JP5836851B2 - Method for producing brinzolamide - Google Patents

Method for producing brinzolamide Download PDF

Info

Publication number
JP5836851B2
JP5836851B2 JP2012054610A JP2012054610A JP5836851B2 JP 5836851 B2 JP5836851 B2 JP 5836851B2 JP 2012054610 A JP2012054610 A JP 2012054610A JP 2012054610 A JP2012054610 A JP 2012054610A JP 5836851 B2 JP5836851 B2 JP 5836851B2
Authority
JP
Japan
Prior art keywords
compound
target compound
raw material
protected
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012054610A
Other languages
Japanese (ja)
Other versions
JP2013189381A (en
Inventor
芳樹 大庭
芳樹 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2012054610A priority Critical patent/JP5836851B2/en
Publication of JP2013189381A publication Critical patent/JP2013189381A/en
Application granted granted Critical
Publication of JP5836851B2 publication Critical patent/JP5836851B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、緑内障治療薬として有用なブリンゾラミドの新規な製造方法に関する。   The present invention relates to a novel method for producing brinzolamide useful as a therapeutic agent for glaucoma.

ブリンゾラミドとは、下記式(2)で示される化合物であり、該化合物の正式名称は、(R)−3,4−ジヒドロ−4−エチルアミノ−2−(3−メトキシプロピル)−2H−チエノ[3,2−e]−1,2−チアジン−6−スルホンアミド−1,1−ジオキシド)である(以下、該化合物を「目的化合物」ともいう。)。ブリンゾラミドは、炭酸脱水酵素阻害作用を持つために緑内障治療薬として用いられている。   Brinzolamide is a compound represented by the following formula (2), and the formal name of the compound is (R) -3,4-dihydro-4-ethylamino-2- (3-methoxypropyl) -2H-thieno. [3,2-e] -1,2-thiazine-6-sulfonamido-1,1-dioxide) (hereinafter, this compound is also referred to as “target compound”). Brinzolamide is used as a therapeutic agent for glaucoma because it has a carbonic anhydrase inhibitory action.

Figure 0005836851
Figure 0005836851

ブリンゾラミドの製造方法としては、下記式(1)で示される(S)−3,4−ジヒドロ−4−ヒドロキシ−2−(3−メトキシプロピル)−2H−チエノ[3,2−e]−1,2−チアジン−6−スルホンアミド−1,1−ジオキシド(以下、「原料化合物」ともいう。)のC(6)部位のスルホンアミド官能基を保護し、C(4)部位の水酸基を活性化した後、アミンで置換し、然る後、C(6)部位の保護スルホンアミド官能基から保護基を除去する方法が一般的に知られている(特許文献1及び非特許文献1参照)。   As a method for producing brinzolamide, (S) -3,4-dihydro-4-hydroxy-2- (3-methoxypropyl) -2H-thieno [3,2-e] -1 represented by the following formula (1): , 2-thiazine-6-sulfonamide-1,1-dioxide (hereinafter also referred to as “raw compound”) protects the sulfonamide functional group at the C (6) site and activates the hydroxyl group at the C (4) site. After the conversion, the method is generally known in which a protective group is removed from the protected sulfonamide functional group at the C (6) site after substitution with an amine (see Patent Document 1 and Non-Patent Document 1). .

Figure 0005836851
Figure 0005836851

上記一連の反応(保護、アミノ化及び脱保護)では、不純物となる多量の副成物が生成するため、たとえば反応混合物を中和した後に有機成分を抽出することによりアミン及び無機塩類を除去し、次いで抽出液を濃縮して得られる目的化合物の粗体を精製する必要がある。前記特許文献では、このようにして得られた粗体を2−プロパノールで再結晶することにより有機不純物を除去していた。   In the above series of reactions (protection, amination and deprotection), a large amount of by-products as impurities are generated. For example, the reaction mixture is neutralized and then the organic components are extracted to remove amines and inorganic salts. Then, it is necessary to purify the crude product of the target compound obtained by concentrating the extract. In the said patent document, the organic impurity was removed by recrystallizing the rough body obtained in this way with 2-propanol.

特許第2854798号明細書Japanese Patent No. 2854798

Organic Process Reseach & Development (1999), 3(2), 114−120Organic Process Research & Development (1999), 3 (2), 114-120.

前記特許文献に記載されている2−プロパノールを用いた再結晶により粗体の精製を行った場合には、純度の高い目的化合物を比較的高い収率で得ることができる。そして、本発明者等の検討によれば、このような効果は2−プロパノール以外のアルコール類による再結晶を行った場合にも見られ、酢酸エチルなどの他の単一溶媒を用いた再結晶と比較し、同等の純度のブリンゾラミドを、より高い収率で得ることができることが確認された。   When the crude product is purified by recrystallization using 2-propanol described in the above-mentioned patent document, the target compound with high purity can be obtained in a relatively high yield. According to the study by the present inventors, such an effect is also seen when recrystallization is performed with an alcohol other than 2-propanol, and recrystallization using another single solvent such as ethyl acetate. It was confirmed that the brinzolamide of the same purity can be obtained in a higher yield as compared with the above.

しかしながら、アルコール類を用いた再結晶による精製は、純度の点では満足の行くものの、収率の点では満足の行くものではなかった。また、アルコールを用いた再結晶ではある種の不純物を除去することが非常に困難である、という問題があることも新たに判明した。   However, purification by recrystallization using alcohols is satisfactory in terms of purity but not in terms of yield. It has also been newly found that there is a problem that it is very difficult to remove certain impurities by recrystallization using alcohol.

ブリンゾラミドのような医薬品原薬は、一般に非常に高価である。また、原薬の純度に対する要求は厳しく、このような要求を満足するためには再結晶のような精製工程を繰返す必要があり、除去困難な不純物が存在することは精製の繰返し回数の増大につながる。このような理由から、僅かでも純度や収率を改善すること、及び除去困難な不純物の除去効率を高めることは、工業的に大きな意義をもつ。そこで、本発明は、原料化合物から目的化合物を製造するに際し、高純度の目的物(ブリンゾラミド)を高収率で得ることができる方法を提供することを目的とする。   Drug substances such as brinzolamide are generally very expensive. In addition, the demand for the purity of the drug substance is severe, and in order to satisfy such a requirement, it is necessary to repeat a purification process such as recrystallization. The presence of impurities that are difficult to remove increases the number of repetitive purifications. Connected. For these reasons, improving the purity and yield as much as possible and increasing the removal efficiency of impurities that are difficult to remove have great industrial significance. Accordingly, an object of the present invention is to provide a method capable of obtaining a high-purity target product (brinzolamide) in a high yield when the target compound is produced from a raw material compound.

本発明者等は、上記課題に対して鋭意検討を行った。具体的には抽出操作後における粗体の再結晶操作における収率が向上するような方法を検討した。その結果、再結晶溶媒として、アルコールと非極性溶媒の混合溶媒を使用することによって上記課題を解決できることを見出し、本発明を完成するに到った。   The inventors of the present invention have made extensive studies on the above problems. Specifically, a method for improving the yield in the recrystallization operation of the crude product after the extraction operation was examined. As a result, it has been found that the above problem can be solved by using a mixed solvent of an alcohol and a nonpolar solvent as a recrystallization solvent, and the present invention has been completed.

即ち、本発明は、下記式(1)で示される(S)−3,4−ジヒドロ−4−ヒドロキシ−2−(3−メトキシプロピル)−2H−チエノ[3,2−e]−1,2−チアジン−6−スルホンアミド−1,1−ジオキシドからなる原料化合物から下記式(2)で示される(R)−4−(エチルアミノ)−3,4−ジヒドロ−2−(3−メトキシプロピル)−2H−チエノ[3,2,e]−1,2−チアジン−6−スルホンアミド 1,1−ジオキシドからなる目的化合物を製造する方法であって、
前記原料化合物の4位の炭素原子に結合した水酸基をエチルアミノ化して前記目的物を含む反応混合物を得る反応工程、前記反応混合物から前記目的化合物の粗体を分離する分離工程、及びメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブチルアルコールから選ばれる低炭素鎖アルコールと脂肪族炭化水素又は芳香族炭化水素から選ばれる非極性溶媒の混合溶媒に前記分離工程で分離された前記粗体が溶解した溶液を調製し、当該混合溶から高純度化された目的化合物を結晶化させる精製工程を含んでなることを特徴とする前記方法である。

That is, the present invention relates to (S) -3,4-dihydro-4-hydroxy-2- (3-methoxypropyl) -2H-thieno [3,2-e] -1, represented by the following formula (1). (R) -4- (ethylamino) -3,4-dihydro-2- (3-methoxy) represented by the following formula (2) from a raw material compound consisting of 2-thiazine-6-sulfonamide-1,1-dioxide Propyl) -2H-thieno [3,2, e] -1,2-thiazine-6-sulfonamide 1,1-dioxide A method for producing a target compound comprising:
A reaction step of obtaining a reaction mixture containing the target compound by ethylamination of a hydroxyl group bonded to the 4-position carbon atom of the starting compound, a separation step of separating a crude product of the target compound from the reaction mixture, and methanol and ethanol; The crude product separated in the separation step into a mixed solvent of a low carbon chain alcohol selected from 1-propanol, 2-propanol and 1-butyl alcohol and a nonpolar solvent selected from aliphatic hydrocarbons or aromatic hydrocarbons The method is characterized in that it comprises a purification step of preparing a solution in which is dissolved and crystallizing the target compound purified from the mixed solution.

Figure 0005836851
Figure 0005836851

Figure 0005836851
Figure 0005836851

本発明によれば、アルコールを用いて再結晶を行った場合と比べて、同等以上の高い精製効果を得られるばかりでなく、目的物の単離収率を向上させることができる。さらに、本発明の方法によれば、アルコールを単独で用いた場合には除去することが困難であった下記式(3)で示される化合物(以下、「アミドトシル化体」とも言う)を除去することも可能となる。   According to the present invention, as compared with the case where recrystallization is performed using alcohol, not only a purification effect equal to or higher than that can be obtained, but also the isolation yield of the target product can be improved. Furthermore, according to the method of the present invention, a compound represented by the following formula (3) (hereinafter also referred to as “amidotosylated product”), which was difficult to remove when alcohol was used alone, is removed. It is also possible.

Figure 0005836851
Figure 0005836851

このような、優れた効果が得られる理由は明らかではないが、溶液から目的物を結晶化させて精製する場合において、溶媒としてアルコールと非極性溶媒との混合溶媒を用いた場合には、結晶析出に悪影響(例えば結晶化の際に不純物を取り込んでしまうなど)を与えることなく、目的化合物の溶解度が低下するため、純度を損なうことなく収率が向上したものと考えられる。また、溶媒に非極性溶媒が含まれることにより、低極性不純物に対する溶解度が向上し、アミドトシル化体の除去効率が向上したものと考えられる。   The reason why such an excellent effect is obtained is not clear, but in the case of purifying the target product by crystallization from a solution, if a mixed solvent of alcohol and nonpolar solvent is used as the solvent, the crystal It is considered that the yield was improved without impairing the purity because the solubility of the target compound was lowered without giving adverse effects to the precipitation (for example, incorporating impurities during crystallization). In addition, it is considered that the nonpolar solvent is included in the solvent, so that the solubility in low-polar impurities is improved and the removal efficiency of the amidosylated compound is improved.

本発明の方法は、原料化合物から目的化合物を製造する方法であって、前記反応工程、前記分離工程、及び前記精製工程を含んでなる。以下に各工程について詳しく説明する。   The method of the present invention is a method for producing a target compound from a raw material compound, and comprises the reaction step, the separation step, and the purification step. Each step will be described in detail below.

(反応工程)
反応工程では、前記原料化合物の4位の炭素原子{C(4)部位}に結合した水酸基をエチルアミノ化して前記目的物を含む反応混合物を得る。上記エチルアミノ化の方法は、前記特許文献1や非特許文献1に記載された従来の方法と特に変わる点はなく、例えば次のような方法により好適に行うことができる。すなわち、前記原料化合物の6位の炭素原子に結合したスルホンアミド基を保護して、保護された原料化合を生成する保護工程、該保護された原料化合物の4位の炭素原子{C(4)部位}に結合した水酸基をエチルアミンで置換して、保護された目的化合物(6位の炭素原子に結合したスルホンアミド基が保護された目的化合物)を生成するアミノ化工程、該保護された目的化合物における保護されたスルホンアミド基を脱保護して目的化合物を生成する脱保護工程を含んでなる方法により好適に行うことができる。
(Reaction process)
In the reaction step, the hydroxyl group bonded to the 4-position carbon atom {C (4) site} of the raw material compound is ethylaminated to obtain a reaction mixture containing the target product. The ethylamination method is not particularly different from the conventional methods described in Patent Document 1 and Non-Patent Document 1, and can be suitably performed by, for example, the following method. That is, a protection step of protecting the sulfonamide group bonded to the carbon atom at the 6-position of the raw material compound to produce a protected raw material compound, the carbon atom at the 4-position of the protected raw material compound {C (4) An amination step for producing a protected target compound (a target compound in which a sulfonamide group bonded to the 6-position carbon atom is protected) by substituting the hydroxyl group bonded to the site} with ethylamine, the protected target compound It can be suitably carried out by a method comprising a deprotection step of deprotecting the protected sulfonamide group in to produce the target compound.

上記保護工程における、前記原料化合物の6位の炭素原子{C(6)部位}に結合したスルホンアミド基の保護は、反応溶媒中で原料化合物と保護剤としてのオルト酢酸低級アルキルを加熱混合することにより好適に行うことができる。オルト酢酸低級アルキルとしては、反応で副生するアルコールの除去が容易であるという理由からオルト酢酸トリメチルを使用することが特に好ましい。また、反応溶媒は反応に関与しない不活性溶媒であれば特に制限されないが、反応温度の管理が容易であることから、酢酸エチル、アセトニトリルを用いるのが特に好ましい。反応条件は適宜決定すればよいが、通常、原料化合物、当該原料化合物1モルに対して1.0〜1.5モルのオルト酢酸低級アルキル、及び原料化合物1質量部に対して1.5〜10質量部の反応溶媒を混合し、還流下1〜24時反応させればよい。このような反応を行うことにより、6位の炭素原子に結合したスルホンアミド基が保護された原料化合物(以下、「イミダート体」ともいう。)を得ることができる。   In the protection step, the sulfonamide group bonded to the 6-position carbon atom {C (6) site} of the raw material compound is protected by heating and mixing the raw material compound and a lower alkyl orthoacetate as a protective agent in a reaction solvent. This can be suitably performed. As the lower alkyl orthoacetate, trimethyl orthoacetate is particularly preferably used because the alcohol produced as a by-product in the reaction can be easily removed. The reaction solvent is not particularly limited as long as it is an inert solvent that does not participate in the reaction. However, it is particularly preferable to use ethyl acetate or acetonitrile because the reaction temperature can be easily controlled. The reaction conditions may be appropriately determined. Usually, the raw material compound, 1.0 to 1.5 moles of lower alkyl orthoacetate with respect to 1 mole of the raw material compound, and 1.5 to 1.5 parts with respect to 1 part by weight of the raw material compound. What is necessary is just to mix 10 mass parts reaction solvent and to make it react for 1 to 24 hours under recirculation | reflux. By performing such a reaction, a raw material compound in which the sulfonamide group bonded to the 6-position carbon atom is protected (hereinafter also referred to as “imidate”) can be obtained.

前記アミノ化工程は、イミダート体の4位炭素原子に結合した水酸基を活性化してから、エチルアミンと反応させることが好ましい。上記水酸基の活性化は、例えば、上記保護工程終了後、溶媒を留去することによりイミダート体の濃縮物を得、これをテトラヒドロフラン等の有機溶媒に溶解させて得た溶液を冷却してから当該溶液にイミダート体1モルに対して1.0〜1.5モルの塩化スルホニル化合物を添加し、−10〜15℃の温度で1〜4時間攪拌することにより、行うことができる。このような操作により、4位の炭素がスルホニル化されたイミダート体(スルホニル体)を得ることができる。該化合物は反応液中に溶解しているので、該反応液に70%エチルアミン水溶液を加えることにより、エチルアミンと反応させればよい。なお、塩化スルホニル化合物としては、引き続き行う脱離工程における反応時間が短縮でき、収率も向上するという理由から、塩化p−トルエンスルホニルを使用することが好ましい。   In the amination step, it is preferable that the hydroxyl group bonded to the 4-position carbon atom of the imidate is activated and then reacted with ethylamine. The activation of the hydroxyl group is obtained by, for example, obtaining an imidate concentrate by distilling off the solvent after completion of the protection step, cooling the solution obtained by dissolving the concentrate in an organic solvent such as tetrahydrofuran, and the like. It can carry out by adding 1.0-1.5 mol sulfonyl chloride compound with respect to 1 mol of imidate bodies to a solution, and stirring for 1-4 hours at the temperature of -10-15 degreeC. By such an operation, an imidate body (sulfonyl body) in which the carbon at the 4-position is sulfonylated can be obtained. Since the compound is dissolved in the reaction solution, a 70% aqueous solution of ethylamine may be added to the reaction solution to react with ethylamine. As the sulfonyl chloride compound, it is preferable to use p-toluenesulfonyl chloride because the reaction time in the subsequent desorption step can be shortened and the yield is improved.

スルホニル体と70%エチルアミン水溶液との反応(置換反応)は−10〜15℃に冷却された反応液に70%エチルアミン水溶液をスルホニル体1モルに対するエチルアミンの量が10〜40モルとなるように添加し、所定時間反応させることによって好適に行うことができる。反応条件は、適宜決定すればよいが、通常は、室温下で8〜48時間程度反応させればよい。また、この反応の際、反応液中の水との加水分解により保護されたスルホンアミド基の脱保護も並行して行うことができる。   In the reaction (substitution reaction) between the sulfonyl compound and 70% ethylamine aqueous solution, the 70% ethylamine aqueous solution is added to the reaction solution cooled to -10 to 15 ° C. so that the amount of ethylamine is 10 to 40 mol per mol of the sulfonyl compound. And it can carry out suitably by making it react for a predetermined time. The reaction conditions may be determined as appropriate, but in general, the reaction may be performed at room temperature for about 8 to 48 hours. In this reaction, deprotection of the sulfonamide group protected by hydrolysis with water in the reaction solution can also be performed in parallel.

(分離工程)
分離工程では、前記工程で得られた反応混合物から前記目的化合物の粗体を分離する。ここでいう分離とは、反応混合物中の反応溶媒および水溶性不純物と、有機系不純物を含む目的化合物からなる粗体とを分離することを意味する。また、目的化合物の粗体とは、主たる不純物として有機系不純物(有機系副生物や残存有機溶媒など)を含む目的化合物を意味し、通常、目的化合物の純度が65〜80%程度の固体状若しくは粘稠な液状のものを意味する。反応混合物からの粗体の分離は、反応混合物である反応溶液に炭酸水素ナトリウムなどの塩基を添加して中和した後に、酢酸エチルなどの有機溶媒(抽出溶媒)を用いて有機成分を分離し、必要に応じて水洗、乾燥(水分除去)を行い、抽出溶媒を留去して濃縮することにより好適に行うことができる。
(Separation process)
In the separation step, the crude product of the target compound is separated from the reaction mixture obtained in the step. Separation here means separating the reaction solvent and water-soluble impurities in the reaction mixture from the crude product comprising the target compound containing organic impurities. The crude product of the target compound means a target compound containing organic impurities (such as organic by-products and residual organic solvent) as main impurities, and is usually a solid having a purity of about 65 to 80%. Or it means a viscous liquid. Separation of the crude product from the reaction mixture is accomplished by adding a base such as sodium hydrogen carbonate to the reaction solution, which is the reaction mixture, and then separating the organic components using an organic solvent (extraction solvent) such as ethyl acetate. If necessary, washing with water and drying (moisture removal) are performed, and the extraction solvent is distilled off and concentrated.

(前記精製工程)
精製工程では、アルコールと非極性溶媒の混合溶媒用に前記分離工程で分離された前記粗体が溶解した溶液を調製し、当該混合溶から高純度化された目的化合物を結晶化させる。アルコールとしては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブチルアルコール等の低炭素鎖アルコールを使用することが好適である。ブリンゾラミドの溶解度、得られるブリンゾラミドの純度が高いことからエタノール又は2−プロパノールを使用することが特に好ましく、目的物の収率(回収率)をより高くすることができるという理由とから2−プロパノールを使用することが最も好ましい。
(Purification step)
In the purification step, a solution in which the crude product separated in the separation step is dissolved is prepared for a mixed solvent of alcohol and a nonpolar solvent, and the purified target compound is crystallized from the mixed solution. As the alcohol, it is preferable to use a low carbon chain alcohol such as methanol, ethanol, 1-propanol, 2-propanol, 1-butyl alcohol and the like. It is particularly preferable to use ethanol or 2-propanol because of the solubility of brinzolamide and the purity of the obtained brinzolamide, and 2-propanol is preferred because the yield (recovery) of the target product can be further increased. Most preferably it is used.

