JP5791885B2 - Damping damper - Google Patents

Damping damper Download PDF

Info

Publication number
JP5791885B2
JP5791885B2 JP2010253215A JP2010253215A JP5791885B2 JP 5791885 B2 JP5791885 B2 JP 5791885B2 JP 2010253215 A JP2010253215 A JP 2010253215A JP 2010253215 A JP2010253215 A JP 2010253215A JP 5791885 B2 JP5791885 B2 JP 5791885B2
Authority
JP
Japan
Prior art keywords
unvulcanized rubber
cylindrical
sealing material
shaft
exterior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010253215A
Other languages
Japanese (ja)
Other versions
JP2012102829A (en
Inventor
野村 武史
武史 野村
高田 友和
友和 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2010253215A priority Critical patent/JP5791885B2/en
Publication of JP2012102829A publication Critical patent/JP2012102829A/en
Application granted granted Critical
Publication of JP5791885B2 publication Critical patent/JP5791885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Description

本発明は、地震等の外力による震動を減衰させるために建物に用いられる制震ダンパーに関する。   The present invention relates to a damping damper used in a building in order to attenuate a vibration caused by an external force such as an earthquake.

住宅等の建物においては、柱と横架材とから形成されるフレーム内に、粘弾性体を利用した制震ダンパーをブレース状に架設して、加振時の粘弾性体の剪断変形により震動エネルギーの吸収を図る制震構造がよく用いられる。この制震ダンパーは、例えば特許文献1,2に開示のように、外管と、その外管に同軸で遊挿される内管と、両管の重合部間にあって両管との対向面がそれぞれ接着されるエラストマー等の粘弾性体とからなるダンパー部を有し、建物のフレーム内へブレース状に架設される。すなわち、フレームの変形に伴う外管と内管との相反する軸方向への動作により、粘弾性体を剪断変形させて減衰作用を生じさせるものである。   In a building such as a house, a damping damper using a viscoelastic body is installed in a brace in a frame formed of columns and horizontal members, and the vibration is caused by shear deformation of the viscoelastic body during excitation. Damping structures that absorb energy are often used. For example, as disclosed in Patent Documents 1 and 2, the vibration damper is provided between an outer tube, an inner tube that is loosely inserted coaxially with the outer tube, and an overlapping surface between both the tubes, and the opposing surfaces of both tubes are respectively It has a damper portion composed of a viscoelastic body such as an elastomer to be bonded, and is laid in a brace shape in a building frame. In other words, the viscoelastic body is sheared and deformed by the operations in the opposite axial directions of the outer tube and the inner tube accompanying the deformation of the frame to cause a damping action.

特開2009−203747号公報JP 2009-203747 A 特開平9−133169号公報JP-A-9-133169

上記特許文献1,2のような粘弾性ダンパーは構造がシンプルであって、木造の軸組等へも取り付けができるメリットがある。しかし、粘弾性体は温度依存性(温度変化による特性の変移)が大きいため、必要な減衰性能や剛性を得るためにダンパーの数量を増やしたりダンパーを取り付けるボルトやネジの数や強度等を増やしたりする必要が生じ、設計的ロスが大きくなる。また、速度依存性(周波数の変化による特性の変移)も大きいため、特に周波数の小さい風対策のために制震壁を増やしたりする必要が生じる。   The viscoelastic dampers as described in Patent Documents 1 and 2 have a simple structure and have an advantage that they can be attached to a wooden shaft or the like. However, viscoelastic bodies are highly temperature dependent (changes in characteristics due to temperature changes), so increase the number of dampers and increase the number and strength of bolts and screws to install the dampers to obtain the required damping performance and rigidity. The design loss increases. In addition, since the speed dependence (change in characteristics due to a change in frequency) is also large, it is necessary to increase the damping wall especially for wind countermeasures with a low frequency.

そこで、本発明は、シンプルな構造を維持しつつ、温度や速度等の条件に対する各種依存性を小さくすることができ、より減衰性能に優れた制震ダンパーを提供することを目的としたものである。   Therefore, the present invention aims to provide a damping damper that can reduce various dependences on conditions such as temperature and speed while maintaining a simple structure, and has more excellent damping performance. is there.

上記目的を達成するために、請求項1に記載の発明は、軸状又は筒状の軸心部材に、一又は複数の筒状の外装部材を同軸且つ非接触で外装し、半径方向で隣接する各部材間に形成される筒状空間内で内周側の軸心部材若しくは外装部材と外周側の外装部材との間に、未加硫ゴムを収容した制震ダンパーであって、未加硫ゴムを、内周側の軸心部材若しくは外装部材と外周側の外装部材との何れか一方の部材に接着すると共に、他方の部材の表面に、滑動安定処理を施す一方、筒状空間の両端を閉塞し、一方の部材に接着されるリング状又は筒状の封止材を設けたことを特徴とするものである。
上記目的を達成するために、請求項2に記載の発明は、軸状又は筒状の軸心部材に、一又は複数の筒状の外装部材を同軸且つ非接触で外装し、半径方向で隣接する各部材間に形成される筒状空間内で内周側の軸心部材若しくは外装部材と外周側の外装部材との間に、未加硫ゴムを収容した制震ダンパーであって、未加硫ゴムの収容を、筒状空間の両端を閉塞し、内周側の軸心部材若しくは外装部材と外周側の外装部材との何れか一方の部材に接着されるリング状又は筒状の封止材によって行うと共に、封止材における未加硫ゴムとの当接面を、接着側の周縁から半径方向へ離れるに従って未加硫ゴム側へ突出するテーパ面としたことを特徴とするものである。
請求項3に記載の発明は、請求項2の構成において、封止材と当該封止材が接着されない他方の部材との対向面間にグリースを介在させたことを特徴とするものである。
請求項4に記載の発明は、請求項1乃至3の何れかの構成において、未加硫ゴムを、ポリオルガノシロキサンを主成分とした可塑度200以上のものとしたことを特徴とするものである。
To achieve the above object, according to the first aspect of the present invention, one or a plurality of cylindrical exterior members are coaxially and non-contactly mounted on a shaft-shaped or cylindrical shaft center member, and are adjacent in the radial direction. between the axis member or the exterior member and the outer peripheral side of the outer member of the inner circumferential side in a cylindrical space formed between the members, a seismic control dampers containing the unvulcanized rubber, unvulcanized While adhering the vulcanized rubber to any one of the inner peripheral side axial center member or the exterior member and the outer peripheral side exterior member , the surface of the other member is subjected to a sliding stabilization process, while the cylindrical space Both ends are closed and a ring-shaped or cylindrical sealing material bonded to one member is provided.
In order to achieve the above object, the invention according to claim 2 is characterized in that one or a plurality of cylindrical exterior members are coaxially and non-contactedly disposed on a shaft-shaped or cylindrical shaft center member and are adjacent in the radial direction. between the axis member or the exterior member and the outer peripheral side of the outer member of the inner circumferential side in a cylindrical space formed between the members, a seismic control dampers containing the unvulcanized rubber, unvulcanized the accommodation of vulcanized rubber, to close the ends of the cylindrical space, a ring-shaped or cylindrical seal is bonded to one of members of the inner circumferential side of the axis member or the exterior member and the outer peripheral side of the outer member The contact surface with the unvulcanized rubber in the sealing material is a tapered surface that protrudes toward the unvulcanized rubber side away from the peripheral edge on the bonding side in the radial direction. .
The invention according to claim 3 is characterized in that, in the configuration of claim 2, grease is interposed between opposing surfaces of the sealing material and the other member to which the sealing material is not bonded .
The invention according to claim 4, in any one of the claims 1 to 3, the unvulcanized rubber, characterized in that it has assumed a polyorganosiloxane main component was above plasticity 200 is there.

本発明によれば、軸心部材と外装部材とによるシンプルな構造を維持しつつ、温度や速度等の条件に対する各種依存性を小さくすることができ、より減衰性能に優れたものとなる。
特に、請求項1に記載の発明によれば、上記効果に加えて、筒状空間内への未加硫ゴムの収容が簡単に行える。また、未加硫ゴムを接着等によって固定しなくても滑動抵抗が安定し、減衰特性に影響を及ぼさない。さらに、未加硫ゴムを筒状空間内で確実に封止することができ、剪断変形を繰り返しても未加硫ゴムによる自己押し出し現象が抑えられる。
特に、請求項2に記載の発明によれば、上記効果に加えて、未加硫ゴムを筒状空間内で確実に封止することができ、剪断変形を繰り返しても未加硫ゴムによる自己押し出し現象が抑えられる。また、片面接着であっても好適なシール性が得られる。
請求項3に記載の発明によれば、請求項2の効果に加えて、片面接着でもシール性は保たれるし、封止材を設けても滑りは確保でき、減衰性能に支障をきたすことがない。
請求項4に記載の発明によれば、請求項1乃至3の何れかの効果に加えて、減衰性能に優れた未加硫ゴムを選択することができる。
According to the present invention, it is possible to reduce various dependences on conditions such as temperature and speed while maintaining a simple structure of the shaft member and the exterior member, and the damping performance is further improved.
In particular, according to the first aspect of the invention, in addition to the above effects, the unvulcanized rubber can be easily accommodated in the cylindrical space. Further, even if the unvulcanized rubber is not fixed by adhesion or the like, the sliding resistance is stable and does not affect the damping characteristics. Furthermore, the unvulcanized rubber can be reliably sealed in the cylindrical space, and the self-extrusion phenomenon due to the unvulcanized rubber can be suppressed even if the shear deformation is repeated.
In particular, according to the second aspect of the invention, in addition to the above-described effect, the unvulcanized rubber can be reliably sealed in the cylindrical space, and the self -curing by the unvulcanized rubber can be performed even if shear deformation is repeated. Extrusion phenomenon is suppressed. Moreover, even if it is single-sided adhesion, suitable sealing properties are obtained.
According to the third aspect of the present invention, in addition to the effect of the second aspect, the sealing performance can be maintained even by single-sided adhesion, and even if a sealing material is provided, slipping can be ensured and the damping performance is hindered. There is no.
According to invention of Claim 4, in addition to the effect in any one of Claims 1 thru | or 3, the unvulcanized rubber excellent in the damping performance can be selected.

制震ダンパーの説明図で、(A)が軸方向の縦断面、(B)が軸方向の矢視をそれぞれ示す。It is explanatory drawing of a damping damper, (A) is a longitudinal cross-section of an axial direction, (B) shows the arrow view of an axial direction, respectively. (A)〜(C)は制震ダンパーの変更例を示す横断面図である。(A)-(C) are the cross-sectional views which show the example of a change of a damping damper. 制震ダンパーを設けたフレームの概略図である。It is the schematic of the flame | frame which provided the damping damper. 制震ダンパーの変更例を示す軸方向の縦断面図である。It is a longitudinal cross-sectional view of the axial direction which shows the example of a change of a damping damper. 制震ダンパーの変更例を示す軸方向の縦断面図である。It is a longitudinal cross-sectional view of the axial direction which shows the example of a change of a damping damper. (A)〜(D)は封止材の形態及び変更例を示すA部拡大図である。(A)-(D) are the A section enlarged views which show the form of a sealing material, and a modification. 封止材の変更例を示す説明図で、(A)が+X側の移動端、(B)が中間位置、(C)が−X側の移動端となる。It is explanatory drawing which shows the example of a change of a sealing material, (A) becomes a + X side moving end, (B) becomes an intermediate position, (C) becomes a -X side moving end. (A)(B)は封止材の変更例を示す説明図である。(A) (B) is explanatory drawing which shows the example of a change of a sealing material.

以下、本発明の実施の形態を図面に基づいて説明する。
図1に制震ダンパーの一例を示す。この制震ダンパー1は、鋼材からなる軸心部材としての横断面円形の内軸2と、その内軸2に同軸で重合されて内軸2の一端を除いた全周を非接触で覆い、鋼材からなる外装部材としての横断面円形の外管3と、内軸2と外管3との間に形成される筒状空間4内に設けられ、内軸2と外管3との互いの対向面間が接着される塑性流動抵抗材料としての未加硫ゴム5(図1の網掛け部分)とを備えてなる。6,6は接着層で、加硫接着や接着剤による後接着によって形成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Fig. 1 shows an example of a damping damper. This damping damper 1 has a circular inner cross section 2 as an axial center member made of a steel material, and covers the entire circumference excluding one end of the inner shaft 2 in a non-contact manner by being coaxially superposed on the inner shaft 2. An outer tube 3 having a circular cross section as an exterior member made of steel, and a cylindrical space 4 formed between the inner shaft 2 and the outer tube 3, and the inner shaft 2 and the outer tube 3 are mutually connected. And an unvulcanized rubber 5 (shaded portion in FIG. 1) as a plastic flow resistance material to which the opposing surfaces are bonded. Reference numerals 6 and 6 denote adhesive layers, which are formed by vulcanization adhesion or post-adhesion with an adhesive.

内軸2及び外管3は、図2(A)に示す制震ダンパー1Aのように、外管3を長軸を断面として分割した一対の半円状の半割金具7,7を向かい合わせにして互いの両側縁に形成したフランジ8,8同士をボルト及びナットで接合して形成したり、同図(B)に示す制震ダンパー1Bのように内軸2及び外管3を横断面正方形や長方形としたり、この形状で外管3を同図(C)の制震ダンパー1Cのように一対のコ字状の半割金具9,9として互いのフランジ10,10同士をボルト及びナットで接合したりしてもよい。横断面形状はこれ以外にも長円形や楕円形等が採用できる。   As shown in FIG. 2A, the inner shaft 2 and the outer tube 3 face each other with a pair of semicircular half metal fittings 7 and 7 in which the outer tube 3 is divided with the major axis as a cross section. The flanges 8 and 8 formed on both side edges are joined by bolts and nuts, or the inner shaft 2 and the outer tube 3 are cross-sectioned like a vibration damper 1B shown in FIG. The outer tube 3 is formed into a square or a rectangle, and the flanges 10 and 10 are connected to each other as bolts and nuts as a pair of U-shaped halves 9 and 9 like the vibration damper 1C of FIG. Or may be joined. Other than this, the cross-sectional shape may be oval or elliptical.

未加硫ゴム5には、可塑性が高く(好ましくは可塑度が200以上)、弾性が小さい未加硫ゴム、例えばオルガノポリシロキサンを主成分としたシリコーン系の未加硫ゴムや、NR(天然ゴム)、IR(イソプレンゴム)、IIR(ブチルゴム)、BR(ブタジエンゴム)、EPM,EPDM(エチレンプロピレンゴム)をベースとする化合物から選択される未加硫ゴム等が用いられる。未加硫ゴム5と内軸2及び外管3との接着に用いられる接着剤には、例えばアミノ基やビニル基により変性されたシリコーン系プライマーに過酸化物(ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジブチルパーオキサイド等)のカバー層を形成したものや、ビニルシリコーン系プライマーに過酸化物を混合したものが使用される。過酸化物は抵抗力を高めるために用いられる。何れにしてもここでの未加硫ゴム5と内軸2及び外管3との接着は、未加硫ゴム5の界面が固定され、両者の離反は接着層の剥がれでなく未加硫ゴム5での母材破壊として生じるようにするのが望ましい。   The unvulcanized rubber 5 has a high plasticity (preferably a plasticity of 200 or more) and a low elasticity, for example, a silicone-based unvulcanized rubber mainly composed of organopolysiloxane, NR (natural Rubber), unvulcanized rubber selected from compounds based on IR (isoprene rubber), IIR (butyl rubber), BR (butadiene rubber), EPM, EPDM (ethylene propylene rubber), and the like are used. Examples of the adhesive used for bonding the unvulcanized rubber 5 to the inner shaft 2 and the outer tube 3 include a silicone-based primer modified with an amino group or a vinyl group and a peroxide (benzoyl peroxide, dicumyl peroxide). , Dibutyl peroxide, etc.) formed with a cover layer, or vinyl silicone primer mixed with peroxide. Peroxide is used to increase resistance. In any case, the adhesion between the unvulcanized rubber 5 and the inner shaft 2 and the outer tube 3 is fixed at the interface of the unvulcanized rubber 5, and the separation between the two is not the peeling of the adhesive layer but the unvulcanized rubber. It is desirable that this occurs as a base material destruction at 5.

以上の如く構成された制震ダンパー1は、従来のものと同様に、例えば図3に示すように木造建築物等の建物のフレーム20内においてブレース状に架設されて使用される。すなわち、外管3から突出する内軸2の端部をフレーム20の柱21と横架材22との仕口部にガセットプレート23や取付金具24を用いて接合する一方、反対側の外管3の端部を、対角線上の仕口部に同じくガセットプレート23や取付金具24を用いて接合する。この場合、フレーム20の大きさによっては内軸2と外管3との何れか一方に延長部材を接合してもよい。   The seismic damper 1 configured as described above is used by being braced in a frame 20 of a building such as a wooden building as shown in FIG. That is, the end portion of the inner shaft 2 protruding from the outer tube 3 is joined to the joint portion between the column 21 of the frame 20 and the horizontal member 22 using the gusset plate 23 and the mounting bracket 24, while the outer tube on the opposite side is joined. 3 ends are joined to the joints on the diagonal using the gusset plate 23 and the mounting bracket 24 in the same manner. In this case, an extension member may be joined to either the inner shaft 2 or the outer tube 3 depending on the size of the frame 20.

こうして架設された制震ダンパー1は、建物に加振されると、フレーム20の変形に伴って内軸2と外管3とが軸方向へ相対移動し、未加硫ゴム5を剪断変形させて減衰力を発揮する。ここで、未加硫ゴム5は減衰特性の温度依存性が低いので、通常の温度変化の領域で安定した減衰力を発揮することができる。また、速度依存性も低いため、風による低周波数の振動も効果的に減衰可能となる。   When the seismic damper 1 thus installed is vibrated in a building, the inner shaft 2 and the outer tube 3 move relative to each other in the axial direction as the frame 20 is deformed, and the unvulcanized rubber 5 is sheared and deformed. To exert damping force. Here, since the unvulcanized rubber 5 has a low temperature dependence of the damping characteristic, it can exhibit a stable damping force in a normal temperature change region. Further, since the speed dependency is low, it is possible to effectively attenuate low-frequency vibration caused by wind.

このように、上記形態の制震ダンパー1によれば、内軸2に筒状の外管3を同軸且つ非接触で外装し、両管の間に形成される筒状空間4内で内軸2と外管3との間に未加硫ゴム5を収容したことで、シンプルな構造を維持しつつ、温度や速度等の条件に対する各種依存性を小さくすることができ、より減衰性能に優れたものとなる。
特にここでは、未加硫ゴム5を内軸2と外管3との両方に固定しているため、筒状空間4内への未加硫ゴム5の収容が簡単に行える。
また、塑性流動抵抗材料を、ポリオルガノシロキサンを主成分とする可塑度200以上の未加硫ゴムとしているので、減衰性能に優れた塑性流動抵抗材料を選択することができる。
Thus, according to the damping damper 1 of the said form, the cylindrical outer tube | pipe 3 is coat | covered coaxially and non-contactedly to the inner shaft 2, and an inner shaft is formed in the cylindrical space 4 formed between both tubes. By storing the unvulcanized rubber 5 between the outer tube 3 and the outer tube 3, it is possible to reduce various dependences on conditions such as temperature and speed while maintaining a simple structure, and more excellent damping performance. It will be.
In particular, since the unvulcanized rubber 5 is fixed to both the inner shaft 2 and the outer tube 3 here, the unvulcanized rubber 5 can be easily accommodated in the cylindrical space 4.
In addition, since the plastic flow resistance material is an unvulcanized rubber having a plasticity of 200 or more mainly composed of polyorganosiloxane, a plastic flow resistance material having excellent damping performance can be selected.

なお、上記形態では、未加硫ゴムを内軸と外管とのそれぞれの対向面で接着して筒状空間内での固定を図っているが、図4に示すように内軸2との対向面のみで接着したり、これと逆に外管3との対向面のみで接着したりしてもよい。
そして、このように未加硫ゴム等の塑性流動抵抗材料を接着しない内軸又は外管の表面には、滑動抵抗を安定させて減衰性能に影響を及ぼさないようにするために、滑動安定処理を施すのが望ましい。この滑動安定処理としては、例えばアミノ基やビニル基により変性されたシリコーン系プライマーやグリース等の滑動安定処理材を塗布する等すればよい。
In the above embodiment, the unvulcanized rubber is bonded to the inner shaft and the outer tube at the opposing surfaces so as to be fixed in the cylindrical space. However, as shown in FIG. It may be bonded only on the facing surface, or on the contrary, it may be bonded only on the facing surface with the outer tube 3.
In order to stabilize the sliding resistance and not affect the damping performance, the surface of the inner shaft or the outer tube to which the plastic flow resistance material such as unvulcanized rubber is not bonded is used. It is desirable to apply. As the sliding stabilization treatment, for example, a sliding stabilization treatment material such as a silicone primer modified with an amino group or a vinyl group or grease may be applied.

また、接着による固定に限らず、図5に示すように、筒状空間4の前後端を閉塞するリング状又はスリーブ状の封止材11をそれぞれ設けて未加硫ゴム5の固定を図ってもよい。この封止材11の具体的な構造としては、図6(A)に示すように、ゴム材料からなる封止材11Aを内軸2と外管3との間に介在させて内軸2との対向面を接着する構造が考えられる。この封止材11Aにおける未加硫ゴム5との当接面には、すり鉢状のテーパ面12が形成されて、未加硫ゴム5を内軸2側へ導くことで接着されない外管3側でのシール性を高めている。封止材11Aの接着は外管3との対向面で行ってもよいが、その場合のテーパ面は図6と逆(円錐状)になる。   In addition to fixing by bonding, as shown in FIG. 5, a ring-shaped or sleeve-shaped sealing material 11 that closes the front and rear ends of the cylindrical space 4 is provided to fix the unvulcanized rubber 5. Also good. As a specific structure of the sealing material 11, as shown in FIG. 6A, a sealing material 11A made of a rubber material is interposed between the inner shaft 2 and the outer tube 3, and the inner shaft 2 The structure which adhere | attaches the opposing surface of this is considered. A mortar-shaped tapered surface 12 is formed on the contact surface of the sealing material 11A with the unvulcanized rubber 5, and the outer tube 3 side that is not bonded by guiding the unvulcanized rubber 5 to the inner shaft 2 side. The sealing performance is improved. The adhesion of the sealing material 11A may be performed on the surface facing the outer tube 3, but the tapered surface in that case is opposite (conical) to FIG.

このように、未加硫ゴム5の固定を、筒状空間4の両端を閉塞し、内軸2に固定されるリング状又はスリーブ状の封止材11によって行うようにすれば、未加硫ゴム5を筒状空間4内で確実に封止することができ、剪断変形を繰り返しても未加硫ゴム5による自己押し出し現象が抑えられる。
特に、封止材11Aのように未加硫ゴム5との当接面を、接着側の周縁から半径方向へ離れるに従って未加硫ゴム5側へ突出するテーパ面12としたことで、片面接着であっても好適なシール性が得られる。
なお、このように封止材11を内軸2又は外管3に片面接着する場合は、反対側の管との対向面間にグリースを介在させるのが望ましい。グリースを介在させれば、片面接着でもシール性は保たれるし、封止材を設けても滑りは確保でき、減衰性能に支障をきたすことがない。
As described above, if the unvulcanized rubber 5 is fixed by the ring-shaped or sleeve-shaped sealing material 11 which is fixed to the inner shaft 2 by closing both ends of the cylindrical space 4, the unvulcanized rubber 5 is fixed. The rubber 5 can be reliably sealed in the cylindrical space 4, and the self-extrusion phenomenon due to the unvulcanized rubber 5 can be suppressed even if shear deformation is repeated.
In particular, the contact surface with the unvulcanized rubber 5 like the sealing material 11A is a taper surface 12 that protrudes toward the unvulcanized rubber 5 side as it is separated from the peripheral edge on the bonding side in the radial direction. Even so, suitable sealing properties can be obtained.
When the sealing material 11 is bonded on one side to the inner shaft 2 or the outer tube 3 in this way, it is desirable to interpose grease between the opposite surfaces of the opposite tube. If grease is interposed, the sealing performance can be maintained even with single-sided adhesion, and slipping can be secured even if a sealing material is provided, and the damping performance is not hindered.

以下の表1は、図5に示す形態でオルガノポリシロキサンを主成分としたシリコーン系の未加硫ゴムを内軸と外管との間に収容して、筒状空間の両端を、内軸に片面接着されるリング状の封止材(ゴム製シールパッキン)で封止した制震ダンパーにおいて、温度依存性と速度依存性とを検証したもので、比較例として、アクリル系粘弾性体を用いた粘弾性ダンパー(比較例1)と、ブタン系高分子材料を収容した粘性ダンパー(比較例2)と、スチレン系粘弾性体を用いた粘弾性ダンパー(比較例3)との各特性も併せて掲示する。   Table 1 below shows that the silicone-based unvulcanized rubber mainly composed of organopolysiloxane in the form shown in FIG. 5 is accommodated between the inner shaft and the outer tube, and both ends of the cylindrical space are connected to the inner shaft. In a damping damper sealed with a ring-shaped sealing material (rubber seal packing) that is bonded to one side, the temperature dependence and speed dependence were verified. As a comparative example, an acrylic viscoelastic body was used. Each characteristic of the used viscoelastic damper (Comparative Example 1), the viscous damper containing the butane-based polymer material (Comparative Example 2), and the viscoelastic damper using the styrene-based viscoelastic body (Comparative Example 3) Also posted.

Figure 0005791885
Figure 0005791885

これにより、他の減衰材料を用いたダンパーに比べて、未加硫ゴムを用いた本実施例のダンパーは、温度依存性が0℃〜40℃の範囲で、また、速度依存性が0.5Hz〜5Hzの範囲でそれぞれ最も小さくなることが確認できた。   Thereby, compared with the damper using other damping materials, the damper of the present embodiment using unvulcanized rubber has a temperature dependence in the range of 0 ° C. to 40 ° C. and a speed dependence of 0. It was confirmed that the values were the smallest in the range of 5 Hz to 5 Hz.

さらに封止材としては、図6(B)に示すように、内軸2に接着した複数の封止材11B,11Bを軸方向へ所定間隔をおいて設けることもできる。この場合、封止材11B,11Bの間の空間13にグリースを充填してもよい。
一方、図6(C)に示すように、内軸2に接着した封止材11Cの外周面にリング状の凹溝14を形成してグリース溜まりとし、ここにグリース15を充填することもできる。
また、図6(D)に示すように、内軸2に接着した封止材11Dと未加硫ゴム5との間にグリース15を介在させることもできる。これらの場合も封止材11B〜11Dの接着は外管3に対して行ってもよい。
Further, as the sealing material, as shown in FIG. 6B, a plurality of sealing materials 11B and 11B bonded to the inner shaft 2 can be provided at predetermined intervals in the axial direction. In this case, the space 13 between the sealing materials 11B and 11B may be filled with grease.
On the other hand, as shown in FIG. 6C, a ring-shaped concave groove 14 can be formed on the outer peripheral surface of the sealing material 11C bonded to the inner shaft 2 to form a grease reservoir, which can be filled with grease 15. .
Further, as shown in FIG. 6D, grease 15 can be interposed between the sealing material 11 </ b> D adhered to the inner shaft 2 and the unvulcanized rubber 5. In these cases, the sealing materials 11B to 11D may be bonded to the outer tube 3.

なお、封止材にグリースを併用する場合は、以下の表2に示すように、封止材とグリースとの親和性の低い組み合わせとするのが望ましい。左欄の封止材にそれぞれ対応する右欄のグリース(特にベース油が異なる)との組み合わせとなる。   In addition, when using together grease with a sealing material, as shown in the following Table 2, it is desirable to set it as the combination with low affinity of a sealing material and grease. This is a combination with the grease in the right column (especially the base oil is different) corresponding to the sealing material in the left column.

Figure 0005791885
Figure 0005791885

但し、封止材に自己潤滑性ゴムを用いれば、グリースは不要となる。この自己潤滑性ゴムとしては、汎用ゴム系(NR,IR,IIR,BR,EPM,EPDMから選択されるベースポリマーに、不飽和脂肪酸アミドやポリエチレングリコール型界面活性剤等のブリード成分を配合した加硫ゴム)やシリコーンゴム(例えばジメチルシリコーンをベースに、相容性の悪いフェニルシリコーン類を混合しブリードさせる加硫ゴム)が考えられる。   However, if self-lubricating rubber is used as the sealing material, grease is not necessary. As this self-lubricating rubber, a general-purpose rubber system (a base polymer selected from NR, IR, IIR, BR, EPM, and EPDM is blended with a bleed component such as an unsaturated fatty acid amide or a polyethylene glycol type surfactant). Vulcanized rubber) and silicone rubber (for example, vulcanized rubber based on dimethyl silicone and mixed with bleed-free phenyl silicones).

一方、封止材としては、図7に示すように、内軸2に接着されるスリーブ状の封止材11Eを設け、この封止材11Eの軸方向の長さYを内軸2と外管3との相対移動距離X以上とすることでシール性を確保することも考えられる。
また、図8(A)に示すように、封止材11Fの内周面へ周方向に突設した突条16を内軸2の外周に凹設したリング溝17に係止させたり、同図(B)に示すように、封止材11Gの内周面に突設した複数の係止突起18を内軸2に設けた透孔19に貫通係止させたりしてもよい。これらの場合も突条や係止突起の係止は外管との間で行っても差し支えない。
On the other hand, as the sealing material, as shown in FIG. 7, a sleeve-shaped sealing material 11E bonded to the inner shaft 2 is provided, and the axial length Y of the sealing material 11E is set to be different from that of the inner shaft 2. It is also conceivable to ensure sealing performance by setting the relative movement distance X to the tube 3 or more.
Further, as shown in FIG. 8 (A), the protrusion 16 projecting in the circumferential direction on the inner peripheral surface of the sealing material 11F is engaged with the ring groove 17 recessed in the outer periphery of the inner shaft 2, or the same. As shown in FIG. (B), a plurality of locking projections 18 projecting from the inner peripheral surface of the sealing material 11G may be penetrated and locked into a through hole 19 provided in the inner shaft 2. In these cases, the protrusions and the locking protrusions may be locked with the outer tube.

さらに、封止材には、難燃性ゴムを使用したり硬質セラミック系材料を使用したりすることで耐火性を持たせることもできる。
加えて、封止材は、内軸又は外管に対する片面接着に限らず、弾性が600%以上の材料、例えばスチレン系やオレフィン系のTPE材料であれば、内軸と外管とのそれぞれの対向面において接着してもよい。
Furthermore, the sealing material can be provided with fire resistance by using a flame-retardant rubber or a hard ceramic material.
In addition, the sealing material is not limited to single-sided adhesion to the inner shaft or the outer tube, but if the material has an elasticity of 600% or more, for example, a styrene-based or olefin-based TPE material, each of the inner shaft and the outer tube. You may adhere | attach on an opposing surface.

その他、軸心部材は軸体に限らず、板状や筒状であっても採用できるし、軸心部材と外装部材とが一つずつ設けられる形態に限らず、外装部材にさらに一又は複数の筒状の外装部材を同軸且つ非接触で外装して、それぞれの外装部材の間の筒状空間内にそれぞれ塑性流動抵抗材料を、同様に接着や封止材を利用して収容することもできる。この場合、軸心部材から一つ置きの外装部材の組と、それ以外の一つ置きの外装部材の組とがそれぞれ同じ側に接合されることになる。
また、制震ダンパーのフレームへの取付形態も、内軸側と外管側とを逆に取り付けたり、複数の制震ダンパーを対角線上にX字状に架設したり、上下一対の制震ダンパーを一方の柱の中間部位に連結するいわゆるK字状に架設したり等、適宜設計変更可能である。
In addition, the shaft center member is not limited to the shaft body, and may be a plate shape or a cylindrical shape, and is not limited to a mode in which one shaft center member and one exterior member are provided. It is also possible to package the cylindrical exterior member coaxially and in a non-contact manner, and store the plastic flow resistance material in the cylindrical space between the respective exterior members in the same manner by using an adhesive or a sealing material. it can. In this case, every other set of exterior members from the shaft member and every other set of exterior members are joined to the same side.
In addition, the installation form of the damping damper on the frame can be reversed by attaching the inner shaft side and the outer tube side, or installing multiple damping dampers in an X shape diagonally, or a pair of upper and lower damping dampers. It is possible to change the design as appropriate, such as erection in a so-called K-shape that connects to the intermediate part of one pillar.

1,1A〜1C・・制震ダンパー、2・・内軸、3・・外管、4・・筒状空間、5・・未加硫ゴム、6・・接着層、7,9・・半割金具、8,10・・フランジ、11,11A〜E・・封止材、12・・テーパ面、13・・空間、14・・凹溝、15・・グリース、16・・突条、17・・リング溝、18・・係止突起、19・・透孔、20・・フレーム、21・・柱、22・・横架材、23・・ガセットプレート、24・・取付金具。   1, 1A to 1C ··· Damping damper, 2 ·· Inner shaft, 3 ·· Outer tube, 4 ·· Cylindrical space, 5 ·· Unvulcanized rubber, 6 ·· Adhesive layer, 7, 9 ·· Half Split metal fittings, 8, 10 ... Flange, 11, 11A to E ... Sealing material, 12 ... Tapered surface, 13 ... Space, 14 ... Groove, 15 ... Grease, 16 ... Projection, 17 .. Ring groove, 18 .. Locking projection, 19 .. Through hole, 20 .. Frame, 21 .. Column, 22 .. Horizontal member, 23 .. Gusset plate, 24.

Claims (4)

軸状又は筒状の軸心部材に、一又は複数の筒状の外装部材を同軸且つ非接触で外装し、半径方向で隣接する前記各部材間に形成される筒状空間内で内周側の前記軸心部材若しくは前記外装部材と外周側の前記外装部材との間に、未加硫ゴムを収容した制震ダンパーであって、
前記未加硫ゴムを、前記内周側の前記軸心部材若しくは前記外装部材と外周側の前記外装部材との何れか一方の部材に接着すると共に、他方の部材の表面に、滑動安定処理を施す一方、
前記筒状空間の両端を閉塞し、前記一方の部材に接着されるリング状又は筒状の封止材を設けたことを特徴とする制震ダンパー。
One or a plurality of cylindrical exterior members are coaxially and non-contactedly mounted on the shaft-shaped or cylindrical shaft center member, and the inner circumferential side is formed in a cylindrical space formed between the respective members adjacent in the radial direction. wherein between the shaft center member or the outer member of the outer member and the outer peripheral side, a seismic control dampers containing the unvulcanized rubber,
The unvulcanized rubber is bonded to either the shaft member on the inner peripheral side or the exterior member and the exterior member on the outer peripheral side, and a sliding stabilization process is performed on the surface of the other member. While giving
An anti-seismic damper characterized in that a ring-shaped or cylindrical sealing material that closes both ends of the cylindrical space and is bonded to the one member is provided.
軸状又は筒状の軸心部材に、一又は複数の筒状の外装部材を同軸且つ非接触で外装し、半径方向で隣接する前記各部材間に形成される筒状空間内で内周側の前記軸心部材若しくは前記外装部材と外周側の前記外装部材との間に、未加硫ゴムを収容した制震ダンパーであって、
前記未加硫ゴムの収容を、前記筒状空間の両端を閉塞し、前記内周側の前記軸心部材若しくは前記外装部材と外周側の前記外装部材との何れか一方の部材に接着されるリング状又は筒状の封止材によって行うと共に、前記封止材における前記未加硫ゴムとの当接面を、前記接着側の周縁から半径方向へ離れるに従って前記未加硫ゴム側へ突出するテーパ面としたことを特徴とする制震ダンパー。
One or a plurality of cylindrical exterior members are coaxially and non-contactedly mounted on the shaft-shaped or cylindrical shaft center member, and the inner circumferential side is formed in a cylindrical space formed between the respective members adjacent in the radial direction. wherein between the shaft center member or the outer member of the outer member and the outer peripheral side, a seismic control dampers containing the unvulcanized rubber,
The housing of the unvulcanized rubber is closed at both ends of the cylindrical space, and is adhered to either the shaft member on the inner peripheral side or the exterior member and the exterior member on the outer peripheral side. performs the ring-shaped or tubular sealing member, the contact surface between the unvulcanized rubber in the sealing member, the protruding into unvulcanized rubber side with distance from the peripheral edge of the adhesive side to the radially Damping damper with a tapered surface.
前記封止材と当該封止材が接着されない他方の部材との対向面間にグリースを介在させたことを特徴とする請求項2に記載の制震ダンパー。 The damping damper according to claim 2, wherein grease is interposed between opposing surfaces of the sealing material and the other member to which the sealing material is not bonded . 前記未加硫ゴムを、ポリオルガノシロキサンを主成分とした可塑度200以上のものとしたことを特徴とする請求項1乃至3の何れかに記載の制震ダンパー。 The unvulcanized rubber, Seismic damper according to any one of claims 1 to 3, characterized in that as the polyorganosiloxane main component was above plasticity 200.
JP2010253215A 2010-11-11 2010-11-11 Damping damper Active JP5791885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010253215A JP5791885B2 (en) 2010-11-11 2010-11-11 Damping damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010253215A JP5791885B2 (en) 2010-11-11 2010-11-11 Damping damper

Publications (2)

Publication Number Publication Date
JP2012102829A JP2012102829A (en) 2012-05-31
JP5791885B2 true JP5791885B2 (en) 2015-10-07

Family

ID=46393459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253215A Active JP5791885B2 (en) 2010-11-11 2010-11-11 Damping damper

Country Status (1)

Country Link
JP (1) JP5791885B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110374219A (en) * 2019-04-26 2019-10-25 长春工程学院 A kind of New type corrugated damper and the construction wall containing the ripple damper
CN113175115B (en) * 2021-05-11 2022-11-15 四川大学 Double-rigidity buckling restrained damper

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303222A (en) * 1998-04-24 1999-11-02 Yahagi Construction Co Ltd Brace material using seismic control method
JP2003172047A (en) * 2001-12-03 2003-06-20 Bridgestone Corp Vibration controlling damper, mounting method thereof and wooden house
JP4009833B2 (en) * 2002-06-05 2007-11-21 信越化学工業株式会社 Damper using organopolysiloxane composition
JP4640403B2 (en) * 2007-11-20 2011-03-02 東海ゴム工業株式会社 Manufacturing method of rubber bush with lubricant

Also Published As

Publication number Publication date
JP2012102829A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
US9506432B2 (en) Sealing device
JP2009041774A (en) Angle connector
JP5791885B2 (en) Damping damper
US20170363170A1 (en) Hydraulic Damper With A Piston Rod Protective Tube
JP2019523373A (en) Torsional vibration damper
KR20170130121A (en) Jointing apparatus of steel pipe and construction methodthereof
KR100556213B1 (en) Connector of Ventilation Duct and Connected Structure thereof
JPH01312293A (en) Vibration proof joint
JP6259357B2 (en) Piping connection structure and connecting member
JP2015113846A (en) Vibration damper for structure
KR101164982B1 (en) Lock-up device for seismic control of bridge or building structure
US11067146B2 (en) Composite vibration-damping body and metal-spring-equipped composite vibration-damping body using the same
JP2019019867A (en) Leak prevention device
JP2014040860A (en) Seal structure and construction method for the same
JP2014025264A (en) Seal structure, and construction method for the same
JP6618760B2 (en) Structure for enhancing performance of rubber bearing device or seismic isolation device using damping damper for structure
JP2015203441A (en) Vibration control damper for structure
JP2019060454A (en) Vibration control device
JP6557529B2 (en) Seismic structure at the connection between manhole side wall and pipe
JP5577222B2 (en) Damping damper
WO2016174801A1 (en) Antivibration device
KR101256888B1 (en) Expansion Joint of Construction Plumbing
JP3166077U (en) Double steel pipe brace
CN110566744A (en) pipe fitting saddle connecting structure
JP2019158138A (en) Anti-vibration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141006

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20141128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150805

R150 Certificate of patent or registration of utility model

Ref document number: 5791885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150