JP5837406B2 - Titanium alloy and manufacturing method thereof - Google Patents

Titanium alloy and manufacturing method thereof Download PDF

Info

Publication number
JP5837406B2
JP5837406B2 JP2011260671A JP2011260671A JP5837406B2 JP 5837406 B2 JP5837406 B2 JP 5837406B2 JP 2011260671 A JP2011260671 A JP 2011260671A JP 2011260671 A JP2011260671 A JP 2011260671A JP 5837406 B2 JP5837406 B2 JP 5837406B2
Authority
JP
Japan
Prior art keywords
alloy
powder
hip
copper
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011260671A
Other languages
Japanese (ja)
Other versions
JP2013112860A (en
Inventor
治 叶野
治 叶野
伸男 深田
伸男 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Toho Titanium Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd, Toho Titanium Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2011260671A priority Critical patent/JP5837406B2/en
Publication of JP2013112860A publication Critical patent/JP2013112860A/en
Application granted granted Critical
Publication of JP5837406B2 publication Critical patent/JP5837406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高強度を要求されるチタン合金に係り、特に、粉末冶金により、チタン合金を製造する技術分野に関する。   The present invention relates to a titanium alloy that requires high strength, and more particularly, to a technical field of manufacturing a titanium alloy by powder metallurgy.

軽くて高強度であるチタン合金は、航空機の部材として、あるいは、自動車の部品として、さらには一般の機械部品等で広く使用されている。材料強度の改善により材料の断面積を薄くすることが可能となるために、使用材料の重量削減につながることから、特に、重量削減を課題としている航空機部材、自動車部品の用途では材料強度の改善への要求が高い。   Titanium alloys that are light and high in strength are widely used as aircraft parts, automobile parts, general machine parts, and the like. Since the cross-sectional area of the material can be reduced by improving the material strength, it leads to a reduction in the weight of the material used. Therefore, the material strength is improved particularly in the use of aircraft parts and automobile parts that are subject to weight reduction. The demand for is high.

高強度チタン合金としては、Ti−6Al−4V合金が代表的で、さらに強度を高めた材料として、Ti−10V−2Fe−3Al合金(10−2−3合金)、Ti−15V−3Al−3Cr−3Sn合金(15−3−3−3合金)が広く知られている。また、バナジウムの添加量を減らし、鉄、クロム、モリブデン等を添加することで同等もしくは同等以上の強度を有するTi−5Al−5V−5Mo−3Cr合金(5−5−5−3合金)、Ti−5Al−2Fe−3Mo合金(523AFM合金)も報告されている。さらには、Ti−6Al−4V合金の加工性を改善したTi−4.5Al−3V−2Fe−2Mo合金(SP700合金)、Ti−5Al−4V−0.6Mo−0.4Fe合金(Timetal54M合金)等も報告されている。   As a high-strength titanium alloy, a Ti-6Al-4V alloy is representative, and Ti-10V-2Fe-3Al alloy (10-2-3 alloy), Ti-15V-3Al-3Cr are examples of materials having higher strength. -3Sn alloy (15-3-3-3 alloy) is widely known. Also, Ti-5Al-5V-5Mo-3Cr alloy (5-5-5-3 alloy), Ti having equivalent or equivalent strength by reducing the amount of vanadium added and adding iron, chromium, molybdenum or the like, Ti A -5Al-2Fe-3Mo alloy (523AFM alloy) has also been reported. Furthermore, Ti-4.5Al-3V-2Fe-2Mo alloy (SP700 alloy), Ti-5Al-4V-0.6Mo-0.4Fe alloy (Timemetal 54M alloy) with improved workability of Ti-6Al-4V alloy Etc. are also reported.

また、銅を添加することで、室温での強度改善だけではなく、高温特性の改善にも有効であることが報告されている(例えば、非特許文献1参照)。しかしながら、鉄、クロム、銅はいずれもインゴット溶製時に偏析しやすい元素であり、インゴット製造に当たっては、これらの元素の最大添加量は制限されている。特に銅は、チタン合金インゴットが凝固するときの偏析が大きいために、実用合金での添加量が最大2.5%と制限されているようである。   Further, it has been reported that the addition of copper is effective not only for improving the strength at room temperature but also for improving the high temperature characteristics (for example, see Non-Patent Document 1). However, iron, chromium, and copper are all elements that are easily segregated during ingot melting, and the maximum addition amount of these elements is limited in manufacturing the ingot. In particular, copper seems to be limited to a maximum addition amount of 2.5% in a practical alloy due to large segregation when the titanium alloy ingot solidifies.

すなわち、インゴット溶解製造法では、強度アップや高温特性改善に寄与の大きい銅を固溶限一杯まで添加したチタン合金は製造されていない。   In other words, in the ingot melting manufacturing method, a titanium alloy to which copper that greatly contributes to strength improvement and high temperature property improvement is added to the solid solution limit is not manufactured.

このような制限は、粉末冶金法を用いることによって撤廃することができる。すなわち、粉末冶金では、溶融・凝固のプロセスがないために、凝固に伴う偏析が発生しないので、固溶限一杯まで配合しても偏析は生じない。しかしながら、現在のところ、粉末冶金法による銅を固溶限一杯まで添加したチタン合金は製造されていない。これは次の2つの理由によると思われる。   Such restrictions can be removed by using powder metallurgy. That is, in powder metallurgy, since there is no melting / solidification process, segregation accompanying solidification does not occur. Therefore, segregation does not occur even if it is mixed to the solid solution limit. However, at present, a titanium alloy to which copper is added to the limit of solid solution by powder metallurgy is not manufactured. This may be due to the following two reasons.

第一の理由はコストの問題である。高品質な焼結体の製造技術は、原料としてそれぞれの単体粉末を混合する素粉末混合法として確立されている(例えば、特許文献1参照)。   The first reason is the cost issue. A manufacturing technique of a high-quality sintered body has been established as an elementary powder mixing method in which individual powders are mixed as raw materials (see, for example, Patent Document 1).

しかしながら、素粉末混合法の応用例は限定されているのが現状で、これは素粉末混合法で必要となる原料粉末が高価なことが一因である。すなわち、純チタン粉末、合金元素粉末または合金元素の母合金粉末ともに高価で、インゴット溶製法で作製したチタン合金よりも製造コストが高くなってしまうためである。   However, application examples of the elementary powder mixing method are limited at present, and this is partly because the raw material powder required for the elementary powder mixing method is expensive. That is, pure titanium powder, alloy element powder or alloy element mother alloy powder is expensive, and the production cost is higher than that of a titanium alloy produced by an ingot melting method.

第二の理由は粉末冶金で製造したチタン合金の品質の問題である。HIPや真空ホットプレスを用いることによって、材料の密度を上げる技術は確立しているものの、疲労特性や高い引張り特性を要求される用途には使用されていない。これは、プロセスに起因する理由である。すなわち、粉末冶金材料には、インゴット溶解製造法で作られた材料のような塑性流動工程がないために、材料の信頼性の点で不十分と思われてしまうことが原因である。   The second reason is the quality problem of titanium alloys manufactured by powder metallurgy. Although techniques for increasing the density of materials by using HIP or vacuum hot press have been established, they have not been used for applications that require fatigue characteristics or high tensile characteristics. This is the reason due to the process. That is, the powder metallurgy material does not have a plastic flow process like the material made by the ingot melting manufacturing method, and therefore it seems to be insufficient in terms of the reliability of the material.

H. Otsuka, H. Fujii, K. Takahashi and M. Ishii: Ti-2007 Science and Technology (Kyoto, 2007), pp1391-1394.H. Otsuka, H. Fujii, K. Takahashi and M. Ishii: Ti-2007 Science and Technology (Kyoto, 2007), pp1391-1394.

特開平5−009630号公報JP-A-5-009630

以上のように、粉末冶金法によれば、偏析の問題は避けることができるものの、コストの問題、品質の問題で、銅を固溶限一杯まで添加したチタン合金は製造されていない。   As described above, according to the powder metallurgy method, although the problem of segregation can be avoided, a titanium alloy to which copper is added to the solid solution limit is not manufactured due to the problem of cost and quality.

本発明は、銅を固溶限まで添加したチタン合金を効率よく製造する方法およびこれを用いたチタン合金を提供することを目的としている。   An object of the present invention is to provide a method for efficiently producing a titanium alloy in which copper is added to the solid solubility limit, and a titanium alloy using the method.

かかる実情に鑑みて、偏析の起こらない粉末冶金法でのチタン合金製造を種々検討してきたところ、α+β型またはβ型チタン合金原料を水素化、脱水素化し、チタン合金粉末を得、このチタン合金粉末に、銅粉末を混合して、チタン合金粉末とこれら粉末の複合粉末を得て、この粉末をHIPし、さらに熱間圧延することによって、銅を固溶限一杯まで添加したチタン合金焼結体を製造できることを見出し、本発明を完成するに至った。   In view of this situation, various studies have been conducted on the production of titanium alloys by powder metallurgy without segregation. Hydrogenation and dehydrogenation of α + β-type or β-type titanium alloy raw materials are carried out to obtain titanium alloy powder. Copper powder is mixed with the powder to obtain a titanium alloy powder and a composite powder of these powders, and then this powder is HIPed and further hot-rolled to further add copper to the solid solution limit. The present inventors have found that a body can be produced and have completed the present invention.

即ち、本発明は、銅を1〜10mass%含有し、チタン以外の合金元素の含有量が28.30mass%以下であり、かつ粉末法によるα+β型またはβ型チタン合金の製造方法であって、
次の(1)〜(4)の工程
(1)α+β型またはβ型チタン合金原料切粉を原料とし、これを水素化、脱水素化し、チタン合金粉末を得る工程
(2)前記チタン合金粉に銅粉末を混合して、チタン合金と銅の複合粉末を得る工程
(3)前記チタン合金複合粉末をHIP処理する工程
(4)前記HIP処理材を熱間塑性加工する工程
を実施することを特徴とするものである。
That is, the present invention is a method for producing an α + β type or β type titanium alloy by a powder method , containing 1 to 10 mass% of copper, the content of alloy elements other than titanium being 28.30 mass% or less ,
Next steps (1) to (4)
(1) Step of obtaining titanium alloy powder by using α + β type or β type titanium alloy raw material chips as raw materials and hydrogenating and dehydrogenating them
(2) A step of mixing the titanium alloy powder with a copper powder to obtain a titanium alloy and copper composite powder.
(3) HIP treatment of the titanium alloy composite powder
(4) A step of hot plastic working the HIP-treated material
It is characterized by implementing.

また、本発明に係るα+β型またはβ型チタン合金の製造方法は、前記熱間塑性加工が、熱間押出、熱間圧延、熱間鍛造のいずれかであることを好ましい態様とするものである。   Moreover, the manufacturing method of the α + β type or β type titanium alloy according to the present invention is such that the hot plastic working is any one of hot extrusion, hot rolling, and hot forging. .

また、本発明に係るα+β型またはβ型チタン合金の製造方法は、前記チタン合金原料がTi−6Al−4V合金、Ti−10V−2Fe−3Al合金、Ti−15V−3Al−3Cr−3Sn合金、Ti−4.5Al−3V−2Fe−2Mo合金、Ti−5Al−5V−5Mo−3Cr合金、Ti−5Al−2Fe−3Mo合金、Ti−5Al−4V−0.6Mo−0.4Fe合金であることを好ましい態様とするものである。   Further, in the method for producing an α + β type or β type titanium alloy according to the present invention, the titanium alloy raw material is a Ti-6Al-4V alloy, a Ti-10V-2Fe-3Al alloy, a Ti-15V-3Al-3Cr-3Sn alloy, Ti-4.5Al-3V-2Fe-2Mo alloy, Ti-5Al-5V-5Mo-3Cr alloy, Ti-5Al-2Fe-3Mo alloy, Ti-5Al-4V-0.6Mo-0.4Fe alloy Is a preferred embodiment.

