JP5749592B2 - 光レセプタクルおよびこれを備えた光モジュール - Google Patents

光レセプタクルおよびこれを備えた光モジュール Download PDF

Info

Publication number
JP5749592B2
JP5749592B2 JP2011156707A JP2011156707A JP5749592B2 JP 5749592 B2 JP5749592 B2 JP 5749592B2 JP 2011156707 A JP2011156707 A JP 2011156707A JP 2011156707 A JP2011156707 A JP 2011156707A JP 5749592 B2 JP5749592 B2 JP 5749592B2
Authority
JP
Japan
Prior art keywords
optical
lens
light receiving
light
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011156707A
Other languages
English (en)
Other versions
JP2013024917A (ja
Inventor
慎也 菅家
慎也 菅家
心平 森岡
心平 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2011156707A priority Critical patent/JP5749592B2/ja
Priority to PCT/JP2012/067911 priority patent/WO2013011938A1/ja
Priority to US14/130,289 priority patent/US20140133801A1/en
Publication of JP2013024917A publication Critical patent/JP2013024917A/ja
Application granted granted Critical
Publication of JP5749592B2 publication Critical patent/JP5749592B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4212Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element being a coupling medium interposed therebetween, e.g. epoxy resin, refractive index matching material, index grease, matching liquid or gel
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、光レセプタクルおよびこれを備えた光モジュールに係り、特に、光ファイバの端部と光電変換装置の受光素子とを光学的に結合するのに好適な光レセプタクルおよびこれを備えた光モジュールに関する。
従来から、光ファイバを用いた光通信には、光レセプタクルと称される光モジュール部品が用いられており、この光レセプタクルは、筒状のフェルール内に保持された光ファイバの端部がフェルールとともに挿入されて固定され、かつ、光電変換素子を有する光電変換装置が取り付けられるようになっている。そして、このようにして光電変換装置および光ファイバが組み付けられた光レセプタクルは、光電変換素子と光ファイバの端部とを光学的に結合するようになっていた。
ここで、図7は、この種の光レセプタクル1の一例を示したものであり、この光レセプタクル1は、例えば、PEI(ポリエーテルイミド)、PC(ポリカーボネート)、PES(ポリエーテルサルフォン)、COP(シクロオレフィンポリマー)またはPMMA(ポリメタクリル酸メチル)等の透光性の樹脂材料を射出成形することによって一体的に形成されている。
図7に示すように、光レセプタクル1は、長手方向におけるほぼ中央位置に、レンズ2を有しており、このレンズ2は、これの光軸OA方向における一方(図7における下方)の第1の面2aが凸面、光軸OA方向における他方(図7における上方)の第2の面2bが光軸OAに直交する平面とされた平凸レンズに形成されている。なお、図示はしないが、レンズ2の各面2a、2bは、光軸OA方向から見た場合に、光軸OAを中心とした円形状を呈するようになっており、第1の面2aは、第2の面2bよりも大径とされている。
また、図7に示すように、光レセプタクル1は、第1の面2aに対する径方向における外側位置から光軸OA方向における一方(図7における下方)に向かって延在された光電変換装置取付部3を有している。この光電変換装置取付部3は、内周面が光軸OAと同心の略円筒面とされた筒状に形成されている。
さらに、図7に示すように、光レセプタクル1は、第2の面2bに対する径方向における外側位置から光軸OA方向における光電変換装置取付部3と反対の方向に向かって延在された光ファイバ取付部5を有している。この光ファイバ取付部5は、内周面が光軸OAと同心の略円筒面とされた筒状に形成されている。
次に、図8は、このような光レセプタクル1を備えた光モジュールの一例として、光受信用の光モジュール7を示したものである。
すなわち、図8に示すように、光モジュール7は、光レセプタクル1の光電変換装置取付部3に、光受信機能を備えたCANパッケージ型の光電変換装置8が取り付けられている。ここで、図8に示すように、光電変換装置8は、円板状のステム9、これに搭載されたフォトディテクタ(PD)等の受光素子10、この受光素子10を覆って気密に封止するための頂部に窓部11aを有するキャップ11および受光素子10の受光結果(光電変換)に応じた電気信号が流れるリード12等によって構成されている。また、光電変換装置8の取り付けは、光電変換装置8における受光素子10側の所定範囲の部位を光電変換装置取付部3の内側に挿入させた状態で、光電変換装置8と光電変換装置取付部3との間に配置された接着剤13を硬化させること(接着)によって行われている。接着剤13としては、熱硬化性樹脂や紫外線硬化性樹脂が用いられる。
また、図8に示すように、光モジュール7は、光ファイバ取付部5に、長尺な光ファイバ15における端部(端面)15a側の所定長さの部位が、これを保持するフェルール17とともに着脱可能に取り付けられている。光ファイバ15の端部15aは、光ファイバ取付部5への取り付け状態において、空気層を隔ててレンズ2の第2の面2bに臨んでいる。
このような光受信用の光モジュール7においては、半導体レーザ(LD)等の送信側のデバイスから送信された送信情報を含む光が、光ファイバ15を介して伝送されて、光ファイバ15の端部15aからレンズ2に向けて出射される。そして、このレンズ2に向けて出射された光は、レンズ2において収束されて光電変換装置8に向けて出射された後に、光電変換装置8の受光素子10によって受光される。このようにして、光ファイバ15の端部15aと受光素子10とが光学的に結合される。
ところで、このような光受信用の光モジュール7においては、光ファイバ15の端部15aから出射された光が、レンズ2の第2の面2b(平面)においてフレネル反射されることによって、光ファイバ15の端部15aに戻り光として戻って(入射して)しまうことが問題となっていた。このような戻り光は、光ファイバ15を介してノイズとなって送信側のデバイスの光出力特性に悪影響を与える虞があった。
そこで、このような問題を低減すべく、これまでにも、例えば、特許文献1に示すような提案がなされていた。
すなわち、特許文献1においては、スリーブに形成された平面状の光学面を受光素子の受光面に対して4〜12°傾斜させることによって、光学面と空気層との界面におけるフネレル反射による反射光が戻り光として光ファイバの端部に入射することを抑制することが提案されている。
特開2006−98763号公報(図2、図3)
ところで、この種の光モジュールには、今後、更なる光通信の高速化に対応することが求められており、このような要求に応えるためには、光送信用のデバイスから光ファイバを介して高速で伝送された光を、受光素子において遅滞なく高速で受信することが必要となる。そして、このような高速の光受信に対応した受光素子は、応答速度を速く(受光面における光信号の受光からこの光信号の電気信号への変換までの所要時間を短く)するために、受光面積を小さくすることが求められる。
しかるに、特許文献1に記載の構成は、戻り光の低減のみを意識したものであるため、光受信の高速化に対応すべく受光素子の受光面積を小さくする場合には、温度変化にともなう光学性能の劣化が顕著となる虞があるといった問題が生じていた。すなわち、温度変化によって光レセプタクルの変形(線膨脹)が生じた場合には、これにともなって光レセプタクルを透過する光の光路が変化するため、この変化を加味しない構成では、光ファイバの端部からの出射光を光レセプタクルを透過させた後に受光面積が小さい受光素子に適正に結合させることが困難であった。
そこで、本発明は、このような問題点に鑑みなされたものであり、戻り光を有効に低減することができるとともに、光受信の高速化に対応しつつ温度変化に対する光学安定性を確保することができる光レセプタクルおよびこれを備えた光モジュールを提供することを目的とするものである。
前述した目的を達成するために、本発明の請求項1に係る光レセプタクルの特徴は、光ファイバの端部を取り付けるための筒状の光ファイバ取付部と、受光素子を有する光電変換装置を取り付けるための筒状の光電変換装置取付部と、前記光ファイバの端部と前記受光素子とを光学的に結合するためのレンズとを備えた光レセプタクルにおいて、前記レンズにおける前記光ファイバの端部に臨む面が、前記レンズの光軸に直交する仮想平面に対して14〜16°の傾斜角を有する平面に形成されている点にある。
そして、この請求項1に係る発明によれば、光ファイバの端部から出射された光がレンズにおける光ファイバの端部に臨む面において反射されたとしても、この反射された光が戻り光として光ファイバの端部に入射することを抑制することができ、かつ、温度変化にかかわらず、光ファイバの端部から出射された光をレンズによって受光素子に適正に結合させることができる。
また、請求項2に係る光レセプタクルの特徴は、請求項1において、更に、樹脂材料によって一体的に形成されている点にある。
そして、この請求項2に係る発明によれば、光レセプタクルを金型を用いた樹脂成形によって安価に得ることができ、また、温度変化にともなう変形量(線膨脹係数)が大きい樹脂材料を適用することによって、温度変化にともなう光学性能の劣化を低減する意義がより大きなものとなる。
さらに、請求項3に係る光レセプタクルの特徴は、請求項1または2において、更に、前記レンズの倍率として、1.5倍の高倍率に対して1倍の低倍率を選択可能とされている点にある。
そして、この請求項3に係る発明によれば、高倍率のレンズに比較して温度変化にともなう光学性能の劣化が大きい傾向にある低倍率のレンズを選択する場合においても、温度変化にともなう光学性能の劣化を十分に低減することができるので、レンズの倍率を選択する際に、低倍率側において大きな制約が課されることがなく、設計の自由度を向上させることができる。
さらにまた、請求項4に係る光モジュールの特徴は、請求項1〜3のいずれか1項に記載の光レセプタクルと、請求項1に記載の光電変換装置と、請求項1に記載の光ファイバとを備え、前記光電変換装置における受光素子は、25Gbps以上の高速光受信に対応する円形受光面の受光面積がφ30μm以下に形成されている点にある。
そして、この請求項4に係る光モジュールによれば、戻り光を有効に低減することができるとともに、受光面積が小さい受光素子を採用することによって光受信の高速化に対応しつつ、温度変化に対する光学安定性を確保することができる。
本発明によれば、戻り光を有効に低減することができるとともに、光受信の高速化に対応しつつ温度変化に対する光学安定性を確保することができる。
本発明に係る光レセプタクルおよび光モジュールの実施形態を示す縦断面図 第1のシミュレーションの結果として、低倍率のレンズを用いつつ、25Gbps高速光受信向けの受光面積が小さい受光素子と、従来の10Gbps光受信向けの受光面積が比較的大きい受光素子とのそれぞれを対象として、温度変化にともなう光結合効率の劣化特性をレンズの第2の面の傾斜角ごとにシミュレーションした結果を示すグラフ 第2のシミュレーションの結果として、レンズの第2の面の傾斜角に対する戻り光の光量の特性をシミュレーションした結果を示すグラフ 第3のシミュレーションの結果として、高倍率のレンズを用いつつ、25Gbps高速光受信向けの受光素子と、従来の10Gbps光受信向けの受光素子とのそれぞれを対象として、温度変化にともなう光結合効率の劣化特性をレンズの第2の面の傾斜角ごとにシミュレーションした結果を示すグラフ 第4のシミュレーションの結果として、低倍率のレンズおよび高倍率のレンズをそれぞれ用いつつ、25Gbps高速光受信向けの受光素子を対象として、温度変化にともなう光結合効率の劣化特性をレンズの第2の面の傾斜角ごとにシミュレーションした結果を示すグラフ 本発明の変形例を示す構成図 従来の光レセプタクルの一例を示す縦断面図 図7の光レセプタクルを備えた光モジュールを示す縦断面図