非極性溶媒としては、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素類、又はトルエンなどの芳香族炭化水素類が好適に使用できる。これらの中でも目的物の収率(回収率)が高く、工業生産での安全性及び毒性が低いという理由からヘプタンを使用することが特に好ましい。   As the nonpolar solvent, aliphatic hydrocarbons such as pentane, hexane and heptane, or aromatic hydrocarbons such as toluene can be preferably used. Among these, it is particularly preferable to use heptane because the yield (recovery rate) of the target product is high and the safety and toxicity in industrial production are low.

上記混合溶媒におけるアルコールと非極性溶媒との配合割合は容積比で表してアルコール/非極性溶媒=1〜10の範囲が好ましく、3〜10の範囲が特に好ましい。   The blending ratio of the alcohol and the nonpolar solvent in the mixed solvent is expressed as a volume ratio, preferably in the range of alcohol / nonpolar solvent = 1 to 10, particularly preferably in the range of 3 to 10.

前記溶液の調製方法は特に限定されず、アルコールと非極性溶媒の混合溶媒に粗体を加え加熱して溶解させてもよいし、アルコールに粗体を溶解させた後に非極性溶媒を加えてもよい。このとき使用する混合溶媒量は、通常、粗体1質量部に対して1〜50質量部である。バッチ収量及びろ過工程の操作性向上を考慮すると2〜10質量部が好ましい。   The method for preparing the solution is not particularly limited, and the crude product may be added to a mixed solvent of alcohol and a nonpolar solvent and heated to be dissolved, or the crude product may be dissolved in the alcohol and then the nonpolar solvent may be added. Good. The amount of the mixed solvent used at this time is usually 1 to 50 parts by mass with respect to 1 part by mass of the coarse body. Considering the batch yield and the operability improvement of the filtration step, 2 to 10 parts by mass is preferable.

このようにして調製された溶液から目的化合物を結晶化させるには、溶液を冷却すればよい。なお、溶液を調製する際の温度にもよるが、アルコールに粗体を溶解させてから非極性溶媒を添加する場合には、非極性溶媒の添加に伴い目的物の結晶化が起ることもある。通常は、粗体を含む溶液を50℃〜100℃に加熱して粗体を完全に溶解せしめてから溶液を−10℃〜20℃に冷却して結晶化を行うことが好ましい。結晶化により析出した目的化合物は、粗体と比べて高純度化されている。   In order to crystallize the target compound from the solution thus prepared, the solution may be cooled. Depending on the temperature at which the solution is prepared, when the nonpolar solvent is added after the crude product is dissolved in alcohol, the target product may crystallize with the addition of the nonpolar solvent. is there. Usually, it is preferable to perform crystallization by heating the solution containing the crude product to 50 ° C. to 100 ° C. to completely dissolve the crude product and then cooling the solution to −10 ° C. to 20 ° C. The target compound precipitated by crystallization is highly purified compared to the crude product.

後述する実施例にも示されるように、このような精製工程を1度行った場合に得られる高純度化された化合物(1次精製体)の純度は98.0〜99.0%であり、その収率は、反応工程で用いた原料化合物の量を基準として67〜71%である。より高い純度の目的物を得るためには、精製工程を繰返せばよい。   As shown in Examples described later, the purity of the highly purified compound (primary purified product) obtained by performing such a purification step once is 98.0 to 99.0%. The yield is 67 to 71% based on the amount of the raw material compound used in the reaction step. In order to obtain a higher-purity target product, the purification process may be repeated.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

なお、実施例、比較例で得られた原料化合物、イミダート体、スルホニル体及びブリンゾラミド(目的化合物)の純度測定は、以下のように行った。   In addition, the purity measurement of the raw material compound obtained by the Example and the comparative example, the imidate body, the sulfonyl body, and the brinzolamide (target compound) was performed as follows.

<ブリンゾラミドなどの純度の測定方法>
装置:WATERS社製 Alliance 型式e2695−2489
検出器:紫外吸光光度計(測定波長:254nm)
カラム:ジーエルサイエンス株式会社製 商品名 Inertsil CN−3、粒子径5μm、内径4.6mm、長さ25cm、
カラム温度:40℃ 一定温度
移動相:n−ヘキサン/エタノール=80/20
流量:1.0ml/分
測定時間:45分
上記条件で測定した場合、原料化合物は29分付近に、イミダート体は9.4分付近に、スルホニル体は8.2分付近にブリンゾラミド(目的化合物)は19分付近に、またアミドトシル化体は10分付近に吸収ピークが観測される。純度は、HPLCのピーク面積比をもとに決定した。
<Method for measuring purity of brinzolamide, etc.>
Apparatus: Alliance model e2695-2489 manufactured by WATERS
Detector: UV absorptiometer (measurement wavelength: 254 nm)
Column: GL Science Co., Ltd. product name Inertsil CN-3, particle diameter 5 μm, inner diameter 4.6 mm, length 25 cm,
Column temperature: 40 ° C. Constant temperature mobile phase: n-hexane / ethanol = 80/20
Flow rate: 1.0 ml / min Measurement time: 45 minutes When measured under the above conditions, the starting compound is about 29 minutes, the imidate is about 9.4 minutes, and the sulfonyl is about 8.2 minutes for brinzolamide (target compound) ) Is observed at around 19 minutes, and an amidotosylated product is observed at around 10 minutes. The purity was determined based on the peak area ratio of HPLC.