また、本発明に係るα+β型またはβ型チタン合金の製造方法は、前記熱間塑性加工を、(β変態点−200℃)〜(β変態点+100℃)の温度範囲で行うことを好ましい態様とするものである。   Further, in the method for producing an α + β type or β type titanium alloy according to the present invention, it is preferable that the hot plastic working is performed in a temperature range of (β transformation point−200 ° C.) to (β transformation point + 100 ° C.). It is what.

また、本発明に係るα+β型またはβ型チタン合金は、引っ張り強さが1000MPa〜1500MPa、伸びが9%〜15%であることを好ましい態様とするものである。   In addition, the α + β type or β type titanium alloy according to the present invention preferably has a tensile strength of 1000 MPa to 1500 MPa and an elongation of 9% to 15%.

本発明に従えば、前記チタン合金中に銅を1〜10mass%という、従来にはない高濃度域まで偏析なく含有させることができるという効果を奏するものである。   According to the present invention, there is an effect that copper can be contained in the titanium alloy in a high concentration range of 1 to 10% by mass without segregation.

その結果、チタン合金材料の機械的特性を効果的に向上できるという効果を奏するものであり、引張り強さでは、銅無添加合金と比べて10%〜25%大きな値を維持することができる。   As a result, the mechanical properties of the titanium alloy material can be effectively improved, and the tensile strength can be maintained at a value 10% to 25% larger than that of the copper-free alloy.

更には、引張り強さが極めて大きい材料も可能であるし、強さと伸びのバランスのとれた材料も可能である。強さと伸びのバランスのとれた材料の一例としては、伸びは10%以上と殆ど低下がないままに、引張り強さが銅無添加材と比べて20%増しの材料が可能であるという効果を奏するものである。   Furthermore, a material having an extremely large tensile strength is possible, and a material having a balance between strength and elongation is also possible. As an example of a material with a balance between strength and elongation, the effect is that a material whose tensile strength is increased by 20% as compared with the additive-free material can be obtained while the elongation is almost 10% or less. It is what you play.

また、本発明においては原料としてチタン合金スクラップを使うことができ、銅以外の合金元素の粉末を準備する必要がないために、原料代の大幅低減が可能になる、という効果を有する。素粉末混合法で原料粉末を準備する場合と比較して、本発明に従えば原料コストは最大で70%まで低減可能であると、いう効果を奏するものである。   Further, in the present invention, titanium alloy scrap can be used as a raw material, and it is not necessary to prepare a powder of an alloy element other than copper, so that the raw material cost can be greatly reduced. Compared with the case where raw material powder is prepared by the elementary powder mixing method, according to the present invention, the raw material cost can be reduced to a maximum of 70%.

本発明のチタン合金の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the titanium alloy of this invention.

本発明の最良の実施形態について図面を参照しながら以下に説明する。
図1は、本発明に係るチタン合金焼結体の製造に係る好ましい態様を表している。本発明に係るチタン合金原料は、コスト削減の観点から、チタン合金切粉、チタン合金鍛造片、あるいは、チタン合金棒の端材等の、当初より所望の成分を有する合金スクラップを原料として用いることが好ましい。
The best embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a preferred embodiment relating to the production of a titanium alloy sintered body according to the present invention. From the viewpoint of cost reduction, the titanium alloy raw material according to the present invention uses, as a raw material, an alloy scrap having a desired component from the beginning, such as a titanium alloy chip, a titanium alloy forged piece, or a titanium alloy rod end material Is preferred.

これらのチタン合金スクラップ(以降、単に「チタン合金原料」と略称する場合がある。)は、事前に所定の長さ、あるいは、大きさにサイジングしておくことが好ましい。例えば、合金切粉の場合には、100mm以下の長さに、事前に切断しておくことが好ましい。前記のような長さに切断しておくことにより、次工程の水素化工程を効率よく進めることができるという効果を奏するものである。また、鍛造片のようなブロック状の合金スクラップでは、水素化炉に入る程度の大きさであれば、特に事前処理の大きさであれば支障がない。   These titanium alloy scraps (hereinafter sometimes simply referred to as “titanium alloy raw material”) are preferably sized in advance to a predetermined length or size. For example, in the case of alloy chips, it is preferable to cut in advance to a length of 100 mm or less. By cutting into the above lengths, there is an effect that the subsequent hydrogenation process can be efficiently advanced. In addition, block-shaped alloy scraps such as forged pieces have no problem as long as they are large enough to enter the hydrogenation furnace, particularly if they are pretreated.

前記のように処理して調整されたチタン合金原料は、水素雰囲気下での水素化処理工程に供される。水素化処理は、500〜650℃の温度域で行なうことが好ましい。合金原料の水素化処理反応は、発熱反応であるため、水素化反応の進行に伴い、加熱炉による昇温操作は不要であり自発的に水素化反応を進めることができる。   The titanium alloy raw material prepared by processing as described above is subjected to a hydrogenation process in a hydrogen atmosphere. The hydrogenation treatment is preferably performed in a temperature range of 500 to 650 ° C. Since the hydrogenation reaction of the alloy raw material is an exothermic reaction, with the progress of the hydrogenation reaction, the temperature raising operation by the heating furnace is unnecessary, and the hydrogenation reaction can proceed spontaneously.

水素化処理された合金原料(以降、単に「水素化チタン合金」と略称する場合がある。)は、室温まで冷却後、アルゴンガス等の不活性雰囲気で所定の粒度になるまで粉砕・篩別することが好ましい。   Hydrogenated alloy raw material (hereinafter sometimes simply referred to as “titanium hydride alloy”) is cooled to room temperature and then ground and sieved to a predetermined particle size in an inert atmosphere such as argon gas. It is preferable to do.

続いて、粉末状に粉砕・篩別された水素化チタン合金粉は、減圧雰囲気に保持された雰囲気中で、高温域まで加熱処理することにより脱水素処理することが好ましい。脱水素処理温度は、500℃〜800℃の温度域で行うことが好ましい。   Subsequently, the titanium hydride alloy powder pulverized and sieved into a powder form is preferably subjected to a dehydrogenation treatment by heating to a high temperature region in an atmosphere maintained in a reduced pressure atmosphere. The dehydrogenation treatment temperature is preferably performed in a temperature range of 500 ° C to 800 ° C.

脱水素反応は、前記の水素化処理反応と異なり吸熱反応であるために、水素化合金粉からの水素の発生がなくなるまで、加熱操作が必要とされる。   Since the dehydrogenation reaction is an endothermic reaction unlike the above-described hydrogenation reaction, a heating operation is required until hydrogen is no longer generated from the hydrogenated alloy powder.

前記脱水素処理が完了した水素化チタン合金粉は、相互に焼結している場合があり、この場合には、軽い粉砕(解砕と呼ぶ場合がある)および篩別処理を行なうことが好ましい。解砕、篩別処理により、チタン合金粉の粒度を、1μm〜150μmの範囲に整粒しておくことが好ましい。   The titanium hydride alloy powder that has been subjected to the dehydrogenation treatment may be sintered with each other. In this case, it is preferable to perform light pulverization (sometimes referred to as crushing) and sieving treatment. . It is preferable to adjust the particle size of the titanium alloy powder in the range of 1 μm to 150 μm by crushing and sieving treatment.

脱水素処理後、解砕および篩別されたチタン合金粉に、本発明に用いる銅粉を配合することにより、本発明に係るチタン合金複合粉を得ることができる。   After the dehydrogenation treatment, the titanium alloy composite powder according to the present invention can be obtained by blending the copper powder used in the present invention with the crushed and sieved titanium alloy powder.

本発明で使用する銅粉は、3N5〜4N5程度の純度を有しているものが好ましく、市販されている粉末状の試料を用いることができる。   The copper powder used in the present invention preferably has a purity of about 3N5 to 4N5, and a commercially available powder sample can be used.

本発明では、チタン合金粉に対して、第三成分として銅粉を配合することが好ましい。 その配合比率は、チタン合金粉の質量に対して、1〜10mass%の範囲に配合することが好ましい。   In this invention, it is preferable to mix | blend copper powder as a 3rd component with respect to titanium alloy powder. It is preferable to mix | blend the mixture ratio in the range of 1-10 mass% with respect to the mass of titanium alloy powder.

ここで、銅粉の添加量をこのようにするのは、固溶度を考慮してのことである。すなわち、ベータチタン中への銅の最大個溶度は、17.1mass%である。最大固溶度を超えた量の添加は金属間化合物の析出を起こし、材料の脆化につながるので避けなければならない。   Here, the amount of copper powder added is set in this way in consideration of the solid solubility. That is, the maximum individual solubility of copper in beta titanium is 17.1 mass%. Addition in an amount exceeding the maximum solid solubility causes precipitation of intermetallic compounds and leads to embrittlement of the material, and must be avoided.

実際の加工温度は最大固溶度を示す温度より低いために、溶解度の減少も考え、最大10mass%とするものである。   Since the actual processing temperature is lower than the temperature showing the maximum solid solubility, the reduction of the solubility is considered and the maximum is 10 mass%.

チタン合金が例えばTi−1Cu−0.5Nb合金のように、Cuを含有している場合は、合金が含んでいる量と添加した量の合計が上記の濃度範囲になるように設計することが好ましい。   When the titanium alloy contains Cu, for example, Ti-1Cu-0.5Nb alloy, it is possible to design so that the sum of the amount contained in the alloy and the amount added is within the above concentration range. preferable.

チタン合金粉末は焼結性が悪いために、粉末冶金では高密度な焼結体を得るのが困難である。この問題を解決するためにHIP処理を行う。適切な条件でHIP処理を行えば、材料の緻密化が可能である。さらにHIP処理した材料を熱間塑性加工することによって、焼結体を所定の寸法に成形加工できるのみならず、材料に塑性流動を与えることになり、引っ張り強さと伸びのバランスが良い材料が得られ、材料の信頼性が格段に向上する。   Since titanium alloy powder has poor sinterability, it is difficult to obtain a high-density sintered body by powder metallurgy. HIP processing is performed to solve this problem. If HIP treatment is performed under appropriate conditions, the material can be densified. Furthermore, by performing hot plastic processing on the HIP-treated material, not only can the sintered body be formed into a predetermined size, but also a plastic flow is imparted to the material, and a material with a good balance between tensile strength and elongation can be obtained. Therefore, the reliability of the material is greatly improved.

本発明では、上述の方法で得られたチタン合金複合粉を軟鋼カプセルに充填して脱気後真空封入して(β変態点−100℃)〜(β変態点+100℃)の温度において50〜200MPaの圧力で1〜5Hr、HIP処理する。   In the present invention, the titanium alloy composite powder obtained by the above-described method is filled in a mild steel capsule, degassed, and vacuum-sealed (β transformation point −100 ° C.) to (β transformation point + 100 ° C.) at a temperature of 50 to 50 ° C. HIP treatment is performed at a pressure of 200 MPa for 1 to 5 hours.

もしくは、チタン合金複合粉をCIPラバーに充填して、100〜200MPaで処理した後、前記CIP処理で形成されたチタン合金材を、HIPカプセルに充填して、HIP処理することが好ましい。   Alternatively, it is preferable that the CIP rubber is filled with the titanium alloy composite powder and treated at 100 to 200 MPa, and then the titanium alloy material formed by the CIP treatment is filled into the HIP capsule and subjected to the HIP treatment.