以下、本発明に係る光レセプタクルおよび光モジュールの実施形態について、従来との相違点を中心として、図1〜図6を参照して説明する。
なお、従来と基本的構成が同一もしくはこれに類する箇所については、同一の符号を用いて説明する。
図1に示すように、本実施形態における光レセプタクル1’は、従来の光レセプタクル1と同様に、レンズ2’、光電変換装置取付部3および光ファイバ取付部5の各構成部によって構成されており、各構成部2’、3、5は、金型を用いた樹脂材料の射出成形によって一体成形されている。
本実施形態における光レセプタクル1’の従来との相違点は、レンズ2’の第2の面2b’(光ファイバ15の端部15aに臨む面)の構成にある。
すなわち、図1に示すように、本実施形態において、レンズ2’の第2の面2b’は、従来のような光軸OAに直交する平面ではなく、光軸OAに直交する仮想平面Sに対して14〜16°(14°以上かつ16°以下)の角度範囲における所定の傾斜角を有する平面に形成されている。ただし、本実施形態においても、第2の面2b’は、その中心が光軸OA上に位置されていてもよい。
また、本実施形態における光モジュール7’の従来との相違点は、前述した光レセプタクル1’の構成の相違点に加えて、更に、受光素子10’の受光面積が、従来の受光素子10よりも小さく形成されている点にある。受光面積としては、25Gbps以上の高速光受信に対応させる場合には、円形受光面の場合に、φ30μm以下にすることが望ましい。また、受光素子10’は、設定された温度(例えば、常温)下において受光面の中心がレンズ2’の集光点(焦点)に合致するような設計にしたがった位置合わせが行われていてもよい。この場合に、受光面の中心の位置は、レンズ2’の光軸OA上から光軸OAに直交する方向にずれていてもよい。
そして、このような構成によれば、レンズ2’の第2の面2b’に最適な角度範囲内の傾斜角を付与したことにより、光ファイバ15の端部15aから出射された光が第2の面2b’においてフレネル反射されたとしても、この反射された光が戻り光として光ファイバ15の端部15aに入射することを抑制することができる。さらに、このような構成によれば、温度変化にかかわらず、光ファイバ15の端部15aから出射された光をレンズ2’によって受光面積が小さい受光素子10’に適正に結合させることができる。特に、本実施形態のように、光レセプタクル1’を線膨脹係数が大きい樹脂材料によって形成する場合には、温度変化にともなう光学性能の劣化を低減する意義は大きい。
また、本実施形態においては、レンズ2’の倍率として、所定の低倍率を選択することができる。低倍率としては、例えば、1倍を採用することができる。すなわち、本実施形態によれば、高倍率のレンズ(例えば、1.5倍)に比較して温度変化にともなう光学性能の劣化が大きい傾向にある低倍率(例えば、1倍)のレンズを選択する場合においても、光学性能の劣化を十分に低減することができるので、レンズの倍率に対して低倍率側において大きな制約が課されることがなく、レンズを含めたモジュール設計の自由度を広げることができる。
次に、本実施例においては、本発明の光レセプタクル1’および光モジュール7’の光学特性を評価するための各種のシミュレーションを行った。
(第1のシミュレーション)
すなわち、まず、第1のシミュレーションにおいては、倍率1.0の低倍率のレンズを用いる場合に、25Gbps高速光受信向けの受光面積φ30μmの受光素子と、従来の10Gbps光受信向けの受光面積φ50μmの受光素子とのそれぞれに対して、温度変化にともなって光ファイバ−受光素子間の光結合効率がどのような劣化特性を示すのかを、レンズの第2の面の傾斜角ごとにシミュレーションした。ただし、本シミュレーションにおいては、光ファイバをシングルモード方式の光ファイバとし、また、光ファイバ−受光素子間の光学的な結合に使用する使用光を波長1550nmの光とし、さらに、光レセプタクルをPEI製のものとした。また、本シミュレーションにおいては、レンズの第2の面の角度を、光軸OAに直交する平面を基準(0°)として0〜30°の角度範囲内において所定角度ずつ変化させる過程で、各角度ごとに、温度を−40〜85℃まで変化させた場合に示される光結合効率の最大値と最小値との差を、角度に対応した光結合効率の損失量としてグラフにプロットした。
このような第1のシミュレーションの結果を図2に示す。なお、図2において、縦軸は、温度変化にともなう光結合効率の損失量(dB)であり、横軸は、レンズの第2の面の角度(°)である。ここで、図2において、25Gbps高速光受信向けの受光素子に対する特性(■プロットの実線グラフ)のうち、角度(横軸)が14〜16°の範囲の特性(一点鎖線枠内)が、本発明の構成に該当する特性である。図2に示すように、本発明の構成によれば、温度変化が生じた場合であっても、25Gbpsの高速光受信向けの受光素子に対する光結合効率の落ち込みを、レンズの第2の面の角度が本発明の角度範囲(14〜16°)を逸脱する場合の多くの構成に比べて小さく抑えられることが分かる。具体的には、本発明の構成においては、温度変化時の光結合効率の損失量が−0.13dBであり、この値は、10Gbps光受信向けの受光素子に対する特性(▲プロットの破線グラフ)において示される損失量と比べても遜色がない十分に小さい損失量である。この程度の損失量であれば、実使用に十分に耐えることができ、良好な光結合効率を実現することができる。これに対して、特許文献1において規定された角度範囲(4〜12°)においては、温度変化にともなう光結合効率の落ち込みが大きくなり、とりわけ、レンズの第2の面の角度が5°の場合には、光結合効率の損失量が−0.32dBと最大値を示した。なお、0〜2°付近の角度範囲においては、本発明の構成よりも光結合効率の落ち込みは小さくなるが、この角度範囲は、次の第2のシミュレーションの結果に示すように、戻り光の低減の観点から好ましくない角度範囲である。
このような第1のシミュレーションの結果によれば、本発明のようにレンズの第2の面の角度を14〜16°にすれば、低倍率のレンズを採用した場合において、25Gbpsの高速光受信に対応しつつ、温度変化にともなう光学安定性を確保できることが分かる。
(第2のシミュレーション)
次に、第2のシミュレーションにおいては、レンズの第2の面の角度に対して、戻り光の光量がどのような特性を示すのかをシミュレーションした。本シミュレーションに用いた光ファイバの種類および使用光の波長は、第1のシミュレーションと同様である。また、本シミュレーションにおいては、光ファイバの端部から出射された光がレンズの第2の面において100%の反射率で反射されると仮定した。
このような第2のシミュレーションの結果を図3に示す。なお、図3において、縦軸は、戻り光の光量(dB)であり、横軸は、レンズの光軸OAに直交する平面を基準(0°)としたレンズの第2の面の角度である。ここで、図2の場合と同様に、図3において、角度が14〜16°の範囲の特性(一点鎖線枠内)が、本発明の構成に該当する特性である。図3に示すように、本発明の構成によれば、戻り光の光量をほぼ−36dB〜−40dBの範囲内の値に低減できることが分かる。この値は、ノイズとしては実使用上問題がなく、仮に、製造誤差によって値が微増した場合であっても許容し得る程度に十分に小さい値である。これに対して、特許文献1において規定された角度範囲(4〜12°)においては、戻り光の光量がほぼ−20dB〜−36dBの範囲内となり、本発明の構成よりもノイズの低減効果は少ないと言える。なお、特許文献1において平面状の光学面の角度範囲の上限を12°と規定している理由は、12°よりも大きい角度においては、光ファイバの端部から出射されて受光素子に向かう光が光学面で大きく屈折されることによって、受光素子側での集光点が光軸上から光軸に直交する方向にずれる点にある。この点について、本発明においては、モジュール化の際(組立時)に、設計にしたがって受光素子の光軸に対する直交方向へのオフセット設定を行うこともできるので、特許文献1において指摘する問題は未然に回避することができる。
このような第2のシミュレーションの結果によれば、本発明のようにレンズの第2の面の角度を14〜16°にすれば、戻り光を十分に低減できることが分かる。
(第3のシミュレーション)
次に、第3のシミュレーションにおいては、倍率1.5の高倍率のレンズを用いる場合に、25Gbps高速光受信向けの受光面積φ30μmの受光素子と、従来の10Gbps光受信向けの受光面積φ50μmの受光素子とのそれぞれに対して、温度変化にともなって光ファイバ−受光素子間の光結合効率がどのような劣化特性を示すのかを、レンズの第2の面の傾斜角ごとにシミュレーションした。ただし、本シミュレーションにおいて、光ファイバの種類、使用光の波長、光レセプタクルの形成材料、レンズの第2の面の角度範囲、温度変化の範囲および光結合効率の損失量の算出方法の各条件は、第1のシミュレーションと同様である。
このような第3のシミュレーションの結果を図4に示す。なお、図4のグラフの概要は、図2と同様であり、図4において、25Gbps高速光受信向けの受光素子に対する特性(◆プロットの実線グラフ)のうち、角度(横軸)が14〜16°の範囲の特性(一点鎖線枠内)が、本発明の構成に該当する特性である。図4に示すように、本発明の構成によれば、温度変化が生じた場合であっても、25Gbpsの高速光受信向けの受光素子に対する光結合効率の落ち込みを、レンズの第2の面の角度が本発明の角度範囲(14〜16°)を逸脱する場合の多くの構成に比べて小さく抑えられることが分かる。具体的には、本発明の構成においては、温度変化時の光結合効率の損失量が最大で約−0.09dBであり、この値は、低倍率レンズを用いた本発明の構成の場合(図2の場合)よりも小さい損失量である。これに対して、特許文献1において規定された角度範囲(4〜12°)においては、温度変化にともなう光結合効率の落ち込みが大きくなり、とりわけ、レンズの第2の面の角度が5°の場合には、光結合効率の損失量が−0.275dBと最大値を示した。
このような第3のシミュレーションの結果によれば、本発明のようにレンズの第2の面の角度を14〜16°にすれば、高倍率のレンズを採用した場合においても、25Gbpsの高速光受信に対応しつつ、温度変化にともなう光学安定性を確保できることが分かる。
(第4のシミュレーション)
次に、第4のシミュレーションにおいては、倍率1.0の低倍率のレンズおよび倍率1.5の高倍率のレンズを用いる場合に、それぞれ、25Gbps高速光受信向けの受光面積φ30μmの受光素子に対して、温度変化にともなって光ファイバ−受光素子間の光結合効率がどのような劣化特性を示すのかを、レンズの第2の面の傾斜角ごとにシミュレーションした。
本シミュレーションの結果は、図2に示した高速光受信向けの受光素子に対する特性と、図4に示した高速光受信向けの受光素子に対する特性とを比較したものに相当する。すなわち、本シミュレーションの結果は、図5に示すものである。図5に示すように、低倍率のレンズを適用する場合には、高倍率のレンズを適用する場合に比べて温度変化にともなう光結合効率の落ち込みが大きくなることが分かる。本発明においては、このような落ち込みが大きな低倍率のレンズを適用する場合においても、レンズの第2の面に最適な角度範囲を付与することによって、光結合効率の劣化を十分に低減することができる。
このような第4のシミュレーションの結果によれば、本発明のようにレンズの第2の面の角度を14〜16°にすれば、レンズの倍率として高倍率および低倍率のいずれを選択してもよく、設計の自由度を広げられることが分かる。
以上述べたように、本発明によれば、レンズ2の第2の面2bを14〜16°の傾斜平面に形成するといった簡便な設計により、戻り光を有効に低減することができるとともに、光受信の高速化に対応しつつ温度変化に対する光学安定性を確保することができる。また、第2の面2bに戻り光低減用の反射防止(AR)コートを形成する場合に比べて、部品点数およびコストを削減することができる。
なお、本発明は、前述した実施の形態に限定されるものではなく、本発明の特徴を損なわない限度において種々変更することができる。
例えば、レンズ2の第1の面2aは、球面であってもよいし、または、非球面であってもよい。
また、図6に示すように、CANパッケージ型の光電変換装置8に代わり、半導体基板20上に受光素子10’が実装された基板実装型の光電変換装置8’を採用してもよい。
さらに、本発明は、シングルモード光ファイバだけでなく、マルチモード光ファイバにも有効に適用することができる。
1’ 光レセプタクル
2’ レンズ
2b’ 第2の面
3 光電変換装置取付部
5 光ファイバ取付部
8 光電変換装置
10’ 受光素子
15 光ファイバ
15a 端部

Claims (4)

  1. 光ファイバの端部を取り付けるための筒状の光ファイバ取付部と、
    受光素子を有する光電変換装置を取り付けるための筒状の光電変換装置取付部と、
    前記光ファイバの端部と前記受光素子とを光学的に結合するためのレンズと
    を備えた光レセプタクルにおいて、
    前記レンズにおける前記光ファイバの端部に臨む面が、前記レンズの光軸に直交する仮想平面に対して14〜16°の傾斜角を有する平面に形成されていること
    を特徴とする光レセプタクル。
  2. 樹脂材料によって一体的に形成されていること
    を特徴とする請求項1に記載の光レセプタクル。
  3. 前記レンズの倍率として、1.5倍の高倍率に対して1倍の低倍率を選択可能とされていること
    を特徴とする請求項1または2に記載の光レセプタクル。
  4. 請求項1〜3のいずれか1項に記載の光レセプタクルと、
    請求項1に記載の光電変換装置と、
    請求項1に記載の光ファイバと
    を備え、
    前記光電変換装置における受光素子は、25Gbps以上の高速光受信に対応する円形受光面の受光面積がφ30μm以下に形成されていること
    を特徴とする光モジュール。
JP2011156707A 2011-07-15 2011-07-15 光レセプタクルおよびこれを備えた光モジュール Active JP5749592B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011156707A JP5749592B2 (ja) 2011-07-15 2011-07-15 光レセプタクルおよびこれを備えた光モジュール
PCT/JP2012/067911 WO2013011938A1 (ja) 2011-07-15 2012-07-13 光レセプタクルおよびこれを備えた光モジュール
US14/130,289 US20140133801A1 (en) 2011-07-15 2012-07-13 Light receptacle and optical module equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011156707A JP5749592B2 (ja) 2011-07-15 2011-07-15 光レセプタクルおよびこれを備えた光モジュール

Publications (2)

Publication Number Publication Date
JP2013024917A JP2013024917A (ja) 2013-02-04
JP5749592B2 true JP5749592B2 (ja) 2015-07-15

Family

ID=47558116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011156707A Active JP5749592B2 (ja) 2011-07-15 2011-07-15 光レセプタクルおよびこれを備えた光モジュール

Country Status (3)

Country Link
US (1) US20140133801A1 (ja)
JP (1) JP5749592B2 (ja)
WO (1) WO2013011938A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103502863A (zh) * 2011-05-10 2014-01-08 住友电气工业株式会社 光学组件和制造光学组件的方法
JP6494094B2 (ja) * 2015-03-09 2019-04-03 住友電工デバイス・イノベーション株式会社 光モジュール
CN116648647A (zh) * 2020-12-28 2023-08-25 恩普乐股份有限公司 光插座及光模块

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103989A (en) * 1977-02-07 1978-08-01 Seymour Rosin Unit-power concentric optical systems
EP0525433A1 (de) * 1991-07-31 1993-02-03 Siemens Aktiengesellschaft Vorrichtung zur Einkoppelung eines optischen Signals in eine Lichtleitfaser
US6504180B1 (en) * 1998-07-28 2003-01-07 Imec Vzw And Vrije Universiteit Method of manufacturing surface textured high-efficiency radiating devices and devices obtained therefrom
US6314223B1 (en) * 1998-08-31 2001-11-06 Digital Optics Corporation Diffractive vertical cavity surface emitting laser power monitor and system
US8529139B2 (en) * 1998-09-22 2013-09-10 Digitaloptics Corporation East Optical element and system using the same
US6530697B1 (en) * 1998-09-22 2003-03-11 Digital Optics Corp. Multi-mode fiber coupler, system and associated methods
US20020076151A1 (en) * 2000-12-18 2002-06-20 Kinard William Brian Optical collimator device utilizing an integrated lens/spacer element
US6967754B2 (en) * 2001-12-14 2005-11-22 Bratt Nicholas E Hybrid optical transceivers for free space optical communication
JP3797940B2 (ja) * 2002-02-26 2006-07-19 日本オプネクスト株式会社 光伝送モジュールおよびそれを用いた光通信システム
JP3698133B2 (ja) * 2002-08-30 2005-09-21 ヤマハ株式会社 マイクロレンズアレイ
JP3771222B2 (ja) * 2003-02-04 2006-04-26 株式会社エンプラス 光モジュール及びそれを備えた光コネクタ
US7481545B2 (en) * 2005-10-13 2009-01-27 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Method of forming and mounting an angled reflector
JP2007121920A (ja) * 2005-10-31 2007-05-17 Sony Corp 光モジュール、光通信モジュール及び光通信装置
JP4861918B2 (ja) * 2007-07-09 2012-01-25 株式会社エンプラス 光学素子を備えた光モジュール用ホルダ、光モジュールならびに光コネクタ
JP2009163212A (ja) * 2007-12-12 2009-07-23 Enplas Corp 光結合素子およびこれを備えた光モジュール
US20110044582A1 (en) * 2009-08-21 2011-02-24 Microsoft Corporation Efficient collimation of light with optical wedge
JP5608455B2 (ja) * 2010-07-16 2014-10-15 株式会社エンプラス 光受信モジュール

Also Published As

Publication number Publication date
US20140133801A1 (en) 2014-05-15
WO2013011938A1 (ja) 2013-01-24
JP2013024917A (ja) 2013-02-04

Similar Documents

Publication Publication Date Title
JP6134934B2 (ja) 光レセプタクルおよびこれを備えた光モジュール
JP6011958B2 (ja) 光レセプタクルおよびこれを備えた光モジュール
JP5714229B2 (ja) 二重レンズの単一光受信器アセンブリ
WO2012169586A1 (ja) 光レセプタクルおよびこれを備えた光モジュール
JP4805657B2 (ja) 光レシーバ
US10481349B2 (en) Optical path conversion device, optical interface apparatus, and optical transmission system
JP5749592B2 (ja) 光レセプタクルおよびこれを備えた光モジュール
JP6209441B2 (ja) 光モジュール
JP2016533527A (ja) 光結合およびアセンブリ
JP6207881B2 (ja) 光レセプタクルおよびこれを備えた光モジュール
JP6357320B2 (ja) 光レセプタクルおよび光モジュール
JP2008116743A (ja) 多チャンネル光通信用レンズ及びそれを用いた光モジュール
JP2005024617A (ja) 光送信器
JP2008203546A (ja) レンズアセンブリ及びそれを用いた光モジュール
JP6681751B2 (ja) 光レセプタクルおよび光モジュール
JP2008197459A (ja) 光送受信モジュール
CN104216071B (zh) 光插座以及具有这种光插座的光模块
CN109521519B (zh) 一种阵列波导光栅的封装装置和光学系统
JP6011908B2 (ja) 光レセプタクルおよびこれを備えた光モジュール
JP2009258320A (ja) 光サブアセンブリ
JP2012133191A (ja) 光学装置
JP2017062342A (ja) 光モジュール及びその製造方法
JP2008139446A (ja) 光モジュール
JP2022178119A (ja) 光レセプタクルおよび光モジュール
JP2004133117A (ja) 樹脂封止型光モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5749592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250