JP5759440B2 - Metal oxide film thickness measuring device and film thickness inspection device - Google Patents

Metal oxide film thickness measuring device and film thickness inspection device Download PDF

Info

Publication number
JP5759440B2
JP5759440B2 JP2012279170A JP2012279170A JP5759440B2 JP 5759440 B2 JP5759440 B2 JP 5759440B2 JP 2012279170 A JP2012279170 A JP 2012279170A JP 2012279170 A JP2012279170 A JP 2012279170A JP 5759440 B2 JP5759440 B2 JP 5759440B2
Authority
JP
Japan
Prior art keywords
film thickness
light
distance
measurement
glass container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012279170A
Other languages
Japanese (ja)
Other versions
JP2014122832A (en
Inventor
純也 福永
純也 福永
直広 田中
直広 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
Original Assignee
Nihon Yamamura Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2012279170A priority Critical patent/JP5759440B2/en
Publication of JP2014122832A publication Critical patent/JP2014122832A/en
Application granted granted Critical
Publication of JP5759440B2 publication Critical patent/JP5759440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

この発明は、ガラスびんなどのガラス容器の表面に形成された酸化スズなどの金属酸化物被膜の膜厚を非接触で測定するための金属酸化物被膜の膜厚測定装置と、その膜厚測定装置が用いられた膜厚検査装置とに関する。   The present invention relates to a metal oxide film thickness measuring apparatus for measuring the film thickness of a metal oxide film such as tin oxide formed on the surface of a glass container such as a glass bottle in a non-contact manner, and its film thickness measurement. The present invention relates to a film thickness inspection apparatus using the apparatus.

製びん工場で製造されるガラスびんの多くは、表面が傷付くのを防ぎ、ガラスびんの強度低下を防止するために、表面に「コールドエンドコーティング」と呼ばれる潤滑性のあるコーティングが施されている。このコールドエンドコーティングを施すのに、その下地として、びん成形直後の高温な状態下で「ホットエンドコーティング」と呼ばれるコーティングが施される。この「ホットエンドコーティング」は、ナノメートルレベルの非常に薄い酸化スズ、酸化チタンの被膜である。この種の金属酸化物被膜(以下、単に「被膜」ともいう。)の膜厚は、厚すぎると、内容物を充填するラインでガラスびんをアルカリ洗浄したとき、被膜が剥離してガラスびんの表面に虹彩現象が発生するおそれがある。また、薄すぎると、ガラスびんの表面が傷付くおそれがあり、ガラスびんの強度低下を招く。   Many glass bottles manufactured in bottle factories have a lubricious coating called “cold end coating” on their surfaces to prevent the surface from scratching and the strength of the glass bottle from being reduced. Yes. In order to apply this cold end coating, a coating called “hot end coating” is applied as a base under a high temperature condition immediately after the bottle molding. This “hot end coating” is a very thin film of tin oxide and titanium oxide at the nanometer level. If this type of metal oxide coating (hereinafter also simply referred to as “coating”) is too thick, when the glass bottle is washed with alkali in the line filling the contents, the coating peels off and the glass bottle There is a possibility that an iris phenomenon may occur on the surface. Moreover, when too thin, there exists a possibility that the surface of a glass bottle may be damaged, and the intensity | strength reduction of a glass bottle is caused.

製びん工場では、ユーザーの使用条件に合わせてガラスびんの表面に形成する酸化スズの被膜の膜厚をガラスびん毎に設定し、検査工程において、被膜の膜厚を測定して、その測定値が適正でないガラスびんを不良品として除去することにより膜厚を適正値に管理している。   In the bottle factory, the film thickness of the tin oxide film formed on the surface of the glass bottle is set for each glass bottle in accordance with the user's usage conditions, and the film thickness of the film is measured in the inspection process. The film thickness is managed to an appropriate value by removing glass bottles that are not appropriate as defective products.

上記した酸化スズの被膜の膜厚を測定するのに、従来よりアメリカングラスリサーチ社製(以下「AGR社製」という。)の膜厚測定装置が広く用いられている。このAGR社製の膜厚測定装置は、屈折率がガラスに近い液体(これを「インデックス液」という。)をガラスびんの表面に塗布したうえで、ガラスびんの表面に向けて光を当てて、被膜の表面での屈折光と被膜とガラスびんの界面の屈折光とを測定し、その差より膜厚を測定するものである(特許文献1の「従来の技術」の欄を参照)。この測定は手作業により行われるもので、図7に示すように、回転可能なテーブル90上にガラスびんGを載せてクランプ機構91により回動自由に支持し、ヘッド部92をガラスびんGの表面に当てて、ヘッド部92とガラスびんGとをインデックス液を介して光学的に結合させる。モータ駆動部93によりテーブル90を回転させて測定を開始すると、ヘッド部92によりガラスびんGの外周の所定の測定点において被膜の膜厚が測定される。なお、測定結果はAGR社独自の光学単位であるCTU(Coating Thickness Units)により出力される。   Conventionally, a film thickness measuring device manufactured by American Glass Research (hereinafter referred to as “AGR”) has been widely used to measure the film thickness of the tin oxide film. This film thickness measuring device manufactured by AGR Co., Ltd. applies a liquid with a refractive index close to that of glass (this is called “index liquid”) to the surface of the glass bottle, and then applies light toward the surface of the glass bottle. Then, the refracted light at the surface of the coating and the refracted light at the interface between the coating and the glass bottle are measured, and the film thickness is measured from the difference between them (see the column “Prior Art” in Patent Document 1). This measurement is performed manually. As shown in FIG. 7, a glass bottle G is placed on a rotatable table 90 and supported freely by a clamp mechanism 91, and the head portion 92 is mounted on the glass bottle G. The head portion 92 and the glass bottle G are optically coupled to each other through the index liquid by being applied to the surface. When the measurement is started by rotating the table 90 by the motor drive unit 93, the film thickness of the coating is measured at a predetermined measurement point on the outer periphery of the glass bottle G by the head unit 92. The measurement result is output by CTU (Coating Thickness Units) which is an optical unit unique to AGR.

特開平9−315838号公報Japanese Patent Laid-Open No. 9-315838

上記したAGR社製の膜厚測定装置9では、ガラスびんGの表面にインデックス液が塗布されるので、ガラスびんGが汚れるという問題がある。インデックス液を使用しないタイプの膜厚測定装置も提案されているが(特許文献1参照)、その提案された膜厚測定装置は抵抗測定用の端子を、AGR社製の膜厚測定装置9はヘッド部92を、それぞれガラスびんGの表面に接触させるので、ガラスびんGが傷付けられるおそれがある。   In the above-described film thickness measuring device 9 manufactured by AGR, since the index liquid is applied to the surface of the glass bottle G, there is a problem that the glass bottle G becomes dirty. A film thickness measuring device of a type that does not use an index solution has also been proposed (see Patent Document 1). The proposed film thickness measuring device has a terminal for resistance measurement, and a film thickness measuring device 9 manufactured by AGR Co., Ltd. Since the head part 92 is brought into contact with the surface of the glass bottle G, the glass bottle G may be damaged.

上記した接触タイプに代えて非接触の膜厚測定装置も考えられるが、ヘッド部をガラスびんの表面から離して固定した場合、ガラスびんの胴部公差や偏芯によってヘッド部とガラスびんとの距離が変動するため、膜厚の測定値が距離に応じて変動することになり、膜厚の測定結果に信頼性が得られない。   A non-contact film thickness measuring device can be considered instead of the contact type described above, but when the head part is fixed away from the surface of the glass bottle, the head part and the glass bottle are not aligned due to the tolerance or eccentricity of the bottle part. Since the distance varies, the measured value of the film thickness varies according to the distance, and the reliability of the film thickness measurement result cannot be obtained.

この発明は、上記の問題に着目してなされたもので、ガラス容器の表面に形成された酸化スズなどの金属酸化物被膜の膜厚を非接触で測定でき、しかも、ガラス容器の胴径公差や偏芯などに影響されずに被膜の膜厚を正確に測定できる金属酸化物被膜の膜厚測定装置を提供することを目的とする。
また、この発明が他に目的とするところは、上記の膜厚測定装置をガラス容器の外周面に形成された金属酸化物被膜の膜厚検査に用い、被膜の膜厚が不適正なガラス容器を検出して排除することにより、被膜の膜厚を適正値に管理することができる金属酸化物被膜の膜厚検査装置を提供することにある。
The present invention has been made paying attention to the above-mentioned problems, and can measure the film thickness of a metal oxide film such as tin oxide formed on the surface of a glass container in a non-contact manner. An object of the present invention is to provide a metal oxide film thickness measuring apparatus capable of accurately measuring the film thickness without being affected by the eccentricity or the eccentricity.
Another object of the present invention is to use the above-mentioned film thickness measuring apparatus for the film thickness inspection of the metal oxide film formed on the outer peripheral surface of the glass container, and the glass container having an inappropriate film thickness. It is an object of the present invention to provide a metal oxide film thickness inspection apparatus capable of managing the film thickness to an appropriate value by detecting and eliminating the above.

この発明による金属酸化物被膜の膜厚測定装置は、ガラス容器の表面に形成された金属酸化物被膜の膜厚を非接触で測定するものであって、前記ガラス容器に向けて光を照射する投光器およびガラス容器の前記被膜からの反射光を受光する受光器を有するヘッド部と前記受光器による反射光の受光量に応じた測定データを得る測定回路部とを含む光量測定センサと、前記光量測定センサのヘッド部とガラス容器との距離を測定する距離測定センサと、前記光量測定センサの測定回路部より測定データを取り込み反射光の受光量を被膜の膜厚算出データに換算しかつ前記膜厚算出データが前記距離測定センサで得られた距離の測定値に応じて補正された値となる演算式による演算を実行する演算制御装置とから成る。前記演算制御装置は、前記光量測定センサのヘッド部とガラス容器との距離に応じた複数個の前記演算式が記憶されるメモリを有し、前記距離測定センサで得られた距離の測定値に応じた演算式を前記メモリに記憶された複数個の演算式より選択して、その選択された演算式による演算を実行することにより前記膜厚算出データを得ることを特徴とする。 The metal oxide film thickness measuring apparatus according to the present invention measures the film thickness of a metal oxide film formed on the surface of a glass container in a non-contact manner, and irradiates the glass container with light. A light quantity measuring sensor including a head part having a light receiver and a light receiver that receives light reflected from the coating of the glass container, and a measurement circuit part that obtains measurement data according to the amount of light received by the light receiver, and the light quantity A distance measurement sensor for measuring the distance between the head portion of the measurement sensor and the glass container, and measurement data is taken in from the measurement circuit unit of the light quantity measurement sensor, and the received light amount of the reflected light is converted into film thickness calculation data for the film, and the film The thickness calculation data includes an arithmetic control device that executes a calculation by an arithmetic expression that becomes a value corrected according to the distance measurement value obtained by the distance measurement sensor . The arithmetic control device has a memory in which a plurality of arithmetic expressions according to the distance between the head portion of the light quantity measurement sensor and the glass container are stored, and the distance measurement value obtained by the distance measurement sensor The film thickness calculation data is obtained by selecting a corresponding arithmetic expression from a plurality of arithmetic expressions stored in the memory and executing an operation according to the selected arithmetic expression .

上記した構成の膜厚測定装置により例えばガラスびんの表面に形成された酸化スズなどの金属酸化物被膜の膜厚を測定するには、光量測定センサのヘッド部をガラスびんと対向する位置に配置し、ヘッド部の投光器よりガラスびんに向けて光を照射する。その照射光はガラスびんの前記被膜で反射され、その反射光はヘッド部の受光器で受光されるとともに、測定回路部により反射光の受光量に応じた測定データが取得される。反射光の受光量は被膜の膜厚が大きければ増加し、小さければ減少するもので、演算制御装置は光量測定センサの測定回路部より測定データを取り込み、反射光の受光量を被膜の膜厚に換算する演算を実行することにより膜厚算出データを得る。
この場合、被膜の膜厚が同じガラスびんであっても、ヘッド部とガラスびんとの距離が大きいと反射光の受光量は減少し、小さいと増加するので、光量測定センサのヘッド部とガラスびんとの距離を距離測定センサにより測定するとともに、前記演算制御装置は、距離測定センサで得られた距離の測定値に応じた演算式、すなわち、前記膜厚算出データが前記距離測定センサより取り込んだ距離の測定値に応じて補正された値となる演算式を選択して被膜の膜厚を算出する。これにより、算出される被膜の膜厚は光量測定センサのヘッド部とガラス容器との距離に応じた値に補正されている。
In order to measure the film thickness of a metal oxide film such as tin oxide formed on the surface of a glass bottle with the film thickness measuring apparatus having the above-described configuration, the head part of the light quantity measuring sensor is disposed at a position facing the glass bottle. Then, light is irradiated toward the glass bottle from the light projector of the head unit. The irradiated light is reflected by the coating of the glass bottle, the reflected light is received by the light receiver of the head unit, and measurement data corresponding to the amount of received reflected light is acquired by the measurement circuit unit. The amount of reflected light received increases when the film thickness is large, and decreases when the film thickness is small. The arithmetic and control unit captures the measurement data from the measurement circuit section of the light quantity sensor, and the amount of reflected light received is the film thickness. The film thickness calculation data is obtained by executing the calculation for converting to.
In this case, even if the film thickness is the same, the amount of reflected light decreases when the distance between the head and the glass bottle is large, and increases when the distance is small. The distance to the bottle is measured by the distance measuring sensor, and the arithmetic control device takes in an arithmetic expression corresponding to the distance measurement value obtained by the distance measuring sensor, that is, the film thickness calculation data is taken in from the distance measuring sensor. The film thickness of the film is calculated by selecting an arithmetic expression that is a value corrected according to the measured value of the distance . Thus, the calculated film thickness of the coating is corrected to a value corresponding to the distance between the head portion of the light quantity measurement sensor and the glass container.

この発明による金属酸化物被膜の膜厚検査装置は、ガラス容器の表面に形成された金属酸化物被膜の膜厚が適正であるかどうかを検査するものであって、表面に金属酸化物被膜が形成されたガラス容器を搬送するコンベヤと、前記コンベヤ上に並ぶ複数のガラス容器について前記被膜の膜厚を非接触で測定する膜厚測定装置と、前記コンベヤに沿う膜厚測定装置の下流位置に配置され被膜の膜厚が適正でないガラス容器をコンベヤ上より排除する排出機構とを有している。前記膜厚測定装置は、コンベヤ上のガラス容器に向けて光を照射する投光器およびガラス容器の前記被膜からの反射光を受光する受光器を有するヘッド部と前記受光器による反射光の受光量に応じた測定データを得る測定回路部とを含む光量測定センサと、前記光量測定センサのヘッド部とガラス容器との距離を測定する距離測定センサと、前記光量測定センサの測定回路部より測定データを取り込み反射光の受光量を被膜の膜厚算出データに換算しかつ前記膜厚算出データが前記距離測定センサで得られた距離の測定値に応じて補正された値となる演算式による演算を実行する演算制御装置とから成る。前記光量測定センサのヘッド部および距離測定センサは、前記コンベヤに沿う前記ガラス容器と対向する位置にそれぞれ配置される。前記演算制御装置は、前記光量測定センサのヘッド部とガラス容器との距離に応じた複数個の前記演算式が記憶されるメモリを有し、前記距離測定センサで得られた距離の測定値に応じた演算式を前記メモリに記憶された複数個の演算式より選択して、その選択された演算式による演算を実行することにより前記膜厚算出データを得るとともに、前記膜厚算出データによって被膜の膜厚が適正であるかどうかを判断し、適正でないと判断したガラス容器をコンベヤ上より排除するための信号を生成して前記排出機構へ出力する。 An apparatus for inspecting a film thickness of a metal oxide film according to the present invention inspects whether or not the film thickness of a metal oxide film formed on the surface of a glass container is appropriate. In a downstream position of a conveyor for conveying the formed glass containers, a film thickness measuring apparatus for measuring the film thickness of the coating in a non-contact manner for a plurality of glass containers arranged on the conveyor, and a film thickness measuring apparatus along the conveyor And a discharging mechanism that removes glass containers that are disposed and whose film thickness is not appropriate from the conveyor. The film thickness measuring device has a projector that irradiates light toward a glass container on a conveyor, and a head unit that has a light receiver that receives light reflected from the coating of the glass container, and the amount of reflected light received by the light receiver. A light quantity measurement sensor including a measurement circuit unit for obtaining corresponding measurement data, a distance measurement sensor for measuring a distance between the head part of the light quantity measurement sensor and the glass container, and measurement data from the measurement circuit part of the light quantity measurement sensor. performing operations a received light amount of uptake reflected light by an arithmetic expression which is a corrected value in accordance with the measured value of the distance that the thickness calculation data of the film is converted vital the film thickness calculating data obtained by the distance measuring sensor An arithmetic and control unit. The head part of the light quantity measurement sensor and the distance measurement sensor are respectively arranged at positions facing the glass container along the conveyor. The arithmetic control device has a memory in which a plurality of arithmetic expressions according to the distance between the head portion of the light quantity measurement sensor and the glass container are stored, and the distance measurement value obtained by the distance measurement sensor A corresponding arithmetic expression is selected from a plurality of arithmetic expressions stored in the memory, and the film thickness calculation data is obtained by executing an operation according to the selected arithmetic expression, and the film thickness calculation data is used to obtain the film thickness. It is determined whether or not the film thickness is appropriate, and a signal for removing the glass container determined to be inappropriate from the conveyor is generated and output to the discharge mechanism.

上記した構成の膜厚検査装置により例えばガラスびんの表面に形成された金属酸化物被膜の膜厚が適正であるかどうかを検査するのに、ガラスびんを搬送するコンベヤに沿うガラスびんと対向する位置に光量測定センサのヘッド部および距離測定センサがそれぞれ配置される。コンベヤにより搬送されてくるガラスびんに向けて光量測定センサのヘッド部の投光器より光を照射すると、その照射光はガラスびんの前記被膜で反射され、その反射光はヘッド部の受光器で受光されるとともに、測定回路部により反射光の受光量に応じた測定データが取得される。反射光の受光量は被膜の膜厚が大きければ増加し、小さければ減少するもので、演算制御装置は光量測定センサの測定回路部より測定データを取り込み、反射光の受光量を被膜の膜厚に換算する演算を実行することにより膜厚算出データを得る。
この場合、被膜の膜厚が同じガラスびんであっても、ヘッド部とガラスびんとの距離が大きいと反射光の受光量は減少し、小さいと増加するので、光量測定センサのヘッド部とガラスびんとの距離を距離測定センサにより測定するとともに、前記演算制御装置は、距離測定センサで得られた距離の測定値に応じた演算式、すなわち、前記膜厚算出データが前記距離測定センサより取り込んだ距離の測定値に応じて補正された値となる演算式を選択して被膜の膜厚を算出する。これにより、算出される被膜の膜厚は光量測定センサのヘッド部とガラス容器との距離に応じた値に補正されている。そして、演算制御装置は、膜厚測定装置により得られた膜厚算出データによってガラスびんの膜厚が適正であるかどうかを判断し、適正でないと判断したガラスびんをコンベヤ上から排除するための信号を生成して排出機構へ出力する。排出機構は、この信号を受けて、コンベヤに沿う膜厚測定装置の下流位置において、前記演算制御装置からの信号に応動してコンベヤ上より不良品のガラスびんを排除する。
To inspect whether the film thickness of the metal oxide film formed on the surface of the glass bottle, for example, is appropriate by the film thickness inspection apparatus having the above-described configuration, it faces the glass bottle along the conveyor that conveys the glass bottle. The head part of the light quantity measuring sensor and the distance measuring sensor are respectively arranged at the positions. When light is emitted from the projector of the head unit of the light quantity measurement sensor toward the glass bottle conveyed by the conveyor, the irradiated light is reflected by the coating of the glass bottle, and the reflected light is received by the light receiver of the head unit. In addition, measurement data corresponding to the amount of received reflected light is acquired by the measurement circuit unit. The amount of reflected light received increases when the film thickness is large, and decreases when the film thickness is small. The arithmetic and control unit captures the measurement data from the measurement circuit section of the light quantity sensor, and the amount of reflected light received is the film thickness. The film thickness calculation data is obtained by executing the calculation for converting to.
In this case, even if the film thickness is the same, the amount of reflected light decreases when the distance between the head and the glass bottle is large, and increases when the distance is small. The distance to the bottle is measured by the distance measuring sensor, and the arithmetic control device takes in an arithmetic expression corresponding to the distance measurement value obtained by the distance measuring sensor, that is, the film thickness calculation data is taken in from the distance measuring sensor. The film thickness of the film is calculated by selecting an arithmetic expression that is a value corrected according to the measured value of the distance . Thus, the calculated film thickness of the coating is corrected to a value corresponding to the distance between the head portion of the light quantity measurement sensor and the glass container. Then, the arithmetic and control unit determines whether the glass bottle thickness is appropriate based on the film thickness calculation data obtained by the film thickness measuring device, and removes the glass bottle determined to be inappropriate from the conveyor. A signal is generated and output to the discharge mechanism. Upon receiving this signal, the discharging mechanism removes defective glass bottles from the conveyor in response to the signal from the arithmetic control unit at a downstream position of the film thickness measuring device along the conveyor.

この発明によれば、ガラス容器の表面に形成された酸化スズなどの金属酸化物被膜の膜厚を非接触で測定することができ、しかも、ガラス容器の胴径公差や偏芯などに起因して光量測定センサのアンプ部とガラス容器との距離が変動しても、それに影響されずに被膜の膜厚を正確に測定することができる。
また、この発明によれば、被膜の膜厚が不適正なガラス容器を検出して排除することができるので、被膜の膜厚を適正値に管理できる。
According to this invention, the film thickness of the metal oxide film such as tin oxide formed on the surface of the glass container can be measured in a non-contact manner, and it is caused by the barrel diameter tolerance or eccentricity of the glass container. Thus, even if the distance between the amplifier part of the light quantity measuring sensor and the glass container is fluctuated, the film thickness of the coating can be accurately measured without being affected by it.
Moreover, according to this invention, since the glass container with an inappropriate film thickness can be detected and eliminated, the film thickness can be controlled to an appropriate value.

この発明の一実施例である金属酸化物被膜の膜厚検査装置の概略構成を示す平面図である。It is a top view which shows schematic structure of the film thickness test | inspection apparatus of the metal oxide film which is one Example of this invention. 膜厚測定装置の構成を示す断面図である。It is sectional drawing which shows the structure of a film thickness measuring apparatus. 他の実施例に係る膜厚検査装置の概略構成を示す平面図である。It is a top view which shows schematic structure of the film thickness inspection apparatus which concerns on another Example. 反射光の受光量を被膜の膜厚に換算するための演算式とその演算式を導く方法とを示す説明図である。It is explanatory drawing which shows the calculation formula for converting the received light quantity of reflected light into the film thickness of a film, and the method of deriving the calculation formula. 光量測定センサのヘッド部とガラスびんとの距離が0.5mm、1.0mm、1.5mm、2.0mm、2.5mmであるときの反射光の受光量を被膜の膜厚に換算するための演算式とその演算式を導く方法とを示す説明図である。To convert the amount of reflected light received to the film thickness when the distance between the head part of the light quantity measuring sensor and the glass bottle is 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, or 2.5 mm It is explanatory drawing which shows the computing equation of and the method of deriving the computing equation. 膜厚検査のための演算制御装置による制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control by the arithmetic control apparatus for a film thickness test | inspection. 従来の膜厚測定装置により金属酸化物被膜の膜厚を測定している状態を示す正面図である。It is a front view which shows the state which is measuring the film thickness of a metal oxide film with the conventional film thickness measuring apparatus.

図1は、この発明の一実施例である金属酸化物被膜の膜厚検査装置1の概略構成と、その膜厚検査装置1をガラスびんGの検査に実施した状態とを示している。図示例の膜厚検査装置1は、ガラスびんGの表面に形成された金属酸化物被膜の膜厚を測定し、その膜厚が適正であるかどうかを検査するものである。なお、検査の対象はガラスびんに限らず、その他のガラス容器であってもよい。検査の対象のガラスびんGは、表面にコールドエンドコーティングが施され、その下地としてホットエンドコーティングが施されている。膜厚測定装置3はホットエンドコーティングにより少なくともガラスびんGの胴部の表面に形成された酸化スズの被膜の膜厚を胴部の上部位置で測定しかつその膜厚の測定値が規格内であるかどうかにより膜厚の適否を判断する。なお、金属酸化物被膜は酸化スズの被膜に限らず、例えば酸化チタンの被膜であってもよい。また、実施に際しては、胴部の上部位置と下部位置の2箇所について膜厚測定を行って膜厚の適否を判断するのが望ましく、この場合は、後述する光量測定センサ4と距離測定センサ5との組を2組用意して上下の各位置にそれぞれ配置する。   FIG. 1 shows a schematic configuration of a metal oxide film thickness inspection apparatus 1 according to an embodiment of the present invention and a state in which the film thickness inspection apparatus 1 is inspected for a glass bottle G. The film thickness inspection apparatus 1 in the illustrated example measures the film thickness of the metal oxide film formed on the surface of the glass bottle G and inspects whether or not the film thickness is appropriate. The inspection target is not limited to a glass bottle, but may be another glass container. The glass bottle G to be inspected has a cold end coating on the surface and a hot end coating as a base. The film thickness measuring device 3 measures the film thickness of the tin oxide film formed at least on the surface of the barrel portion of the glass bottle G by hot end coating at the upper position of the barrel portion, and the measured value of the thickness is within the standard. The suitability of the film thickness is determined based on whether or not there is. The metal oxide film is not limited to a tin oxide film, and may be a titanium oxide film, for example. In the implementation, it is desirable to measure the film thickness at the upper part and the lower part of the body part to determine whether the film thickness is appropriate. In this case, the light quantity measurement sensor 4 and the distance measurement sensor 5 described later are used. 2 sets are prepared and arranged at respective positions above and below.

ガラスびんGは、図示しない製びん機により成形された直後の高温な状態下で、前記のホットエンドコーティングが施されて主に胴部の表面全体に酸化スズの被膜が形成される。その後、徐冷工程を経た後に前記のコールドエンドコーティングが施される。これらのコーティング処理が施されたガラスびんGは、図1に示すコンベヤ2によって検査工程に送られてくる。検査工程ではガラスびんGの欠陥の有無などが検査されるもので、膜厚検査装置1が設置されている検査ステーションでは、全てのガラスびんGを対象として各ガラスびんGの表面に形成されたホットエンドコーティングによる被膜の膜厚が測定され、かつその膜厚が規格内であるかどうかによって適否が判断される。   The glass bottle G is subjected to the hot end coating in a high temperature state immediately after being formed by a bottle making machine (not shown), and a tin oxide film is mainly formed on the entire surface of the body portion. Thereafter, the cold end coating is applied after a slow cooling step. The glass bottles G subjected to these coating processes are sent to the inspection process by the conveyor 2 shown in FIG. In the inspection process, the glass bottles G are inspected for defects. At the inspection station where the film thickness inspection apparatus 1 is installed, all glass bottles G are formed on the surface of each glass bottle G. The film thickness of the hot end coating is measured, and whether or not the film thickness is within the standard is judged.

膜厚検査装置1は、複数個のガラスびんGを起立した姿勢で搬送する前記のコンベヤ2と、コンベヤ2上にほぼ一定間隔で並んだ複数のガラス容器Gについて前記ホットエンドコーティングによる酸化スズの被膜の膜厚を非接触で測定する膜厚測定装置3と、コンベヤ2に沿う膜厚測定装置3の下流位置に配置され酸化スズの被膜の膜厚が適正でないと判断されたガラス容器Gを不良品としてコンベヤ2上より受皿70上へ排除する排出機構7とを有している。   The film thickness inspection apparatus 1 is configured to transfer tin oxide by hot-end coating on the conveyor 2 that conveys a plurality of glass bottles G in an upright posture and a plurality of glass containers G arranged on the conveyor 2 at substantially constant intervals. A glass container G that is disposed at a downstream position of the film thickness measuring device 3 that measures the film thickness of the coating in a non-contact manner and the film thickness measuring device 3 along the conveyor 2 and is determined to have an inappropriate film thickness of the tin oxide film. It has a discharge mechanism 7 for removing the defective product from the conveyor 2 onto the tray 70.

コンベヤ2には、ガラスびんGを1列に整列させて搬送するための左右のガイド21,22が設けられており、コンベヤ2による搬送経路の途中に膜厚測定装置3が、その下流のガイド21,22が途切れた箇所に不良品の排出機構7および受皿70が、それぞれ配備されている。排出機構7は、不良と判定されたガラスびんGに向けてエアを吹き付けることによりそのガラスびんGを受皿70上へ押し出して、コンベヤ2上から排除する。なお、排出機構7は、図示例のような非接触式のものに限らず、押圧板を往復動させる接触式のものであってもよい。   The conveyor 2 is provided with left and right guides 21 and 22 for transporting the glass bottles G in a line, and the film thickness measuring device 3 is provided on the downstream side of the transport path by the conveyor 2. A defective product discharge mechanism 7 and a tray 70 are respectively provided at locations where 21 and 22 are interrupted. The discharge mechanism 7 pushes the glass bottle G onto the tray 70 by blowing air toward the glass bottle G determined to be defective, and removes the glass bottle G from the conveyor 2. The discharge mechanism 7 is not limited to the non-contact type as in the illustrated example, and may be a contact type that reciprocates the pressing plate.

膜厚測定装置3は、光量測定センサ4と距離測定センサ5と演算制御装置6とからなるもので、光量測定センサ4の上流位置にはびん検知センサ8が配置されている。びん検知センサ8は例えば光電センサにより構成され、ガラスびんGが通過して膜厚の検査領域に入ったことを検出し、演算制御装置6へびん検出信号iを出力する。   The film thickness measuring device 3 includes a light amount measuring sensor 4, a distance measuring sensor 5, and an arithmetic control device 6, and a bottle detection sensor 8 is disposed upstream of the light amount measuring sensor 4. The bottle detection sensor 8 is constituted by, for example, a photoelectric sensor, detects that the glass bottle G has passed and entered the film thickness inspection region, and outputs a bottle detection signal i to the arithmetic and control unit 6.

光量測定センサ4は、図2に示すように、ヘッド部41と測定回路部40とから成る。ヘッド部41は、コンベヤ2上のガラスびんGに向けて単一波長の均質な光を照射する投光器42と、ガラスびんGの酸化スズの被膜10からの反射光を受光して受光信号を得る受光器43とを有している。測定回路部40は増幅回路やA/D変換器などの回路を含み、受光器43で得られた受光信号を入力して増幅した後、増幅された信号をデジタル量に変換し、反射光の受光量に応じた測定データを得る。ガラスびんGの被膜10からの反射光の光量は被膜10の膜厚が大きくなるにしたがって増すもので、したがって、受光器43による反射光の受光量も被膜10の膜厚が大きくなるにしたがって増す。前記演算制御装置6は、マイクロコンピュータにより構成されており、制御、演算の主体であるCPUは、測定回路部40より測定データを取り込み、反射光の受光量を被膜10の膜厚に換算する演算を実行することにより膜厚算出データを得る。この演算の詳細は後述するが、図示しないメモリに記憶させた複数個の演算式(後述する回帰式)より選択されたいずれかの演算式を用いて実行される。   As shown in FIG. 2, the light quantity measurement sensor 4 includes a head portion 41 and a measurement circuit portion 40. The head unit 41 receives light reflected from the tin oxide coating 10 on the glass bottle G and a projector 42 that irradiates the glass bottle G on the conveyor 2 with uniform light of a single wavelength, and obtains a light reception signal. And a light receiver 43. The measurement circuit unit 40 includes circuits such as an amplifier circuit and an A / D converter, and after receiving and amplifying the received light signal obtained by the light receiver 43, the amplified signal is converted into a digital quantity, and the reflected light Measurement data corresponding to the amount of received light is obtained. The amount of reflected light from the coating 10 of the glass bottle G increases as the thickness of the coating 10 increases. Therefore, the amount of reflected light received by the light receiver 43 also increases as the thickness of the coating 10 increases. . The arithmetic and control unit 6 is constituted by a microcomputer, and the CPU which is the main body of control and calculation fetches measurement data from the measurement circuit unit 40 and calculates the received light amount of the reflected light to the film thickness of the film 10. To obtain film thickness calculation data. Although details of this calculation will be described later, the calculation is executed using any one of the arithmetic expressions selected from a plurality of arithmetic expressions (regression expressions described later) stored in a memory (not shown).

なお、図1の実施例では、光量測定センサ4のヘッド部41と対向するガラスびんGの外周面上の1点について被膜10の膜厚を測定しているが、図3に示す実施例のように、間欠回動するスターホイール22によって各検査ステーションへガラスびんGを導く方式のものでは、検査ステーションに設けられた回転テーブル23の回転中心上にガラスびんGを導入し、回転テーブル23を回動させることにより被膜の膜厚をガラスびんGの外周面の複数点で測定することが可能である。   In the embodiment of FIG. 1, the film thickness of the coating 10 is measured at one point on the outer peripheral surface of the glass bottle G facing the head portion 41 of the light quantity measurement sensor 4. Thus, in the method of guiding the glass bottle G to each inspection station by the intermittently rotating star wheel 22, the glass bottle G is introduced on the rotation center of the rotary table 23 provided in the inspection station, and the rotary table 23 is By rotating, the film thickness of the coating can be measured at a plurality of points on the outer peripheral surface of the glass bottle G.

図4に示すグラフは、反射光量をガラスびんGの被膜10の膜厚に換算するための近似曲線とその近似曲線を表す二次関数の数式とを示している。同図のグラフにおいて、横軸xはガラスびんGの表面に光量測定センサ4の投光器42より光を照射しガラスびんGからの反射光を受光器43で受光することにより得られた測定データを、縦軸yはガラスびんGの表面に形成された酸化スズの被膜の膜厚を、それぞれ示しており、前記被膜の膜厚にバラツキのある多数本のガラスびんGのサンプルについて得られた反射光の受光量の測定データと前記したAGR社製の膜厚測定装置により測定された酸化スズの被膜の膜厚の測定値との組がxy座標平面上にプロットされている。なお、反射光の受光量の測定は、光量測定センサ4のヘッド部41をガラスびんGの表面に当接させた状態で行われたものである。
同図において、Pは上記の点の分布をよく近似する近似曲線であり、矩形枠R内の数式S1はこの近似曲線Pを2次関数で表した回帰式、数式S2は相関係数である。
The graph shown in FIG. 4 shows an approximate curve for converting the amount of reflected light into the film thickness of the coating 10 of the glass bottle G, and a quadratic function formula representing the approximate curve. In the graph of the figure, the horizontal axis x represents the measurement data obtained by irradiating the surface of the glass bottle G with light from the projector 42 of the light quantity measuring sensor 4 and receiving the reflected light from the glass bottle G with the light receiver 43. The vertical axis y represents the film thickness of the tin oxide film formed on the surface of the glass bottle G, and the reflection obtained for a number of samples of the glass bottle G having variations in the film thickness of the film. A set of measurement data of the amount of received light and a measured value of the film thickness of the tin oxide film measured by the above-described film thickness measuring device manufactured by AGR is plotted on the xy coordinate plane. The measurement of the amount of reflected light received is performed in a state where the head portion 41 of the light amount measurement sensor 4 is in contact with the surface of the glass bottle G.
In the figure, P is an approximate curve that closely approximates the distribution of the above points, the equation S1 in the rectangular frame R is a regression equation representing this approximate curve P with a quadratic function, and the equation S2 is a correlation coefficient. .

図4に示す近似曲線Pによると、酸化スズの被膜の膜厚と反射光の受光量との関係は、被膜の膜厚が増すにしたがって反射光の受光量が増すという関係にあることがわかる。酸化スズの被膜に光が当たると、被膜に存在する自由電子などが光のエネルギーを吸収して共鳴振動を起こし、その振動のエネルギーを反射光として放出するものと考えられ、その反射光量は被膜の奥行き方向の自由電子の分布、すなわち、被膜の膜厚に応じて増加してゆくものと推測される。   According to the approximate curve P shown in FIG. 4, it can be seen that the relationship between the film thickness of the tin oxide film and the amount of reflected light received is such that the amount of reflected light received increases as the film thickness increases. . When light strikes the tin oxide film, it is thought that free electrons, etc. existing in the film absorb the energy of the light and cause resonance vibration, and the vibration energy is emitted as reflected light. It is presumed that the number of free electrons in the depth direction increases, that is, increases according to the film thickness.

以上のことから、光量測定センサ4のヘッド部41をガラスびんGの表面に当接させた状態で投光および受光を行って反射光の受光量の測定データを取得したとき、図4に示す近似曲線Pまたは数式S1の回帰式によってそのガラスびんGの被膜の膜厚を取得できるが、光量測定センサ4のヘッド部41をガラスびんGの表面に接触させずに両者間に間隔を設けた場合、その距離が大きくなるにしたがって受光器43での反射光の受光量は次第に減少し、受光量の測定データは小さな値になるので、図4に示した数式S1の回帰式を用いて被膜の膜厚を算出しても、その算出値は適正な値ではなく、光量測定センサ4のヘッド部41とガラスびんGとの距離に応じた補正処理が必要である。   From the above, when measurement data of the amount of reflected light received is obtained by performing light projection and light reception with the head portion 41 of the light quantity measurement sensor 4 in contact with the surface of the glass bottle G, FIG. 4 shows. Although the film thickness of the glass bottle G can be obtained by the approximate curve P or the regression equation of the formula S1, the head portion 41 of the light quantity measuring sensor 4 is not brought into contact with the surface of the glass bottle G, and a gap is provided between them. In this case, as the distance increases, the amount of light reflected by the light receiver 43 gradually decreases, and the measurement data of the amount of received light becomes a small value. Therefore, the regression equation of Equation S1 shown in FIG. However, the calculated value is not an appropriate value, and correction processing according to the distance between the head portion 41 of the light quantity measuring sensor 4 and the glass bottle G is necessary.

図1に戻って、膜厚測定装置3では光量測定センサ4のヘッド部41とガラスびんGとの距離を測定するために距離測定センサ5が用いられており、この距離測定センサ5による距離の測定データが前記演算制御装置6に取り込まれる。光量測定センサ4のヘッド部41と距離測定センサ5のヘッド部は、コンベヤ2上のガラスびんGと対向するようにコンベヤ2に沿って横並びの状態で配置されており、したがって、距離測定センサ5により測定された距離は距離測定センサ5のヘッド部とガラスびんGとの間の距離でもあり、光量測定センサ4のヘッド部41とガラスびんGとの間の距離でもある。なお、距離測定センサ5として、この実施例では、ヘッド部に同軸共焦点光学系が組み込まれたオムロン株式会社製の変位センサ(商品型番:「ZWシリーズ」)を用いているが、必ずしもこれに限られるものではない。   Returning to FIG. 1, the film thickness measuring device 3 uses a distance measuring sensor 5 to measure the distance between the head portion 41 of the light quantity measuring sensor 4 and the glass bottle G. Measurement data is taken into the arithmetic and control unit 6. The head part 41 of the light quantity measurement sensor 4 and the head part of the distance measurement sensor 5 are arranged side by side along the conveyor 2 so as to face the glass bottles G on the conveyor 2. Is the distance between the head part of the distance measuring sensor 5 and the glass bottle G, and is also the distance between the head part 41 of the light quantity measuring sensor 4 and the glass bottle G. In this embodiment, the distance measuring sensor 5 is a displacement sensor (product model number: “ZW series”) manufactured by OMRON Corporation in which a coaxial confocal optical system is incorporated in the head portion. It is not limited.

光量測定センサ4のヘッド部41と距離測定センサ5のヘッド部は、コンベヤ2によるガラスびんGの搬送方向(図1において矢印で示す。)に対して直角をなす方向を向いており、通過するガラスびんGと同じ距離となるように位置決め固定されている。ガラスびんGには胴部公差や偏芯があり、また、各ガラスびんGを整列させてもコンベヤ2上の位置がばらつくため、光量測定センサのヘッド部41とガラスびんGとの距離は一定ではなく変動する。ガラスびんGの被膜10の膜厚の測定値がヘッド部41とガラスびんGとの間の距離に応じて変動することから、前記演算制御装置6は、被膜10の膜厚の算出データが距離測定センサ5による距離の測定値に応じて補正された値となる演算式による演算を実行するものである。   The head part 41 of the light quantity measuring sensor 4 and the head part of the distance measuring sensor 5 are oriented in a direction perpendicular to the direction of conveyance of the glass bottle G by the conveyor 2 (indicated by an arrow in FIG. 1) and pass through. It is positioned and fixed so as to be the same distance as the glass bottle G. The glass bottle G has a barrel tolerance and eccentricity, and even if the glass bottles G are aligned, the position on the conveyor 2 varies, so the distance between the head 41 of the light quantity measuring sensor and the glass bottle G is constant. Instead, it fluctuates. Since the measured value of the film thickness of the glass bottle G varies depending on the distance between the head portion 41 and the glass bottle G, the arithmetic and control unit 6 calculates that the calculated data of the film thickness of the film 10 is a distance. The calculation is performed by an arithmetic expression that becomes a value corrected according to the distance measured by the measurement sensor 5.

具体的には、光量測定センサ4による反射光の受光量を被膜の膜厚に換算する演算を実行するための回帰式を記憶するためのメモリ(図示せず)に、光量測定センサ4のヘッド部41とガラスびんGとの距離に応じた回帰式を複数記憶させておき、演算制御装置6は、距離測定センサ5で得られた距離の測定データに応じて回帰式を選択して、その選択された回帰式による演算を実行するようにしている。   Specifically, the head of the light quantity measuring sensor 4 is stored in a memory (not shown) for storing a regression equation for executing a calculation for converting the amount of reflected light received by the light quantity measuring sensor 4 into the film thickness of the film. A plurality of regression equations corresponding to the distance between the portion 41 and the glass bottle G are stored, and the arithmetic and control unit 6 selects the regression equation according to the distance measurement data obtained by the distance measurement sensor 5, and The calculation based on the selected regression equation is executed.

図5(1)〜(5)は、光量測定センサ4のヘッド部41とガラスびんGとの距離が0.5mm、1.0mm、1.5mm、2.0mm、2.5mmの各場合において、反射光の受光量をガラスびんGの被膜10の膜厚に換算するための近似曲線とその近似曲線を表す二次関数の数式とをそれぞれ示している。
例えば、図5(1)のグラフは、光量測定センサ4のヘッド部41とガラスびんGとの距離が0.5mmである場合に、酸化スズの被膜の膜厚にバラツキのある多数本のガラスびんGのサンプルについて得られた反射光の受光量の測定データと前記したAGR社製の膜厚測定装置により測定された酸化スズの被膜の膜厚の測定値との組がxy座標平面上にプロットされたものである。同図において、P1は上記の点の分布をよく近似する近似曲線であり、矩形枠R1内の数式S1はこの近似曲線P1を2次関数で表した回帰式、数式S2は相関係数である。
同様に、図5(2)〜(5)の各グラフは、光量測定センサ4のヘッド部41とガラスびんGとの距離が1.0mm、1.5mm、2.0mm、2.5mmである場合のものであり、P2〜P5はxy座標平面上の点の分布をよく近似する近似曲線であり、矩形枠R2〜R5内の各数式S1はこの近似曲線P2〜P5を2次関数で表した回帰式、各数式S2は相関係数である。
5 (1) to 5 (5) show the case where the distance between the head portion 41 of the light quantity measuring sensor 4 and the glass bottle G is 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm. 2 shows an approximate curve for converting the amount of reflected light received into the film thickness of the glass bottle G and a mathematical expression of a quadratic function representing the approximate curve.
For example, the graph of FIG. 5 (1) shows a large number of glasses in which the film thickness of the tin oxide film varies when the distance between the head portion 41 of the light quantity measuring sensor 4 and the glass bottle G is 0.5 mm. A set of the measurement data of the amount of reflected light obtained for the bottle G sample and the measurement value of the film thickness of the tin oxide film measured by the above-described AGR film thickness measuring device is on the xy coordinate plane. Plotted. In the figure, P1 is an approximate curve that closely approximates the distribution of the above points, the equation S1 in the rectangular frame R1 is a regression equation that represents the approximate curve P1 as a quadratic function, and the equation S2 is a correlation coefficient. .
Similarly, in the graphs of FIGS. 5 (2) to 5 (5), the distance between the head portion 41 of the light quantity measurement sensor 4 and the glass bottle G is 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm. P2 to P5 are approximate curves that closely approximate the distribution of points on the xy coordinate plane, and each mathematical expression S1 in the rectangular frames R2 to R5 represents the approximate curves P2 to P5 as a quadratic function. The regression equation and each equation S2 are correlation coefficients.

以上のことから、光量測定センサ4のヘッド部41をガラスびんGの表面から離した状態で投光および受光を行って反射光の受光量の測定データを取得したとき、距離測定センサ5による距離の測定データに応じて図5(1)〜(5)に示す回帰式のいずれかを選択し、その選択された回帰式による演算を実行することによりガラスびんGの被膜の膜厚を算出する。
なお、上記は説明の便宜上、距離の測定値が0.5mm、1.0mm、1.5mm、2.0mm、2.5mmのいずれかになると仮定しているが、距離の測定値が例えば、0.5mmと1.0mmとの中間の値(例えば0,6mm)である場合は、図5(1)に示す回帰式と図5(2)に示す回帰式とを選択し、図5(1)に示す回帰式による演算を実行して得られた値に、各回帰式による演算を実行して得られた値の差を比例配分(この例では5分の1)して得られた値を加算してガラスびんGの被膜の膜厚を算出する。
From the above, when the measurement data of the received light amount of the reflected light is obtained by performing light projection and light reception with the head portion 41 of the light amount measurement sensor 4 separated from the surface of the glass bottle G, the distance by the distance measurement sensor 5 is obtained. According to the measurement data, any one of the regression equations shown in FIGS. 5 (1) to (5) is selected, and the film thickness of the glass bottle G is calculated by executing the calculation based on the selected regression equation. .
For convenience of explanation, it is assumed that the distance measurement value is 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, or 2.5 mm, but the distance measurement value is, for example, In the case of an intermediate value between 0.5 mm and 1.0 mm (for example, 0.6 mm), the regression equation shown in FIG. 5 (1) and the regression equation shown in FIG. 5 (2) are selected, and FIG. Obtained by proportionally allocating the difference between the values obtained by executing the calculation by each regression equation (1/5 in this example) to the value obtained by executing the calculation by the regression equation shown in 1) The value is added to calculate the film thickness of the glass bottle G.

また、この実施例では、光量測定センサ4のヘッド部41とガラスびんGとの距離が0.5mm、1.0mm、1.5mm、2.0mm、2.5mmである場合の近似曲線P1〜P5と回帰式を求めているが、より小さな単位(例えば0.1mm単位)で異なった距離についての近似曲線と回帰式を求めることにより、上記した比例配分による値の加算演算を省略することができる。   Further, in this embodiment, the approximate curves P1 to P1 when the distance between the head portion 41 of the light quantity measuring sensor 4 and the glass bottle G is 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm. Although P5 and the regression equation are obtained, the addition calculation of the value by the proportional distribution described above may be omitted by obtaining the approximate curve and the regression equation for different distances in smaller units (for example, 0.1 mm unit). it can.

図6は、図1に示す膜厚検査装置1によりガラスびんGの被膜の膜厚を検査するときの演算制御装置6のCPUによる制御の流れを示している。なお、図中、「ST」(「STEP」の略)は制御の流れにおける各手順を示している。
同図のST1では、演算制御装置6はびん検知センサ8よりびん検出信号iが送られてくるのに待機している。コンベヤ2上のガラスびんGがびん検知センサ8の位置を通過すると、ST1の判定が「YES」となり、演算制御装置6は光量測定センサ4および距離測定センサ5に対して測定開始信号を出力する(ST2)。光量測定センサ4は測定開始信号を受けてヘッド部41の投光器42より光を照射して測定回路部40で反射光の受光量の測定データを取得し、一方、距離測定センサ5は測定開始信号を受けて投光動作を行いガラスびんGとの間の距離、すなわち、光量測定センサ4のヘッド部41とガラスびんGとの距離を測定して測定データを取得する。演算制御装置6は、光量測定センサ4および距離測定センサ5よりそれぞれの測定データを一定周期でサンプリングして取り込みメモリに記憶させる(ST3)。
FIG. 6 shows the flow of control by the CPU of the arithmetic and control unit 6 when the film thickness of the glass bottle G is inspected by the film thickness inspection apparatus 1 shown in FIG. In the figure, “ST” (abbreviation of “STEP”) indicates each procedure in the flow of control.
In ST1 of the figure, the arithmetic and control unit 6 stands by for the bottle detection signal i sent from the bottle detection sensor 8. When the glass bottle G on the conveyor 2 passes the position of the bottle detection sensor 8, the determination of ST 1 becomes “YES”, and the arithmetic and control unit 6 outputs a measurement start signal to the light quantity measurement sensor 4 and the distance measurement sensor 5. (ST2). The light quantity measurement sensor 4 receives the measurement start signal, emits light from the projector 42 of the head unit 41, and acquires the measurement data of the amount of reflected light received by the measurement circuit unit 40, while the distance measurement sensor 5 receives the measurement start signal. In response, a light projection operation is performed to measure the distance between the glass bottle G, that is, the distance between the head portion 41 of the light quantity measuring sensor 4 and the glass bottle G, and obtain measurement data. The arithmetic and control unit 6 samples the respective measurement data from the light quantity measurement sensor 4 and the distance measurement sensor 5 at a constant cycle, and stores them in the memory (ST3).

ガラスびんGが光量測定センサ4および距離測定センサ5の前を通り過ぎたとき、演算制御装置6は光量測定センサ4および距離測定センサ5に対して測定終了信号を出力し、反射光の受光量の測定および距離の測定の各動作を停止させる(ST4)。演算制御装置6は、つぎのST5で反射光の受光量の測定データの最大値を反射光の受光量として特定し、続くST6で距離の測定データの最小値を光量測定センサ4のヘッド部41とガラスびんGとの距離として特定した後、距離の測定データの最小値に応じた回帰式を選択するとともに、選択された回帰式によって反射光の受光量の測定データの最大値からガラスびんGの被膜の膜厚を算出する(ST7)。   When the glass bottle G passes in front of the light quantity measurement sensor 4 and the distance measurement sensor 5, the arithmetic and control unit 6 outputs a measurement end signal to the light quantity measurement sensor 4 and the distance measurement sensor 5, and determines the amount of reflected light received. Each operation of measurement and distance measurement is stopped (ST4). In the next ST5, the arithmetic and control unit 6 specifies the maximum value of the measurement data of the reflected light reception amount as the reception amount of the reflected light, and in the subsequent ST6, determines the minimum value of the distance measurement data as the head unit 41 of the light quantity measurement sensor 4. After selecting the distance between the measured value and the glass bottle G, the regression equation corresponding to the minimum value of the distance measurement data is selected, and the glass bottle G is determined from the maximum value of the measurement data of the amount of reflected light by the selected regression equation. The film thickness of the film is calculated (ST7).

つぎのST8では、演算制御装置6は、被膜の膜厚の算出値が規格内であるかどうかを判断する(ST8)。その判定が「NO」であれば、演算制御装置6は、コンベヤ2上から該当するガラスびんGを排除するための排出信号jを生成して排出機構7へ出力する(ST9)。排出機構7はこの排出信号jを受けてガラスびんGに対してエアを吹き付けてコンベヤ2上より受皿70上へ不良品のガラスびんGを排出させる。   In the next ST8, the arithmetic and control unit 6 determines whether or not the calculated value of the film thickness is within the standard (ST8). If the determination is “NO”, the arithmetic and control unit 6 generates a discharge signal j for removing the corresponding glass bottle G from the conveyor 2 and outputs it to the discharge mechanism 7 (ST9). Upon receiving this discharge signal j, the discharge mechanism 7 blows air to the glass bottle G to discharge the defective glass bottle G from the conveyor 2 onto the tray 70.

1 膜厚検査装置
2 コンベヤ
3 膜厚測定装置
4 光量測定センサ
5 距離測定センサ
6 演算制御装置
7 排出機構
10 被膜
40 測定回路部
41 ヘッド部
42 投光器
43 受光器
G ガラスびん
DESCRIPTION OF SYMBOLS 1 Film thickness inspection apparatus 2 Conveyor 3 Film thickness measurement apparatus 4 Light quantity measurement sensor 5 Distance measurement sensor 6 Arithmetic control apparatus 7 Discharge mechanism 10 Film | membrane 40 Measurement circuit part 41 Head part 42 Light projector 43 Light receiver G Glass bottle

Claims (2)

ガラス容器の表面に形成された金属酸化物被膜の膜厚を非接触で測定する装置であって、前記ガラス容器に向けて光を照射する投光器およびガラス容器の前記被膜からの反射光を受光する受光器を有するヘッド部と前記受光器による反射光の受光量に応じた測定データを得る測定回路部とを含む光量測定センサと、前記光量測定センサのヘッド部とガラス容器との距離を測定する距離測定センサと、前記光量測定センサの測定回路部より測定データを取り込み反射光の受光量を被膜の膜厚算出データに換算しかつ前記膜厚算出データが前記距離測定センサで得られた距離の測定値に応じて補正された値となる演算式による演算を実行する演算制御装置とから成り、前記演算制御装置は、前記光量測定センサのヘッド部とガラス容器との距離に応じた複数個の前記演算式が記憶されるメモリを有し、前記距離測定センサで得られた距離の測定値に応じた演算式を前記メモリに記憶された複数個の演算式より選択して、その選択された演算式による演算を実行することにより前記膜厚算出データを得ることを特徴とする金属酸化物被膜の膜厚測定装置。 A device for measuring the film thickness of a metal oxide film formed on the surface of a glass container in a non-contact manner, receiving a light projecting to irradiate light toward the glass container and reflected light from the film of the glass container A light quantity measurement sensor including a head part having a light receiver and a measurement circuit part for obtaining measurement data corresponding to the amount of reflected light received by the light receiver, and a distance between the head part of the light quantity measurement sensor and the glass container is measured. distance measurement sensor, the distance converted vital the film thickness calculating data amount of received light in the film thickness calculation data of the film of the reflected light captures measurement data from the measurement circuit part of the light intensity measuring sensor is obtained by the distance measuring sensor It consists of a calculation control device executing the calculation by the calculation formula to be corrected value depending on the measured values, the arithmetic and control unit, the distance between the head portion and the glass container of the light amount measurement sensor A plurality of arithmetic expressions stored in the memory, and a calculation expression corresponding to a distance measurement value obtained by the distance measuring sensor is selected from the plurality of arithmetic expressions stored in the memory. An apparatus for measuring a film thickness of a metal oxide film, wherein the film thickness calculation data is obtained by executing a calculation according to the selected calculation formula . ガラス容器の表面に形成された金属酸化物被膜の膜厚が適正であるかどうかを検査する装置であって、表面に金属酸化物被膜が形成されたガラス容器を搬送するコンベヤと、前記コンベヤ上に並ぶ複数のガラス容器について前記被膜の膜厚を非接触で測定する膜厚測定装置と、前記コンベヤに沿う膜厚測定装置の下流位置に配置され被膜の膜厚が適正でないガラス容器をコンベヤ上より排除する排出機構とを有し、前記膜厚測定装置は、コンベヤ上のガラス容器に向けて光を照射する投光器およびガラス容器の前記被膜からの反射光を受光する受光器を有するヘッド部と前記受光器による反射光の受光量に応じた測定データを得る測定回路部とを含む光量測定センサと、前記光量測定センサのヘッド部とガラス容器との距離を測定する距離測定センサと、前記光量測定センサの測定回路部より測定データを取り込み反射光の受光量を被膜の膜厚算出データに換算しかつ前記膜厚算出データが前記距離測定センサで得られた距離の測定値に応じて補正された値となる演算式による演算を実行する演算制御装置とから成り、前記光量測定センサのヘッド部および距離測定センサは、前記コンベヤに沿う前記ガラス容器と対向する位置にそれぞれ配置され、前記演算制御装置は、前記光量測定センサのヘッド部とガラス容器との距離に応じた複数個の前記演算式が記憶されるメモリを有し、前記距離測定センサで得られた距離の測定値に応じた演算式を前記メモリに記憶された複数個の演算式より選択して、その選択された演算式による演算を実行することにより前記膜厚算出データを得るとともに、前記膜厚算出データによって被膜の膜厚が適正であるかどうかを判断し、適正でないと判断したガラス容器をコンベヤ上より排除するための信号を生成して前記排出機構へ出力することを特徴とする金属酸化物被膜の膜厚検査装置。 An apparatus for inspecting whether the film thickness of the metal oxide film formed on the surface of the glass container is appropriate, a conveyor for conveying the glass container having the metal oxide film formed on the surface, and on the conveyor A film thickness measuring device that measures the film thickness of the coating film in a non-contact manner for a plurality of glass containers arranged in a row, and a glass container that is disposed at a downstream position of the film thickness measuring device along the conveyor on the conveyor The film thickness measuring device includes a projector that irradiates light toward a glass container on a conveyor, and a head unit that includes a light receiver that receives reflected light from the coating of the glass container; A light quantity measurement sensor including a measurement circuit unit that obtains measurement data according to the amount of light reflected by the light receiver, and a distance measurement that measures the distance between the head part of the light quantity measurement sensor and the glass container. Sensor and the measured values of the distances in terms vital the film thickness calculating data amount of received reflected light in the film thickness calculation data of the film captures the measurement data from the measurement circuit part of the light intensity measuring sensor is obtained by the distance measuring sensor And a calculation control device that executes a calculation according to an arithmetic expression that is a value corrected according to the head, and the head part of the light quantity measurement sensor and the distance measurement sensor are respectively arranged at positions facing the glass container along the conveyor The arithmetic control device has a memory in which a plurality of arithmetic expressions are stored according to the distance between the head portion of the light quantity measurement sensor and the glass container, and the distance measurement obtained by the distance measurement sensor is measured. An arithmetic expression corresponding to the value is selected from a plurality of arithmetic expressions stored in the memory, and the film thickness calculation data is obtained by executing an operation according to the selected arithmetic expression. Together, said thickness of the coating by the membrane thickness calculating data to determine whether a proper, a glass container is judged not to be appropriate to generate a signal for the elimination from the conveyor output to the discharge mechanism A metal oxide film thickness inspection device.
JP2012279170A 2012-12-21 2012-12-21 Metal oxide film thickness measuring device and film thickness inspection device Expired - Fee Related JP5759440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012279170A JP5759440B2 (en) 2012-12-21 2012-12-21 Metal oxide film thickness measuring device and film thickness inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012279170A JP5759440B2 (en) 2012-12-21 2012-12-21 Metal oxide film thickness measuring device and film thickness inspection device

Publications (2)

Publication Number Publication Date
JP2014122832A JP2014122832A (en) 2014-07-03
JP5759440B2 true JP5759440B2 (en) 2015-08-05

Family

ID=51403436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012279170A Expired - Fee Related JP5759440B2 (en) 2012-12-21 2012-12-21 Metal oxide film thickness measuring device and film thickness inspection device

Country Status (1)

Country Link
JP (1) JP5759440B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112019017815B1 (en) * 2017-03-14 2023-11-07 Jfe Steel Corporation METHOD AND APPARATUS FOR MEASURING THE AMOUNT OF WINNING OF A STRIP DURING TRANSPORTATION OF THE SAME, AND METHOD AND APPARATUS FOR DETECTING ABNORMAL WINNING

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608726B2 (en) * 1978-10-09 1985-03-05 石塚硝子株式会社 Device for measuring the thickness of metal or metal oxide coatings applied to the surface of glass, etc.
JPH01124703A (en) * 1987-11-09 1989-05-17 Kawasaki Steel Corp Method and device for noncontact measurement of film characteristic
JP2003106816A (en) * 2001-10-01 2003-04-09 Dainippon Printing Co Ltd Film thickness-measuring method and apparatus
JP2004205242A (en) * 2002-12-24 2004-07-22 Sharp Corp Film thickness measuring instrument and manufacturing method for electronic component using the same

Also Published As

Publication number Publication date
JP2014122832A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
US20140092395A1 (en) Method for automated inline determination of the refractive power of an ophthalmic lens
TW201736831A (en) System and method for inspecting containers using multile images of the containers
US20190195619A1 (en) Glass container inspection system
JP5686139B2 (en) Manufacturing method of glass substrate for liquid crystal display panel
TWI838357B (en) Apparatus and method for inspecting a glass sheet
JPS61271442A (en) Device for inspecting body
JP6279353B2 (en) Glass bottle barrel diameter measuring instrument
JP2020020789A (en) Method and device for detecting defects in closure of encapsulated vials
JP5759440B2 (en) Metal oxide film thickness measuring device and film thickness inspection device
CN109626302A (en) A kind of online test method of beer foreign matter in bottles
JP2014092489A (en) Inspection device and inspection method
JP2018105699A (en) Tire appearance inspection device
CN112345540A (en) Method for detecting inner hole interference fit surface disassembly damage based on circular structure light detection
JP2007132796A (en) X-ray inspection device and x-ray inspection program
JP6310637B2 (en) Spectrometer and spectroscopic method
JP6360424B2 (en) Imaging device and buckling inspection device
US20230003508A1 (en) Method for checking a wall thickness of a container made of an at least partially transparent material
JP6526978B6 (en) Laser inspection system
JP2001004348A (en) Method and device for inspecting roughness on outer peripheral surface of glass vessel
JP5758474B2 (en) Sitting posture determination device for semiconductor package test
CN112105586B (en) Method of inspecting glass sheet, method of manufacturing glass sheet, and glass manufacturing apparatus
JP2021085659A (en) Inspection equipment and inspection method
JP3948828B2 (en) Cap inspection device
WO2018217077A1 (en) Method and apparatus for detecting imperfections in glass products
JP6703365B2 (en) Barrel cleaning system and barrel cleaning method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150605

R150 Certificate of patent or registration of utility model

Ref document number: 5759440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees