JP5753375B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP5753375B2
JP5753375B2 JP2010269698A JP2010269698A JP5753375B2 JP 5753375 B2 JP5753375 B2 JP 5753375B2 JP 2010269698 A JP2010269698 A JP 2010269698A JP 2010269698 A JP2010269698 A JP 2010269698A JP 5753375 B2 JP5753375 B2 JP 5753375B2
Authority
JP
Japan
Prior art keywords
tire
center
groove
arc surface
land portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010269698A
Other languages
Japanese (ja)
Other versions
JP2012116410A (en
Inventor
博己 太田
博己 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2010269698A priority Critical patent/JP5753375B2/en
Publication of JP2012116410A publication Critical patent/JP2012116410A/en
Application granted granted Critical
Publication of JP5753375B2 publication Critical patent/JP5753375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour

Description

本発明は、耐偏摩耗性能を向上しうる空気入りタイヤに関する。   The present invention relates to a pneumatic tire that can improve uneven wear resistance.

従来、トレッド部に、タイヤ周方向にのびる複数の縦溝により、タイヤ周方向にのびる複数の陸部が区分された空気入りタイヤが知られている。このような空気入りタイヤは、トレッド面と路面との間に介在する水膜を、縦溝がタイヤ周方向に円滑に案内でき、排水性能を向上しうる。   Conventionally, a pneumatic tire is known in which a plurality of land portions extending in the tire circumferential direction are divided into a tread portion by a plurality of vertical grooves extending in the tire circumferential direction. In such a pneumatic tire, the vertical groove can smoothly guide the water film interposed between the tread surface and the road surface in the tire circumferential direction, and drainage performance can be improved.

また、近年では、耐偏摩耗性能を向上させるために、例えば、図4に示されるように、タイヤ軸を含む子午断面において、陸部aの接地面を、タイヤ半径方向外側に凸となる単一の曲率半径rの円弧で形成した空気入りタイヤが知られている。このような空気入りタイヤは、陸部aの両端b、b側に大きな接地圧が生じるのを抑制でき、その部分での偏摩耗を抑制しうる。なお、関連する文献としては次のものがある(下記特許文献1参照)。   Further, in recent years, in order to improve uneven wear resistance, for example, as shown in FIG. 4, in the meridional section including the tire shaft, the ground contact surface of the land portion a is protruded outward in the tire radial direction. A pneumatic tire formed by an arc having a radius of curvature r is known. Such a pneumatic tire can suppress a large contact pressure from being generated at both ends b and b of the land portion a, and can suppress uneven wear at that portion. Related documents include the following (see Patent Document 1 below).

特開2009−23601号公報JP 2009-23601 A

しかしながら、上記のような空気入りタイヤは、陸部aの両端b、b側の偏摩耗を抑制し得えたが、逆に、陸部aの中心c側の接地圧が大きくなり、その部分で偏摩耗が生じやすいという問題があった。   However, the pneumatic tire as described above could suppress uneven wear on both ends b and b side of the land portion a, but conversely, the ground pressure on the center c side of the land portion a increases, There was a problem that uneven wear was likely to occur.

本発明は、以上のような実状に鑑み案出されたもので、陸部の接地面を、中央円弧面と、該中央円弧面よりも曲率半径が小さい外側円弧面とを含んで形成し、中央円弧面と外側円弧面との曲率半径の比、及び外側円弧面の外端と中央円弧面の仮想線とのタイヤ半径方向距離であるキャンバー量を所定の範囲に限定することを基本として、耐偏摩耗性能を向上しうる空気入りタイヤを提供することを主たる目的としている。   The present invention has been devised in view of the actual situation as described above, and the ground contact surface of the land portion includes a central arc surface and an outer arc surface having a smaller radius of curvature than the central arc surface, Basically, the ratio of the radius of curvature between the central arc surface and the outer arc surface, and the camber amount, which is the distance in the tire radial direction between the outer end of the outer arc surface and the virtual line of the central arc surface, is limited to a predetermined range. The main purpose is to provide a pneumatic tire capable of improving uneven wear resistance.

本発明のうち請求項1記載の発明は、トレッド部に、タイヤ周方向にのびる複数の縦溝により、タイヤ周方向にのびる複数の陸部が区分される空気入りタイヤであって、タイヤ軸を含む子午断面において、前記各陸部の接地面は、そのタイヤ軸方向の中心を通りかつタイヤ半径方向外側に凸の単一の円弧からなる中央円弧面と、前記中央円弧面のタイヤ軸方向の少なくとも一方に連なりかつ該中央円弧面の曲率半径の30〜50%の曲率半径の円弧からなる外側円弧面とを含み、前記中央円弧面のタイヤ軸方向の幅は、前記陸部の幅の30〜70%であり、前記外側円弧面のタイヤ軸方向の外端と、前記中央円弧面を前記外側円弧面の前記外端側に延長させた仮想線とのタイヤ半径方向距離であるキャンバー量は、前記陸部のタイヤ軸方向の幅の0.5〜1.5%であり、前記縦溝は、タイヤ赤道の両側をタイヤ周方向にのびる一対のセンター縦溝と、その外側に配された一対のショルダー縦溝とを含み、前記陸部は、前記ショルダー縦溝の外側のショルダー陸部と、隣り合う前記センター縦溝と前記ショルダー縦溝との間のミドル陸部とを含み、前記ミドル陸部の幅に対する前記キャンバー量の割合は、前記ショルダー陸部の幅に対する前記キャンバー量の割合よりも大きいことを特徴とする。 The invention described in claim 1 of the present invention is a pneumatic tire in which a plurality of land portions extending in the tire circumferential direction are divided into a tread portion by a plurality of longitudinal grooves extending in the tire circumferential direction, and the tire shaft is In the meridional section, the ground contact surface of each land portion includes a central arc surface formed of a single arc that passes through the center in the tire axial direction and is convex outward in the tire radial direction, and the tire arc direction of the central arc surface in the tire axial direction. It includes an outer arcuate surface formed of arc of 30-50% of the radius of curvature of the radius of curvature of the contiguous and the central arcuate surface on at least one tire axial direction width of the central arcuate surface 30 of the width of the land portion The camber amount that is a distance in the tire radial direction between the outer end of the outer arc surface in the tire axial direction and the virtual line obtained by extending the central arc surface toward the outer end of the outer arc surface is 70%. , In the tire axial direction of the land portion 0.5 to 1.5%, and the longitudinal grooves include a pair of center longitudinal grooves extending in the tire circumferential direction on both sides of the tire equator, and a pair of shoulder longitudinal grooves arranged on the outside thereof, The land portion includes a shoulder land portion outside the shoulder flutes and a middle land portion between the adjacent center flutes and the shoulder flutes, and the ratio of the camber amount to the width of the middle land portions Is larger than the ratio of the camber amount to the width of the shoulder land portion.

また、請求項2記載の発明は、前記中央円弧面は、トレッド接地端間を単一の曲率半径で結ぶ円弧上に配置されている請求項1に記載の空気入りタイヤである。
Further, an invention according to claim 2, wherein said central arcuate surface is a pneumatic tire according to claim 1 which is disposed on an arc connecting the tread ground end of a single radius of curvature.

また、請求項3記載の発明は、前記陸部は、一対の前記センター縦溝間をタイヤ周方向にのびるセンター陸部を含み、前記センター陸部は、一端が一方のセンター縦溝に連通するとともに、他端が他方のセンター縦溝に至ることなく終端するセンター細溝がタイヤ周方向に隔設され、前記センター細溝は、前記他端に、溝底を隆起させたタイバーを有する請求項1又は2に記載の空気入りタイヤである。
The invention of claim 3, wherein, the front Kiriku portion includes a center land portion extending between a pair of the center circumferential groove in the tire circumferential direction, the center land portion is communicated with one end one of the center circumferential groove And a center narrow groove that terminates without the other end reaching the other center longitudinal groove is provided in the tire circumferential direction, and the center narrow groove has a tie bar having a groove bottom raised at the other end. Item 3. The pneumatic tire according to Item 1 or 2.

また、請求項4記載の発明は、前記タイバーは、そのタイヤ軸方向の最大長さが前記センター陸部のタイヤ軸方向の最大幅の80〜95%であるとともに、該タイバーの前記センター細溝の最深部からの高さが、前記縦溝の溝深さの20〜50%である請求項3に記載の空気入りタイヤである。   The tie bar may have a maximum length in the tire axial direction of 80 to 95% of a maximum width in the tire axial direction of the center land portion, and the center narrow groove of the tie bar. The pneumatic tire according to claim 3, wherein a height from the deepest portion is 20 to 50% of a groove depth of the vertical groove.

また、請求項5記載の発明は、前記センター陸部のタイヤ軸方向の最大幅は、前記タイヤ赤道Cから前記トレッド接地端までのタイヤ軸方向長さであるトレッド半幅の38〜46%である請求項3又は4に記載の空気入りタイヤである。   In the invention according to claim 5, the maximum width in the tire axial direction of the center land portion is 38 to 46% of the tread half width that is the length in the tire axial direction from the tire equator C to the tread contact end. A pneumatic tire according to claim 3 or 4.

本明細書において、タイヤの各部の寸法は、特に断りがない限り、正規リムにリム組みされかつ正規内圧が充填された正規状態において特定される値とする。   In the present specification, unless otherwise specified, the dimensions of each part of the tire are values specified in a normal state in which a rim is assembled on a normal rim and a normal internal pressure is filled.

前記「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば標準リム、TRAであれば "Design Rim" 、ETRTOであれば "Measuring Rim"を意味する。   The “regular rim” is a rim determined for each tire in a standard system including a standard on which a tire is based. For example, JATMA is a standard rim, TRA is “Design Rim”, and ETRTO is a standard rim. If present, it means "Measuring Rim".

前記「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表"TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE"とするが、タイヤが乗用車用である場合には一律に180kPaとする。   The “regular internal pressure” is the air pressure determined by the standard for each tire. The maximum air pressure in the case of JATMA, the maximum value described in the table “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” in the case of TRA, ETRTO Then, “INFLATION PRESSURE” is set, but when the tire is for a passenger car, the pressure is uniformly set to 180 kPa.

本発明の空気入りタイヤは、トレッド部に、タイヤ周方向にのびる複数の縦溝により、タイヤ周方向にのびる複数の陸部が区分される。タイヤ軸を含む子午断面において、各陸部の接地面は、そのタイヤ軸方向の中心を通りかつタイヤ半径方向外側に凸の単一の円弧からなる中央円弧面と、中央円弧面のタイヤ軸方向の少なくとも一方に連なりかつ該中央円弧面の曲率半径の30〜50%の曲率半径の円弧からなる外側円弧面とを含む。   In the pneumatic tire of the present invention, a plurality of land portions extending in the tire circumferential direction are divided into tread portions by a plurality of longitudinal grooves extending in the tire circumferential direction. In the meridional section including the tire axis, the ground contact surface of each land portion passes through the center in the tire axial direction and has a central arc surface formed of a single arc protruding outward in the tire radial direction, and the tire axial direction of the central arc surface And an outer arc surface formed of an arc having a curvature radius of 30 to 50% of the curvature radius of the central arc surface.

外側円弧面のタイヤ軸方向の外端と、中央円弧面を外側円弧面の外端側に延長させた仮想線とのタイヤ半径方向距離であるキャンバー量は、陸部のタイヤ軸方向の幅の0.5〜1.5%に設定される。   The camber amount, which is the distance in the tire radial direction between the outer end of the outer arc surface in the tire axial direction and the virtual line obtained by extending the central arc surface toward the outer end of the outer arc surface, is the width of the land portion in the tire axial direction. It is set to 0.5 to 1.5%.

このような空気入りタイヤは、外側円弧面の接地圧を小さくしつつ、中央円弧面と外側円弧面との接地圧の差を小さくでき、陸部の接地面全体に亘って、偏摩耗が生じるのを抑制しうる。   Such a pneumatic tire can reduce the difference in contact pressure between the central arc surface and the outer arc surface while reducing the contact pressure on the outer arc surface, and uneven wear occurs over the entire contact surface of the land. Can be suppressed.

本実施形態の空気入りタイヤのトレッド部の展開図である。It is an expanded view of the tread part of the pneumatic tire of this embodiment. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図2のセンター陸部を拡大して示す断面図である。It is sectional drawing which expands and shows the center land part of FIG. 従来の陸部の断面図である。It is sectional drawing of the conventional land part.

以下、本発明の実施の一形態が図面に基づき説明される。
図1、図2に示されるように、本実施形態の空気入りタイヤ1は、乗用車用の夏タイヤとして構成される。また、本実施形態のトレッド部2には、タイヤ周方向にのびる複数の縦溝3により、タイヤ周方向にのびる複数の陸部4が区分され、車両への装着の向きが指定された左右非対称のトレッドパターンが形成される。なお、車両への装着の向きは、タイヤ1のサイドウォール部などに文字(例えば"INSIDE"及び/又は"OUTSIDE")等によって明示される(図示省略)。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the pneumatic tire 1 of the present embodiment is configured as a summer tire for passenger cars. Also, the tread portion 2 of the present embodiment is divided into a plurality of land portions 4 extending in the tire circumferential direction by a plurality of vertical grooves 3 extending in the tire circumferential direction, and the left-right asymmetric in which the mounting direction to the vehicle is designated The tread pattern is formed. The direction of mounting on the vehicle is clearly indicated by letters (for example, “INSIDE” and / or “OUTSIDE”) on the sidewall portion of the tire 1 (not shown).

前記縦溝3は、少なくとも2本、本実施形態では4本で構成され、タイヤ周方向に沿って直線状にのびるストレート溝として形成される。このようなストレート溝は、直進時及び旋回時において、路面と接地面2tとの間に介在する水膜を外部に円滑に排出でき、排水性能を向上しうる。好ましくは、縦溝3の溝幅W1は、例えばトレッド半幅0.5TWの5〜20%程度、溝深さD1がトレッド半幅0.5TWの8〜15%程度に設定されるのが望ましい。なお、前記トレッド半幅0.5TWは、トレッド幅(車両内側のトレッド接地端2iから車両外側のトレッド接地端2oまでのタイヤ軸方向長さ)の1/2の長さとする。   The longitudinal groove 3 is composed of at least two and four in this embodiment, and is formed as a straight groove extending linearly along the tire circumferential direction. Such a straight groove can smoothly discharge the water film interposed between the road surface and the ground contact surface 2t to the outside during straight traveling and turning, and can improve drainage performance. Preferably, the groove width W1 of the longitudinal groove 3 is set to, for example, about 5 to 20% of the tread half width 0.5 TW, and the groove depth D1 is set to about 8 to 15% of the tread half width 0.5 TW. The tread half width 0.5 TW is a half of the tread width (the length in the tire axial direction from the tread ground contact end 2 i on the vehicle inner side to the tread ground contact end 2 o on the vehicle outer side).

また、縦溝3は、最も車両外側に配される外側ショルダー縦溝3A、最も車両内側に配される内側ショルダー縦溝3B、及びタイヤ赤道Cの両側をタイヤ周方向にのびる一対のセンター縦溝3C、3Dを含んで構成される。このセンター縦溝3C、3Dは、車両外側に配される外側センター縦溝3Cと、車両内側に配される内側センター縦溝3Dとに区分される。   The longitudinal groove 3 includes an outer shoulder longitudinal groove 3A disposed on the outermost side of the vehicle, an inner shoulder longitudinal groove 3B disposed on the innermost side of the vehicle, and a pair of center longitudinal grooves extending on both sides of the tire equator C in the tire circumferential direction. It is configured to include 3C and 3D. The center vertical grooves 3C and 3D are divided into an outer center vertical groove 3C disposed on the vehicle outer side and an inner center vertical groove 3D disposed on the vehicle inner side.

これらの縦溝3A、3B、3C、3Dにより、前記陸部4は、外側ショルダー縦溝3Aと車両外側のトレッド接地端2oとで区分される外側ショルダー陸部4A、内側ショルダー縦溝3Bと車両内側のトレッド接地端2iとで区分される内側ショルダー陸部4B、外側ショルダー縦溝3Aと外側センター縦溝3Cとによって区分される外側ミドル陸部4C、内側ショルダー縦溝3Bと内側センター縦溝3Dとで区分される内側ミドル陸部4D、及び一対のセンター縦溝3C、3Dとで区分されるセンター陸部4Eが形成される。
By these vertical grooves 3A, 3B, 3C and 3D , the land portion 4 is divided into an outer shoulder land groove 4A, an inner shoulder vertical groove 3B and a vehicle, which are divided by an outer shoulder vertical groove 3A and a tread grounding end 2o on the vehicle outer side. The inner shoulder land portion 4B divided by the inner tread grounding end 2i, the outer middle land portion 4C divided by the outer shoulder vertical groove 3A and the outer center vertical groove 3C, the inner shoulder vertical groove 3B and the inner center vertical groove 3D. Are formed by an inner middle land portion 4D and a pair of center longitudinal grooves 3C and 3D.

各陸部4A乃至4Eには、縦溝3と交わる方向にのびる横溝5が設けられる。このような横溝5は、路面と陸部4の接地面2tとの間に介在する水膜や縦溝3内の水を、タイヤ軸方向に案内し、排水性能を高めうる。また、横溝5の溝幅W2は、例えばトレッド半幅0.5TWの2〜6%程度、溝深さ(図示省略)がトレッド半幅0.5TWの3〜12.0%程度に設定されるのが望ましい。   Each land portion 4A to 4E is provided with a lateral groove 5 extending in a direction intersecting with the longitudinal groove 3. Such a lateral groove 5 can guide the water film interposed between the road surface and the ground contact surface 2t of the land portion 4 and the water in the longitudinal groove 3 in the tire axial direction, thereby improving the drainage performance. Further, the groove width W2 of the lateral groove 5 is set to, for example, about 2 to 6% of the tread half width 0.5TW, and the groove depth (not shown) is set to about 3 to 12.0% of the tread half width 0.5TW. desirable.

前記外側ショルダー陸部4Aは、外側ショルダー縦溝3Aから車両外側へ緩やかに傾斜してのびる外側ショルダー横溝11が設けられる。この外側ショルダー横溝11は、その内端が外側ショルダー縦溝3Aで開口するとともに、その外端が車両外側のトレッド接地端2oを越えて終端する。これにより、外側ショルダー陸部4Aは、平面視略横長矩形状の外側ショルダーブロック16に形成される。このような外側ショルダーブロック16は、タイヤ軸方向の剛性を高めて操縦安定性能を向上させるとともに、偏摩耗が生じるのを抑制しうる。   The outer shoulder land portion 4A is provided with an outer shoulder lateral groove 11 extending gently from the outer shoulder vertical groove 3A to the vehicle outer side. The outer shoulder lateral groove 11 has an inner end that opens at the outer shoulder longitudinal groove 3A, and an outer end that terminates beyond the tread grounding end 2o outside the vehicle. Thus, the outer shoulder land portion 4A is formed in the outer shoulder block 16 having a substantially horizontally long rectangular shape in plan view. Such an outer shoulder block 16 can increase the rigidity in the tire axial direction to improve the steering stability performance, and can suppress the occurrence of uneven wear.

前記内側ショルダー陸部4Bは、車両内側のトレッド接地端2iの外側からタイヤ軸方向内側へ緩やかに傾斜して、内側ショルダー縦溝5Bに至ることなく終端する内側ショルダー横溝12が設けられる。また、内側ショルダー陸部4Bには、内側ショルダー横溝12の内端12iからタイヤ周方向に対して小さな傾斜でのび、タイヤ周方向で隣り合う内側ショルダー横溝12を継ぐ内側ショルダー細溝17が連結される。このような内側ショルダー陸部4Bは、タイヤ周方向にのびるリブ18が形成され、タイヤ周方向剛性を高めて偏摩耗が生じるのを抑制しうる。   The inner shoulder land portion 4B is provided with an inner shoulder lateral groove 12 that is gently inclined from the outer side of the tread grounding end 2i on the inner side of the vehicle to the inner side in the tire axial direction and terminates without reaching the inner shoulder vertical groove 5B. Further, the inner shoulder land portion 4B is connected with an inner shoulder narrow groove 17 extending from the inner end 12i of the inner shoulder lateral groove 12 with a small inclination with respect to the tire circumferential direction and connecting the inner shoulder lateral grooves 12 adjacent in the tire circumferential direction. The Such an inner shoulder land portion 4B is formed with ribs 18 extending in the tire circumferential direction, and can increase the tire circumferential rigidity to suppress uneven wear.

前記外側ミドル陸部4Cは、タイヤ軸方向の外端が外側ショルダー縦溝3Aに連なり、タイヤ軸方向の内端が外側センター縦溝3Cで開口する外側ミドル横溝13が設けられる。この外側ミドル横溝13は、外側ショルダー横溝11よりも大きく傾斜してのびている。これにより、外側ミドル陸部4Cは、略平行四辺形状の外側ミドルブロック19に区分される。このような外側ミドルブロック19は、タイヤ軸方向及びタイヤ周方向の剛性をバランスよく高めることができ、ドライ路面での直進安定性能及び操縦安定性能を向上するのに役立つ。   The outer middle land portion 4C is provided with an outer middle horizontal groove 13 whose outer end in the tire axial direction is continuous with the outer shoulder vertical groove 3A and whose inner end in the tire axial direction is opened by the outer center vertical groove 3C. The outer middle lateral groove 13 extends more greatly than the outer shoulder lateral groove 11. Thereby, the outer middle land portion 4C is divided into outer middle blocks 19 having a substantially parallelogram shape. Such an outer middle block 19 can improve the rigidity in the tire axial direction and the tire circumferential direction in a well-balanced manner, and is useful for improving the straight running stability performance and the steering stability performance on the dry road surface.

前記内側ミドル陸部4Dは、内側ショルダー縦溝3Bと内側センター縦溝3Dとの間をのびる内側ミドル横溝14が設けられる。この内側ミドル横溝14は、内側ショルダー横溝12よりも急な傾斜でのび、内側ミドル陸部4Dの接地面2tと路面との間に介在する水膜をタイヤ1の回転によりタイヤ軸方向外側へ効果的に案内しうる。   The inner middle land portion 4D is provided with an inner middle lateral groove 14 extending between the inner shoulder vertical groove 3B and the inner center vertical groove 3D. The inner middle lateral groove 14 has a steeper slope than the inner shoulder lateral groove 12, and a water film interposed between the ground contact surface 2t of the inner middle land portion 4D and the road surface is effective outward in the tire axial direction by the rotation of the tire 1. Can be guided.

また、本実施形態の内側ミドル横溝14は、タイヤ軸方向の外端が内側ショルダー縦溝3Bに連なりかつタイヤ軸方向の内端が内側センター縦溝3Dで開口する第1の内側ミドル横溝14Aと、タイヤ軸方向の外端が内側ショルダー縦溝3Bに連なりかつタイヤ軸方向の内端が内側センター縦溝3Dに至ることなく終端する第2の内側ミドル横溝14Bとを含む。この第1、第2の内側ミドル横溝14A、14Bは、タイヤ周方向に交互に配されており、内側ミドル陸部4Dの剛性が過度に低下するのを抑制しつつ、排水性能を高めうる。   Further, the inner middle horizontal groove 14 of the present embodiment includes a first inner middle horizontal groove 14A whose outer end in the tire axial direction is continuous with the inner shoulder vertical groove 3B and whose inner end in the tire axial direction is opened by the inner center vertical groove 3D. Further, the outer end in the tire axial direction is connected to the inner shoulder vertical groove 3B, and the inner end in the tire axial direction includes the second inner middle lateral groove 14B that terminates without reaching the inner center vertical groove 3D. The first and second inner middle lateral grooves 14A and 14B are alternately arranged in the tire circumferential direction, and can improve drainage performance while suppressing an excessive decrease in rigidity of the inner middle land portion 4D.

前記センター陸部4Eは、外側センター縦溝3Cと内側センター縦溝3Dとの間でのびるセンター横溝15が設けられる。このセンター横溝15は、一端が外側センター縦溝3Cに連通するとともに、他端がタイヤ赤道Cを越えて内側センター縦溝3Dに至ることなく終端するセンター細溝15Aと、一端が外側センター縦溝3Cに連通するとともに、他端がタイヤ赤道Cを越えずに内側センター縦溝3Dに至ることなく終端するセンター太溝15Bとが設けられる。   The center land portion 4E is provided with a center lateral groove 15 extending between the outer center longitudinal groove 3C and the inner center longitudinal groove 3D. The center lateral groove 15 has one end communicating with the outer center longitudinal groove 3C and the other end extending beyond the tire equator C without reaching the inner center longitudinal groove 3D, and one end with the outer center longitudinal groove 15C. A center thick groove 15B is provided which communicates with 3C and terminates without the other end passing over the tire equator C and reaching the inner center longitudinal groove 3D.

また、センター細溝15A及びセンター太溝15Bは、タイヤ周方向に交互に隔設されるともに、センター太溝15Bがセンター細溝15Aよりも幅広に形成される。これにより、前記センター陸部4Eは、タイヤ周方向にのびるリブ状に形成され、タイヤ周方向の剛性を高めて、耐偏摩耗性能を向上しうる。   The center narrow grooves 15A and the center thick grooves 15B are alternately spaced in the tire circumferential direction, and the center thick grooves 15B are formed wider than the center narrow grooves 15A. Thereby, the said center land part 4E is formed in the rib shape extended in a tire circumferential direction, can raise the rigidity of a tire circumferential direction, and can improve the uneven wear-proof performance.

図2、図3に示されるように、本実施形態の各陸部4A乃至4Eの接地面2tは、タイヤ軸を含む子午断面において、そのタイヤ軸方向の中心を通りかつタイヤ半径方向外側に凸の単一の円弧からなる中央円弧面21と、該中央円弧面21のタイヤ軸方向の外端21tからタイヤ軸方向の少なくとも一方に連なりかつ該中央円弧面21の曲率半径R1の30〜50%の曲率半径R2の円弧からなる外側円弧面22とを含んで形成される。 As shown in FIGS. 2 and 3, the ground contact surface 2 t of each land portion 4 </ b> A to 4 </ b> E of the present embodiment passes through the center in the tire axial direction and protrudes outward in the tire radial direction in the meridional section including the tire shaft. A central arc surface 21 composed of a single arc of the center, and an outer end 21t in the tire axial direction of the central arc surface 21 extending to at least one of the tire axial directions and 30 to 50% of the curvature radius R1 of the central arc surface 21 And an outer circular arc surface 22 made of an arc having a radius of curvature R2.

また、前記外側円弧面22のタイヤ軸方向の外端22tと、中央円弧面21を外側円弧面22の外端22t側に延長させた仮想線21Vとのタイヤ半径方向距離であるキャンバー量L1は、各陸部4のタイヤ軸方向の幅W3(W3a、W3b、W3c、W3d、W3e)の0.5〜1.5%に設定される。   Further, a camber amount L1 that is a tire radial direction distance between an outer end 22t of the outer arc surface 22 in the tire axial direction and a virtual line 21V obtained by extending the central arc surface 21 toward the outer end 22t of the outer arc surface 22 is The width W3 (W3a, W3b, W3c, W3d, W3e) in the tire axial direction of each land portion 4 is set to 0.5 to 1.5%.

このような各陸部4A乃至4Eの接地面2tは、外側円弧面22の曲率半径R2が、中央円弧面21よりも曲率半径R1よりも小さいため、外側円弧面22の接地圧を小さくでき、その部分での偏摩耗を抑制しうる。しかも、種々の実験の結果、中央円弧面21と外側円弧面22との曲率半径を、上記のような比率で規定することにより、各円弧面21、22を万遍なく接地させることができ、それらの接地圧の差を小さくできることが判明した。従って、本実施形態のタイヤ1は、図4に示される従来のタイヤのように、中央円弧面21(図3に示す)での偏摩耗を抑制でき、接地面2t全体に亘って偏摩耗が生じるのを抑制しうる。   Since the curvature radius R2 of the outer arc surface 22 is smaller than the curvature radius R1 than the central arc surface 21, the ground contact surface 2t of each of the land portions 4A to 4E can reduce the contact pressure of the outer arc surface 22; Uneven wear at that portion can be suppressed. Moreover, as a result of various experiments, by defining the curvature radii of the central arc surface 21 and the outer arc surface 22 with the ratio as described above, the arc surfaces 21 and 22 can be grounded uniformly. It was found that the difference in the ground pressure can be reduced. Therefore, the tire 1 of the present embodiment can suppress uneven wear at the central arc surface 21 (shown in FIG. 3) like the conventional tire shown in FIG. 4, and uneven wear over the entire contact surface 2t. It can be suppressed.

なお、外側円弧面22の曲率半径R2は、中央円弧面21の曲率半径R1の30%未満であると、外側円弧面22の円弧が過度に小さくなって中央円弧面21の接地圧が大きくなり、その部分で偏摩耗が生じるおそれがある。逆に、前記曲率半径R2が、前記曲率半径R1の50%を超えると、外側円弧面22の接地圧が過度に大きくなり、その部分で偏摩耗が生じるおそれがある。このような観点より、前記曲率半径R2は、前記曲率半径R1の、好ましくは33%以上、さらに好ましくは35%以上が望ましく、また、好ましくは48%以下、さらに好ましくは45%以下が望ましい。   If the radius of curvature R2 of the outer arc surface 22 is less than 30% of the radius of curvature R1 of the central arc surface 21, the arc of the outer arc surface 22 becomes excessively small and the contact pressure of the central arc surface 21 increases. There is a risk that uneven wear may occur at that portion. On the contrary, when the radius of curvature R2 exceeds 50% of the radius of curvature R1, the contact pressure of the outer arc surface 22 becomes excessively large, and uneven wear may occur at that portion. From such a viewpoint, the curvature radius R2 is preferably 33% or more, more preferably 35% or more, and preferably 48% or less, more preferably 45% or less, of the curvature radius R1.

また、キャンバー量L1は、陸部4の幅W3の0.5%未満であると、外側円弧面22の接地圧が過度に大きくなるおそれがある。逆に、前記キャンバー量L1は、前記幅W3の1.5%を超えると、中央円弧面21の接地圧が過度に大きくなるおそれがある。このような観点より、前記キャンバー量L1は、前記幅W3の、好ましくは0.7%以上、さらに好ましくは0.8%以上が望ましく、また、好ましくは1.3%以下、さらに好ましくは1.2%以下が望ましい。   Further, if the camber amount L1 is less than 0.5% of the width W3 of the land portion 4, the contact pressure of the outer arc surface 22 may be excessively increased. Conversely, if the camber amount L1 exceeds 1.5% of the width W3, the contact pressure of the central arc surface 21 may become excessively large. From this point of view, the camber amount L1 is preferably 0.7% or more, more preferably 0.8% or more, and preferably 1.3% or less, more preferably 1 of the width W3. .2% or less is desirable.

また、前記中央円弧面21は、トレッド接地端2i、2o間を単一の曲率半径R3で結ぶ円弧V1上に配置されるのが好ましい。これにより、各陸部4は、タイヤ軸方向で隣り合う陸部4の中央円弧面21との接地圧の差を小さくでき、偏摩耗を効果的に抑制しうるとともに、例えば、直進走行時から旋回時への移行を滑らかにでき、過渡特性を向上しうる。   The central arc surface 21 is preferably disposed on an arc V1 connecting the tread grounding ends 2i and 2o with a single curvature radius R3. Thereby, each land part 4 can make the difference of the contact pressure with the central circular arc surface 21 of the land part 4 adjacent in the tire axial direction small, and can suppress uneven wear effectively. The transition to turning can be made smooth and the transient characteristics can be improved.

上記のような作用を効果的に発揮するために、中央円弧面21の曲率半径R1及び円弧V1の曲率半径R3は、陸部4の幅W3の、好ましくは1000%以上、さらに好ましくは2000%以上が望ましく、また、好ましくは7000%以下、さらに好ましくは6000%以下が望ましい。   In order to effectively exhibit the above-described action, the curvature radius R1 of the central arc surface 21 and the curvature radius R3 of the arc V1 are preferably 1000% or more, more preferably 2000% of the width W3 of the land portion 4. The above is desirable, preferably 7000% or less, and more preferably 6000% or less.

また、中央円弧面21のタイヤ軸方向の幅W4が小さいと、該中央円弧面21で偏摩耗が生じるおそれがある。逆に、前記幅W4が大きくても、外側円弧面22で偏摩耗が生じるおそれがある。このような観点より、前記幅W4は、陸部4の幅W3の好ましくは30%以上、さらに好ましくは35%以上が望ましく、また、好ましくは70%以下、さらに好ましくは65%以下が望ましい。   In addition, if the width W4 of the central arc surface 21 in the tire axial direction is small, uneven wear may occur on the central arc surface 21. On the contrary, even if the width W4 is large, there is a possibility that uneven wear occurs on the outer arc surface 22. From such a viewpoint, the width W4 is preferably 30% or more, more preferably 35% or more, and preferably 70% or less, more preferably 65% or less of the width W3 of the land portion 4.

前記外側円弧面22の曲率半径R2は、単一又はマルチラジアスのいずれでもよいが、好ましくは、中央円弧面21と同様に、単一の円弧からなるのが好ましい。また、曲率半径R2がマルチラジアスからなる場合は、中央円弧面21の曲率半径R1の30〜50%を満たしていればよい。   The curvature radius R2 of the outer arc surface 22 may be either single or multiradius, but it is preferable that the outer arc surface 22 is composed of a single arc like the central arc surface 21. Moreover, when the curvature radius R2 consists of multiradius, it should just satisfy 30 to 50% of the curvature radius R1 of the central circular arc surface 21.

図2に示されるように、前記外側円弧面22は、外側ショルダー陸部4A及び内側ショルダー陸部4Bのタイヤ軸方向内側に形成されるとともに、外側ミドル陸部4C、内側ミドル陸部4D、及びセンター陸部4Eのタイヤ軸方向両側に形成されるのが好ましい。これにより、陸部4A乃至4Eの接地面2tは、直進走行時及び旋回時において、中央円弧面21及び外側円弧面22を万遍なく接地させることができ、偏摩耗を効果的に抑制しうる。   As shown in FIG. 2, the outer arc surface 22 is formed on the inner side in the tire axial direction of the outer shoulder land portion 4A and the inner shoulder land portion 4B, and the outer middle land portion 4C, the inner middle land portion 4D, and It is preferably formed on both sides in the tire axial direction of the center land portion 4E. As a result, the ground contact surfaces 2t of the land portions 4A to 4E can ground the central arc surface 21 and the outer arc surface 22 evenly during straight traveling and turning, and can effectively suppress uneven wear. .

また、前記センター陸部4Eのタイヤ軸方向の最大幅W3eは、前記トレッド半幅0.5TW(図1に示す)の38%以上、さらに好ましくは40%以上が望ましい。前記最大幅W3eが小さくなると、前記センター陸部4Eの剛性が低下し、他の陸部4に比べて、耐偏摩耗性能の向上が期待できない。逆に、前記最大幅W3eが大きすぎても、他の陸部4との剛性差が大きくなって、偏摩耗が生じるおそれがある。このような観点より、前記最大幅W3eは、トレッド半幅0.5TWの、好ましくは46%以下、さらに好ましくは44%以下が望ましい。   Further, the maximum width W3e in the tire axial direction of the center land portion 4E is 38% or more, more preferably 40% or more of the tread half width 0.5TW (shown in FIG. 1). When the maximum width W3e is reduced, the rigidity of the center land portion 4E is reduced, and improvement in uneven wear resistance performance cannot be expected as compared with other land portions 4. On the other hand, even if the maximum width W3e is too large, the difference in rigidity from the other land portions 4 becomes large, which may cause uneven wear. From such a viewpoint, the maximum width W3e is preferably 46% or less, more preferably 44% or less, with a tread half width of 0.5 TW.

図3に示されるように、前記センター細溝15Aは、その他端15Aiに、溝底を隆起させたタイバー23を有するのが望ましい。このようなタイバー23は、直進走行時に接地圧が最も大きくなるセンター陸部4Eのタイヤ周方向の剛性を高め、偏摩耗を効果的に抑制しうる。   As shown in FIG. 3, the center narrow groove 15A preferably has a tie bar 23 with a groove bottom raised at the other end 15Ai. Such a tie bar 23 can increase the rigidity in the tire circumferential direction of the center land portion 4E where the ground contact pressure becomes the largest during straight traveling, and can effectively suppress uneven wear.

このような作用を効果的に発揮するために、前記タイバー23のタイヤ軸方向の最大長さL2は、センター陸部4Eのタイヤ軸方向の最大幅W3eの、好ましくは80%以上、さらに好ましくは87%以上が望ましい。前記最大長さL2が小さくなると、センター陸部4Eの剛性を十分に高めることができないおそれがある。逆に、前記最大長さL2が大きすぎても、センター陸部4Eの剛性が過度に高まり、他の陸部4との間で偏摩耗が生じるとともに、排水性能が低下するおそれがある。このような観点より、前記最大長さL2は、最大幅W3eの、好ましくは95%以下、さらに好ましくは92%以下が望ましい。   In order to effectively exhibit such an action, the maximum length L2 of the tie bar 23 in the tire axial direction is preferably 80% or more, more preferably the maximum width W3e of the center land portion 4E in the tire axial direction. 87% or more is desirable. If the maximum length L2 is small, the rigidity of the center land portion 4E may not be sufficiently increased. On the contrary, even if the maximum length L2 is too large, the rigidity of the center land portion 4E is excessively increased, and uneven wear occurs between the other land portions 4 and the drainage performance may be deteriorated. From such a viewpoint, the maximum length L2 is preferably 95% or less, more preferably 92% or less of the maximum width W3e.

同様の観点より、前記タイバー23の前記センター細溝15Aの最深部15Abからの高さH1は、前記縦溝3の溝深さD1の、好ましくは20%以上、さらに好ましくは23%以上が望ましく、また、好ましくは50%以下、さらに好ましくは47%以下が望ましい。   From the same viewpoint, the height H1 from the deepest portion 15Ab of the center narrow groove 15A of the tie bar 23 is preferably 20% or more, more preferably 23% or more of the groove depth D1 of the vertical groove 3. Further, it is preferably 50% or less, more preferably 47% or less.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

図1に示す基本構造をなし、表1に示す陸部を有するタイヤが製造され、それらの性能が評価された。なお、共通仕様は以下のとおりである。
タイヤサイズ:175/65 R15
リムサイズ:15×5J
トレッド半幅0.5TW:60mm
縦溝:
溝幅W1:6.5mm
溝深さD1:7.6mm
比(W1/0.5TW):10.8%
比(D1/0.5TW):12.7%
横溝:
溝幅W2:3.0mm
溝深さ:5.3mm
比(W2/0.5TW):5%
比(溝深さ/0.5TW):8.8%
トレッド接地端間を結ぶ円弧:
曲率半径R3:400mm
テスト方法は、次のとおりである。
Tires having the basic structure shown in FIG. 1 and having land portions shown in Table 1 were manufactured, and their performance was evaluated. The common specifications are as follows.
Tire size: 175/65 R15
Rim size: 15 × 5J
Tread half width 0.5TW: 60mm
Vertical groove:
Groove width W1: 6.5 mm
Groove depth D1: 7.6 mm
Ratio (W1 / 0.5TW): 10.8%
Ratio (D1 / 0.5TW): 12.7%
Horizontal groove:
Groove width W2: 3.0 mm
Groove depth: 5.3mm
Ratio (W2 / 0.5TW): 5%
Ratio (groove depth / 0.5 TW): 8.8%
Arc connecting between the tread ground ends:
Curvature radius R3: 400mm
The test method is as follows.

<耐偏摩耗性能>
各供試タイヤを上記リムにリム組みし、内圧230kPa充填して、排気量1000ccのFF車の全輪に装着するとともに、乾燥アスファルト路面を8000km走行し、内側、外側センター縦溝の溝深さの平均と、内側、外側ショルダー縦溝の溝深さの平均との差を、タイヤ周上3箇所で測定が行なわれ、全ての平均値が測定された。数値が小さいほど良好である。
テストの結果を表1に示す。
<Uneven wear resistance>
Each test tire is assembled to the above rim, filled with 230 kPa of internal pressure, mounted on all wheels of a 1000cc FF car, traveled on a dry asphalt road surface for 8000 km, and the groove depth of the inner and outer center vertical grooves And the average of the groove depths of the inner and outer shoulder longitudinal grooves were measured at three locations on the tire circumference, and all average values were measured. The smaller the value, the better.
The test results are shown in Table 1.

Figure 0005753375
Figure 0005753375

テストの結果、実施例のタイヤは、耐偏摩耗性能を向上しうることが確認できた。   As a result of the test, it was confirmed that the tires of the examples could improve uneven wear resistance.

1 空気入りタイヤ
2 トレッド部
3 縦溝
4 陸部
21 中央円弧面
22 外側円弧面
DESCRIPTION OF SYMBOLS 1 Pneumatic tire 2 Tread part 3 Longitudinal groove 4 Land part 21 Central circular arc surface 22 Outer circular arc surface

Claims (5)

トレッド部に、タイヤ周方向にのびる複数の縦溝により、タイヤ周方向にのびる複数の陸部が区分される空気入りタイヤであって、
タイヤ軸を含む子午断面において、前記各陸部の接地面は、そのタイヤ軸方向の中心を通りかつタイヤ半径方向外側に凸の単一の円弧からなる中央円弧面と、
前記中央円弧面のタイヤ軸方向の少なくとも一方に連なりかつ該中央円弧面の曲率半径の30〜50%の曲率半径の円弧からなる外側円弧面とを含み、
前記中央円弧面のタイヤ軸方向の幅は、前記陸部の幅の30〜70%であり、
前記外側円弧面のタイヤ軸方向の外端と、前記中央円弧面を前記外側円弧面の前記外端側に延長させた仮想線とのタイヤ半径方向距離であるキャンバー量は、前記陸部のタイヤ軸方向の幅の0.5〜1.5%であり、
前記縦溝は、タイヤ赤道の両側をタイヤ周方向にのびる一対のセンター縦溝と、その外側に配された一対のショルダー縦溝とを含み、
前記陸部は、前記ショルダー縦溝の外側のショルダー陸部と、隣り合う前記センター縦溝と前記ショルダー縦溝との間のミドル陸部とを含み、
前記ミドル陸部の幅に対する前記キャンバー量の割合は、前記ショルダー陸部の幅に対する前記キャンバー量の割合よりも大きいことを特徴とする空気入りタイヤ。

A pneumatic tire in which a plurality of land portions extending in the tire circumferential direction are divided by a plurality of vertical grooves extending in the tire circumferential direction on the tread portion,
In the meridional section including the tire axis, the ground contact surface of each land portion passes through the center in the tire axial direction and is a central arc surface formed of a single arc protruding outward in the tire radial direction,
An outer circular arc surface that is continuous with at least one of the central arc surface in the tire axial direction and includes an arc having a curvature radius of 30 to 50% of the curvature radius of the central arc surface;
The width of the central arc surface in the tire axial direction is 30 to 70% of the width of the land portion,
The amount of camber, which is the distance in the tire radial direction between the outer end of the outer arc surface in the tire axial direction and the virtual line obtained by extending the central arc surface toward the outer end of the outer arc surface, 0.5 to 1.5% of the axial width,
The longitudinal grooves include a pair of center longitudinal grooves extending in the tire circumferential direction on both sides of the tire equator, and a pair of shoulder longitudinal grooves disposed on the outside thereof.
The land portion includes a shoulder land portion outside the shoulder flutes, and a middle land portion between the adjacent center flutes and the shoulder flutes,
The ratio of the said camber amount with respect to the width | variety of the said middle land part is larger than the ratio of the said camber amount with respect to the width | variety of the said shoulder land part, The pneumatic tire characterized by the above-mentioned.

前記中央円弧面は、トレッド接地端間を単一の曲率半径で結ぶ円弧上に配置されている請求項1に記載の空気入りタイヤ。
The central arcuate surfaces, the pneumatic tire according to claim 1 which is disposed on an arc connecting the tread ground end of a single radius of curvature.
記陸部は、一対の前記センター縦溝間をタイヤ周方向にのびるセンター陸部を含み、
前記センター陸部は、一端が一方のセンター縦溝に連通するとともに、他端が他方のセンター縦溝に至ることなく終端するセンター細溝がタイヤ周方向に隔設され、
前記センター細溝は、前記他端に、溝底を隆起させたタイバーを有する請求項1又は2に記載の空気入りタイヤ。
Before Kiriku portion includes a center land portion extending between a pair of the center circumferential groove in the tire circumferential direction,
The center land portion has one end communicating with one center longitudinal groove and a center narrow groove that terminates without the other end reaching the other center longitudinal groove.
The pneumatic tire according to claim 1, wherein the center narrow groove has a tie bar having a groove bottom raised at the other end.
前記タイバーは、そのタイヤ軸方向の最大長さが前記センター陸部のタイヤ軸方向の最大幅の80〜95%であるとともに、
該タイバーの前記センター細溝の最深部からの高さが、前記縦溝の溝深さの20〜50%である請求項3に記載の空気入りタイヤ。
The tie bar has a maximum length in the tire axial direction of 80 to 95% of a maximum width in the tire axial direction of the center land portion,
The pneumatic tire according to claim 3, wherein a height of the tie bar from the deepest portion of the center narrow groove is 20 to 50% of a groove depth of the vertical groove.
前記センター陸部のタイヤ軸方向の最大幅は、前記タイヤ赤道Cから前記トレッド接地端までのタイヤ軸方向長さであるトレッド半幅の38〜46%である請求項3又は4に記載の空気入りタイヤ。   5. The pneumatic tire according to claim 3, wherein a maximum width in the tire axial direction of the center land portion is 38 to 46% of a tread half width that is a length in the tire axial direction from the tire equator C to the tread ground contact end. tire.
JP2010269698A 2010-12-02 2010-12-02 Pneumatic tire Active JP5753375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010269698A JP5753375B2 (en) 2010-12-02 2010-12-02 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010269698A JP5753375B2 (en) 2010-12-02 2010-12-02 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2012116410A JP2012116410A (en) 2012-06-21
JP5753375B2 true JP5753375B2 (en) 2015-07-22

Family

ID=46499780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010269698A Active JP5753375B2 (en) 2010-12-02 2010-12-02 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP5753375B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2977230B1 (en) * 2013-03-18 2017-05-03 Bridgestone Corporation Tire
JP6211354B2 (en) * 2013-09-04 2017-10-11 株式会社ブリヂストン Pneumatic tire
JP6253941B2 (en) * 2013-10-09 2017-12-27 株式会社ブリヂストン tire
JP5874867B1 (en) 2014-05-26 2016-03-02 横浜ゴム株式会社 Pneumatic tire
JP6366400B2 (en) * 2014-07-23 2018-08-01 東洋ゴム工業株式会社 Pneumatic tire
JP6510797B2 (en) 2014-11-11 2019-05-08 株式会社ブリヂストン Pneumatic tire
JP6710097B2 (en) * 2016-04-28 2020-06-17 株式会社ブリヂストン tire
CN107804119B (en) * 2016-09-09 2019-11-12 建大工业股份有限公司 Tire
US11034192B2 (en) 2016-10-03 2021-06-15 Kenda Rubber Ind. Co., Ltd. Tire
HUE045762T2 (en) * 2016-10-05 2020-01-28 Kenda Rubber Ind Co Ltd Tire
JP7238383B2 (en) * 2018-12-19 2023-03-14 横浜ゴム株式会社 pneumatic tire
JP7211218B2 (en) * 2019-04-03 2023-01-24 住友ゴム工業株式会社 tire
JP7363208B2 (en) 2019-08-30 2023-10-18 住友ゴム工業株式会社 tire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4189980B2 (en) * 1998-11-27 2008-12-03 株式会社ブリヂストン Pneumatic tire
JP4580126B2 (en) * 2001-05-11 2010-11-10 株式会社ブリヂストン Pneumatic tire
CN100335300C (en) * 2002-09-10 2007-09-05 横滨橡胶株式会社 Pneumatic tire
JP5321093B2 (en) * 2009-01-26 2013-10-23 横浜ゴム株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2012116410A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5753375B2 (en) Pneumatic tire
JP5250016B2 (en) Pneumatic tire
JP5337201B2 (en) Pneumatic tire
JP5667614B2 (en) Pneumatic tire
JP5250063B2 (en) Pneumatic tire
JP5727965B2 (en) Pneumatic tire
KR102026381B1 (en) Pneumatic tire
JP5357988B2 (en) Pneumatic tire
JP5206754B2 (en) Pneumatic tire
JP6006745B2 (en) Pneumatic tire
JP5947824B2 (en) Pneumatic tire
WO2013137193A1 (en) Pneumatic tire
JP6097238B2 (en) Pneumatic tire
JP5386032B2 (en) Pneumatic tire
KR20140060226A (en) Pneumatic tire
JP5913247B2 (en) Pneumatic tire
US10173476B2 (en) Pneumatic tire
JP6575254B2 (en) Pneumatic tire
KR102344134B1 (en) Tire
JP5981900B2 (en) Pneumatic tire
JP2013071633A (en) Pneumatic tire
JP6358970B2 (en) Pneumatic tire
JP6326125B2 (en) Pneumatic tire
JP4750524B2 (en) Pneumatic tire
JP6002182B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150522

R150 Certificate of patent or registration of utility model

Ref document number: 5753375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250