実施例1
(反応工程)
原料化合物(50g,140mmol)をアセトニトリル200mLに溶解させ、オルト酢酸トリメチル(18.54g,154.3mmol)を加え、流出液を系外へ除去しながら84℃で3時間加熱還流を行った。溶液を濃縮しイミダート体70.43gを得た。これをテトラヒドロフラン(150mL)に溶解し、0℃に冷却した。ここにトリエチルアミン(21.29g,212.5mmol)とパラトルエンスルホニルクロリド(32.09g,168.3mmol)を加えた所、スルホニル体の沈殿が発生した。3時間氷冷下撹拌を行い、スルホニル体を取得した。得られた反応液に氷冷下、70%モノエチルアミン水溶液(250mL,3.13mol)を滴下した。混合液を終夜撹拌した後、12Mの塩酸(240mL)を40℃以下で加えてスルホニル体の脱保護を行った。
(分離工程)
上記脱保護で得られた反応液に炭酸水素ナトリウム約10gを加え混合液のpHが8となるまで調整し、酢酸エチルで有機物を抽出した後、濃縮乾燥し反応濃縮物(粗体)62.65gを得た。
(精製工程)
2−プロパノール5.4mlとヘプタン0.6mlとを混合して得られた混用溶媒6mlに上記分離工程で得られた粗体1.25gを溶解させて溶液を調製した。なお、溶液調製に際しては、80℃に加熱し粗体を完全に溶解させた。溶液調製後、冷却して目的物を結晶化させた。結晶化した目的物(1次精製体)をろ過により回収し、真空乾燥後、質量を測定したところ0.737gであり、原料化合物を基準とした収率は68.5%であった。また、1次精製体の純度を測定したところ、目的物の純度は98.76%であり、不純物として含まれるアミドトシル体の含有量は0.14%であった。
Example 1
(Reaction process)
The starting compound (50 g, 140 mmol) was dissolved in 200 mL of acetonitrile, trimethyl orthoacetate (18.54 g, 154.3 mmol) was added, and the mixture was heated to reflux at 84 ° C. for 3 hours while removing the effluent out of the system. The solution was concentrated to obtain 70.43 g of an imidate. This was dissolved in tetrahydrofuran (150 mL) and cooled to 0 ° C. When triethylamine (21.29 g, 212.5 mmol) and paratoluenesulfonyl chloride (32.09 g, 168.3 mmol) were added thereto, precipitation of the sulfonyl body occurred. The mixture was stirred for 3 hours under ice cooling to obtain a sulfonyl compound. A 70% aqueous monoethylamine solution (250 mL, 3.13 mol) was added dropwise to the resulting reaction solution under ice cooling. After the mixture was stirred overnight, 12M hydrochloric acid (240 mL) was added at 40 ° C. or lower to deprotect the sulfonyl compound.
(Separation process)
About 10 g of sodium bicarbonate was added to the reaction solution obtained by the above deprotection to adjust the pH of the mixture solution to 8, and the organic substance was extracted with ethyl acetate, and then concentrated to dryness to obtain a reaction concentrate (crude material). 65 g was obtained.
(Purification process)
A solution was prepared by dissolving 1.25 g of the crude product obtained in the above separation step in 6 ml of a mixed solvent obtained by mixing 5.4 ml of 2-propanol and 0.6 ml of heptane. In preparation of the solution, the crude product was completely dissolved by heating to 80 ° C. After preparing the solution, it was cooled to crystallize the desired product. The crystallized target product (primary purified product) was recovered by filtration, dried in vacuo, and measured for mass. The result was 0.737 g, and the yield based on the raw material compound was 68.5%. Further, when the purity of the primary purified product was measured, the purity of the target product was 98.76%, and the content of the amide tosyl compound contained as an impurity was 0.14%.

実施例2〜6
精製工程で使用する混合溶液を表1に示すものに変えた他は実施1と同様にして1次精製体を得た。得られた1次精製体の純度およびアミドトシル体の含有量並びに、1次精製体の収率を表1に示す。
Examples 2-6
A primary purified product was obtained in the same manner as in Example 1 except that the mixed solution used in the purification step was changed to that shown in Table 1. Table 1 shows the purity of the obtained primary purified product, the content of the amidotosyl product, and the yield of the primary purified product.

実施例7
実施例1で得られたブリンゾラミド一次精製体0.6gに対して8質量部の2−プロパノールに溶解させて溶液を調製した。なお、溶液調製に際しては80℃に加熱し粗体を完全に溶解させた。溶液調製後、冷却して目的物を結晶化させた。結晶化した目的物をろ過により回収し、真空乾燥後、HPLCにより純度を測定し、純度が99.8%以上となるまで同様の方法で精製を繰り返した。5回繰り返した結果、ブリンゾラミドの最終精製体0.383gを得た。一次精製体からの収率は63.8%であった。目的物の純度は99.83%であり、不純物として含まれるアミドトシル体の含有量は0.05%であった。
Example 7
A solution was prepared by dissolving 8 parts by mass of 2-propanol with respect to 0.6 g of the brinzolamide primary purified product obtained in Example 1. In preparing the solution, the crude product was completely dissolved by heating to 80 ° C. After preparing the solution, it was cooled to crystallize the desired product. The crystallized target product was collected by filtration, vacuum-dried, purity was measured by HPLC, and purification was repeated in the same manner until the purity reached 99.8% or higher. As a result of repeating 5 times, 0.383 g of a final purified product of brinzolamide was obtained. The yield based on the primary purified product was 63.8%. The purity of the target product was 99.83%, and the content of the amide tosyl compound contained as an impurity was 0.05%.

比較例1〜7
精製工程で使用する混合溶液を表1に示すものに変えた他は実施1と同様にして1次精製体を得た。得られた1次精製体の純度およびアミドトシル体の含有量並びに、1次精製体の収率を表1に示す。
Comparative Examples 1-7
A primary purified product was obtained in the same manner as in Example 1 except that the mixed solution used in the purification step was changed to that shown in Table 1. Table 1 shows the purity of the obtained primary purified product, the content of the amidotosyl product, and the yield of the primary purified product.

比較例8
比較例1で得られたブリンゾラミド一次精製体0.6gに対して8質量部の2−プロパノールに溶解させて溶液を調製した。なお、溶液調製に際しては80℃に加熱し粗体を完全に溶解させた。溶液調製後、冷却して目的物を結晶化させた。結晶化した目的物をろ過により回収し、真空乾燥後、HPLCにより純度を測定し、純度が99.8%以上となるまで同様の方法で精製を繰り返した。7回繰り返した結果、ブリンゾラミドの最終精製体0.313gを得た。一次精製体からの収率は52.2%であった。目的物の純度は99.83%であり、不純物として含まれるアミドトシル体の含有量は0.09%であった。
Comparative Example 8
A solution was prepared by dissolving 8 parts by mass of 2-propanol with respect to 0.6 g of the brinzolamide primary purified product obtained in Comparative Example 1. In preparing the solution, the crude product was completely dissolved by heating to 80 ° C. After preparing the solution, it was cooled to crystallize the desired product. The crystallized target product was collected by filtration, vacuum-dried, purity was measured by HPLC, and purification was repeated in the same manner until the purity reached 99.8% or higher. As a result of repeating 7 times, 0.313 g of a final purified product of brinzolamide was obtained. The yield based on the primary purified product was 52.2%. The purity of the target product was 99.83%, and the content of the amide tosyl compound contained as an impurity was 0.09%.

Figure 0005836851
Figure 0005836851

Claims (3)

下記式(1)で示される(S)−3,4−ジヒドロ−4−ヒドロキシ−2−(3−メトキシプロピル)−2H−チエノ[3,2−e]−1,2−チアジン−6−スルホンアミド−1,1−ジオキシドからなる原料化合物から下記式(2)で示される(R)−4−(エチルアミノ)−3,4−ジヒドロ−2−(3−メトキシプロピル)−2H−チエノ[3,2,e]−1,2−チアジン−6−スルホンアミド 1,1−ジオキシドからなる目的化合物を製造する方法であって、
前記原料化合物の4位の炭素原子に結合した水酸基をエチルアミノ化して前記目的物を含む反応混合物を得る反応工程、
前記反応混合物から前記目的化合物の粗体を分離する分離工程、及び
メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブチルアルコールから選ばれる低炭素鎖アルコールと脂肪族炭化水素又は芳香族炭化水素から選ばれる非極性溶媒の混合溶媒に前記分離工程で分離された前記粗体が溶解した溶液を調製し、当該混合溶から高純度化された目的化合物を結晶化させる精製工程を含んでなることを特徴とする前記方法。
Figure 0005836851
Figure 0005836851
(S) -3,4-dihydro-4-hydroxy-2- (3-methoxypropyl) -2H-thieno [3,2-e] -1,2-thiazine-6 represented by the following formula (1) (R) -4- (ethylamino) -3,4-dihydro-2- (3-methoxypropyl) -2H-thieno represented by the following formula (2) from a raw material compound consisting of sulfonamide-1,1-dioxide A method for producing a target compound comprising [3,2, e] -1,2-thiazine-6-sulfonamide 1,1-dioxide,
A reaction step of obtaining a reaction mixture containing the target compound by ethylamination of a hydroxyl group bonded to a carbon atom at the 4-position of the raw material compound;
A separation step of separating a crude product of the target compound from the reaction mixture; and
Separated in the separation step into a mixed solvent of a low carbon chain alcohol selected from methanol, ethanol, 1-propanol, 2-propanol and 1-butyl alcohol and a nonpolar solvent selected from aliphatic hydrocarbons or aromatic hydrocarbons The said method characterized by including the refinement | purification process which prepares the solution in which the said rough body melt | dissolved, and crystallizes the target compound highly purified from the said mixed solution.
Figure 0005836851
Figure 0005836851
前記反応工程が、前記原料化合物の6位の炭素原子に結合したスルホンアミド基を保護して保護された原料化合を生成する保護工程、該保護された原料化合物の4位の炭素原子に結合した水酸基をエチルアミンで置換して、保護された目的化合物を生成するアミノ化工程、該保護された目的化合物における保護されたスルホンアミド基を脱保護して、目的化合物を生成する脱保護工程を含んでなる請求項1に記載の方法。 The reaction step protects the sulfonamide group bonded to the 6-position carbon atom of the raw material compound to produce a protected raw material compound, and binds to the 4-position carbon atom of the protected raw material compound An amination step in which the hydroxyl group is substituted with ethylamine to produce a protected target compound, and a deprotection step in which the protected sulfonamide group in the protected target compound is deprotected to produce the target compound. The method of claim 1. 前記精製工程において、アルコールとして2−プロパノールを使用する請求項1又は2に記載の方法。 The method according to claim 1 or 2 , wherein 2-propanol is used as an alcohol in the purification step.
JP2012054610A 2012-03-12 2012-03-12 Method for producing brinzolamide Expired - Fee Related JP5836851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012054610A JP5836851B2 (en) 2012-03-12 2012-03-12 Method for producing brinzolamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012054610A JP5836851B2 (en) 2012-03-12 2012-03-12 Method for producing brinzolamide

Publications (2)

Publication Number Publication Date
JP2013189381A JP2013189381A (en) 2013-09-26
JP5836851B2 true JP5836851B2 (en) 2015-12-24

Family

ID=49390053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012054610A Expired - Fee Related JP5836851B2 (en) 2012-03-12 2012-03-12 Method for producing brinzolamide

Country Status (1)

Country Link
JP (1) JP5836851B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153192A (en) * 1990-04-09 1992-10-06 Alcon Laboratories, Inc. Thiophene sulfonamides useful as carbonic anhydrase inhibitors
US5378703A (en) * 1990-04-09 1995-01-03 Alcon Laboratories, Inc. Sulfonamides useful as carbonic anhydrase inhibitors
US5344929A (en) * 1993-02-18 1994-09-06 Alcon Laboratories, Inc. Preparation of carbonic anhydrase inhibitors
CA2666405A1 (en) * 2006-10-13 2008-05-29 Usv Limited Improved process for the preparation of (r)-(+)-4-(ethyiamino)-3,4-dihydro-2-(3- methoxypropyl)-2h-thieno[3,2-e]-1,2-thiazine-6-sulfonamide-1,1-dioxide
CN102414192A (en) * 2009-03-13 2012-04-11 Azad药物成分股份公司 Process for preparing brinzolamide
US20100317655A1 (en) * 2009-06-12 2010-12-16 Auspex Pharmaceuticals, Inc. Sulfonamide inhibitors of carbonic anhydrase
JP5901365B2 (en) * 2012-03-12 2016-04-06 株式会社トクヤマ Method for producing imidate compound

Also Published As

Publication number Publication date
JP2013189381A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5390617B2 (en) Purification method of adefovir dipivoxil
TW201130841A (en) Process for preparing entecavir and its intermediates
JP2013518925A (en) Method for synthesizing and isolating N- (bromoacetyl) -3,3-dinitroazetidine and composition containing the same
WO2018008219A1 (en) Azilsartan intermediate, azilsartan, method for producing azilsartan intermediate, and method for producing azilsartan
JP2004520446A (en) Crystallization method of losartan potassium
WO2017131218A1 (en) Azilsartan and method for producing same
JP2011006379A (en) Method for recrystallizing {2-amino-1,4-dihydro-6-methyl-4-(3-nitrophenyl)-3,5-pyridine dicarboxylic acid-3-[1-(diphenylmethyl)azetidin-3-yl]ester-5-isopropyl ester}(azelnidipine), isopropyl alcohol adduct of azelnidipine, and method for producing azelnidipine
TWI541235B (en) Process of preparing a quinazoline derivative
JP5836851B2 (en) Method for producing brinzolamide
JP4540568B2 (en) Method for producing L-carnosine
JP2012502984A (en) Improved process for producing adefovir dipivoxil
JP2012020970A (en) Method for producing {3-(1-diphenylmethylazetidin-3-yl)ester-5-isopropyl ester 2-amino-1,4-dihydro-6-methyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate}
JP6091339B2 (en) Method for producing olmesartan medoxomil
WO2012070066A1 (en) Process for the preparation of taurolidine and its intermediates thereof
JP2018502858A (en) Method for producing forodesin
JP6275596B2 (en) Method for producing ammonium salt of telmisartan
JP5914246B2 (en) Method for purifying brinzolamide
TWI364282B (en) Cefcapene pivoxil methanesulfonic acid salt
CN107759618B (en) Preparation method of brinzolamide and intermediate thereof
KR100809159B1 (en) Improved method for preparing losartan
KR101628946B1 (en) Improved Process of Silodosin
JP5448588B2 (en) Method for purifying L-carnosine
JP2019131532A (en) Acid anhydride, and method for producing l-carnosine with the acid anhydride
JP2022140107A (en) Method for producing 1,4-benzodiazepine compound
KR100310936B1 (en) A process for preparing N-(4-methylbenzenesulfonyl)-N&#39;-(3-azabicyclo[3,3,0]octane)urea

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151104

R150 Certificate of patent or registration of utility model

Ref document number: 5836851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees