分(粒径150mm以下)の発生量も引っ掻き試験での溝幅も発明例3とほとんど変わらず、粉粒物層Bの含水量が同じであれば、含水量調整のタイミングは敷設前後のいずれでもよいことを示している。
発明例8は、粉粒物層Bを敷設した後に筋入れを行ったものであり、発明例3に較べて小径・細粒分(粒径150mm以下)の発生量が増大している。これは、(i)入れた筋から水分蒸発が生じた、(ii)水和固化性の無い粉粒物層Bのズリが中途半端に打設物Aにめり込んだために強度が低下した、ことなどによって製品歩留りを大きく改善できないためであると考えられる。したがって、粉粒物層Bの敷設は筋入れの後に行った方が有利なことを示している。
Invention Example 6 is an example in which watering was carried out every day (3 times in total during the curing period), but the amount of small and fine particles (particle size of 150 mm or less) generated was the smallest. This is considered to be because the non-uniformity of the water spray and the non-uniformity of the portion that easily evaporates were suppressed, and the entire upper surface of the casting A was cured under sufficient moisture.
Inventive Example 7 is to adjust the water content in advance by watering the piles of the granular material b before laying the granular material layer B, and then laying it on the placement object A that has been laid with a backhoe, This is an example in which watering was not performed. If the amount of small and fine particles (particle size 150 mm or less) generated and the groove width in the scratch test are almost the same as those of Invention Example 3, and the water content of the powder layer B is the same, the timing of water content adjustment is It shows that it can be either before or after laying.
Invention Example 8 is a case where creasing is performed after laying the granular material layer B. Compared to Invention Example 3, the generation amount of small and fine particles (particle size of 150 mm or less) is increased. This is because (i) moisture evaporates from the inserted muscle, (ii) the strength of the powder layer B without hydration and solidification fell into the casting A halfway, and the strength decreased. This is probably because the product yield cannot be greatly improved. Therefore, it is shown that it is more advantageous to lay the granular material layer B after the creasing.

発明例9は、粉粒物層Bを構成するズリに、それよりも細かい石粉を混合したものであり、小径・細粒分(粒径150mm以下)の発生量への影響はほとんどないが、含水比が増大しており、水分の保持には有利であると考えられる。
発明例10は粉粒物層Bに含ませる水として海水を用いたものであり、比較例に比べて小径・細粒分(粒径150mm以下)の発生量が大きく減少しており、発明の効果が現れているが、水の種類以外は同一条件である発明例3よりも若干小径・細粒分(粒径150mm以下)の発生量が多い。これは海水を用いたため、海水の緩衝効果により、打設物Aに接している部分で凝結反応がやや遅れ傾向となったためであると考えられる。
Inventive Example 9 is a mixture of the powder constituting the granular material layer B and finer stone powder than that, and there is almost no influence on the amount of small-diameter and fine-grained particles (particle size of 150 mm or less), The water content is increasing, which is considered advantageous for moisture retention.
Invention Example 10 uses seawater as the water contained in the powder layer B, and the amount of small and fine particles (particle size of 150 mm or less) is greatly reduced compared to the comparative example. Although the effect appears, the amount of small and fine particles (particle size of 150 mm or less) generated is slightly larger than Invention Example 3, which is under the same conditions except for the type of water. This is considered to be because the condensation reaction tends to be slightly delayed in the portion in contact with the casting A due to the buffering effect of seawater because seawater was used.

発明例11と発明例3は、粉粒物層Bの含水比をそれぞれ20%、28%とした以外は同一の条件としたものであるが、発明例3よりも発明例11の方が若干小径・細粒分(粒径150mm以下)の発生量が高く、含水比が高い方が有利であることが判る。
ただし、粉粒物層Bの含水比を50%とした発明例12では、散水回数が少なくても小径・細粒分(粒径150mm以下)の発生量を抑えられる利点はあるものの、粉粒物層Bは若干ブリージング状態となりはじめており、打設物Aとの分離の効率が若干低下した。
Invention Example 11 and Invention Example 3 have the same conditions except that the moisture content of the granular material layer B is 20% and 28%, respectively, but Invention Example 11 is slightly more than Invention Example 3 It can be seen that it is advantageous that the generation amount of small and fine particles (particle size of 150 mm or less) is high and the water content ratio is high.
However, in Invention Example 12 in which the moisture content of the powder layer B is 50%, there is an advantage that the generation amount of small and fine particles (particle size of 150 mm or less) can be suppressed even if the number of water sprays is small. The material layer B has begun to be in a slightly breathing state, and the efficiency of separation from the casting A has been slightly reduced.

1 地面
2 型枠
3 塊状石材
4a 溝
4b 穴部
20 部材
A 打設物
B 粉粒物層
a 混練物
b 粉粒物
DESCRIPTION OF SYMBOLS 1 Ground 2 Formwork 3 Block stone 4a Groove 4b Hole 20 Member A Placing thing B Powdery material layer a Kneaded material b Powdery material

Claims (5)

製鋼スラグ及び高炉スラグ微粉末を主体とする原料と水の混練物(a)をヤードに打設し、その打設物(A)を水和硬化させた後、粗破砕して人工石材を製造する方法において、
混練物(a)をヤードに打設した後、その打設物(A)の上面を含水させた粉粒物層(B)で覆い、その状態で打設物(A)を養生する人工石材の製造方法であって、
粉粒物層(B)は、人工石材の製造工程で発生した粉粒状の石材、製造された人工石材の取り扱い時に発生した粉粒状の石材の中から選ばれる1種以上の粉粒物であって、且つ呼び径10mm篩通過分70質量%以上の粉粒物からなり、平均厚さが2cm以上であることを特徴とする人工石材の製造方法。
A raw material mainly composed of steelmaking slag and fine powder of blast furnace slag and water (a) are placed in the yard, the cast (A) is hydrated and hardened, and then roughly crushed to produce artificial stone. In the way to
After placing the kneaded material (a) in the yard, the artificial stone material for covering the upper surface of the cast material (A) with a water-containing granular layer (B) and curing the cast material (A) in this state A manufacturing method of
The granular material layer (B) is one or more types of granular materials selected from granular stone materials generated during the manufacturing process of artificial stone materials and granular stone materials generated during handling of the manufactured artificial stone materials. And an average stone thickness of 2 cm or more, and a method for producing an artificial stone material.
粉粒物層(B)の含水比を20〜50%とし、その状態で打設物(A)を1日以上養生することを特徴とする請求項1に記載の人工石材の製造方法。 Particulate matter layer a water ratio of (B) and 20-50%, process for producing an artificial stone according to claim 1, characterized in that the curing more than one day the droplet設物(A) in this state. 打設物(A)の養生完了後、打設物(A)の上面を覆う粉粒物層(B)を除去することを特徴とする請求項1又は2に記載の人工石材の製造方法。 After curing the completion of the punching設物(A), process for producing an artificial stone according to claim 1 or 2, characterized in that the removal of powder and granular material layer covering the upper surface of the punching設物(A) (B). 養生完了後の打設物(A)を粗破砕して得られた人工石材を、任意の時点で篩にかけ、粉粒物を分離することを特徴とする請求項1〜のいずれかに記載の人工石材の製造方法。 According to an artificial stone obtained hit設物after curing completing (A) and crude crushing, and sieved at any time, any one of claims 1-3, characterized in that the separation of particulate matter Manufacturing method for artificial stone. 打設物(A)の養生期間中に、粉粒物層(B)に1回以上散水することを特徴とする請求項1〜のいずれかに記載の人工石材の製造方法。 During curing period of the punching設物(A), process for producing an artificial stone according to any one of claims 1 to 4, characterized in that water is sprayed at least once a granular material layer (B).
JP2013070139A 2013-03-28 2013-03-28 Manufacturing method of artificial stone Active JP5857995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013070139A JP5857995B2 (en) 2013-03-28 2013-03-28 Manufacturing method of artificial stone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070139A JP5857995B2 (en) 2013-03-28 2013-03-28 Manufacturing method of artificial stone

Publications (2)

Publication Number Publication Date
JP2014193779A JP2014193779A (en) 2014-10-09
JP5857995B2 true JP5857995B2 (en) 2016-02-10

Family

ID=51839346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070139A Active JP5857995B2 (en) 2013-03-28 2013-03-28 Manufacturing method of artificial stone

Country Status (1)

Country Link
JP (1) JP5857995B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7222707B2 (en) * 2018-12-28 2023-02-15 株式会社アーステクニカ Liner for gyration crusher

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2920581B2 (en) * 1993-03-15 1999-07-19 株式会社イナックス Manufacturing method of artificial stone
JP5739240B2 (en) * 2011-06-07 2015-06-24 鹿島建設株式会社 Concrete curing sheet and curing method
JP5356473B2 (en) * 2011-08-31 2013-12-04 Jfeミネラル株式会社 Manufacturing method of artificial stone

Also Published As

Publication number Publication date
JP2014193779A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
Qiao et al. Utilization of sulfate-rich solid wastes in rural road construction in the Three Gorges Reservoir
JP5853399B2 (en) Manufacturing method of artificial stone
JP5856443B2 (en) Cement admixture and cement composition
JP2012052408A (en) Simple pavement material and simple pavement method
JP2015151318A (en) Modified fly ash-containing concrete for pavement
JP7116228B2 (en) Soil solidification treatment method
JP5975603B2 (en) High-strength porous concrete composition and high-strength porous concrete cured body
JP5907246B2 (en) Manufacturing method of solidified body
JP6020677B2 (en) Artificial stone
JP5857995B2 (en) Manufacturing method of artificial stone
JP6133596B2 (en) Expanded material and expanded concrete
JP5812623B2 (en) High-strength porous concrete composition and high-strength porous concrete cured body
KR101049088B1 (en) Cement admixture using molten iron preliminary slag and its manufacturing method
JP5857994B2 (en) Manufacturing method of artificial stone
JP5356473B2 (en) Manufacturing method of artificial stone
JP6292257B2 (en) Hydrated solidified product using desulfurized slag
JP2007231565A (en) Permeable weedproof pavement method
JP5004757B2 (en) Manufacturing method of artificial stone
JP6520164B2 (en) Embankment method using soil cement and soil cement
JP6837856B2 (en) Expandable admixture for exposed concrete and exposed concrete containing it
JP5326996B2 (en) Mud-containing solidified body and method for producing the same
JP5936413B2 (en) White topping pavement
JP7120950B2 (en) Method for producing fly ash mixed material
JP2018109323A (en) Soil pavement material
JP2018131359A (en) Expanding material for an underwater anti-washout concrete, anti-washout underwater concrete composition, and hardened article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5857995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250