このような処理を行なうことにより緻密化されたチタン合金材料を得ることができる。HIP処理の温度と圧力は、カプセル材と、Cuを含有したチタン合金材のその温度における変形抵抗を考慮して選定することができる。   By performing such treatment, a densified titanium alloy material can be obtained. The temperature and pressure of the HIP treatment can be selected in consideration of the deformation resistance at the temperature of the capsule material and the titanium alloy material containing Cu.

HIP前にCIP処理を行うことによって、カプセルに充填するチタン合金の充填密度を高くすることができるので、HIP工程での収縮が少なくて緻密化が完了するために、HIPによる材料の変形が小さくなるメリットがある。   By performing the CIP treatment before HIP, the filling density of the titanium alloy filled in the capsule can be increased, so that the shrinkage in the HIP process is small and the densification is completed, so that the deformation of the material by HIP is small. There are benefits.

次に、HIP処理により緻密化したCuを含有したチタン合金材を熱間塑性加工して所定の寸法の棒材に加工する。ここで、熱間塑性加工にあたっては、(β変態点−200℃)〜(β変態点+100℃)の温度に1〜2Hr加熱保持してから熱間塑性加工処理を開始することが好ましい。   Next, the titanium alloy material containing Cu densified by the HIP process is hot plastic processed into a rod having a predetermined size. Here, in the hot plastic working, it is preferable to start the hot plastic working process after heating and holding at a temperature of (β transformation point−200 ° C.) to (β transformation point + 100 ° C.) for 1 to 2 hours.

前記熱間塑性加工開始温度が、(β変態点−200℃)よりも低温側にある場合には、 材料の変形抵抗が大きく、材料を加工しきれないことがあり好ましくない。 一方、熱間塑性加工開始温度が、(β変態点+100℃)以上である場合には、熱間塑性加工材の結晶粒が粗大になる傾向を示して好ましくない。   If the hot plastic working start temperature is lower than (β transformation point −200 ° C.), the deformation resistance of the material is so large that the material cannot be completely processed, which is not preferable. On the other hand, when the hot plastic working start temperature is equal to or higher than (β transformation point + 100 ° C.), it is not preferable because the crystal grains of the hot plastic working material tend to be coarse.

よって、本発明に係る熱間塑性加工開始温度は、(β変態点−200℃)〜(β変態点+100℃)の範囲とすることが好ましい。   Therefore, the hot plastic working start temperature according to the present invention is preferably in the range of (β transformation point−200 ° C.) to (β transformation point + 100 ° C.).

ここで、熱間塑性加工とは、熱間押出、熱間圧延、熱間鍛造等の加工を含んでいる。熱間押出ならば、加工度(押出による断面の面積減少率)80%〜95%と非常に大きい加工度での加工が可能で、塑性変形による材料の特性改善を実現することができる。   Here, the hot plastic working includes processes such as hot extrusion, hot rolling, and hot forging. If it is hot extrusion, it is possible to process at a very high degree of processing (the area reduction rate of the cross section by extrusion) of 80% to 95%, and it is possible to realize improvement in material properties by plastic deformation.

熱間圧延ならば、1パスの加工度(圧延による断面厚み減少率)を15%〜50%とコントロールしながら圧延することが好ましい。1パスの加工率が15%以下の場合は、圧延のパス回数が増えてしまい、作業時間が長くなり、圧延中の材料温度低下が無視できないレベルになってくる。また、加工率が小さい場合は、材料内部まで十分な塑性変形がされず、材料の外周部と中心部との組織の不均一が問題となるので好ましくない。1パスの加工率が50%を超える場合は、材料の塑性変形は十分となるものの、材料にクラックが生じることがあるので、好ましくない。   In the case of hot rolling, it is preferable to perform rolling while controlling the degree of processing of one pass (cross-sectional thickness reduction rate by rolling) to 15% to 50%. When the processing rate of one pass is 15% or less, the number of passes of rolling increases, the working time becomes long, and the material temperature drop during rolling becomes a level that cannot be ignored. In addition, when the processing rate is small, the plastic deformation is not sufficiently performed to the inside of the material, and the unevenness of the structure between the outer peripheral portion and the central portion of the material becomes a problem. When the processing rate of one pass exceeds 50%, the plastic deformation of the material is sufficient, but a crack may occur in the material, which is not preferable.

熱間鍛造の場合は、プレス鍛造、ハンマー鍛造等一般的な鍛造で加工できる。一回の加熱で加工度(鍛造による断面厚み減少率)を30%〜60%とすることが可能である。また、断面形状をHIP上がりの丸型から途中形状を八角、四角ととり、最終的に丸型にすることで、効果的に材料に塑性変形を与えることができる。   In the case of hot forging, it can be processed by general forging such as press forging and hammer forging. The degree of processing (cross-sectional thickness reduction rate due to forging) can be set to 30% to 60% by one heating. Further, by taking the shape of the cross section from a round shape with an HIP to an intermediate shape of octagons and squares, and finally making the shape round, plastic deformation can be effectively applied to the material.

HIP処理、熱間塑性加工処理により材料製造コストは高くなることが課題であるが、最終的に得られる銅を固溶限一杯まで添加したチタン合金の特性が、現有のインゴット溶解製造法で作られるα+β型およびβ型チタン合金と比べて格段に向上しているので、製造コスト高も解消されるものである。   The problem is that the material manufacturing cost is increased by HIP processing and hot plastic processing, but the properties of titanium alloy to which copper finally obtained is added up to the solid solution limit can be achieved by the existing ingot melting manufacturing method. As compared with the α + β type and β type titanium alloys, the manufacturing cost is also eliminated.

以下、実施例および比較例により本発明をより詳細かつ具体的に説明する。
[実施例1](64合金に銅を6%添加、HIP材を熱間押出)
Ti−6Al−4V合金切粉を真空で加熱し、炉内温度が600℃になった時点で加熱を停止し、水素ガスを導入して切粉を水素化した。冷却後合金水素化物を取り出し、ACM粉砕装置で粉砕、分級装置で−150μmに篩別した。次に、合金水素化物を650℃まで真空加熱し、脱水素処理した。脱水素した64合金粉末は軽く凝集しており、解砕装置で解砕し、−150μmに篩別し、Ti−6Al−4V合金粉末を得た。この粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−6Al−4V合金粉末と銅粉末の混合粉末を得た。この混合粉末3.2kgを内径100mmの軟鋼カプセルに充填し、960℃、100MPa、1Hrの条件でHIP処理した。Ti−6Al−4V合金にCuを6%添加した合金のβ変態点は約910℃であり、HIP温度960℃はβ変態点より50℃高い温度となる。HIP処理後カプセルを除去し、表面を平滑になるまで切削したところ、密度は真密度比100%であることが確認された。この材料をφ150mmx90mmに切削加工し、熱間押出用のビレットとした。熱間押出は、材料を870℃に1Hr加熱してφ35mmのダイスを用いて実施した。870℃はβ変態点より40℃低い温度である。なお、熱間押出に当ってはビレットを直接押出しても良いし、軟鋼カプセルに充填してから押出しても良いが、ここではカプセルに充填しないで直接押出を行った。押出材から引張り試験片を切り出し、引張り試験を行ったところ、引っ張り強さ1,170MPa、伸び14%の結果が得られた。1,170MPaの引っ張り強さは、インゴット溶解製造法で得られている64合金の値(980MPa)と比べて約20%高い値であった。
Hereinafter, the present invention will be described in more detail and specifically with reference to Examples and Comparative Examples.
Example 1 (addition of 6% copper to 64 alloy, hot extrusion of HIP material)
The Ti-6Al-4V alloy chips were heated in vacuum, and when the furnace temperature reached 600 ° C., the heating was stopped, and hydrogen gas was introduced to hydrogenate the chips. After cooling, the alloy hydride was taken out, pulverized with an ACM pulverizer, and sieved to -150 μm with a classifier. Next, the alloy hydride was vacuum heated to 650 ° C. and dehydrogenated. The dehydrogenated 64 alloy powder was lightly agglomerated and crushed with a crushing apparatus, and sieved to -150 μm to obtain Ti-6Al-4V alloy powder. To 10 kg of this powder, 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. was mixed with a V-type mixer, and Ti-6Al-4V alloy powder and copper powder were mixed. A mixed powder was obtained. This mixed powder (3.2 kg) was filled in a soft steel capsule having an inner diameter of 100 mm and subjected to HIP treatment under the conditions of 960 ° C., 100 MPa, and 1 Hr. The β transformation point of an alloy obtained by adding 6% Cu to a Ti-6Al-4V alloy is about 910 ° C., and the HIP temperature 960 ° C. is 50 ° C. higher than the β transformation point. When the capsule was removed after the HIP treatment and the surface was cut to be smooth, it was confirmed that the density was 100% of the true density ratio. This material was cut into φ150 mm × 90 mm to form a billet for hot extrusion. Hot extrusion was performed using a 35 mm diameter die heated to 870 ° C. for 1 hour. 870 ° C. is a temperature 40 ° C. lower than the β transformation point. In the case of hot extrusion, the billet may be directly extruded or may be extruded after filling a mild steel capsule, but here, the extrusion was performed directly without filling the capsule. When a tensile test piece was cut out from the extruded material and a tensile test was performed, results of a tensile strength of 1,170 MPa and an elongation of 14% were obtained. The tensile strength of 1,170 MPa was about 20% higher than the value of 64 alloy (980 MPa) obtained by the ingot melting production method.

[実施例2](64合金に銅を9%添加、HIP材を熱間押出)
実施例1で得られたTi−6Al−4V合金粉末に対して、銅粉末を9mass%添加混合した混合粉末を、実施例1と同じ手順でHIP、熱間押出を実施した。HIP温度、熱間押出温度は合金組成によって変えたが、HIP圧力、HIP時間、熱間押出の加工度は実施例2から実施例8、比較例1〜比較例8で全く同じとした。得られた押出棒で引張り試験をおこなった。HIP条件、熱間押出温度、得られた押出材の引張り試験結果は表1に示すとおりであった。
[Example 2] (9% copper added to 64 alloy, hot extrusion of HIP material)
The mixed powder obtained by adding 9 mass% of copper powder to the Ti-6Al-4V alloy powder obtained in Example 1 was subjected to HIP and hot extrusion in the same procedure as in Example 1. Although the HIP temperature and the hot extrusion temperature were changed depending on the alloy composition, the HIP pressure, the HIP time, and the hot extrusion processing degree were exactly the same in Examples 2 to 8 and Comparative Examples 1 to 8. A tensile test was performed on the obtained extruded rod. Table 1 shows the HIP conditions, the hot extrusion temperature, and the tensile test results of the obtained extruded material.

[比較例1](64合金、銅無添加、HIP材を熱間押出)
実施例1−1で得られたTi−6Al−4V合金粉末に、銅粉を添加することなく、実施例1と同じ手順で、HIP、熱間押出を実施、φ35mmの押出棒を得、引張り試験をおこなった。HIP条件、熱間押出温度、引張り試験結果は表1に示す。引張り強さ、伸びはインゴット溶解製造法で得られている64合金の値とほぼ同じであった。
[Comparative Example 1] (64 alloy, no copper added, hot extrusion of HIP material)
The Ti-6Al-4V alloy powder obtained in Example 1-1 was subjected to HIP and hot extrusion in the same procedure as in Example 1 without adding copper powder, to obtain an extruded bar having a diameter of 35 mm, and tensile. A test was conducted. The HIP conditions, hot extrusion temperature, and tensile test results are shown in Table 1. The tensile strength and elongation were almost the same as the values of 64 alloy obtained by the ingot melting production method.

[実施例3](Ti−10V−2Fe−3Al合金に銅を6%添加、HIP材を熱間押出)
Ti−10V−2Fe−3Al合金切粉を真空で加熱し、炉内温度が600℃になった時点で加熱を停止し、水素ガスを導入して切粉を水素化した。冷却後合金水素化物を取り出し、ACM粉砕装置で粉砕、分級装置で−150μmに篩別した。次に、合金水素化物を650℃まで真空加熱し、脱水素処理した。脱水素した合金粉末は軽く凝集しており、解砕装置で解砕し、−150μmに篩別し、Ti−10V−2Fe−3Al合金粉末を得た。この粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−10V−2Fe−3Al合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間押出処理し、φ35mmの押出棒を得、引張り試験を実施した。HIP条件、熱間押出条件、引張り試験結果は表1に示したとおりである。
[Example 3] (6% copper added to Ti-10V-2Fe-3Al alloy, hot extrusion of HIP material)
The Ti-10V-2Fe-3Al alloy chips were heated in a vacuum, and when the furnace temperature reached 600 ° C., the heating was stopped, and hydrogen gas was introduced to hydrogenate the chips. After cooling, the alloy hydride was taken out, pulverized with an ACM pulverizer, and sieved to -150 μm with a classifier. Next, the alloy hydride was vacuum heated to 650 ° C. and dehydrogenated. The dehydrogenated alloy powder was lightly agglomerated, and was crushed with a crusher and sieved to -150 μm to obtain a Ti-10V-2Fe-3Al alloy powder. To 10 kg of this powder, 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. was mixed with a V-type mixer, and Ti-10V-2Fe-3Al alloy powder and copper were mixed. A mixed powder of powder was obtained. This powder was subjected to HIP treatment and hot extrusion treatment to obtain an extruded bar having a diameter of 35 mm, and a tensile test was performed. The HIP conditions, hot extrusion conditions, and tensile test results are as shown in Table 1.

[比較例2](Ti−10V−2Fe−3Al合金、銅無添加、HIP材を熱間押出)
実施例3で得られたTi−10V−2Fe−3Al合金粉末に、銅粉を添加することなく、実施例3と同じ手順で、HIP処理、熱間押出処理し、得られた押出棒の引張り試験を実施した。HIP条件、熱間押出条件、引張り試験結果は表1に示したとおりである。
[Comparative Example 2] (Ti-10V-2Fe-3Al alloy, no copper addition, hot extrusion of HIP material)
The Ti-10V-2Fe-3Al alloy powder obtained in Example 3 was subjected to HIP treatment and hot extrusion treatment in the same procedure as in Example 3 without adding copper powder. The test was conducted. The HIP conditions, hot extrusion conditions, and tensile test results are as shown in Table 1.

[実施例4](Ti−15V−3Al−3Cr−3Sn合金に銅を6%添加、HIP材を熱間押出)
Ti−15V−3Al−3Cr−3Sn合金切粉を真空で加熱し、炉内温度が600℃になった時点で加熱を停止し、水素ガスを導入して切粉を水素化した。冷却後合金水素化物を取り出し、ACM粉砕装置で粉砕、分級装置で−150μmに篩別した。次に、合金水素化物を650℃まで真空加熱し、脱水素処理した。脱水素した合金粉末は軽く凝集しており、解砕装置で解砕し、−150μmに篩別し、Ti−15V−3Al−3Cr−3Sn合金粉末を得た。この粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−15V−3Al−3Cr−3Sn合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間押出処理し、φ35mmの押出棒を得、引張り試験を実施した。HIP条件、熱間押出条件、引張り試験結果は表1に示したとおりである。
[Example 4] (6% copper added to Ti-15V-3Al-3Cr-3Sn alloy, HIP material hot extruded)
The Ti-15V-3Al-3Cr-3Sn alloy chips were heated in vacuum, and when the furnace temperature reached 600 ° C., the heating was stopped, and hydrogen gas was introduced to hydrogenate the chips. After cooling, the alloy hydride was taken out, pulverized with an ACM pulverizer, and sieved to -150 μm with a classifier. Next, the alloy hydride was vacuum heated to 650 ° C. and dehydrogenated. The dehydrogenated alloy powder was lightly agglomerated and crushed with a pulverizer and sieved to −150 μm to obtain Ti-15V-3Al-3Cr-3Sn alloy powder. To 10 kg of this powder, 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. is mixed with a V-type mixer, and Ti-15V-3Al-3Cr-3Sn alloy powder is mixed. A mixed powder of copper powder was obtained. This powder was subjected to HIP treatment and hot extrusion treatment to obtain an extruded bar having a diameter of 35 mm, and a tensile test was performed. The HIP conditions, hot extrusion conditions, and tensile test results are as shown in Table 1.

[比較例3](Ti−15V−3Al−3Cr−3Sn合金、銅無添加、HIP材を熱間押出)
実施例4で得られたTi−15V−3Al−3Cr−3Sn合金粉末に、銅粉を添加することなく、実施例4と同じ手順で、HIP処理、熱間押出処理し、得られた押出棒の引張り試験を実施した。HIP条件、熱間押出条件、引張り試験結果は表1に示したとおりである。
[Comparative Example 3] (Ti-15V-3Al-3Cr-3Sn alloy, copper-free addition, hot extrusion of HIP material)
Extrusion rod obtained by subjecting the Ti-15V-3Al-3Cr-3Sn alloy powder obtained in Example 4 to HIP treatment and hot extrusion treatment in the same procedure as Example 4 without adding copper powder. Tensile tests were conducted. The HIP conditions, hot extrusion conditions, and tensile test results are as shown in Table 1.

[実施例5](Ti−4.5Al−3V−2Fe−2Mo合金に銅を6%添加、HIP材を熱間押出)
Ti−4.5Al−3V−2Fe−2Mo合金切粉を真空で加熱し、炉内温度が600℃になった時点で加熱を停止し、水素ガスを導入して切粉を水素化した。冷却後合金水素化物を取り出し、ACM粉砕装置で粉砕、分級装置で−150μmに篩別した。次に、合金水素化物を650℃まで真空加熱し、脱水素処理した。脱水素した合金粉末は軽く凝集しており、解砕装置で解砕し、−150μmに篩別し、Ti−4.5Al−3V−2Fe−2Mo合金粉末を得た。この粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−4.5Al−3V−2Fe−2Mo合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間押出処理し、φ35mmの押出棒を得、引張り試験を実施した。HIP条件、熱間押出条件、引張り試験結果は表1に示したとおりである。
[Example 5] (6% copper added to Ti-4.5Al-3V-2Fe-2Mo alloy, hot extrusion of HIP material)
The Ti-4.5Al-3V-2Fe-2Mo alloy chips were heated in vacuum, and when the furnace temperature reached 600 ° C., the heating was stopped, and hydrogen gas was introduced to hydrogenate the chips. After cooling, the alloy hydride was taken out, pulverized with an ACM pulverizer, and sieved to -150 μm with a classifier. Next, the alloy hydride was vacuum heated to 650 ° C. and dehydrogenated. The dehydrogenated alloy powder was lightly agglomerated, and was crushed with a crusher and sieved to -150 μm to obtain Ti-4.5Al-3V-2Fe-2Mo alloy powder. To 10 kg of this powder, 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. is mixed with a V-type mixer, and Ti-4.5Al-3V-2Fe-2Mo is mixed. A mixed powder of alloy powder and copper powder was obtained. This powder was subjected to HIP treatment and hot extrusion treatment to obtain an extruded bar having a diameter of 35 mm, and a tensile test was performed. The HIP conditions, hot extrusion conditions, and tensile test results are as shown in Table 1.

[比較例4](Ti−4.5Al−3V−2Fe−2Mo合金、銅無添加、HIP材を熱間押出)
実施例5で得られたTi−4.5Al−3V−2Fe−2Mo合金粉末に、銅粉を添加することなく、実施例5と同じ手順で、HIP処理、熱間押出処理し、得られた押出棒の引張り試験を実施した。HIP条件、熱間押出条件、引張り試験結果は表1に示したとおりである。
[Comparative Example 4] (Ti-4.5Al-3V-2Fe-2Mo alloy, copper-free, HIP material hot-extruded)
The Ti-4.5Al-3V-2Fe-2Mo alloy powder obtained in Example 5 was obtained by HIP treatment and hot extrusion treatment in the same procedure as in Example 5 without adding copper powder. A tensile test of the extruded bar was performed. The HIP conditions, hot extrusion conditions, and tensile test results are as shown in Table 1.

[実施例6](Ti−5Al−5V−5Mo−3Cr合金に銅を6%添加、HIP材を熱間押出)
Ti−5Al−5V−5Mo−3Cr合金切粉を真空で加熱し、炉内温度が600℃になった時点で加熱を停止し、水素ガスを導入して切粉を水素化した。冷却後合金水素化物を取り出し、ACM粉砕装置で粉砕、分級装置で−150μmに篩別した。次に、合金水素化物を650℃まで真空加熱し、脱水素処理した。脱水素した合金粉末は軽く凝集しており、解砕装置で解砕し、−150μmに篩別し、Ti−5Al−5V−5Mo−3Cr合金粉末を得た。この粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−5Al−5V−5Mo−3Cr合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間押出処理し、φ35mmの押出棒を得、引張り試験を実施した。HIP条件、熱間押出条件、引張り試験結果は表1に示したとおりである。
[Example 6] (6% copper added to Ti-5Al-5V-5Mo-3Cr alloy, hot extrusion of HIP material)
The Ti-5Al-5V-5Mo-3Cr alloy chips were heated in vacuum, and when the furnace temperature reached 600 ° C., the heating was stopped, and hydrogen gas was introduced to hydrogenate the chips. After cooling, the alloy hydride was taken out, pulverized with an ACM pulverizer, and sieved to -150 μm with a classifier. Next, the alloy hydride was vacuum heated to 650 ° C. and dehydrogenated. The dehydrogenated alloy powder was lightly agglomerated, and was crushed with a crusher and sieved to -150 μm to obtain a Ti-5Al-5V-5Mo-3Cr alloy powder. To 10 kg of this powder, 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. is mixed with a V-type mixer, and Ti-5Al-5V-5Mo-3Cr alloy powder is mixed. A mixed powder of copper powder was obtained. This powder was subjected to HIP treatment and hot extrusion treatment to obtain an extruded bar having a diameter of 35 mm, and a tensile test was performed. The HIP conditions, hot extrusion conditions, and tensile test results are as shown in Table 1.

[比較例5](Ti−5Al−5V−5Mo−3Cr合金、銅無添加、HIP材を熱間押出)
実施例6で得られたTi−5Al−5V−5Mo−3Cr合金粉末に、銅粉を添加することなく、実施例6と同じ手順で、HIP処理、熱間押出処理し、得られた押出棒の引張り試験を実施した。HIP条件、熱間押出条件、引張り試験結果は表1に示したとおりである。
[Comparative Example 5] (Ti-5Al-5V-5Mo-3Cr alloy, copper-free addition, hot extrusion of HIP material)
Extrusion rod obtained by subjecting the Ti-5Al-5V-5Mo-3Cr alloy powder obtained in Example 6 to HIP treatment and hot extrusion treatment in the same procedure as in Example 6 without adding copper powder. Tensile tests were conducted. The HIP conditions, hot extrusion conditions, and tensile test results are as shown in Table 1.

[実施例7](Ti−5Al−2Fe−3Mo合金に銅を6%添加、HIP材を熱間押出)
Ti−5Al−2Fe−3Mo合金切粉を真空で加熱し、炉内温度が600℃になった時点で加熱を停止し、水素ガスを導入して切粉を水素化した。冷却後合金水素化物を取り出し、ACM粉砕装置で粉砕、分級装置で−150μmに篩別した。次に、合金水素化物を650℃まで真空加熱し、脱水素処理した。脱水素した合金粉末は軽く凝集しており、解砕装置で解砕し、−150μmに篩別し、Ti−5Al−2Fe−3Mo合金粉末を得た。この粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−5Al−2Fe−3Mo合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間押出処理し、φ12mmの押出棒を得、引張り試験を実施した。HIP条件、熱間押出条件、引張り試験結果は表1に示したとおりである。
[Example 7] (6% copper added to Ti-5Al-2Fe-3Mo alloy, hot extrusion of HIP material)
The Ti-5Al-2Fe-3Mo alloy chips were heated in vacuum, and when the furnace temperature reached 600 ° C., the heating was stopped, and hydrogen gas was introduced to hydrogenate the chips. After cooling, the alloy hydride was taken out, pulverized with an ACM pulverizer, and sieved to -150 μm with a classifier. Next, the alloy hydride was vacuum heated to 650 ° C. and dehydrogenated. The dehydrogenated alloy powder was lightly agglomerated, and was crushed with a crushing apparatus and sieved to -150 μm to obtain Ti-5Al-2Fe-3Mo alloy powder. To 10 kg of this powder, 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. was mixed with a V-type mixer, and Ti-5Al-2Fe-3Mo alloy powder and copper were mixed. A mixed powder of powder was obtained. This powder was subjected to HIP treatment and hot extrusion treatment to obtain an extruded rod having a diameter of 12 mm, and a tensile test was performed. The HIP conditions, hot extrusion conditions, and tensile test results are as shown in Table 1.

[比較例6](Ti−5Al−2Fe−3Mo合金、銅無添加、HIP材を熱間押出)
実施例7で得られたTi−5Al−2Fe−3Mo合金粉末に、銅粉を添加することなく、実施例7と同じ手順で、HIP処理、熱間押出処理し、得られた押出棒の引張り試験を実施した。HIP条件、熱間押出条件、引張り試験結果は表1に示したとおりである。
[Comparative Example 6] (Ti-5Al-2Fe-3Mo alloy, no copper addition, hot extrusion of HIP material)
The Ti-5Al-2Fe-3Mo alloy powder obtained in Example 7 was subjected to HIP treatment and hot extrusion treatment in the same procedure as in Example 7 without adding copper powder. The test was conducted. The HIP conditions, hot extrusion conditions, and tensile test results are as shown in Table 1.

[実施例8](Ti−5Al−4V−0.6Mo−0.4Fe合金に銅を6%添加、HIP材を熱間押出)
Ti−5Al−4V−0.6Mo−0.4Fe合金切粉を真空で加熱し、炉内温度が600℃になった時点で加熱を停止し、水素ガスを導入して切粉を水素化した。冷却後合金水素化物を取り出し、ACM粉砕装置で粉砕、分級装置で−150μmに篩別した。次に、合金水素化物を650℃まで真空加熱し、脱水素処理した。脱水素した合金粉末は軽く凝集しており、解砕装置で解砕し、−150μmに篩別し、Ti−5Al−4V−0.6Mo−0.4Fe合金粉末を得た。この粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−5Al−4V−0.6Mo−0.4Fe合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間押出処理し、φ35mmの押出棒を得、引張り試験を実施した。HIP条件、熱間押出条件、引張り試験結果は表1に示したとおりである。
[Example 8] (6% copper added to Ti-5Al-4V-0.6Mo-0.4Fe alloy, hot extrusion of HIP material)
Ti-5Al-4V-0.6Mo-0.4Fe alloy chips were heated in a vacuum, and when the furnace temperature reached 600 ° C., the heating was stopped, and hydrogen gas was introduced to hydrogenate the chips. . After cooling, the alloy hydride was taken out, pulverized with an ACM pulverizer, and sieved to -150 μm with a classifier. Next, the alloy hydride was vacuum heated to 650 ° C. and dehydrogenated. The dehydrogenated alloy powder was lightly agglomerated and was crushed with a crushing apparatus and sieved to -150 μm to obtain a Ti-5Al-4V-0.6Mo-0.4Fe alloy powder. To 10 kg of this powder, 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. was mixed with a V-type mixer, and Ti-5Al-4V-0.6Mo-0 was mixed. A mixed powder of .4Fe alloy powder and copper powder was obtained. This powder was subjected to HIP treatment and hot extrusion treatment to obtain an extruded bar having a diameter of 35 mm, and a tensile test was performed. The HIP conditions, hot extrusion conditions, and tensile test results are as shown in Table 1.

[比較例7](Ti−5Al−4V−0.6Mo−0.4Fe合金、銅無添加、HIP材を熱間押出)
実施例8で得られたTi−5Al−4V−0.6Mo−0.4Fe合金粉末に、銅粉を添加することなく、実施例8と同じ手順で、HIP処理、熱間押出処理し、得られた押出棒の引張り試験を実施した。HIP条件、熱間押出条件、引張り試験結果は表1に示したとおりである。
[Comparative Example 7] (Ti-5Al-4V-0.6Mo-0.4Fe alloy, copper-free, hot extrusion of HIP material)
The Ti-5Al-4V-0.6Mo-0.4Fe alloy powder obtained in Example 8 was subjected to HIP treatment and hot extrusion treatment in the same procedure as in Example 8 without adding copper powder. A tensile test of the extruded bar was conducted. The HIP conditions, hot extrusion conditions, and tensile test results are as shown in Table 1.

[比較例8](64合金+6%CuをHIPで製品化)(圧延しない場合)
実施例1で得られたTi−6Al−4V合金に銅を6%添加した合金のHIP材をそのまま製品化しようと試み、引張り試験で特性を確認した。引張り強さは1060MPaと高い値が得られたが、伸びが3%と低い結果であった。
[Comparative Example 8] (Production of 64 alloy + 6% Cu with HIP) (when not rolled)
An attempt was made to commercialize an HIP material of an alloy obtained by adding 6% of copper to the Ti-6Al-4V alloy obtained in Example 1, and the characteristics were confirmed by a tensile test. The tensile strength was as high as 1060 MPa, but the elongation was as low as 3%.

Figure 0005837406
Figure 0005837406

[実施例9](64合金に銅を6%添加、HIP材を圧延)
実施例1で得られたTi−6Al−4V合金粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−6Al−4V合金粉末とCu粉末の混合粉末を得た。この混合粉末3.2kgを内径100mmの軟鋼カプセルに充填し、960℃、100MPa、1Hrの条件でHIP処理した。Ti−6Al−4V合金にCuを6%添加した合金のβ変態点は約910℃であり、HIP温度960℃はβ変態点より50℃高い温度となる。HIP処理後カプセルを除去し、表面を平滑になるまで切削したところ、密度は真密度比100%であることが確認された。この材料をφ76mmに切削加工し熱間圧延用元材とした。φ76mmの材料を870℃に1Hr加熱して圧延を開始し、φ12mmまで合計9パス圧延した。圧延のパススケジュールはφ67mm、φ56mm、φ45mm、φ36mm、φ29mm、φ23mm、φ18mm、φ15mm、φ12mmとした。圧延材から引張り試験片を切り出し、引張り試験を行ったところ、引っ張り強さ1,170MPa、伸び14%の結果が得られた。1,170MPaの引っ張り強さは、インゴット溶解製造法で得られている64合金の値(980MPa)と比べて約20%高い値であった。
[Example 9] (6% copper added to 64 alloy, HIP material rolled)
0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. was mixed with 10 kg of the Ti-6Al-4V alloy powder obtained in Example 1 with a V-type mixer. A mixed powder of Ti-6Al-4V alloy powder and Cu powder was obtained. This mixed powder (3.2 kg) was filled in a soft steel capsule having an inner diameter of 100 mm and subjected to HIP treatment under the conditions of 960 ° C., 100 MPa, and 1 Hr. The β transformation point of an alloy obtained by adding 6% Cu to a Ti-6Al-4V alloy is about 910 ° C., and the HIP temperature 960 ° C. is 50 ° C. higher than the β transformation point. When the capsule was removed after the HIP treatment and the surface was cut to be smooth, it was confirmed that the density was 100% of the true density ratio. This material was cut to φ76 mm to obtain a hot rolling base material. The φ76 mm material was heated to 870 ° C. for 1 hour to start rolling, and a total of 9 passes were rolled to φ12 mm. The rolling pass schedule was set to φ67 mm, φ56 mm, φ45 mm, φ36 mm, φ29 mm, φ23 mm, φ18 mm, φ15 mm, and φ12 mm. When a tensile test piece was cut out from the rolled material and a tensile test was performed, results of a tensile strength of 1,170 MPa and an elongation of 14% were obtained. The tensile strength of 1,170 MPa was about 20% higher than the value of 64 alloy (980 MPa) obtained by the ingot melting production method.

[実施例10](64合金に銅を9%添加、HIP材を圧延)
実施例1で得られたTi−6Al−4V合金粉末に対して、銅粉末を9mass%添加混合した混合粉末を、実施例9と同じ手順でHIP、熱間圧延を実施した。HIP温度、熱間圧延温度は合金組成によって変えたが、HIP圧力、HIP時間、熱間圧延のパススケジュールは実施例10から実施例16、比較例9〜比較例15ですべて実施例9と全く同じとした。得られたφ12mmの圧延棒から引張り試験片を切り出し、引張り試験を実施した。HIP条件、熱間圧延開始温度、引張り試験結果は表2に記載したとおりである。
[Example 10] (9% copper added to 64 alloy, rolled HIP material)
The Ti-6Al-4V alloy powder obtained in Example 1 was subjected to HIP and hot rolling in the same procedure as Example 9 for the mixed powder obtained by adding 9 mass% of copper powder. The HIP temperature and hot rolling temperature were changed depending on the alloy composition, but the HIP pressure, HIP time, and hot rolling pass schedule were all the same as in Example 9 in Examples 10 to 16 and Comparative Examples 9 to 15. Same as above. A tensile test piece was cut out from the obtained rolled bar having a diameter of 12 mm, and a tensile test was performed. The HIP conditions, hot rolling start temperature, and tensile test results are as described in Table 2.

[比較例9](64合金、銅無添加、HIP材を圧延)
実施例1で得られたTi−6Al−4V合金粉末に、銅粉を添加することなく、実施例9と同じ手順で、HIP、熱間圧延を実施、φ12mmの圧延棒を得、引張り試験を行った。HIP条件、熱間圧延開始温度、引張り試験結果は表2に記載したとおりである。引張り試験結果は、引っ張り強さ980MPa、伸び14%であり、インゴット溶解製造法でえられている64合金の値とほぼ同じであった。
[Comparative Example 9] (64 alloy, copper-free addition, rolled HIP material)
In the same procedure as in Example 9 without adding copper powder to the Ti-6Al-4V alloy powder obtained in Example 1, HIP and hot rolling were performed to obtain a φ12 mm rolled bar, and a tensile test was performed. went. The HIP conditions, hot rolling start temperature, and tensile test results are as described in Table 2. The tensile test result was a tensile strength of 980 MPa and an elongation of 14%, which was almost the same as the value of 64 alloy obtained by the ingot melting production method.

[実施例11](Ti−10V−2Fe−3Al合金に銅を6%添加、HIP材を圧延)
実施例3で得られたTi−10V−2Fe−3Al合金粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−10V−2Fe−3Al合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間圧延処理し、φ12mmの圧延棒を得、引張り試験を実施した。HIP条件、熱間圧延条件、引張り試験結果は表2に示したとおりである。
[Example 11] (Ti-10V-2Fe-3Al alloy added with 6% copper, rolled HIP material)
To 10 kg of the Ti-10V-2Fe-3Al alloy powder obtained in Example 3, 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. was used with a V-type mixer. By mixing, a mixed powder of Ti-10V-2Fe-3Al alloy powder and copper powder was obtained. This powder was subjected to HIP treatment and hot rolling treatment to obtain a rolled bar having a diameter of 12 mm, and a tensile test was performed. The HIP conditions, hot rolling conditions, and tensile test results are as shown in Table 2.

[比較例10](Ti−10V−2Fe−3Al合金、銅無添加、HIP材を圧延)
実施例3で得られたTi−10V−2Fe−3Al合金粉末に、銅粉を添加することなく、実施例11と同じ手順で、HIP処理、熱間圧延処理し、得られた圧延棒の引張り試験を実施した。HIP条件、熱間圧延条件、引張り試験結果は表2に示したとおりである。
[Comparative Example 10] (Ti-10V-2Fe-3Al alloy, copper-free additive, HIP material rolled)
The Ti-10V-2Fe-3Al alloy powder obtained in Example 3 was subjected to HIP treatment and hot rolling treatment in the same procedure as in Example 11 without adding copper powder. The test was conducted. The HIP conditions, hot rolling conditions, and tensile test results are as shown in Table 2.

[実施例12](Ti−15V−3Al−3Cr−3Sn合金に銅を6%添加、HIP材を圧延)
実施例4で得られたTi−15V−3Al−3Cr−3Sn合金粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−15V−3Al−3Cr−3Sn合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間圧延処理し、φ12mmの圧延棒を得、引張り試験を実施した。HIP条件、熱間圧延条件、引張り試験結果は表2に示したとおりである。
[Example 12] (Ti-15V-3Al-3Cr-3Sn alloy added with 6% copper and rolled HIP material)
10 kg of the Ti-15V-3Al-3Cr-3Sn alloy powder obtained in Example 4 was mixed with 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. The mixture was mixed in a container to obtain a mixed powder of Ti-15V-3Al-3Cr-3Sn alloy powder and copper powder. This powder was subjected to HIP treatment and hot rolling treatment to obtain a rolled bar having a diameter of 12 mm, and a tensile test was performed. The HIP conditions, hot rolling conditions, and tensile test results are as shown in Table 2.

[比較例11](Ti−15V−3Al−3Cr−3Sn合金、銅無添加、HIP材を圧延)
実施例4で得られたTi−15V−3Al−3Cr−3Sn合金粉末に、銅粉を添加することなく、実施例12と同じ手順で、HIP処理、熱間圧延処理し、得られた圧延棒の引張り試験を実施した。HIP条件、熱間圧延条件、引張り試験結果は表2に示したとおりである。
[Comparative Example 11] (Ti-15V-3Al-3Cr-3Sn alloy, copper-free, rolled HIP material)
A rolling rod obtained by subjecting the Ti-15V-3Al-3Cr-3Sn alloy powder obtained in Example 4 to HIP treatment and hot rolling treatment in the same procedure as in Example 12 without adding copper powder. Tensile tests were conducted. The HIP conditions, hot rolling conditions, and tensile test results are as shown in Table 2.

[実施例13](Ti−4.5Al−3V−2Fe−2Mo合金に銅を6%添加、HIP材を圧延)
実施例5で得られたTi−4.5Al−3V−2Fe−2Mo合金粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−4.5Al−3V−2Fe−2Mo合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間圧延処理し、φ12mmの圧延棒を得、引張り試験を実施した。HIP条件、熱間圧延条件、引張り試験結果は表2に示したとおりである。
[Example 13] (6% copper added to Ti-4.5Al-3V-2Fe-2Mo alloy, rolled HIP material)
To 10 kg of the Ti-4.5Al-3V-2Fe-2Mo alloy powder obtained in Example 5, 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. It mixed with the type | mold mixer and the mixed powder of Ti-4.5Al-3V-2Fe-2Mo alloy powder and copper powder was obtained. This powder was subjected to HIP treatment and hot rolling treatment to obtain a rolled bar having a diameter of 12 mm, and a tensile test was performed. The HIP conditions, hot rolling conditions, and tensile test results are as shown in Table 2.

[比較例12](TI−4.5Al−3V−2Fe−2Mo合金、銅無添加、HIP材を圧延)
実施例4で得られたTi−4.5Al−3V−2Fe−2Mo合金粉末に、銅粉を添加することなく、実施例13と同じ手順で、HIP処理、熱間圧延処理し、得られた圧延棒の引張り試験を実施した。HIP条件、熱間圧延条件、引張り試験結果は表2に示したとおりである。
[Comparative Example 12] (TI-4.5Al-3V-2Fe-2Mo alloy, copper-free, rolled HIP material)
The Ti-4.5Al-3V-2Fe-2Mo alloy powder obtained in Example 4 was obtained by subjecting it to HIP treatment and hot rolling treatment in the same procedure as in Example 13 without adding copper powder. A tensile test of the rolled bar was performed. The HIP conditions, hot rolling conditions, and tensile test results are as shown in Table 2.

[実施例14](Ti−5Al−5V−5Mo−3Cr合金に銅を6%添加、HIP材を圧延)
実施例6で得られたTi−5Al−5V−5Mo−3Cr合金粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(mass%)をV型混合器で混合し、Ti−5Al−5V−5Mo−3Cr合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間圧延処理し、φ12mmの圧延棒を得、引張り試験を実施した。HIP条件、熱間圧延条件、引張り試験結果は表2に示したとおりである。
[Example 14] (6% copper added to Ti-5Al-5V-5Mo-3Cr alloy, rolled HIP material)
10 kg of Ti-5Al-5V-5Mo-3Cr alloy powder obtained in Example 6 was mixed with 0.6 kg (mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. The mixture was mixed in a container to obtain a mixed powder of Ti-5Al-5V-5Mo-3Cr alloy powder and copper powder. This powder was subjected to HIP treatment and hot rolling treatment to obtain a rolled bar having a diameter of 12 mm, and a tensile test was performed. The HIP conditions, hot rolling conditions, and tensile test results are as shown in Table 2.

[比較例13](Ti−5Al−5V−5Mo−3Cr合金、銅無添加、HIP材を圧延)
実施例6で得られたTi−5Al−5V−5Mo−3Cr合金粉末に、銅粉を添加することなく、実施例14と同じ手順で、HIP処理、熱間圧延処理し、得られた圧延棒の引張り試験を実施した。HIP条件、熱間圧延条件、引張り試験結果は表2に示したとおりである。
[Comparative Example 13] (Ti-5Al-5V-5Mo-3Cr alloy, copper-free additive, HIP material rolled)
A rolling rod obtained by subjecting the Ti-5Al-5V-5Mo-3Cr alloy powder obtained in Example 6 to HIP treatment and hot rolling treatment in the same procedure as in Example 14 without adding copper powder. Tensile tests were conducted. The HIP conditions, hot rolling conditions, and tensile test results are as shown in Table 2.

[実施例15](Ti−5Al−2Fe−3Mo合金に銅を6%添加、HIP材を圧延)
実施例7で得られたTi−5Al−2Fe−3Mo合金粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−5Al−2Fe−3Mo合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間圧延処理し、φ12mmの圧延棒を得、引張り試験を実施した。HIP条件、熱間圧延条件、引張り試験結果は表2に示したとおりである。
[Example 15] (6% copper added to Ti-5Al-2Fe-3Mo alloy, rolled HIP material)
To 10 kg of the Ti-5Al-2Fe-3Mo alloy powder obtained in Example 7, 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. was used with a V-type mixer. By mixing, a mixed powder of Ti-5Al-2Fe-3Mo alloy powder and copper powder was obtained. This powder was subjected to HIP treatment and hot rolling treatment to obtain a rolled bar having a diameter of 12 mm, and a tensile test was performed. The HIP conditions, hot rolling conditions, and tensile test results are as shown in Table 2.

[比較例14](Ti−5Al−2Fe−3Mo合金、銅無添加、HIP材を圧延)
実施例7で得られたTi−5Al−2Fe−3Mo合金粉末に、銅粉を添加することなく、実施例15と同じ手順で、HIP処理、熱間圧延処理し、得られた圧延棒の引張り試験を実施した。HIP条件、熱間圧延条件、引張り試験結果は表2に示したとおりである。
[Comparative Example 14] (Ti-5Al-2Fe-3Mo alloy, copper-free addition, rolled HIP material)
The Ti-5Al-2Fe-3Mo alloy powder obtained in Example 7 was subjected to HIP treatment and hot rolling treatment in the same procedure as in Example 15 without adding copper powder. The test was conducted. The HIP conditions, hot rolling conditions, and tensile test results are as shown in Table 2.

[実施例16](Ti−5Al−4V−0.6Mo−0.4Fe合金に銅を6%添加、HIP材を圧延)
実施例8で得られたTi−5Al−4V−0.6Mo−0.4Fe合金粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−5Al−4V−0.6Mo−0.4Fe合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間圧延処理し、φ12mmの圧延棒を得、引張り試験を実施した。HIP条件、熱間圧延条件、引張り試験結果は表2に示したとおりである。
[Example 16] (6% copper added to Ti-5Al-4V-0.6Mo-0.4Fe alloy, rolled HIP material)
To 10 kg of the Ti-5Al-4V-0.6Mo-0.4Fe alloy powder obtained in Example 8, 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. Were mixed with a V-type mixer to obtain a mixed powder of Ti-5Al-4V-0.6Mo-0.4Fe alloy powder and copper powder. This powder was subjected to HIP treatment and hot rolling treatment to obtain a rolled bar having a diameter of 12 mm, and a tensile test was performed. The HIP conditions, hot rolling conditions, and tensile test results are as shown in Table 2.

[比較例15](Ti−5Al−4V−0.6Mo−0.4Fe合金、銅無添加、HIP材を圧延)
実施例8で得られたTi−5Al−4V−0.6Mo−0.4Fe合金粉末に、銅粉を添加することなく、実施例16と同じ手順で、HIP処理、熱間圧延処理し、得られた圧延棒の引張り試験を実施した。HIP条件、熱間圧延条件、引張り試験結果は表2に示したとおりである。
[Comparative Example 15] (Ti-5Al-4V-0.6Mo-0.4Fe alloy, copper-free, rolled HIP material)
The Ti-5Al-4V-0.6Mo-0.4Fe alloy powder obtained in Example 8 was subjected to HIP treatment and hot rolling treatment in the same procedure as in Example 16 without adding copper powder. A tensile test of the obtained rolled bar was performed. The HIP conditions, hot rolling conditions, and tensile test results are as shown in Table 2.

Figure 0005837406
Figure 0005837406

[実施例17](64合金に銅を6%添加、HIP材を段造)
実施例1で得られたTi−6Al−4V合金粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−6Al−4V合金粉末とCu粉末の混合粉末を得た。この混合粉末3.2kgを内径100mmの軟鋼カプセルに充填し、960℃、100MPa、1Hrの条件でHIP処理した。Ti−6Al−4V合金にCuを6%添加した合金のβ変態点は約910℃であり、HIP温度960℃はβ変態点より50℃高い温度となる。HIP処理後カプセルを除去し、表面を平滑になるまで切削したところ、密度は真密度比100%であることが確認された。この材料をφ76mmに切削加工し熱間鍛造用元材とした。φ76mmの材料を870℃に1Hr加熱してハンマー鍛造を開始し、φ25mmまで鍛造した。鍛造材から引張り試験片を切り出し、引張り試験を行ったところ、引っ張り強さ1,160MPa、伸び13%の結果が得られた。1,160MPaの引っ張り強さは、インゴット溶解製造法でえられている64合金の値(980MPa)と比べて約18%高い値であった。
[Example 17] (6% copper added to 64 alloy, HIP material stepped)
0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. was mixed with 10 kg of the Ti-6Al-4V alloy powder obtained in Example 1 with a V-type mixer. A mixed powder of Ti-6Al-4V alloy powder and Cu powder was obtained. This mixed powder (3.2 kg) was filled in a soft steel capsule having an inner diameter of 100 mm and subjected to HIP treatment under the conditions of 960 ° C., 100 MPa, and 1 Hr. The β transformation point of an alloy obtained by adding 6% Cu to a Ti-6Al-4V alloy is about 910 ° C., and the HIP temperature 960 ° C. is 50 ° C. higher than the β transformation point. When the capsule was removed after the HIP treatment and the surface was cut to be smooth, it was confirmed that the density was 100% of the true density ratio. This material was cut to φ76 mm to obtain a hot forging base material. Hammer forging was started by heating a φ76 mm material to 870 ° C. for 1 hour, and forging to φ25 mm. When a tensile test piece was cut out from the forged material and a tensile test was performed, results of a tensile strength of 1,160 MPa and an elongation of 13% were obtained. The tensile strength of 1,160 MPa was about 18% higher than the value of 64 alloy (980 MPa) obtained by the ingot melting production method.

[実施例18](64合金に銅を9%添加、HIP材を段造)
実施例1で得られたTi−6Al−4V合金粉末に対して、銅粉末を9mass%添加混合した混合粉末を、実施例17と同じ手順でHIP、熱間鍛造を実施した。HIP温度、熱間鍛造温度は合金組成によって変えたが、HIP圧力、HIP時間、熱間鍛造の加工法は実施例18から実施例24、比較例16から比較例22ですべて実施例17と全く同じとした。得られたφ25mmの段造棒から引張り試験片を切り出し、引張り試験を実施した。HIP条件、熱間鍛造温度、引張り試験結果は表3に記載したとおりである。
[Example 18] (9% copper added to 64 alloy, HIP material stepped)
HIP and hot forging were performed on the mixed powder obtained by adding 9 mass% of copper powder to the Ti-6Al-4V alloy powder obtained in Example 1 in the same procedure as in Example 17. Although the HIP temperature and hot forging temperature were changed depending on the alloy composition, the processing methods of HIP pressure, HIP time, and hot forging were all the same as in Example 17 in Examples 18 to 24 and Comparative Examples 16 to 22. Same as above. A tensile test piece was cut out from the obtained stepped rod having a diameter of 25 mm, and a tensile test was performed. The HIP conditions, hot forging temperature, and tensile test results are as described in Table 3.

[比較例16](64合金、銅無添加、HIP材を段造)
実施例1で得られたTi−6Al−4V合金粉末に、銅粉を添加することなく、実施例17と同じ手順で、HIP、熱間鍛造を実施、φ25mmの段造棒を得、引張り試験を行った。HIP条件、熱間鍛造温度、引張り試験結果は表3に記載したとおりである。引張り試験結果は、引っ張り強さ980MPa、伸び14%であり、インゴット溶解製造法でえられている64合金の値とほぼ同じであった。
[Comparative Example 16] (64 alloy, copper-free, HIP material stepped)
The Ti-6Al-4V alloy powder obtained in Example 1 was subjected to HIP and hot forging in the same procedure as in Example 17 without adding copper powder, to obtain a stepped rod of φ25 mm, and a tensile test Went. The HIP conditions, hot forging temperature, and tensile test results are as described in Table 3. The tensile test result was a tensile strength of 980 MPa and an elongation of 14%, which was almost the same as the value of 64 alloy obtained by the ingot melting production method.

[実施例19](Ti−10V−2Fe−3Al合金に銅を6%添加、HIP材を鍛造)
実施例3で得られたTi−10V−2Fe−3Al合金粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−10V−2Fe−3Al合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間鍛造処理し、φ25mmの鍛造棒を得、引張り試験を実施した。HIP条件、熱間鍛造条件、引張り試験結果は表3に示したとおりである。
[Example 19] (6% copper added to Ti-10V-2Fe-3Al alloy, forging HIP material)
To 10 kg of the Ti-10V-2Fe-3Al alloy powder obtained in Example 3, 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. was used with a V-type mixer. By mixing, a mixed powder of Ti-10V-2Fe-3Al alloy powder and copper powder was obtained. This powder was subjected to HIP treatment and hot forging to obtain a forged rod having a diameter of 25 mm, and a tensile test was performed. The HIP conditions, hot forging conditions, and tensile test results are as shown in Table 3.

[比較例17](Ti−10V−2Fe−3Al合金、銅無添加、HIP材を鍛造)
実施例3で得られたTi−10V−2Fe−3Al合金粉末に、銅粉を添加することなく、実施例19と同じ手順で、HIP処理、熱間鍛造処理し、得られた鍛造棒の引張り試験を実施した。HIP条件、熱間鍛造条件、引張り試験結果は表3に示したとおりである。
[Comparative Example 17] (Ti-10V-2Fe-3Al alloy, copper-free, forged HIP material)
The Ti-10V-2Fe-3Al alloy powder obtained in Example 3 was subjected to HIP treatment and hot forging treatment in the same procedure as in Example 19 without adding copper powder. The test was conducted. The HIP conditions, hot forging conditions, and tensile test results are as shown in Table 3.

[実施例20](Ti−15V−3Al−3Cr−3Sn合金に銅を6%添加、HIP材を鍛造)
実施例4で得られたTi−15V−3Al−3Cr−3Sn合金粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−15V−3Al−3Cr−3Sn合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間鍛造処理し、φ25mmの鍛造棒を得、引張り試験を実施した。HIP条件、熱間鍛造条件、引張り試験結果は表3に示したとおりである。
[Example 20] (6% copper added to Ti-15V-3Al-3Cr-3Sn alloy, forging HIP material)
10 kg of the Ti-15V-3Al-3Cr-3Sn alloy powder obtained in Example 4 was mixed with 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. The mixture was mixed in a container to obtain a mixed powder of Ti-15V-3Al-3Cr-3Sn alloy powder and copper powder. This powder was subjected to HIP treatment and hot forging to obtain a forged rod having a diameter of 25 mm, and a tensile test was performed. The HIP conditions, hot forging conditions, and tensile test results are as shown in Table 3.

[比較例18](Ti−15V−3Al−3Cr−3Sn合金、銅無添加、HIP材を鍛造)
実施例4で得られたTi−15V−3Al−3Cr−3Sn合金粉末に、銅粉を添加することなく、実施例20と同じ手順で、HIP処理、熱間鍛造処理し、得られた鍛造棒の引張り試験を実施した。HIP条件、熱間鍛造条件、引張り試験結果は表3に示したとおりである。
[Comparative Example 18] (Ti-15V-3Al-3Cr-3Sn alloy, copper-free additive, HIP material forged)
Forged rod obtained by performing HIP treatment and hot forging treatment in the same procedure as in Example 20 without adding copper powder to the Ti-15V-3Al-3Cr-3Sn alloy powder obtained in Example 4 Tensile tests were conducted. The HIP conditions, hot forging conditions, and tensile test results are as shown in Table 3.

[実施例21](Ti−4.5Al−3V−2Fe−2Mo合金に銅を6%添加、HIP材を鍛造)
実施例5で得られたTi−4.5Al−3V−2Fe−2Mo合金粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−4.5Al−3V−2Fe−2Mo合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間鍛造処理し、φ25mmの鍛造棒を得、引張り試験を実施した。HIP条件、熱間鍛造条件、引張り試験結果は表3に示したとおりである。
[Example 21] (6% copper added to Ti-4.5Al-3V-2Fe-2Mo alloy, forging HIP material)
To 10 kg of the Ti-4.5Al-3V-2Fe-2Mo alloy powder obtained in Example 5, 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. It mixed with the type | mold mixer and the mixed powder of Ti-4.5Al-3V-2Fe-2Mo alloy powder and copper powder was obtained. This powder was subjected to HIP treatment and hot forging to obtain a forged rod having a diameter of 25 mm, and a tensile test was performed. The HIP conditions, hot forging conditions, and tensile test results are as shown in Table 3.

[比較例19](Ti−4.5Al−3V−2Fe−2Mo合金、銅無添加、HIP材を鍛造)
実施例4で得られたTi−4.5Al−3V−2Fe−2Mo合金粉末に、銅粉を添加することなく、実施例21と同じ手順で、HIP処理、熱間鍛造処理し、得られた鍛造棒の引張り試験を実施した。HIP条件、熱間鍛造条件、引張り試験結果は表3に示したとおりである。
[Comparative Example 19] (Ti-4.5Al-3V-2Fe-2Mo alloy, copper-free, forged HIP material)
The Ti-4.5Al-3V-2Fe-2Mo alloy powder obtained in Example 4 was obtained by subjecting it to HIP treatment and hot forging treatment in the same procedure as in Example 21 without adding copper powder. A forging bar tensile test was performed. The HIP conditions, hot forging conditions, and tensile test results are as shown in Table 3.

[実施例22](Ti−5Al−5V−5Mo−3Cr合金に銅を6%添加、HIP材を鍛造)
実施例6で得られたTi−5Al−5V−5Mo−3Cr合金粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(mass%)をV型混合器で混合し、Ti−5Al−5V−5Mo−3Cr合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間鍛造処理し、φ25mmの鍛造棒を得、引張り試験を実施した。HIP条件、熱間鍛造条件、引張り試験結果は表3に示したとおりである。
[Example 22] (6% copper added to Ti-5Al-5V-5Mo-3Cr alloy, forging HIP material)
10 kg of Ti-5Al-5V-5Mo-3Cr alloy powder obtained in Example 6 was mixed with 0.6 kg (mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. The mixture was mixed in a container to obtain a mixed powder of Ti-5Al-5V-5Mo-3Cr alloy powder and copper powder. This powder was subjected to HIP treatment and hot forging to obtain a forged rod having a diameter of 25 mm, and a tensile test was performed. The HIP conditions, hot forging conditions, and tensile test results are as shown in Table 3.

[比較例20](Ti−5Al−5V−5Mo−3Cr合金、銅無添加、HIP材を鍛造)
実施例6で得られたTi−5Al−5V−5Mo−3Cr合金粉末に、銅粉を添加することなく、実施例22と同じ手順で、HIP処理、熱間鍛造処理し、得られた鍛造棒の引張り試験を実施した。HIP条件、熱間鍛造条件、引張り試験結果は表3に示したとおりである。
[Comparative Example 20] (Ti-5Al-5V-5Mo-3Cr alloy, copper-free, forged HIP material)
Forged rod obtained by performing HIP treatment and hot forging in the same procedure as in Example 22 without adding copper powder to the Ti-5Al-5V-5Mo-3Cr alloy powder obtained in Example 6. Tensile tests were conducted. The HIP conditions, hot forging conditions, and tensile test results are as shown in Table 3.

[実施例23](Ti−5Al−2Fe−3Mo合金に銅を6%添加、HIP材を鍛造)
実施例7で得られたTi−5Al−2Fe−3Mo合金粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−5Al−2Fe−3Mo合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間鍛造処理し、φ25mmの鍛造棒を得、引張り試験を実施した。HIP条件、熱間鍛造条件、引張り試験結果は表3に示したとおりである。
[Example 23] (6% copper added to Ti-5Al-2Fe-3Mo alloy, forging HIP material)
To 10 kg of the Ti-5Al-2Fe-3Mo alloy powder obtained in Example 7, 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. was used with a V-type mixer. By mixing, a mixed powder of Ti-5Al-2Fe-3Mo alloy powder and copper powder was obtained. This powder was subjected to HIP treatment and hot forging to obtain a forged rod having a diameter of 25 mm, and a tensile test was performed. The HIP conditions, hot forging conditions, and tensile test results are as shown in Table 3.

[比較例21](Ti−5Al−2Fe−3Mo合金、銅無添加、HIP材を鍛造)
実施例7で得られたTi−5Al−2Fe−3Mo合金粉末に、銅粉を添加することなく、実施例23と同じ手順で、HIP処理、熱間鍛造処理し、得られた鍛造棒の引張り試験を実施した。HIP条件、熱間鍛造条件、引張り試験結果は表3に示したとおりである。
[Comparative example 21] (Ti-5Al-2Fe-3Mo alloy, copper-free, forged HIP material)
The Ti-5Al-2Fe-3Mo alloy powder obtained in Example 7 was subjected to HIP treatment and hot forging treatment in the same procedure as in Example 23 without adding copper powder, and the resulting forged rod was pulled. The test was conducted. The HIP conditions, hot forging conditions, and tensile test results are as shown in Table 3.

[実施例24](Ti−5Al−4V−0.6Mo−0.4Fe合金に銅を6%添加、HIP材を鍛造)
実施例8で得られたTi−5Al−4V−0.6Mo−0.4Fe合金粉末10kgに、JX日鉱日石金属株式会社製の電解銅粉(#51−R)0.6kg(6mass%)をV型混合器で混合し、Ti−5Al−4V−0.6Mo−0.4Fe合金粉末と銅粉末の混合粉末を得た。この粉末をHIP処理、熱間鍛造処理し、φ25mmの鍛造棒を得、引張り試験を実施した。HIP条件、熱間鍛造条件、引張り試験結果は表3に示したとおりである。
[Example 24] (6% copper added to Ti-5Al-4V-0.6Mo-0.4Fe alloy, forging HIP material)
To 10 kg of the Ti-5Al-4V-0.6Mo-0.4Fe alloy powder obtained in Example 8, 0.6 kg (6 mass%) of electrolytic copper powder (# 51-R) manufactured by JX Nippon Mining & Metals Co., Ltd. Were mixed with a V-type mixer to obtain a mixed powder of Ti-5Al-4V-0.6Mo-0.4Fe alloy powder and copper powder. This powder was subjected to HIP treatment and hot forging to obtain a forged rod having a diameter of 25 mm, and a tensile test was performed. The HIP conditions, hot forging conditions, and tensile test results are as shown in Table 3.

[比較例22](Ti−5Al−4V−0.6Mo−0.4Fe合金、銅無添加、HIP材を鍛造)
実施例8で得られたTi−5Al−4V−0.6Mo−0.4Fe合金粉末に、銅粉を添加することなく、実施例24と同じ手順で、HIP処理、熱間鍛造処理し、得られた鍛造棒の引張り試験を実施した。HIP条件、熱間鍛造条件、引張り試験結果は表3に示したとおりである。
[Comparative Example 22] (Ti-5Al-4V-0.6Mo-0.4Fe alloy, copper-free, forged HIP material)
The Ti-5Al-4V-0.6Mo-0.4Fe alloy powder obtained in Example 8 was subjected to HIP treatment and hot forging treatment in the same procedure as in Example 24 without adding copper powder. A tensile test was performed on the forged bar obtained. The HIP conditions, hot forging conditions, and tensile test results are as shown in Table 3.

Figure 0005837406
Figure 0005837406

本発明は、伸びの低下が殆どなく、引張り強さが従来の合金より10%〜25%高い銅を高濃度に含有する高強度チタン合金の製造法を提供する。高強度チタン合金を必要とする分野での利用が期待される。
The present invention provides a method for producing a high-strength titanium alloy containing a high concentration of copper that has almost no decrease in elongation and a tensile strength that is 10% to 25% higher than that of conventional alloys. Use in fields that require high-strength titanium alloys is expected.

Claims (5)

銅を1〜10mass%含有し、チタン以外の合金元素の含有量が28.30mass%以下であり、かつ粉末法によるα+β型またはβ型チタン合金の製造方法であって、
次の(1)〜(4)の工程
(1)α+β型またはβ型チタン合金切粉を原料とし、これを水素化、脱水素化し、チタン合金粉末を得る工程
(2)前記チタン合金粉に銅粉末を混合して、チタン合金と銅の複合粉末を得る工程
(3)前記チタン合金複合粉末をHIP処理する工程
(4)前記HIP処理材を熱間塑性加工する工程
を実施することを特徴とするα+β型またはβ型チタン合金の製造方法。
1-10 mass% of copper, the content of alloy elements other than titanium is 28.30 mass% or less, and a method for producing an α + β type or β type titanium alloy by a powder method,
Steps (1) to (4) below (1) Using α + β-type or β-type titanium alloy chips as raw materials and hydrogenating and dehydrogenating them to obtain titanium alloy powder (2) To the titanium alloy powder A step of obtaining a composite powder of titanium alloy and copper by mixing copper powder (3) A step of HIP-treating the titanium alloy composite powder (4) A step of hot plastic working the HIP-treated material A method for producing an α + β type or β type titanium alloy.
前記熱間塑性加工が、熱間押出、熱間圧延、熱間鍛造のいずれかであることを特徴とする請求項1に記載のα+β型またはβ型チタン合金の製造方法。   The method for producing an α + β type or β type titanium alloy according to claim 1, wherein the hot plastic working is any one of hot extrusion, hot rolling, and hot forging. 前記チタン合金原料がTi−6Al−4V合金、Ti−10V−2Fe−3Al合金、Ti−15V−3Al−3Cr−3Sn合金、Ti−4.5Al−3V−2Fe−2Mo合金、Ti−5Al−5V−5Mo−3Cr合金、Ti−5Al−2Fe−3Mo合金、Ti−5Al−4V−0.6Mo−0.4Fe合金であることを特徴とする請求項1または2に記載のα+β型またはβ型チタン合金の製造方法。   The titanium alloy raw material is Ti-6Al-4V alloy, Ti-10V-2Fe-3Al alloy, Ti-15V-3Al-3Cr-3Sn alloy, Ti-4.5Al-3V-2Fe-2Mo alloy, Ti-5Al-5V. Α + β-type or β-type titanium according to claim 1 or 2, which is a -5Mo-3Cr alloy, a Ti-5Al-2Fe-3Mo alloy, or a Ti-5Al-4V-0.6Mo-0.4Fe alloy. Alloy manufacturing method. 前記熱間塑性加工を、(β変態点−200℃)〜(β変態点+100℃)の温度範囲で行うことを特徴とする請求項1〜3のいずれかに記載のα+β型またはβ型チタン合金の製造方法。   The α + β type or β type titanium according to any one of claims 1 to 3, wherein the hot plastic working is performed in a temperature range of (β transformation point -200 ° C) to (β transformation point + 100 ° C). Alloy manufacturing method. 前記α+β型またはβ型チタン合金の引っ張り強さが1000MPa〜1500MPa、伸びが9%〜15%であることを特徴とする請求項1〜4のいずれかに記載のα+β型またはβ型チタン合金の製造方法。   The α + β-type or β-type titanium alloy according to claim 1, wherein the α + β-type or β-type titanium alloy has a tensile strength of 1000 MPa to 1500 MPa and an elongation of 9% to 15%. Production method.
JP2011260671A 2011-11-29 2011-11-29 Titanium alloy and manufacturing method thereof Active JP5837406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011260671A JP5837406B2 (en) 2011-11-29 2011-11-29 Titanium alloy and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011260671A JP5837406B2 (en) 2011-11-29 2011-11-29 Titanium alloy and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013112860A JP2013112860A (en) 2013-06-10
JP5837406B2 true JP5837406B2 (en) 2015-12-24

Family

ID=48708689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011260671A Active JP5837406B2 (en) 2011-11-29 2011-11-29 Titanium alloy and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5837406B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6230885B2 (en) * 2013-11-22 2017-11-15 東邦チタニウム株式会社 α + β type titanium alloy and method for producing the same
US10357822B2 (en) * 2017-03-29 2019-07-23 The Boeing Company Titanium-copper-iron alloy and associated thixoforming method
GB2575005B (en) * 2017-12-14 2022-06-15 Csir A process and method for producing titanium and titanium alloy billets and spherical powder
CN113732281B (en) * 2021-09-08 2023-05-12 湖南恒基粉末科技有限责任公司 Elastic medical beta titanium alloy powder suitable for 3D printing and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332531A (en) * 1999-06-11 2002-11-22 Toyota Central Res & Dev Lab Inc Titanium alloy and manufacturing method
JP2010150624A (en) * 2008-12-26 2010-07-08 Daido Steel Co Ltd alpha+beta TYPE TITANIUM ALLOY FOR CASTING, AND GOLF CLUB HEAD USING THE SAME

Also Published As

Publication number Publication date
JP2013112860A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
JP5889786B2 (en) Titanium alloy mixed powder blended with copper powder, chromium powder or iron powder, method for producing the same, and method for producing titanium alloy material
JP5837407B2 (en) Titanium alloy and manufacturing method thereof
Fang et al. Powder metallurgy of titanium–past, present, and future
JP5239022B2 (en) High strength and high toughness magnesium alloy and method for producing the same
JP5855565B2 (en) Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
US7241328B2 (en) Method for preparing ultra-fine, submicron grain titanium and titanium-alloy articles and articles prepared thereby
JP4139841B2 (en) Casting and production method of magnesium alloy
Duz et al. Industrial application of titanium hydride powder
JP5855435B2 (en) α + β-type or β-type titanium alloy and method for producing the same
CN103443311A (en) Method for production of alloyed titanium welding wire
JP5837406B2 (en) Titanium alloy and manufacturing method thereof
JP2008075183A (en) High-strength and high-toughness metal and process for producing the same
WO2013162658A2 (en) Oxygen-enriched ti-6ai-4v alloy and process for manufacture
JP5759426B2 (en) Titanium alloy and manufacturing method thereof
Qian et al. Sintering of titanium and its alloys
US20180105897A1 (en) Alpha + beta or beta TITANIUM ALLOY AND METHOD FOR PRODUCTION THEREOF
JP4397425B1 (en) Method for producing Ti particle-dispersed magnesium-based composite material
JP4281857B2 (en) Sintered tool steel and manufacturing method thereof
JP2009091624A (en) Aluminum-based material and manufacturing method therefor
JP2012102394A (en) Method of modifying thermal and electrical properties of multi-component titanium alloy
Taleghani et al. Metal Matrix Composites: Al-Zn-Mg-Cu/(SiC or TiB^ sub 2^)^ sub p^ Composites Developed by Powder Extrusion: Microstructure and Mechanical Properties
El-Soudani Properties and Selection of Powder Metallurgy Titanium and Its Alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151105

R150 Certificate of patent or registration of utility model

Ref document number: 5837406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250