JP5827090B2 - Cu-Fe-P based copper alloy plate excellent in conductivity, heat resistance and bending workability, and method for producing the same - Google Patents

Cu-Fe-P based copper alloy plate excellent in conductivity, heat resistance and bending workability, and method for producing the same Download PDF

Info

Publication number
JP5827090B2
JP5827090B2 JP2011213593A JP2011213593A JP5827090B2 JP 5827090 B2 JP5827090 B2 JP 5827090B2 JP 2011213593 A JP2011213593 A JP 2011213593A JP 2011213593 A JP2011213593 A JP 2011213593A JP 5827090 B2 JP5827090 B2 JP 5827090B2
Authority
JP
Japan
Prior art keywords
copper alloy
tension
alloy plate
orientation
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011213593A
Other languages
Japanese (ja)
Other versions
JP2013072128A (en
Inventor
熊谷 淳一
淳一 熊谷
俊緑 ▲すくも▼田
俊緑 ▲すくも▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2011213593A priority Critical patent/JP5827090B2/en
Publication of JP2013072128A publication Critical patent/JP2013072128A/en
Application granted granted Critical
Publication of JP5827090B2 publication Critical patent/JP5827090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、導電性、耐熱性及び曲げ加工性に優れたCu−Fe−P系銅合金板及びその製造方法に関し、特に詳しくは、半導体装置用リードフレームの素材として好適な、導電率が90%IACS以上であり、400℃にて1時間加熱後のビッカース硬さが100以上であり、曲げ加工性の良好なCu−Fe−P系銅合金板及びその製造方法に関する。   The present invention relates to a Cu-Fe-P-based copper alloy plate excellent in conductivity, heat resistance and bending workability and a method for producing the same, and more particularly, a conductivity suitable for a material for a lead frame for a semiconductor device is 90. The present invention relates to a Cu-Fe-P-based copper alloy plate having a Vickers hardness of not less than 100% and having a Vickers hardness of 100 or more after heating at 400 ° C. for 1 hour and a method for producing the same.

半導体リードフレーム用銅合金板としては、銅母相中にFe又はFe−P等の金属間化合物を析出させた強度、導電性、熱伝導性に優れたCu−Fe−P系の銅合金が多用されているが、最近の電子機器に用いられる半導体装置の大容量化、小型化、高機能化に伴い、半導体装置に使用されるリードフレームの小断面積化が進行し、更なる、強度、導電性、耐熱性のアップが要求されている。
また、近年では、発光ダイオードを用いたLEDランプの液晶ディスプレイ、携帯電話や情報端末のバックライト等への多方面の展開が飛躍的に進んでいる。LEDランプを種々の用途に適用する場合は、白色発光を得ることが重要となり、更に、高輝度化及び放熱性を目的として、基板(ボード)の上に複数のLEDチップを搭載し、樹脂層により被覆したチップオンボード(COB)が開発されており、これらに使用されるリードフレーム用の銅合金基板としても、熱伝導性、プレス加工性、導電性、機械的強度とのバランスが取れたCu−Fe−P系銅合金が使用され始めている。
特に、導電性は、発光ダイオードの小型化及びジュール熱の低減の観点より、更に優れた特性が求められており、また、耐熱性については、プレス加工などによる残留応力を除去するために、加工後に400〜450℃での熱処理が施されても、銅合金の結晶組織の再結晶化による強度低下が起きないような特性が要求されている。
As a copper alloy plate for a semiconductor lead frame, a Cu-Fe-P-based copper alloy having excellent strength, conductivity, and thermal conductivity in which an intermetallic compound such as Fe or Fe-P is precipitated in a copper matrix is used. Although it is widely used, with the recent increase in capacity, size, and functionality of semiconductor devices used in electronic devices, lead frames used in semiconductor devices have become smaller in cross-sectional area, further increasing strength. There is a demand for improved conductivity and heat resistance.
In recent years, the development of LED lamps using light-emitting diodes in liquid crystal displays, backlights for mobile phones and information terminals, etc. has been dramatically advanced. When applying LED lamps to various applications, it is important to obtain white light emission, and for the purpose of increasing brightness and heat dissipation, a plurality of LED chips are mounted on a substrate (board), and a resin layer Chip-on-board (COB) coated with a copper alloy substrate for lead frames used in these has been balanced with thermal conductivity, press workability, conductivity, and mechanical strength Cu-Fe-P based copper alloys are beginning to be used.
In particular, electrical conductivity is required to have further superior characteristics from the viewpoint of miniaturization of light emitting diodes and reduction of Joule heat, and heat resistance is processed in order to remove residual stress due to press working or the like. Even if a heat treatment at 400 to 450 ° C. is performed later, there is a demand for characteristics that do not cause a decrease in strength due to recrystallization of the crystal structure of the copper alloy.

特許文献1には、高強度化と優れた酸化膜密着性とを両立させた、Fe含有量が比較的少なく、FE−SEMによるEBSPを用いた結晶方位解析方法により測定したBrass方位の方位分布密度が25%以上である集合組織を有するとともに、平均結晶粒径を6.0μm以下として、高強度で、かつ、酸化膜密着性を向上させ、半導体パッケージの信頼性を高めたCu−Fe−P系銅合金板を開示されている。
特許文献2には、引張試験により求められる引張弾性率を、120GPa以上とする共に、均一伸びと全伸びとの比、均一伸び/全伸びを0.50未満とし、せん断面率を低下させ、高強度で、かつ、スタンピング加工の際のプレス打ち抜き性を向上させたCu−Fe−P系銅合金板が開示されている。
特許文献3には、フレキシブル基板の導電部材に適した耐屈曲性に優れた銅合金として、圧延面についてのX線回折により求まる積分強度比I{200}/I{111}が1.5以下の銅合金であり、具体的組成として、質量%で、Fe:0.045〜0.095%、P:0.010〜0.030%、Fe、P、Cu以外の元素の合計が1%未満、残部がCuからなる組成、及び、質量%で、Ni:0.5〜3.0%、Sn:0.5〜2.0%、P:0.03〜0.10%、Ni、Sn、P、Cu以外の元素の合計が1%未満、残部がCuからなる組成を有し、導電率が85%IACS以上である銅合金が開示されている。
Patent Document 1 discloses an orientation distribution of the Brass orientation measured by a crystal orientation analysis method using EBSP by FE-SEM, which has both high strength and excellent oxide film adhesion and relatively low Fe content. Cu-Fe- having a texture with a density of 25% or more, an average crystal grain size of 6.0 μm or less, high strength, improved oxide film adhesion, and improved semiconductor package reliability A P-based copper alloy plate is disclosed.
In Patent Document 2, the tensile modulus obtained by a tensile test is 120 GPa or more, the ratio between uniform elongation and total elongation, uniform elongation / total elongation is less than 0.50, and the shearing area ratio is reduced. A Cu—Fe—P-based copper alloy plate having high strength and improved press punchability during stamping is disclosed.
In Patent Literature 3, as a copper alloy having excellent bending resistance suitable for a conductive member of a flexible substrate, an integrated intensity ratio I {200} / I {111} obtained by X-ray diffraction on a rolled surface is 1.5 or less. As a specific composition, the mass ratio is Fe: 0.045-0.095%, P: 0.010-0.030%, and the total of elements other than Fe, P, and Cu is 1%. Less than, composition with Cu being the balance, and mass%, Ni: 0.5-3.0%, Sn: 0.5-2.0%, P: 0.03-0.10%, Ni, A copper alloy having a composition in which the total of elements other than Sn, P, and Cu is less than 1%, the balance is made of Cu, and the conductivity is 85% IACS or more is disclosed.

特開2008−45204号公報JP 2008-45204 A 特開2008−88499号公報JP 2008-88499 A 特開2006−63431号公報JP 2006-63431 A

先行技術文献に開示されているCu−Fe−P系銅合金板では、最近の半導体装置に使用されるリードフレームの多様化に伴って要求される導電性と耐熱性と曲げ加工性とのバランスが不足気味であった。   In Cu-Fe-P copper alloy plates disclosed in prior art documents, the balance of conductivity, heat resistance and bending workability required with the diversification of lead frames used in recent semiconductor devices. There was a shortage.

本発明は、この様な事情に鑑みてなされたものであり、導電率が90%IACS以上であり、400℃にて1時間加熱後のビッカース硬さが100以上であり、優れた曲げ加工性を有する半導体装置用リードフレームの素材として好適なCu−Fe−P系銅合金板及びその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and has an electrical conductivity of 90% IACS or more, a Vickers hardness of 100 or more after heating at 400 ° C. for 1 hour, and excellent bending workability. It is an object of the present invention to provide a Cu—Fe—P-based copper alloy plate suitable as a material for a lead frame for a semiconductor device and a method for manufacturing the same.

本発明者らは、鋭意検討の結果、Fe;0.05〜0.15質量%、P;0.015〜0.05質量%、Zn;0.01〜0.2質量%、Cr;0.0005〜0.003質量%を含有し、残部がCuおよび不可避的不純物からなる組成を有する銅合金板において、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定した結晶粒内の全ピクセル間の平均方位差の結晶組織内の全結晶粒における平均値が2.5〜5.0°であると、銅合金板の導電性が特に向上すること、更に、EBSD法にて測定したCopper方位密度が13.0〜25.5%であると、銅合金板の耐熱性が特に向上すること、更に、EBSD法にて測定した平均結晶粒径が2.0〜6.0μmであると、銅合金板の曲げ加工性が特に向上すること、更に、EBSD法にて測定したBrass方位密度が11.0〜22.0%であると、銅合金板の引張り強度を維持できることを見出した。   As a result of intensive studies, the present inventors have found that Fe; 0.05 to 0.15% by mass, P; 0.015 to 0.05% by mass, Zn; 0.01 to 0.2% by mass, Cr; 0 Crystal grains measured by an EBSD method using a scanning electron microscope with a backscattered electron diffraction image system in a copper alloy plate containing a composition of 0.055 to 0.003% by mass and the balance consisting of Cu and inevitable impurities When the average value of all the crystal grains in the crystal structure of the average orientation difference between all the pixels is 2.5 to 5.0 °, the conductivity of the copper alloy plate is particularly improved. When the Copper orientation density measured in the above is 13.0 to 25.5%, the heat resistance of the copper alloy sheet is particularly improved, and the average grain size measured by the EBSD method is 2.0 to 6.5. When the thickness is 0 μm, the bending workability of the copper alloy sheet is particularly improved. Furthermore, it was found that the tensile strength of the copper alloy plate can be maintained when the Brass orientation density measured by the EBSD method is 11.0 to 22.0%.

即ち、本発明の導電率が90%IACS以上であり、400℃にて1時間加熱した後のビッカース硬さが100以上であり、圧延垂直方向の90°W曲げ試験で割れが生じない、優れた曲げ加工性を有する銅合金板は、Fe;0.05〜0.15質量%、P;0.015〜0.05質量%、Zn;0.01〜0.2質量%、Cr;0.0005〜0.003質量%を含有し、残部がCuおよび不可避的不純物からなる組成を有し、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定した結晶粒内の全ピクセル間の平均方位差の結晶組織内の全結晶粒における平均値が2.5〜5.0°であり、Brass方位密度が11.0〜22.0%であり、Copper方位密度が13.0〜25.5%であり、平均結晶粒径が2.0〜6.0μmであることを特徴とする。
That is, the electrical conductivity of the present invention is 90% IACS or higher, the Vickers hardness after heating at 400 ° C. for 1 hour is 100 or higher, and no crack is generated in the 90 ° W bending test in the rolling vertical direction. The copper alloy sheet having bending workability is Fe: 0.05-0.15 mass%, P: 0.015-0.05 mass%, Zn: 0.01-0.2 mass%, Cr: 0 .0005 to 0.003% by mass, with the balance consisting of Cu and inevitable impurities, all in the crystal grains measured by the EBSD method with a scanning electron microscope with a backscattered electron diffraction image system The average value of the average orientation difference between pixels in all crystal grains in the crystal structure is 2.5 to 5.0 °, the Brass orientation density is 11.0 to 22.0%, and the Copper orientation density is 13. 0 to 25.5%, and the average grain size is It is characterized by being 2.0 to 6.0 μm.

EBSD法にて測定した結晶粒内の全ピクセル間の平均方位差の結晶組織内の全結晶粒における平均値が2.5°未満、或いは、5.0°を超えると、導電率が90%IACS以上とならない。
EBSD法にて測定した結晶組織内のCopper方位密度が13.0%未満、或いは、25.5%を超えると、400℃にて1時間加熱した後のビッカース硬さが100以上とならない。
EBSD法にて測定した結晶組織内のBrass方位密度が11.0%未満、或いは、22.0%を超えると、引張り強度が590MPa以上とならない。
EBSD法にて測定した結晶組織内の平均結晶粒径が2.0μm未満、或いは、6.0μmを超えると、曲げ加工性が低下する。
If the average value of all the crystal grains in the crystal structure of the average orientation difference between all the pixels in the crystal grains measured by the EBSD method is less than 2.5 ° or exceeds 5.0 °, the conductivity is 90%. No more than IACS.
When the Copper orientation density in the crystal structure measured by the EBSD method is less than 13.0% or more than 25.5%, the Vickers hardness after heating at 400 ° C. for 1 hour does not become 100 or more.
When the Brass orientation density in the crystal structure measured by the EBSD method is less than 11.0% or exceeds 22.0%, the tensile strength does not become 590 MPa or more.
When the average crystal grain size in the crystal structure measured by the EBSD method is less than 2.0 μm or exceeds 6.0 μm, the bending workability is lowered.

本発明の導電率が90%IACS以上であり、400℃にて1時間加熱した後のビッカース硬さが100以上であり、圧延垂直方向の90°W曲げ試験で割れが発生しない、優れた曲げ加工性を有する銅合金板は、更にNi、Coからなる元素のうち少なくとも一種を0.01〜0.2質量%含有することを特徴とする。
これらの元素の添加は、耐熱性を更に向上させる効果を有する。添加量が0.01質量%未満では効果がなく、0.2質量%を超えると導電率を低下させる。
Excellent bending with an electrical conductivity of 90% IACS or more according to the present invention, a Vickers hardness of 100 or more after heating at 400 ° C. for 1 hour, and no cracking in the 90 ° W bending test in the vertical direction of rolling. The copper alloy sheet having workability further contains 0.01 to 0.2% by mass of at least one element selected from Ni and Co.
Addition of these elements has an effect of further improving heat resistance. If the added amount is less than 0.01% by mass, there is no effect, and if it exceeds 0.2% by mass, the conductivity is lowered.

本発明の導電率が90%IACS以上であり、400℃にて1時間加熱した後のビッカース硬さが100以上であり、圧延垂直方向の90°W曲げ試験で割れが生じない、優れた曲げ加工性を有する銅合金板の製造方法は、溶解鋳造、熱間圧延、粗圧延、焼鈍、冷間圧延、最終焼鈍、仕上げ冷間圧延、テンションレベリングをこの順で含む工程で銅合金を製造するに際して、前記冷間圧延の圧延率を25〜90%にて実施し、前記仕上げ冷間圧延を、銅合金板に負荷するバックテンションを45〜70N/mm、フロントテンションを75〜100N/mmにて実施し、前記テンションレベリングを、銅合金板に負荷するバックテンションを10〜60N/mm、ラインテンションを15〜90N/mm、フロントテンションを10〜60N/mmにて実施することを特徴とする。
Excellent bending with an electrical conductivity of 90% IACS or more according to the present invention, a Vickers hardness of 100 or more after heating at 400 ° C. for 1 hour, and no cracking in a 90 ° W bending test in the vertical direction of rolling. The manufacturing method of a copper alloy sheet having workability is to produce a copper alloy in a process including melt casting, hot rolling, rough rolling, annealing, cold rolling, final annealing, finish cold rolling, and tension leveling in this order. At this time, the cold rolling is carried out at a rolling rate of 25 to 90%, and the finish cold rolling is applied with a back tension of 45 to 70 N / mm 2 and a front tension of 75 to 100 N / mm. performed at 2, the tension leveling, 10~60N / mm 2 back tension to load the copper alloy sheet, the line tension 15~90N / mm 2, the front tension Which comprises carrying out at 0~60N / mm 2.

冷間圧延の圧延率が25%未満であると、Brass方位密度及びCopper方位密度が発達せず、90%を超えると、Brass方位密度及びCopper方位密度が増加し、引張強度は高くなるが、耐熱性が低下する傾向がある。この冷間圧延にて、Brass方位密度及びCopper方位密度を最適な範囲内に収める素地を作り、仕上げ冷間圧延にて、Brass方位密度及びCopper方位密度を最適な範囲内に収める。   When the rolling ratio of cold rolling is less than 25%, the Brass orientation density and Copper orientation density do not develop, and when it exceeds 90%, the Brass orientation density and Copper orientation density increase, and the tensile strength increases. Heat resistance tends to decrease. By this cold rolling, a base material that fits the Brass orientation density and the Copper orientation density within the optimum ranges is made, and the Brass orientation density and the Copper orientation density are kept within the optimum ranges by the finish cold rolling.

仕上げ冷間圧延において素材に作用するテンションのうち、バックテンションが45N/mm未満、或いは、フロントテンションが75N/mm未満であると、Copper方位密度が発達せず、バックテンションが70N/mm、或いは、フロントテンションが100N/mmを超えると、Brass方位密度が発達せず、Copper方位密度は増加するが、銅合金板に亀裂或いは切断が生じる可能性がある。 Of the tensions acting on the material in finish cold rolling, if the back tension is less than 45 N / mm 2 or the front tension is less than 75 N / mm 2 , the Copper orientation density does not develop and the back tension is 70 N / mm. 2 or if the front tension exceeds 100 N / mm 2 , the Brass orientation density does not develop and the Copper orientation density increases, but the copper alloy plate may be cracked or cut.

テンションレベリングにおいて素材に作用するテンションのうち、バックテンションを10〜60N/mm、ラインテンションを15〜90N/mm、フロントテンションを10〜60N/mmとすることにより、結晶粒内の全ピクセル間の平均方位差の結晶組織内の全結晶粒における平均値が2.5〜5.0°となり、平均結晶粒径が2.0〜6.0μmとなる。バックテンション及びフロントテンションは、主に結晶粒内の全ピクセル間の平均方位差の結晶組織内の全結晶粒における平均値を制御し、ラインテンションは、主に平均結晶粒径を制御すると考えられる。 Of the tensions acting on the material in tension leveling, the back tension is 10 to 60 N / mm 2 , the line tension is 15 to 90 N / mm 2 , and the front tension is 10 to 60 N / mm 2. The average value of all crystal grains in the crystal structure of the average orientation difference between pixels is 2.5 to 5.0 °, and the average crystal grain size is 2.0 to 6.0 μm. The back tension and the front tension mainly control the average value of the average orientation difference between all the pixels in the crystal grains in all the crystal grains in the crystal structure, and the line tension mainly controls the average crystal grain diameter. .

本発明で定義する仕上げ冷間圧延における、バックテンションとは、銅条材の圧延機において、ワークロールに挿入される材料に負荷されている張力で、アンコイラーからワークロールの間に負荷されているものであり、フロントテンションとは、銅条材の圧延機において、ワークロールから引き出される材料に負荷されている張力で、ワークロールからリコイラーの間に負荷されているものである。
本発明で定義するテンションレベリングとは、千鳥に並ぶロールに材料を通して繰り返し逆方向に曲げ加工するローラーレベラーに前後方向に張力を与えることにより材料の平坦度を矯正する加工であり、このテンションレベリングのバックテンションとは、アンコイラーと入側テンション負荷装置との間の材料に負荷される張力であり、ラインテンションとは、入側および巻取側テンション負荷装置によりローラーレベラー内の材料に負荷される張力であり、フロントテンションとはリコイラーと巻取側テンション負荷装置との間の材料に負荷される張力である。
In the finish cold rolling defined in the present invention, the back tension is the tension applied to the material inserted into the work roll in the copper strip rolling mill, and is applied between the uncoiler and the work roll. The front tension is a tension applied to the material drawn from the work roll in a copper strip rolling machine, and is applied between the work roll and the recoiler.
The tension leveling defined in the present invention is a process of correcting the flatness of the material by applying a tension in the front-rear direction to a roller leveler that repeatedly bends the material in a staggered roll through the material in the reverse direction. The back tension is the tension applied to the material between the uncoiler and the input side tension load device, and the line tension is the tension applied to the material in the roller leveler by the input side and winding side tension load devices. The front tension is the tension applied to the material between the recoiler and the winding side tension load device.

本発明により、導電率が90%IACS以上であり、400℃にて1時間加熱後のビッカース硬さが100以上であり、優れた曲げ加工性を有する半導体装置用リードフレームの素材として好適なCu−Fe−P系銅合金板及びその製造方法が提供される。   According to the present invention, Cu having a conductivity of 90% IACS or higher, a Vickers hardness of 100 or higher after heating at 400 ° C. for 1 hour, and having excellent bending workability is suitable as a material for a lead frame for a semiconductor device. -Fe-P type copper alloy board and its manufacturing method are provided.

本発明にて使用する仕上げ冷間圧延機に負荷されるバックテンション及びフロントテンションを説明するための一実施形態を示す概略図である。It is the schematic which shows one Embodiment for demonstrating the back tension and front tension loaded on the finish cold rolling mill used by this invention. 本発明にて使用するテンションレベラに負荷されるバックテンション、ラインテンション及びフロントテンションを説明するための一実施形態を示す概略図である。It is the schematic which shows one Embodiment for demonstrating the back tension, line tension, and front tension loaded on the tension leveler used by this invention.

以下、本発明の一実施形態であるCu−Fe−P系銅合金板及びその製造方法について説明する。
[銅合金板の成分組成]
本発明の導電率が90%IACS以上であり、400℃にて1時間加熱後のビッカース硬さが100以上であり、優れた曲げ加工性を有するCu−Fe−P系銅合金板は、Fe;0.05〜0.15質量%、P;0.015〜0.05質量%、Zn;0.01〜0.2質量%、Cr;0.0005〜0.003質量%を含有し、残部がCuおよび不可避的不純物からなる基本組成を有し、この基本組成に対し、後述するNi、Coを更に選択的に含有させても良い。
(Fe)
Feは銅の母相中に分散する析出物粒子を形成し強度、耐熱性及び導電率を向上させる効果があるが、その含有量が、0.05質量%未満では効果がなく、0.15質量%を超えると、強度及び耐熱性は向上するが、導電率は低下する。このため、Feの含有量は0.05〜0.15質量%の範囲内とすることが好ましい。
(P)
PはFeと共に銅の母相中に分散する析出物粒子を形成し強度及び耐熱性を向上させる効果があるが、その含有量が0.015質量%未満では効果がなく、0.05質量%を超えて含有すると、強度及び耐熱性は向上するが、導電率及び熱間加工性が低下する。このため、Pの含有量は0.015〜0.05質量%の範囲内とすることが好ましい。
(Zn)
Znは銅の母相中に固溶し半田耐熱剥離性を向上させる効果を有しており、0.01質量%未満では効果がなく、0.2質量%を超えて含有しても、更なる効果を得ることが難しくなると共に、母層中への固溶量が多くなって導電率の低下をきたす。このため、Znの含有量は0.01〜0.2質量%の範囲内とすることが好ましい。
(Cr)
Crは銅の母相中に固溶し曲げ加工性を向上させる効果を有しており、0.0005質量%未満では効果がなく、0.003質量%を超えて含有しても、更なる効果を得ることが難しくなると共に、母層中への固溶量が多くなって導電率の低下をきたす。このため、Crの含有量は0.0005〜0.003質量%の範囲内とすることが好ましい。
(Ni、Co)
Ni、Coは母相中に固溶し耐熱性及び導電性を向上させる効果を有しており、0.01質量%未満では効果がなく、0.2質量%を超えて含有すると、導電率の低下をきたす。このため、Ni、Coの含有量は、少なくとも一種を0.01〜0.20質量%の範囲内とすることが好ましい。
Hereinafter, a Cu—Fe—P based copper alloy plate and a method for manufacturing the same according to an embodiment of the present invention will be described.
[Component composition of copper alloy sheet]
The Cu-Fe-P-based copper alloy plate having an electrical conductivity of 90% IACS or higher, a Vickers hardness of 100 or higher after heating at 400 ° C. for 1 hour, and having excellent bending workability is Fe 0.05 to 0.15 mass%, P; 0.015 to 0.05 mass%, Zn; 0.01 to 0.2 mass%, Cr; 0.0005 to 0.003 mass%, The balance has a basic composition composed of Cu and inevitable impurities, and Ni and Co described later may be further selectively contained with respect to this basic composition.
(Fe)
Fe has the effect of forming precipitate particles dispersed in the copper matrix and improving the strength, heat resistance and electrical conductivity. However, when the content is less than 0.05% by mass, there is no effect. When it exceeds mass%, the strength and heat resistance are improved, but the conductivity is lowered. For this reason, it is preferable to make content of Fe into the range of 0.05-0.15 mass%.
(P)
P has the effect of improving the strength and heat resistance by forming precipitate particles dispersed in the copper matrix with Fe, but if the content is less than 0.015% by mass, there is no effect, and 0.05% by mass If it exceeds V, the strength and heat resistance are improved, but the electrical conductivity and hot workability are reduced. For this reason, it is preferable to make content of P into the range of 0.015-0.05 mass%.
(Zn)
Zn has the effect of improving the heat resistance peelability of the solid solution by dissolving in the copper matrix, and if it is less than 0.01% by mass, it has no effect. It is difficult to obtain the effect, and the amount of solid solution in the mother layer increases, resulting in a decrease in conductivity. For this reason, it is preferable to make content of Zn into the range of 0.01-0.2 mass%.
(Cr)
Cr has an effect of improving the bending workability by dissolving in a copper matrix, and if it is less than 0.0005% by mass, it has no effect. It becomes difficult to obtain the effect, and the amount of solid solution in the mother layer increases, resulting in a decrease in conductivity. For this reason, it is preferable to make content of Cr into the range of 0.0005-0.003 mass%.
(Ni, Co)
Ni and Co are dissolved in the matrix phase and have the effect of improving heat resistance and conductivity. If the content is less than 0.01% by mass, there is no effect. Will cause a decline. For this reason, it is preferable that at least one content of Ni and Co is within a range of 0.01 to 0.20 mass%.

[銅合金板の結晶組織]
本発明の導電率が90%IACS以上であり、400℃にて1時間加熱後のビッカース硬さが100以上であり、優れた曲げ加工性を有するCu−Fe−P系銅合金板は、結晶組織が、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定した結晶粒内の全ピクセル間の平均方位差の結晶組織内の全結晶粒における平均値が2.5〜5.0°であり、Brass方位密度が11.0〜22.0%であり、Copper方位密度が13.0〜25.5%であり、平均結晶粒径が2.0〜6.0μmであることを特徴とする。
[Crystal structure of copper alloy sheet]
The Cu-Fe-P-based copper alloy sheet having an electrical conductivity of 90% IACS or higher, a Vickers hardness of 100 or higher after heating at 400 ° C. for 1 hour, and having excellent bending workability The average value of all the crystal grains in the crystal structure is 2.5 to 5 in terms of the average orientation difference between all the pixels in the crystal grains measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system. 0.0 °, the Brass orientation density is 11.0 to 22.0%, the Copper orientation density is 13.0 to 25.5%, and the average crystal grain size is 2.0 to 6.0 μm. It is characterized by that.

[後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定した結晶粒内の全ピクセル間の平均方位差の結晶組織内の全結晶粒における平均値、Brass方位密度、Copper方位密度]
EBSD法による結晶粒内の全ピクセル間の平均方位差の全結晶粒における平均値の測定は、試料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなし、結晶粒界で囲まれた個々の結晶粒の全てについて、結晶粒内の全ピクセル間の方位差の平均値である平均方位差(GOS:Grain Orientation Spread)を(1)式にて計算し、当該測定領域内の全ての結晶粒における値の平均値を全結晶粒における平均方位差の平均値とした。なお、2ピクセル以上が連結しているものを結晶粒とした
[Average value of all crystal grains in crystal structure, Brass orientation density, Copper orientation density of average orientation difference between all pixels in crystal grains measured by EBSD method using scanning electron microscope with backscattered electron diffraction image system] ]
Measurement of the average value of the average orientation difference between all the pixels in the crystal grains by the EBSD method is usually performed by dividing the measurement area of the sample into areas such as hexagons, and for each divided area on the sample surface. The Kikuchi pattern is obtained from the reflected electrons of the incident electron beam, the electron beam is scanned two-dimensionally on the sample surface, the orientation of all the pixels within the measurement area range is measured at a step size of 1.0 μm, and adjacent. A boundary where the orientation difference between pixels is 15 ° or more is regarded as a crystal grain boundary, and for each individual crystal grain surrounded by the crystal grain boundary, an average which is an average value of orientation differences between all pixels in the crystal grain An orientation difference (GOS: Grain Orientation Spread) was calculated by equation (1), and an average value of all crystal grains in the measurement region was defined as an average value of average orientation differences in all crystal grains. In addition, the crystal grains are those in which two or more pixels are connected.

Figure 0005827090
Figure 0005827090

上式において、i、jは結晶粒内のピクセルの番号を示す。
nは結晶粒内のピクセル数を示す。
αijはピクセルiとjの方位差を示す。
結晶粒内の全ピクセル間の平均方位差の全結晶粒における平均値が2.5°未満、或いは、5.0°を超えると、導電率が90%IACS以上とならない。
In the above formula, i and j indicate the numbers of pixels in the crystal grains.
n indicates the number of pixels in the crystal grains.
α ij represents the difference in orientation between pixels i and j.
When the average value of the average orientation difference between all the pixels in the crystal grains is less than 2.5 ° or exceeds 5.0 °, the conductivity is not 90% IACS or more.

EBSD法によるBrass方位密度の測定は、試料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなして、試料表面の結晶粒の分布を求めた。そして、各結晶粒が、対象とするBrass方位(理想方位から15°以内)か否かを判定し、測定領域におけるBrass方位密度(結晶方位の面積率)を求めた。
Brass方位密度が11.0%未満、或いは、14.5%を超えると、引張り強度が590MPa以上とならない。
The measurement of the Brass orientation density by the EBSD method usually divides the measurement area of the sample into areas such as hexagons, and for each divided area, obtains a Kikuchi pattern from the reflected electrons of the electron beam incident on the sample surface. The surface of the sample is scanned two-dimensionally on the sample surface, the orientation of all pixels within the measurement area range is measured at a step size of 1.0 μm, and the boundaries where the orientation difference between adjacent pixels is 15 ° or more are crystal grains Considering the boundary, the distribution of crystal grains on the sample surface was determined. Then, it was determined whether or not each crystal grain had a target Brass orientation (within 15 ° from the ideal orientation), and the Brass orientation density (area ratio of crystal orientation) in the measurement region was determined.
If the Brass orientation density is less than 11.0% or exceeds 14.5%, the tensile strength does not become 590 MPa or more.

EBSD法によるCopper方位密度の測定は、試料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなして、試料表面の結晶粒の分布を求めた。そして、各結晶粒が、対象とするCopper方位(理想方位から15°以内)か否かを判定し、測定領域におけるCopper方位密度(結晶方位の面積率)を求めた。
Copper方位密度が13.0未満、或いは、25.5%を超えると、400℃にて1時間加熱した後のビッカース硬さが100以上とならない。
The measurement of Copper orientation density by the EBSD method usually divides the measurement area of the sample into areas such as hexagons, and for each divided area, obtains a Kikuchi pattern from the reflected electrons of the electron beam incident on the sample surface, The surface of the sample is scanned two-dimensionally on the sample surface, the orientation of all pixels within the measurement area range is measured at a step size of 1.0 μm, and the boundaries where the orientation difference between adjacent pixels is 15 ° or more are crystal grains Considering the boundary, the distribution of crystal grains on the sample surface was determined. Then, it was determined whether or not each crystal grain had a target Copper orientation (within 15 ° from the ideal orientation), and a Copper orientation density (area ratio of crystal orientation) in the measurement region was determined.
When the Copper orientation density is less than 13.0 or exceeds 25.5%, the Vickers hardness after heating at 400 ° C. for 1 hour does not become 100 or more.

EBSD法による平均結晶粒径の測定は、試料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなして試料表面の各結晶粒の粒径を求め、その平均値を平均結晶粒径とした。
平均結晶粒径が2.0μm未満、或いは、6.0μmを超えると、曲げ加工性が低下する。
The average crystal grain size is measured by the EBSD method. The measurement area of the sample is usually divided into hexagonal areas, and the Kikuchi pattern is obtained from the reflected electrons of the electron beam incident on the sample surface for each divided area. , Scan the sample surface in two dimensions on the sample surface, measure the orientation of all pixels within the measurement area range with a step size of 1.0 μm, and crystallize the boundary where the orientation difference between adjacent pixels is 15 ° or more The grain size of each crystal grain on the sample surface was determined as a grain boundary, and the average value was defined as the average grain size.
When the average crystal grain size is less than 2.0 μm or exceeds 6.0 μm, the bending workability is lowered.

[製造方法]
次に、本発明の導電率が90%IACS以上であり、400℃にて1時間加熱後のビッカース硬さが100以上であり、優れた曲げ加工性を有するCu−Fe−P系銅合金板の製造方法について説明する。
後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定した結晶粒内の全ピクセル間の平均方位差の結晶組織内の全結晶粒における平均値を2.5〜5.0°、Brass方位密度を11.0〜22.0%、Copper方位密度を13.0〜25.5%、平均結晶粒径を2.0〜6.0μmとするための、冷間圧延、仕上げ冷間圧延、テンションレベリングの各条件を除き、通常の製造工程自体を大きく変えることは不要である。
[Production method]
Next, a Cu-Fe-P-based copper alloy sheet having an electrical conductivity of 90% IACS or higher, a Vickers hardness of 100 or higher after heating at 400 ° C. for 1 hour, and having excellent bending workability. The manufacturing method will be described.
The average value of all the crystal grains in the crystal structure of the average orientation difference between all the pixels in the crystal grains measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system is 2.5 to 5.0 °. , Cold rolling and finish cooling to make the Brass orientation density 11.0-22.0%, Copper orientation density 13.0-25.5%, and average grain size 2.0-6.0 μm Except for the conditions of hot rolling and tension leveling, it is not necessary to greatly change the normal manufacturing process itself.

即ち、本発明の銅合金板の製造方法は、好ましい成分範囲に調整された銅合金を溶解鋳造し、熱間圧延、粗圧延、焼鈍、冷間圧延、最終焼鈍、仕上げ冷間圧延、テンションレベリングをこの順で含む工程で銅合金を製造するに際して、前記冷間圧延の圧延率を25〜90%にて実施し、前記仕上げ冷間圧延を、銅合金板に負荷するバックテンションを45〜70N/mm、フロントテンションを75〜100N/mmにて実施し、前記テンションレベリングを、銅合金板に負荷するバックテンションを10〜60N/mm、ラインテンションを15〜90N/mm、フロントテンションを10〜60N/mmにて実施することを特徴とする。
冷間圧延の圧延率が25%未満であると、Brass方位密度及びCopper方位密度が発達せず、90%を超えるとBrass方位密度及びCopper方位密度が増加し、引張強度は高くなるが耐熱性が低下する傾向がある。この冷間圧延にて、Brass方位密度及びCopper方位密度を最適な範囲内に収める素地を作り、仕上げ冷間圧延にて、Brass方位密度及びCopper方位密度を最適な範囲内に収める。
仕上げ冷間圧延において素材に作用するテンションのうち、バックテンションが45N/mm未満、或いは、フロントテンションが75N/mm未満であると、Copper方位密度が発達せず、バックテンションが70N/mm、或いは、フロントテンションが100N/mmを超えると、Brass方位密度が発達せず、Copper方位密度は増加するが、銅合金薄板に亀裂或いは切断が生じる可能性がある。
テンションレベリングにおいて素材に作用するテンションのうち、バックテンションを10〜60N/mm、ラインテンションを15〜90N/mm、フロントテンションを10〜60N/mmとすることにより、結晶粒内の全ピクセル間の平均方位差の結晶組織内の全結晶粒における平均値が2.5〜5.0°となり、平均結晶粒径が2.0〜6.0μmとなる。バックテンション及びフロントテンションは、主に結晶粒内の全ピクセル間の平均方位差の結晶組織内の全結晶粒における平均値を制御し、ラインテンションは、主に平均結晶粒径を制御すると考えられる。
That is, the method for producing a copper alloy sheet according to the present invention melts and casts a copper alloy adjusted to a preferred component range, hot rolling, rough rolling, annealing, cold rolling, final annealing, finish cold rolling, tension leveling. When the copper alloy is manufactured in the process including the steps, the cold rolling is performed at a rolling rate of 25 to 90%, and a back tension for loading the finish cold rolling on the copper alloy plate is 45 to 70 N. / mm 2, the front tension carried out at 75~100N / mm 2, the tension leveling, 10~60N / mm 2 back tension to load the copper alloy sheet, 15~90N / mm 2 line tension, front The tension is performed at 10 to 60 N / mm 2 .
When the rolling ratio of cold rolling is less than 25%, the Brass orientation density and Copper orientation density do not develop, and when it exceeds 90%, the Brass orientation density and Copper orientation density increase, and the tensile strength increases, but the heat resistance Tends to decrease. By this cold rolling, a base material that fits the Brass orientation density and the Copper orientation density within the optimum ranges is made, and the Brass orientation density and the Copper orientation density are kept within the optimum ranges by the finish cold rolling.
Of the tensions acting on the material in finish cold rolling, if the back tension is less than 45 N / mm 2 or the front tension is less than 75 N / mm 2 , the Copper orientation density does not develop and the back tension is 70 N / mm. 2 or when the front tension exceeds 100 N / mm 2 , the Brass orientation density does not develop and the Copper orientation density increases, but the copper alloy thin plate may be cracked or cut.
Of the tensions acting on the material in tension leveling, the back tension is 10 to 60 N / mm 2 , the line tension is 15 to 90 N / mm 2 , and the front tension is 10 to 60 N / mm 2. The average value of all crystal grains in the crystal structure of the average orientation difference between pixels is 2.5 to 5.0 °, and the average crystal grain size is 2.0 to 6.0 μm. The back tension and the front tension mainly control the average value of the average orientation difference between all the pixels in the crystal grains in all the crystal grains in the crystal structure, and the line tension mainly controls the average crystal grain diameter. .

銅合金板の圧延機において、バックテンションとは、ワークロールに挿入される材料に負荷されている張力で、アンコイラーからワークロールの間に負荷されているものであり、フロントテンションとは、ワークロールから引き出される材料に負荷されている張力で、ワークロールからリコイラーの間に負荷されているものである。
図1に示すように、最終焼鈍が施されアンコイラー3に巻かれた銅合金板1は、圧延機のワークロール4に挟まれて仕上げ圧延され銅合金板2となりリコイラー5に巻き取られる。この際、バックテンションBがワークロール4に挿入される銅合金板1に負荷されている張力であり、フロントテンションFがワークロール4から引き出される銅合金板2に負荷されている張力である。
銅合金板のテンションレベリングとは、千鳥に並ぶロールに材料を通して繰り返し逆方向に曲げ加工するローラーレベラーに前後方向に張力を与えることにより材料の平坦度を矯正する加工である。
このテンションレベリングのバックテンションとは、アンコイラーと入側テンション負荷装置との間の材料に負荷される張力であり、ラインテンションとは、入側および巻取側テンション負荷装置によりローラーレベラー内の材料に負荷される張力であり、フロントテンションとはリコイラーと巻取側テンション負荷装置との間の材料に負荷される張力である。
図2に示すように、アンコイラー9に巻かれた銅合金板6は、テンションレベラ10の入側テンション負荷装置11を通過し、ローラーレベラー13により繰り返し曲げ加工されて銅合金板7となり、巻取側テンション負荷装置12を通過後、銅合金板8となりリコイラー14に巻き取られる。この際、バックテンションB1はアンコイラー9と入側テンション負荷装置11との間の銅合金板6に負荷される。ラインテンションLは入側テンション負荷装置11と巻取側テンション負荷装置12の間の銅合金板7に負荷される(ローラーレベラー13内では均一な張力である)。フロントテンションF1はリコイラー14と巻取側テンション負荷装置12との間の銅合金板8に負荷される張力である。
In a copper alloy sheet rolling mill, the back tension is the tension applied to the material inserted into the work roll, and is applied between the uncoiler and the work roll. The front tension is the work roll. The tension applied to the material drawn out from the work roll is applied between the work roll and the recoiler.
As shown in FIG. 1, a copper alloy plate 1 that has been subjected to final annealing and wound around an uncoiler 3 is sandwiched between work rolls 4 of a rolling mill and finish-rolled to become a copper alloy plate 2 that is wound around a recoiler 5. At this time, the back tension B is a tension applied to the copper alloy plate 1 inserted into the work roll 4, and the front tension F is a tension applied to the copper alloy plate 2 drawn from the work roll 4.
The tension leveling of the copper alloy plate is a process of correcting the flatness of the material by applying tension in the front-rear direction to a roller leveler that repeatedly bends the material through rolls arranged in a staggered manner in the reverse direction.
The back tension of this tension leveling is the tension applied to the material between the uncoiler and the input side tension load device, and the line tension is applied to the material in the roller leveler by the input side and winding side tension load devices. The tension applied is the front tension, which is the tension applied to the material between the recoiler and the take-up side tension loading device.
As shown in FIG. 2, the copper alloy plate 6 wound around the uncoiler 9 passes through the entrance side tension load device 11 of the tension leveler 10 and is repeatedly bent by the roller leveler 13 to become the copper alloy plate 7. After passing through the side tension load device 12, it becomes a copper alloy plate 8 and is wound around the recoiler 14. At this time, the back tension B <b> 1 is loaded on the copper alloy plate 6 between the uncoiler 9 and the entry side tension load device 11. The line tension L is applied to the copper alloy plate 7 between the inlet side tension load device 11 and the winding side tension load device 12 (the tension is uniform in the roller leveler 13). The front tension F <b> 1 is a tension applied to the copper alloy plate 8 between the recoiler 14 and the winding side tension load device 12.

表1に示す組成の銅合金(添加元素以外の成分はCu及び不可避不純物)を、電気炉により還元性雰囲気下で溶解し、厚さが20mm、幅が120mm、長さが200mmの鋳塊を作製し、950℃にて1時間加熱した後、圧延率60%にて熱間圧延を実施して板厚8mmに仕上げ、表面をフライスで板厚7mmになるまで面削した。次に、粗冷間圧延、バッチ焼鈍を実施して板厚1.0mmの銅合金板に仕上げた。次に、これらの銅合金板を表1に示す条件で冷間圧延した後、750℃で10秒間の最終焼鈍を実施し、更に、表1に示す各テンションを負荷して仕上げ冷間圧延、テンションレベリングを実施し、板厚0.076〜0.68mmの実施例1〜12、比較例1〜5の銅合金薄板を作製した。表1のBTがバックテンション、FTがフロントテンション、LTがラインテンションを示す。   A copper alloy having the composition shown in Table 1 (components other than additive elements is Cu and inevitable impurities) is melted in a reducing atmosphere by an electric furnace to form an ingot having a thickness of 20 mm, a width of 120 mm, and a length of 200 mm. After producing and heating at 950 ° C. for 1 hour, hot rolling was performed at a rolling rate of 60% to finish the plate thickness to 8 mm, and the surface was faced by milling until the plate thickness became 7 mm. Next, rough cold rolling and batch annealing were performed to finish a copper alloy plate having a plate thickness of 1.0 mm. Next, after cold-rolling these copper alloy sheets under the conditions shown in Table 1, the final annealing was performed at 750 ° C. for 10 seconds, and further, each finish shown in Table 1 was subjected to finish cold rolling, Tension leveling was carried out to produce copper alloy thin plates of Examples 1 to 12 and Comparative Examples 1 to 5 having a plate thickness of 0.076 to 0.68 mm. In Table 1, BT represents back tension, FT represents front tension, and LT represents line tension.

Figure 0005827090
Figure 0005827090

次に、各銅合金薄板から得られた試料につき、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、結晶粒内の全ピクセル間の平均方位差の結晶組織内の全結晶粒における平均値、Brass方位密度、Copper方位密度、平均結晶粒径を測定した。
EBSD法による結晶粒内の全ピクセル間の平均方位差の全結晶粒における平均値は次の様に測定した。
試料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなし、結晶粒界で囲まれた個々の結晶粒の全てについて、結晶粒内の全ピクセル間の方位差の平均値である平均方位差(GOS:Grain Orientation Spread)を(1)式にて計算し、当該測定領域内の全ての結晶粒における値の平均値を全結晶粒における平均方位差の平均値とした。なお、2ピクセル以上が連結しているものを結晶粒とした。
Next, for the samples obtained from each copper alloy thin plate, all the crystals in the crystal structure of the average orientation difference between all the pixels in the crystal grains by EBSD method using a scanning electron microscope with a backscattered electron diffraction image system The average value, Brass orientation density, Copper orientation density, and average crystal grain size of the grains were measured.
The average value of the average orientation difference between all the pixels in the crystal grains by the EBSD method was measured as follows.
The measurement area of the sample is usually divided into hexagonal areas, and for each divided area, a Kikuchi pattern is obtained from the reflected electrons of the electron beam incident on the sample surface, and the electron beam is scanned two-dimensionally on the sample surface Measure the orientation of all pixels within the measurement area range with a step size of 1.0 μm, consider the boundary where the orientation difference between adjacent pixels is 15 ° or more as the crystal grain boundary, and be surrounded by the crystal grain boundary For all of the individual crystal grains, the average orientation difference (GOS: Grain Orientation Spread), which is the average value of the orientation differences between all the pixels in the crystal grains, is calculated by equation (1), The average value of the values in the crystal grains was defined as the average value of the average orientation difference in all the crystal grains. In addition, what connected 2 pixels or more was made into the crystal grain.

Figure 0005827090
Figure 0005827090

上式において、i、jは結晶粒内のピクセルの番号を示す。
nは結晶粒内のピクセル数を示す。
αijはピクセルiとjの方位差を示す。
EBSD法によるBrass方位密度は次の様に測定した。
試料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなして、試料表面の結晶粒の分布を求めた。そして、各結晶粒が、対象とするBrass方位(理想方位から15°以内)か否かを判定し、測定領域におけるBrass方位密度(結晶方位の面積率)を求めた。
EBSD法によるCopper方位密度は次の様に測定した。
試料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなして、試料表面の結晶粒の分布を求めた。そして、各結晶粒が、対象とするCopper方位(理想方位から15°以内)か否かを判定し、測定領域におけるCopper方位密度(結晶方位の面積率)を求めた。
EBSD法による平均結晶粒径は次の様に測定した。
試料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなして試料表面の各結晶粒の粒径を求め、その平均値を平均結晶粒径とした。
これらの測定結果を表2に示す。
In the above formula, i and j indicate the numbers of pixels in the crystal grains.
n indicates the number of pixels in the crystal grains.
α ij represents the difference in orientation between pixels i and j.
The Brass orientation density by the EBSD method was measured as follows.
The measurement area of the sample is usually divided into hexagonal areas, and for each divided area, a Kikuchi pattern is obtained from the reflected electrons of the electron beam incident on the sample surface, and the electron beam is scanned two-dimensionally on the sample surface And measure the orientation of all pixels in the measurement area range at a step size of 1.0 μm, and consider the boundary where the orientation difference between adjacent pixels is 15 ° or more as the crystal grain boundary, The distribution of was obtained. Then, it was determined whether or not each crystal grain had a target Brass orientation (within 15 ° from the ideal orientation), and the Brass orientation density (area ratio of crystal orientation) in the measurement region was determined.
The Copper azimuthal density by the EBSD method was measured as follows.
The measurement area of the sample is usually divided into hexagonal areas, and for each divided area, a Kikuchi pattern is obtained from the reflected electrons of the electron beam incident on the sample surface, and the electron beam is scanned two-dimensionally on the sample surface And measure the orientation of all pixels in the measurement area range at a step size of 1.0 μm, and consider the boundary where the orientation difference between adjacent pixels is 15 ° or more as the crystal grain boundary, The distribution of was obtained. Then, it was determined whether or not each crystal grain had a target Copper orientation (within 15 ° from the ideal orientation), and a Copper orientation density (area ratio of crystal orientation) in the measurement region was determined.
The average crystal grain size by the EBSD method was measured as follows.
The measurement area of the sample is usually divided into hexagonal areas, and for each divided area, a Kikuchi pattern is obtained from the reflected electrons of the electron beam incident on the sample surface, and the electron beam is scanned two-dimensionally on the sample surface And measure the orientation of all the pixels within the measurement area range at a step size of 1.0 μm, and consider each boundary of the sample surface as a grain boundary with a boundary where the orientation difference between adjacent pixels is 15 ° or more. The average grain size was determined as the average grain size.
These measurement results are shown in Table 2.

次に、各試料につき、導電率、400℃にて1時間加熱した後のビッカース硬さ、曲げ加工性を測定した。
導電率は、ミーリングにより、幅10mm×長さ300mmの短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定して、平均断面積法により算出した。
ビッカース硬さは、得られた各試料から10×10mmの試験片を切出し、加熱炉にて400℃で1時間保持後に、松沢精機社製のマイクロビッカース硬度計(商品名「微小硬度計」)を用いて0.5kgの荷重を加えて4箇所硬さ測定を行い、硬さはそれらの平均値とした。
曲げ加工性は、板材を幅10mm×長さ60mmに切出し、曲げR=0〜0.4mmの0.025mm単位として、BW(BadWay:圧延垂直方向)の90°W曲げを行い、曲げ部における割れの有無を50倍の光学顕微鏡で観察し、割れの生じない最小の曲げ半径Rと銅合金板の板厚tの比をR/tとして評価した。
これらの測定結果を表2に示す。
Next, the electrical conductivity, Vickers hardness after heating at 400 ° C. for 1 hour, and bending workability were measured for each sample.
The electrical conductivity was calculated by an average cross-sectional area method by processing a strip-shaped test piece having a width of 10 mm and a length of 300 mm by milling, measuring an electrical resistance with a double bridge resistance measuring device.
For Vickers hardness, a 10 × 10 mm test piece was cut out from each sample obtained, held in a heating furnace at 400 ° C. for 1 hour, and then a micro Vickers hardness meter (trade name “micro hardness meter”) manufactured by Matsuzawa Seiki Co., Ltd. A load of 0.5 kg was applied to measure the hardness at four locations, and the hardness was an average value thereof.
The bending workability is obtained by cutting a plate material into a width of 10 mm and a length of 60 mm, performing a BW (BadWay: vertical direction of rolling) 90 ° W bending in units of 0.025 mm of bending R = 0 to 0.4 mm, The presence or absence of cracks was observed with a 50 × optical microscope, and the ratio between the minimum bending radius R at which no cracks occurred and the thickness t of the copper alloy sheet was evaluated as R / t.
These measurement results are shown in Table 2.

Figure 0005827090
Figure 0005827090

表2から明らかなように、本発明の製造方法により製造されたCu−Fe−P系銅合金板は、導電率が90%IACS以上であり、400℃にて1時間加熱後のビッカース硬さが100以上であり、優れた曲げ加工性を有しており、半導体装置用リードフレームの素材として好適であることがわかる。   As is apparent from Table 2, the Cu-Fe-P-based copper alloy plate produced by the production method of the present invention has a conductivity of 90% IACS or more and Vickers hardness after heating at 400 ° C for 1 hour. Is 100 or more, and has excellent bending workability, and is found to be suitable as a material for a lead frame for a semiconductor device.

以上、本発明の実施形態について説明したが、本発明はこの記載に限定されることはなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   Although the embodiment of the present invention has been described above, the present invention is not limited to this description, and various modifications can be made without departing from the spirit of the present invention.

1 銅合金板
2 銅合金板
3 アンコイラー
4 ワークロール
5 リコイラー
B バックテンション
F フロントテンション
6 銅合金板
7 銅合金板
8 銅合金板
9 アンコイラー
10 テンションレベラ
11 入側テンション負荷装置
12 巻取側テンション負荷装置
13 ローラーレベラー
14 リコイラー
B1 バックテンション
F1 フロントテンション
L ラインテンション
DESCRIPTION OF SYMBOLS 1 Copper alloy plate 2 Copper alloy plate 3 Uncoiler 4 Work roll 5 Recoiler B Back tension F Front tension 6 Copper alloy plate 7 Copper alloy plate 8 Copper alloy plate 9 Uncoiler 10 Tension leveler 11 Input side tension load device 12 Winding side tension load Equipment 13 Roller leveler 14 Recoiler B1 Back tension F1 Front tension L Line tension

Claims (3)

Fe;0.05〜0.15質量%、P;0.015〜0.05質量%、Zn;0.01〜0.2質量%、Cr;0.0005〜0.003質量%を含有し、残部がCuおよび不可避的不純物からなる組成を有し、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定した結晶粒内の全ピクセル間の平均方位差の結晶組織内の全結晶粒における平均値が2.5〜5.0°であり、Brass方位密度が11.0〜22.0%であり、Copper方位密度が13.0〜25.5%であり、平均結晶粒径が2.0〜6.0μmであることを特徴とする導電率が90%IACS以上であり、400℃にて1時間加熱した後のビッカース硬さが100以上であり、圧延垂直方向の90°W曲げ試験で割れが生じない、優れた曲げ加工性を有する銅合金板。 Fe: 0.05-0.15 mass%, P: 0.015-0.05 mass%, Zn: 0.01-0.2 mass%, Cr: 0.0005-0.003 mass% In the crystal structure of the average orientation difference between all the pixels in the crystal grains measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system, the balance having a composition consisting of Cu and inevitable impurities The average value in all crystal grains is 2.5 to 5.0 °, the Brass orientation density is 11.0 to 22.0%, the Copper orientation density is 13.0 to 25.5%, and the average crystal Conductivity characterized by a particle size of 2.0-6.0 μm is 90% IACS or more, Vickers hardness after heating for 1 hour at 400 ° C. is 100 or more, and in the vertical direction of rolling It does not occur cracks at 90 ° W bending test, excellent bending Copper alloy plate having a workability. 更にNi、Coからなる元素のうち少なくとも一種を0.01〜0.2質量%含有することを特徴とする請求項1に記載の導電率が90%IACS以上であり、400℃にて1時間加熱した後のビッカース硬さが100以上であり、優れた曲げ加工性を有する銅合金板。   Furthermore, the electrical conductivity according to claim 1 is 90% IACS or more and contains at least one element of Ni and Co in an amount of 0.01 to 0.2% by mass, and at 400 ° C. for 1 hour. A copper alloy plate having a Vickers hardness of 100 or more after heating and excellent bending workability. 請求項1或いは請求項2に記載の銅合金板の製造方法であって、溶解鋳造、熱間圧延、粗圧延、焼鈍、冷間圧延、最終焼鈍、仕上げ冷間圧延、テンションレベリングをこの順で含む工程で銅合金を製造するに際して、前記冷間圧延の圧延率を25〜90%にて実施し、前記仕上げ冷間圧延を、銅合金板に負荷するバックテンションを45〜70N/mm、フロントテンションを75〜100N/mmにて実施し、前記テンションレベリングを、銅合金板に負荷するバックテンションを10〜60N/mm、ラインテンションを15〜90N/mm、フロントテンションを10〜60N/mmにて実施することを特徴とする銅合金板の製造方法。
It is a manufacturing method of the copper alloy plate of Claim 1 or Claim 2, Comprising: Melt casting, hot rolling, rough rolling, annealing, cold rolling, final annealing, finish cold rolling, tension leveling in this order When producing a copper alloy in the process of including, the rolling rate of the cold rolling is carried out at 25 to 90%, the back tension for loading the finish cold rolling on the copper alloy plate is 45 to 70 N / mm 2 , the front tension carried out at 75~100N / mm 2, the tension leveling, 10~60N / mm 2 back tension to load the copper alloy sheet, the line tension 15~90N / mm 2, the front tension 10 It implements at 60 N / mm < 2 >, The manufacturing method of the copper alloy plate characterized by the above-mentioned.
JP2011213593A 2011-09-29 2011-09-29 Cu-Fe-P based copper alloy plate excellent in conductivity, heat resistance and bending workability, and method for producing the same Active JP5827090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011213593A JP5827090B2 (en) 2011-09-29 2011-09-29 Cu-Fe-P based copper alloy plate excellent in conductivity, heat resistance and bending workability, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011213593A JP5827090B2 (en) 2011-09-29 2011-09-29 Cu-Fe-P based copper alloy plate excellent in conductivity, heat resistance and bending workability, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013072128A JP2013072128A (en) 2013-04-22
JP5827090B2 true JP5827090B2 (en) 2015-12-02

Family

ID=48476876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011213593A Active JP5827090B2 (en) 2011-09-29 2011-09-29 Cu-Fe-P based copper alloy plate excellent in conductivity, heat resistance and bending workability, and method for producing the same

Country Status (1)

Country Link
JP (1) JP5827090B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3313006B2 (en) * 1995-02-25 2002-08-12 株式会社神戸製鋼所 Copper alloy lead frame for bare bond
JP2002043498A (en) * 2000-07-21 2002-02-08 Furukawa Electric Co Ltd:The Copper-based lead material for semiconductor and its manufacturing method
JP3520034B2 (en) * 2000-07-25 2004-04-19 古河電気工業株式会社 Copper alloy materials for electronic and electrical equipment parts
JP3962751B2 (en) * 2004-08-17 2007-08-22 株式会社神戸製鋼所 Copper alloy sheet for electric and electronic parts with bending workability
JP4168077B2 (en) * 2006-07-21 2008-10-22 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion
JP4157899B2 (en) * 2006-11-17 2008-10-01 株式会社神戸製鋼所 High strength copper alloy sheet with excellent bending workability

Also Published As

Publication number Publication date
JP2013072128A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
US9644250B2 (en) Copper alloy sheet for electric and electronic part
JP4357536B2 (en) Copper alloy sheet for electrical and electronic parts with excellent strength and formability
CN103443307B (en) The copper alloy plate of thermal diffusivity and alternating bending excellent in workability
JP4168077B2 (en) Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion
JP6081513B2 (en) Copper alloy plate for heat dissipation parts
JP6226511B2 (en) Copper alloy sheet with excellent heat dissipation and repeated bending workability
JP2009242921A (en) Cu-Ni-Si-Co-Cr-BASED ALLOY FOR ELECTRONIC MATERIAL
JP2013194246A (en) Cu-Cr-Sn-BASED COPPER ALLOY SHEET FOR LEAD FRAME WITH LITTLE RESIDUAL STRESS
JP2008127605A (en) High-strength copper alloy sheet superior in bend formability
JP5067817B2 (en) Cu-Fe-P-based copper alloy plate excellent in conductivity and heat resistance and method for producing the same
JP2016156056A (en) Copper alloy sheet strip for lead frame of led
JP5467163B1 (en) Copper alloy plate, heat dissipating electronic component comprising the same, and method for producing copper alloy plate
CN104583430A (en) Copper alloy and production method thereof
JP4642119B2 (en) Copper alloy and method for producing the same
KR101688300B1 (en) Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING WORKABILITY
JP6355671B2 (en) Cu-Ni-Si-based copper alloy strip and method for producing the same
JP5795939B2 (en) Cu-Fe-P copper alloy plate excellent in conductivity, heat resistance and solder wettability and method for producing the same
JP2008024995A (en) Copper alloy plate for electrical/electronic component having excellent heat resistance
JP5827090B2 (en) Cu-Fe-P based copper alloy plate excellent in conductivity, heat resistance and bending workability, and method for producing the same
JP6196429B2 (en) Copper alloy sheet with excellent heat dissipation and repeated bending workability
TWI639163B (en) Cu-Co-Ni-Si alloy for electronic parts, and electronic parts
TWI529255B (en) Cu-ni-si alloy and method of producing the alloy
JP5514762B2 (en) Cu-Co-Si alloy with excellent bending workability
JP2015203127A (en) Cu-Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN HALF ETCHING PROPERTY AND METHOD FOR PRODUCING THE SAME
JP2018070919A (en) Copper alloy sheet for heat radiation part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151015

R150 Certificate of patent or registration of utility model

Ref document number: 5827090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250