JP5747390B2 - Hydrogen water production apparatus and electrode used therefor - Google Patents

Hydrogen water production apparatus and electrode used therefor Download PDF

Info

Publication number
JP5747390B2
JP5747390B2 JP2013247418A JP2013247418A JP5747390B2 JP 5747390 B2 JP5747390 B2 JP 5747390B2 JP 2013247418 A JP2013247418 A JP 2013247418A JP 2013247418 A JP2013247418 A JP 2013247418A JP 5747390 B2 JP5747390 B2 JP 5747390B2
Authority
JP
Japan
Prior art keywords
hydrogen water
titanium oxide
production apparatus
water production
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013247418A
Other languages
Japanese (ja)
Other versions
JP2015104690A (en
Inventor
鈴木 健治
健治 鈴木
Original Assignee
株式会社インテクトプランニング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社インテクトプランニング filed Critical 株式会社インテクトプランニング
Priority to JP2013247418A priority Critical patent/JP5747390B2/en
Priority to PCT/JP2013/083203 priority patent/WO2015079594A1/en
Publication of JP2015104690A publication Critical patent/JP2015104690A/en
Application granted granted Critical
Publication of JP5747390B2 publication Critical patent/JP5747390B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/46165Special power supply, e.g. solar energy or batteries
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/4617DC only
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/02Location of water treatment or water treatment device as part of a bottle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Automation & Control Theory (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)

Description

本発明は水素水製造装置及びそれに用いられる電極に係り、特に、水素を高濃度に溶存した水素水を簡易に製造するための水素水製造装置及びそれに用いられる電極に関する。   The present invention relates to a hydrogen water production apparatus and an electrode used therefor, and more particularly to a hydrogen water production apparatus for easily producing hydrogen water in which hydrogen is dissolved at a high concentration and an electrode used therefor.

水素水は、水素を高濃度に溶存させた水であり、水素水を飲むことにより、人体の健康に害を及ぼすと言われている人体中の活性酸素を還元して除去するとして近年注目されている。また、水素水は健康飲料として利用される他にも工業用途等でも注目されている。   Hydrogen water is water in which hydrogen is dissolved at a high concentration. In recent years, it has attracted attention as reducing and removing active oxygen in the human body, which is said to be harmful to human health, by drinking hydrogen water. ing. In addition to being used as a health drink, hydrogen water is attracting attention for industrial use and the like.

水素水を製造する方法としては、大きく分けて、高圧下で水素ガスを水に溶解させる方法(例えば特許文献1)と、電気分解装置の電解槽に水を入れ、陽極と陰極との間に電圧を印加することにより、陰極側に水素を発生させる方法(例えば特許文献2)と、がある。   As a method for producing hydrogen water, it can be roughly divided into a method in which hydrogen gas is dissolved in water under high pressure (for example, Patent Document 1), and water is put in an electrolytic cell of an electrolyzer, and between an anode and a cathode. There is a method of generating hydrogen on the cathode side by applying a voltage (for example, Patent Document 2).

しかし、高圧下で水素ガスを水に溶解させる方法は、危険物である高圧な水素ガスボンベを使用しなくてはならず、一般家庭等において簡易に水素水を製造する方法としては不適当である。したがって、簡易に水素水を製造する方法としては、水の電気分解によって製造することが好ましい。   However, a method of dissolving hydrogen gas in water under high pressure must use a high-pressure hydrogen gas cylinder that is a dangerous substance, and is not suitable as a method for easily producing hydrogen water in general households. . Therefore, as a method for easily producing hydrogen water, it is preferable to produce it by electrolysis of water.

特許第3606466号公報Japanese Patent No. 3606466 特開2002−254078号公報JP 2002-254078 A

ところで、販売されている市販の水素水の水素濃度としては、0.2〜1.2ppm程度であり、電気分解効率の大きな装置を必要とするため装置が大型化し、一般家庭用向けに小型化することが難しい。また、昨今の消費者のニーズタイミングやニーズ場所の多様化から、スポーツ後、旅行先、仕事場等において、水素水を飲みたいときにその場で簡易に製造できるようなコンパクトで携帯可能な水素水製造装置が要望されている。   By the way, the hydrogen concentration of the commercially available hydrogen water is about 0.2 to 1.2 ppm, which requires a device with high electrolysis efficiency, so that the device becomes larger and smaller for general household use. Difficult to do. In addition, due to the diversification of consumer needs timing and places of interest, compact and portable hydrogen water that can be easily produced on the spot when you want to drink hydrogen water at sports destinations, destinations, and workplaces. A manufacturing device is desired.

本発明はこのような事情に鑑みてなされたもので、装置を小型化しても高い発生効率で水素を発生させることができ、家庭用向けに好適であるコンパクトな水素水製造装置を提供することを目的とする。
更に本発明は、装置を小型化して、直流電源として内部電源を使用した構成を採用することにより、好きな時に好きな場所で簡易に水素水を製造できる携帯可能な水素水製造装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and provides a compact hydrogen water production apparatus that can generate hydrogen with high generation efficiency even if the apparatus is downsized and is suitable for home use. With the goal.
Furthermore, the present invention provides a portable hydrogen water production apparatus that can easily produce hydrogen water at any time and at any place by adopting a configuration in which the apparatus is miniaturized and an internal power source is used as a DC power source. For the purpose.

前記目的を達成するために、本発明に係る水素水製造装置は、水素水を製造する水素水製造装置において、陽極と陰極とを構成する複数本の酸化チタン電極と、前記複数本の酸化チタン電極に電圧を印加する直流電源と、前記複数本の酸化チタン電極に紫外線を照射する紫外線導光路を有する紫外線照射手段と、前記複数本の酸化チタン電極の極性を切替え制御する制御手段と、を備え、水素水を製造するための水に前記酸化チタン電極及び前記紫外線導光路を水没させて使用する。   In order to achieve the above object, a hydrogen water production apparatus according to the present invention includes a plurality of titanium oxide electrodes constituting an anode and a cathode, and the plurality of titanium oxides in a hydrogen water production apparatus for producing hydrogen water. A direct current power source for applying a voltage to the electrodes, an ultraviolet irradiation means having an ultraviolet light guide for irradiating the plurality of titanium oxide electrodes with ultraviolet light, and a control means for switching and controlling the polarity of the plurality of titanium oxide electrodes. The titanium oxide electrode and the ultraviolet light guide are submerged in water for producing hydrogen water.

本発明の水素水製造装置によれば、水中に複数本(例えば2本)の酸化チタン電極を水没させた状態で直流電源から電圧を印加すると、水の電気分解により、陽極の酸化チタン電極からは酸素が発生し、陰極の酸化チタン電極からは水素が発生する。   According to the hydrogen water production apparatus of the present invention, when a voltage is applied from a DC power source in a state where a plurality of (for example, two) titanium oxide electrodes are submerged in water, electrolysis of the water causes the titanium oxide electrode of the anode to Generates oxygen and generates hydrogen from the titanium oxide electrode of the cathode.

更に、紫外線導光路から酸化チタン電極に紫外線を照射することにより、水の光分解により酸素と水素が発生する。   Further, by irradiating the titanium oxide electrode with ultraviolet rays from the ultraviolet light guide, oxygen and hydrogen are generated by photolysis of water.

また、酸化チタン電極に紫外線を照射することにより、電極表面の親水性が大きくなるので、発生した水素や酸素が電極から離れ易くなる。   Moreover, since the hydrophilicity of the electrode surface is increased by irradiating the titanium oxide electrode with ultraviolet rays, the generated hydrogen and oxygen are easily separated from the electrode.

また、酸化チタン電極に紫外線を照射すると電極表面の親水性の増加と、有機物の分解効果により電極の自浄作用が生じるので、電極の汚れを防止することができる。   In addition, when the titanium oxide electrode is irradiated with ultraviolet rays, the electrode is self-cleaning due to the increase in hydrophilicity of the electrode surface and the decomposition effect of the organic matter, so that the contamination of the electrode can be prevented.

また、酸化チタン電極の極性を切り替えることにより、水中のミネラル成分が電極に付着して電解性能の低下させることを防止できる。   In addition, by switching the polarity of the titanium oxide electrode, it is possible to prevent mineral components in water from adhering to the electrode and degrading the electrolysis performance.

これらの特徴により、本発明に係る水素水製造装置は、電気分解のみの場合に比べて水素発生効率を高くすることができる。したがって、装置を小型化しても高い発生効率で水素を発生させることができるので、家庭用向けに好適なコンパクトな水素水製造装置を提供することができる。   With these features, the hydrogen water production apparatus according to the present invention can increase the hydrogen generation efficiency as compared with the case of only electrolysis. Therefore, since hydrogen can be generated with high generation efficiency even if the apparatus is downsized, a compact hydrogen water production apparatus suitable for home use can be provided.

本発明の水素水製造装置は、上述のように小型化が可能となったことにより、直流電源として内部電源(電池、バッテリー)を使用すれば、屋内だけでなく、携帯して屋外でも使用することができる。したがって、本発明の水素水製造装置は、好きな時に好きな場所で簡易に水素水を製造することができる。   Since the hydrogen water production apparatus of the present invention can be miniaturized as described above, if an internal power source (battery, battery) is used as a DC power source, it can be carried not only indoors but also outdoors. be able to. Therefore, the hydrogen water production apparatus of the present invention can easily produce hydrogen water at a favorite place at any time.

本発明の水素水製造装置は、前記酸化チタン電極の表面はポーラス状に形成されることが好ましい。これにより、電極の表面積が大きくなるので、電気分解や光分解による水素発生効率を一層向上できる。   In the hydrogen water production apparatus of the present invention, the surface of the titanium oxide electrode is preferably formed in a porous shape. Thereby, since the surface area of an electrode becomes large, the hydrogen generation efficiency by electrolysis or photolysis can be improved further.

本発明の水素水製造装置は、2本の平行な酸化チタン電極が、U字形状の紫外線導光路を挟んで対向配置されることが好ましい。これにより、2本の酸化チタン電極に対して紫外線を均等に照射することができる。   In the hydrogen water production apparatus of the present invention, it is preferable that two parallel titanium oxide electrodes are arranged opposite to each other with a U-shaped ultraviolet light guide interposed therebetween. Thereby, an ultraviolet-ray can be uniformly irradiated with respect to two titanium oxide electrodes.

本発明の水素水製造装置は、3本の平行な酸化チタン電極が、断面視において正三角形の頂点位置に配置され、紫外線導光路が断面視において前記正三角形の外心位置及び前記正三角形の3辺の垂直2等分線上にそれぞれ配置されるとともに、それぞれの紫外線導光路は一本に連通されていることが好ましい。これにより、3本の酸化チタン電極に対して紫外線を均等に照射することができる。   In the hydrogen water production apparatus of the present invention, three parallel titanium oxide electrodes are arranged at the apex position of an equilateral triangle in a cross-sectional view, and the ultraviolet light guide path has an outer center position of the equilateral triangle and the equilateral triangle in the cross-sectional view. It is preferable that the ultraviolet light guides are arranged on three perpendicular bisectors on each of the three sides, and the respective ultraviolet light guides are connected to one line. Thereby, an ultraviolet-ray can be uniformly irradiated with respect to three titanium oxide electrodes.

本発明の水素水製造装置は、前記直流電源、前記紫外線照射手段の発光源、前記制御手段を収納する本体ケーシングと、前記複数本の酸化チタン電極及び前記紫外線導光路を収納するキャップと、により万年筆形状に形成されることが好ましい。
このように万年筆形状に形成すれば、携帯しても邪魔にならないばかりか、外見上、水素水製造装置とは分からないので、見栄えがよい。
The hydrogen water production apparatus of the present invention includes the DC power source, the light emission source of the ultraviolet irradiation means, a main body casing that houses the control means, and a cap that houses the plurality of titanium oxide electrodes and the ultraviolet light guide. It is preferably formed into a fountain pen shape.
If it is formed in the shape of a fountain pen in this way, it does not get in the way even if it is carried, and it does not seem to be a hydrogen water production device in appearance, so it looks good.

本発明の水素水製造装置は前記本体ケーシングには、前記ボトル口のキャップネジに螺合してボトル口を封止する蓋部材が設けられていることが好ましい。   In the hydrogen water production apparatus of the present invention, it is preferable that the main body casing is provided with a lid member that is screwed into a cap screw of the bottle mouth to seal the bottle mouth.

これは水ボトルの水で水素水を製造する場合であり、酸化チタン電極と紫外線導光路をボトル水中に挿入した状態でボトル口に蓋部材を螺合することによって、本体ケーシングを水ボトルにしかりと固定することができる。   In this case, hydrogen water is produced using water from a water bottle, and the body casing is attached to the water bottle by screwing the lid member into the bottle mouth with the titanium oxide electrode and the ultraviolet light guide inserted in the bottle water. And can be fixed.

本発明の水素水製造装置は、前記本体ケーシングには、コップ部材の上端に嵌入するクリップ部材が設けられていることが好ましい。   In the hydrogen water production apparatus of the present invention, it is preferable that the main body casing is provided with a clip member that fits into the upper end of the cup member.

これはコップ部材に水を入れて水素水を製造する場合であり、酸化チタン電極と紫外線導光路をコップ部材の水中に挿入した状態で、コップ部材の上端にクリップ部材を嵌入することによって、本体ケーシングをコップ部材にしっかりと固定することができる。
なお、本体ケーシングは、蓋部材とクリップとの両方を備えていることが一層好ましい。
また、本発明の酸化チタン電極は、上記水素水製造装置で使用される電極であることを特徴としている。
更に、本発明の酸化チタン電極は、Ti(チタン)、TiO(酸化チタン)、Ni(ニッケル)、Fe(鉄)、Cr(クロム)、Pt(白金)、Co(コバルト)、Rh(ロジウム)の粉末を用いて粉末冶金により形成し、焼結後のTiOの比率が全体の3〜5質量%であることを特徴としている。
This is a case where hydrogen water is produced by putting water into a cup member. With the titanium oxide electrode and the ultraviolet light guide inserted in the water of the cup member, the clip member is fitted into the upper end of the cup member, The casing can be firmly fixed to the cup member.
In addition, it is more preferable that the main body casing includes both a lid member and a clip.
In addition, the titanium oxide electrode of the present invention is an electrode used in the hydrogen water production apparatus.
Furthermore, the titanium oxide electrode of the present invention is composed of Ti (titanium), TiO 2 (titanium oxide), Ni (nickel), Fe (iron), Cr (chromium), Pt (platinum), Co (cobalt), Rh (rhodium). ), And the ratio of TiO 2 after sintering is 3 to 5% by mass.

本発明の水素水製造装置によれば、装置を小型化しても高い発生効率で水素を発生させることができるので、家庭用向けに好適なコンパクトな水素水製造装置を提供することができる。また、装置の小型化が可能となったので、直流電源として内部電源を使用した構成を採用することにより、好きな時に好きな場所で簡易に水素水を製造できる携帯可能な水素水製造装置を提供することができる。   According to the hydrogen water production apparatus of the present invention, hydrogen can be generated with high generation efficiency even if the apparatus is miniaturized. Therefore, a compact hydrogen water production apparatus suitable for home use can be provided. In addition, since the device can be downsized, a portable hydrogen water production device that can easily produce hydrogen water at any time and place by adopting a configuration using an internal power source as a DC power source. Can be provided.

本発明の実施の形態の水素水製造装置の分解斜視図1 is an exploded perspective view of a hydrogen water production apparatus according to an embodiment of the present invention. 本体ケーシング及びキャップを取り付ける前まで水素水製造装置を組み立てた斜視図The perspective view which assembled the hydrogen water production device before attaching a main part casing and a cap 本体ケーシング及びキャップを取り付けて水素水製造装置の組み立てを完成した後の外観図External view after the assembly of the hydrogen water production device is completed by attaching the main casing and cap 2本の酸化チタン電極と紫外線導光路との好ましい配置関係を示す2−2線に沿った断面図Sectional drawing along the 2-2 line which shows the preferable arrangement | positioning relationship between two titanium oxide electrodes and an ultraviolet light guide 3本の酸化チタン電極と紫外線導光路との好ましい配置関係を示す断面図Sectional drawing which shows the preferable arrangement | positioning relationship between three titanium oxide electrodes and an ultraviolet light guide 水素水製造装置を飲料水の入ったボトルにセットした図Diagram of hydrogen water production device set in a bottle containing drinking water 水素水製造装置を飲料水の入ったコップにセットした図Diagram of hydrogen water production device set in a cup containing drinking water

以下添付図面に従って、本発明に係る水素水製造装置の好ましい実施の形態について詳述する。
図1は、本発明の実施の形態の水素水製造装置10の分解斜視図であり、図2は、本体ケーシング12及びキャップ14を取り付ける前まで組み立てた斜視図である。また、図3は、本体ケーシング12及びキャップ14を取り付けて組み立てを完成した後の外観図である。
なお、以下に説明する水素水製造装置10では、2本の酸化チタン電極16,16を備え、直流電源として乾電池18を用いた携帯可能な装置の例で説明する。
Hereinafter, preferred embodiments of a hydrogen water production apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is an exploded perspective view of a hydrogen water production apparatus 10 according to an embodiment of the present invention, and FIG. 2 is a perspective view assembled until a main body casing 12 and a cap 14 are attached. FIG. 3 is an external view after the assembly is completed by attaching the main body casing 12 and the cap 14.
In the hydrogen water production apparatus 10 described below, an example of a portable apparatus that includes two titanium oxide electrodes 16 and 16 and uses a dry battery 18 as a DC power source will be described.

図1〜図3に示すように、水素水製造装置10は、主として、陽極と陰極とを構成する2本の酸化チタン電極16,16と、2本の酸化チタン電極16,16に電圧を印加する乾電池18と、2本の酸化チタン電極16,16に紫外線を照射する紫外線導光路20Aを有する紫外線照射手段20と、2本の酸化チタン電極16,16の極性を切替え制御する制御手段22と、電源スイッチ24と、からなる各部材で構成される。これらの部材16〜24及び電気基板28を備えた乾電池ホルダー30はホルダー部材26に支持されており、本体ケーシング12及びキャップ14に外装されて万年筆形状の外観に形成される。   As shown in FIGS. 1 to 3, the hydrogen water production apparatus 10 mainly applies a voltage to the two titanium oxide electrodes 16, 16 constituting the anode and the cathode, and the two titanium oxide electrodes 16, 16. A dry battery 18 to be applied, an ultraviolet irradiation means 20 having an ultraviolet light guide 20A for irradiating the two titanium oxide electrodes 16 and 16 with ultraviolet light, and a control means 22 for switching and controlling the polarities of the two titanium oxide electrodes 16 and 16. , And a power switch 24. The dry battery holder 30 provided with these members 16 to 24 and the electric substrate 28 is supported by the holder member 26 and is externally mounted on the main body casing 12 and the cap 14 so as to have a fountain pen-like appearance.

酸化チタン電極16は、長尺な棒状に形成される。酸化チタン電極16は、例えば、Ti(チタン)、TiO(酸化チタン)、Ni(ニッケル)、Fe(鉄)、Cr(クロム)、Pt(白金)、Co(コバルト)、Rh(ロジウム)の粉末を用いて粉末冶金により形成することもできるし、ステンレス棒で形成した電極芯材の周りに、Ti(チタン)とTiO(酸化チタン)とを粉末冶金により形成することもできる。粉末冶金で行った焼結後の各金属の質量比は、TiOの比率が全体の3〜5質量%であることが好ましい。これにより、後述する各種TiOに基づく効果が十分発揮される。また、Pt(白金)、Rh(ロジウム)等の白金族元素やCo(コバルト)を含むことにより、水の分解を促進させることができるので好ましい。 The titanium oxide electrode 16 is formed in a long rod shape. The titanium oxide electrode 16 is made of, for example, Ti (titanium), TiO 2 (titanium oxide), Ni (nickel), Fe (iron), Cr (chromium), Pt (platinum), Co (cobalt), or Rh (rhodium). It can also be formed by powder metallurgy using powder, and Ti (titanium) and TiO 2 (titanium oxide) can be formed by powder metallurgy around an electrode core formed of a stainless steel rod. As for the mass ratio of each metal after sintering performed by powder metallurgy, the ratio of TiO 2 is preferably 3 to 5 mass% of the whole. Thus, the effect based on various TiO 2 to be described later is sufficiently exhibited. In addition, it is preferable to include platinum group elements such as Pt (platinum) and Rh (rhodium) and Co (cobalt) because the decomposition of water can be promoted.

また、TiとTiOの比率を粉末冶金により形成された部分で見た場合、Ti濃度が5〜7質量%、TiO濃度が3〜5質量%となるように含有させることが好ましい。このように酸化チタン電極16の表面をポーラスな焼結金属層で形成することにより、電極表面積を大きくでき電気分解する水との接触面積を増大できる。また、電極表面に存在する酸化チタン量を多くできる。これにより、水の電気分解効率及び水の光分解効率を向上できる。
乾電池18は、特に限定されないが、カメラ用の12V電池を好適に使用することができる。
Further, when viewed in Ti and portions the ratio of TiO 2 was formed by powder metallurgy, Ti concentration 5-7% by weight, it is preferably contained as TiO 2 concentration of 3 to 5 wt%. Thus, by forming the surface of the titanium oxide electrode 16 with a porous sintered metal layer, the surface area of the electrode can be increased and the contact area with water to be electrolyzed can be increased. In addition, the amount of titanium oxide present on the electrode surface can be increased. Thereby, the electrolysis efficiency of water and the photolysis efficiency of water can be improved.
The dry battery 18 is not particularly limited, but a 12V battery for a camera can be preferably used.

紫外線照射手段20は、紫外線を発光する発光源20Bと紫外線導光路20Aとで構成され、発光源20BとしてはUV−LED(紫外線LED)を好適に使用することができる。紫外線導光路20AはU字形状の棒状体を好適に使用でき、紫外線が透過可能な樹脂製やガラス製の棒状体やチューブ等も使用することができる。紫外線導光路20Aの先端部(U字部分)には、紫外線導光路の捩れを防止する捩れ防止板20Dが設けられる。   The ultraviolet irradiation means 20 includes a light emission source 20B that emits ultraviolet light and an ultraviolet light guide 20A, and a UV-LED (ultraviolet LED) can be suitably used as the light emission source 20B. As the ultraviolet light guide path 20A, a U-shaped rod-shaped body can be suitably used, and a resin-made or glass-made rod-shaped body or tube capable of transmitting ultraviolet rays can also be used. A twist preventing plate 20D for preventing twisting of the ultraviolet light guide is provided at the tip (U-shaped portion) of the ultraviolet light guide 20A.

また、紫外線の発光を目視で確認できるように、例えばパイロットLEDとして可視光LEDを使用し、発光源20Bから紫外線が出射されたときに、同時に紫外線導光路20Aが可視光LED20Cにより照明されるようにすることが好ましい。発光源20Bから出射する紫外線の波長領域は10〜400nmの範囲なので、可視光LED20Cの発光色は使用者が紫外線の出射をイメージし易い400nm付近の青色の波長がより好ましい。
また、可視光LED20Cを多色発光可能なLEDとすることにより、例えば、通常の動作状態を青色、電池の残量が不足している状態をオレンジ色、過電流などにより酸化チタン電極への電流ストップ状態を赤色とすることなど、本装置の動作状態を可視光LED20Cの発光色により細かく表示できるので、さらにより好ましい。
図4は、2本の酸化チタン電極16,16とU字状の紫外線導光路20Aとの配置関係を示したものであり、図2の2−2線に沿った断面図である。図4に示すように、2本の平行な酸化チタン電極16,16が、U字形状の紫外線導光路20Aを挟んで対向配置されることが好ましい。これにより、紫外線導光路20Aから2本の酸化チタン電極16,16に紫外線を均等に照射することができる。
Further, for example, a visible light LED is used as the pilot LED so that the ultraviolet light emission can be visually confirmed. When the ultraviolet light is emitted from the light emission source 20B, the ultraviolet light guide 20A is simultaneously illuminated by the visible light LED 20C. It is preferable to make it. Since the wavelength region of the ultraviolet light emitted from the light emission source 20B is in the range of 10 to 400 nm, the light emission color of the visible light LED 20C is more preferably a blue wavelength around 400 nm where the user can easily imagine the emission of ultraviolet light.
Further, by making the visible light LED 20C an LED capable of emitting multiple colors, for example, the normal operating state is blue, the state where the battery is insufficient is orange, the current to the titanium oxide electrode due to overcurrent, etc. It is even more preferable because the operating state of the present apparatus can be finely displayed by the emission color of the visible light LED 20C, such as setting the stop state to red.
FIG. 4 shows the positional relationship between the two titanium oxide electrodes 16 and 16 and the U-shaped ultraviolet light guide 20A, and is a cross-sectional view taken along line 2-2 of FIG. As shown in FIG. 4, it is preferable that two parallel titanium oxide electrodes 16, 16 are opposed to each other with a U-shaped ultraviolet light guide 20 </ b> A interposed therebetween. Thereby, it is possible to irradiate the two titanium oxide electrodes 16, 16 uniformly from the ultraviolet light guide 20 </ b> A.

なお、本実施の形態では、2本の酸化チタン電極16,16で説明しているが、酸化チタン電極16を3本にした場合には、紫外線導光路20Aとの関係を図5の断面図に示すように配置することが好ましい。即ち、図5に示すように、3本の平行な酸化チタン電極16,16…が正三角形の頂点位置に配置され、正三角形の外心位置及び3つの三角辺のそれぞれの垂直2等分線上の位置に紫外線導光路20Aがそれぞれ配置されるとともに、それぞれの紫外線導光路は一本に連通されていることが好ましい。   In the present embodiment, two titanium oxide electrodes 16 and 16 are described. However, when the number of titanium oxide electrodes 16 is three, the relationship with the ultraviolet light guide 20A is shown in the sectional view of FIG. It is preferable to arrange as shown in FIG. That is, as shown in FIG. 5, three parallel titanium oxide electrodes 16, 16... Are arranged at the apex position of the equilateral triangle, and on the perpendicular bisector of each of the equilateral position of the equilateral triangle and the three triangle sides. It is preferable that each of the ultraviolet light guides 20A is disposed at the position, and each of the ultraviolet light guides is connected to one.

もちろんこの配置は、正確にこの位置に配置されることが好ましいが、厳密にこの位置で無ければならないわけではなく、この位置近傍に配置されれば良い。この位置近傍に配置されることにより、3本の酸化チタン電極16,16…の表面の多くの面積に効率的に紫外線を照射することができる。この場合、紫外線導光路の断面の配置形状は図5に示すように、中心の紫外線導光路の回りに120度の角度間隔で残りの3つの紫外線導光路が配置される。これにより、3本の酸化チタン電極16,16…に均等に紫外線を照射することができる。   Of course, it is preferable that this arrangement be precisely located at this position, but it does not have to be strictly at this position, and it may be arranged in the vicinity of this position. By disposing in the vicinity of this position, it is possible to efficiently irradiate ultraviolet rays onto many areas of the surfaces of the three titanium oxide electrodes 16, 16. In this case, as shown in FIG. 5, the remaining three ultraviolet light guides are arranged at an angular interval of 120 degrees around the central ultraviolet light guide as shown in FIG. Thereby, the three titanium oxide electrodes 16, 16... Can be evenly irradiated with ultraviolet rays.

制御手段22は、主として、2本の酸化チタン電極16,16の極性を切り替える切替え制御、切り替えタイミングの制御、水素水製造装置10の連続稼働時間の制御、過電流時の電流ストップ制御等を行うものであり、ICチップを好適に使用できる。このように、2本の酸化チタン電極16,16の極性を切り替えることによって、水の電気分解時に水中のミネラル成分が電極に付着して電解性能が低下するのを防止できる。極性の切り替えタイミングとしては、水のミネラル成分濃度に応じて異なるが、一般的に2秒〜15秒の間隔で切り替えることが好ましい。また、連続稼働時間の制御としては、例えば水素水製造装置10を30秒稼働したら、水素水製造装置10の電源が切れるようにすることができる。   The control means 22 mainly performs switching control for switching the polarities of the two titanium oxide electrodes 16, 16, switching timing control, continuous operation time control for the hydrogen water production apparatus 10, current stop control during overcurrent, and the like. IC chip can be preferably used. Thus, by switching the polarities of the two titanium oxide electrodes 16, 16, it is possible to prevent the mineral components in the water from adhering to the electrodes during the electrolysis of water and degrading the electrolysis performance. Although the polarity switching timing varies depending on the mineral component concentration of water, it is generally preferable to switch at intervals of 2 to 15 seconds. Moreover, as control of continuous operation time, if the hydrogen water manufacturing apparatus 10 is operated for 30 seconds, for example, the power supply of the hydrogen water manufacturing apparatus 10 can be turned off.

電源スイッチ24は、電源をON−OFFするスイッチであり、例えば押しボタン式のものを好適に使用することができる。
ホルダー部材26は、例えば樹脂製の円柱棒を加工または射出成形(インジェクションモールド)することにより形成することができる。ホルダー部材26の一端側(電源スイッチ24を支持する側)が円筒状に形成されるとともに他端側(酸化チタン電極16や紫外線導光路20Aを支持する側)が円柱状に形成される。また、ホルダー部材26の中央部が半円筒状に形成される。そして、ホルダー部材26の一端側の円筒状空間に電源スイッチ24が組み付けられる。また、ホルダー部材26の他端側の円柱状部分には、軸芯方向に4つの貫通孔が穿設されており、4つの貫通孔のうち2つの貫通孔にそれぞれ棒状の酸化チタン電極16の基端部が挿入される。また、残りの2つの貫通孔には、U字状の紫外線導光路20Aの両端部が挿入される。ホルダー部材26の中央部に形成された半円筒状空間には、電気基板28を備えた乾電池ホルダー30が組み付けられ、乾電池ホルダー30に乾電池18が着脱自在にセットされる。
The power switch 24 is a switch for turning on and off the power supply, and for example, a push button type can be suitably used.
The holder member 26 can be formed, for example, by processing or injection molding (injection molding) a resin cylindrical rod. One end side (side that supports the power switch 24) of the holder member 26 is formed in a cylindrical shape, and the other end side (side that supports the titanium oxide electrode 16 and the ultraviolet light guide 20A) is formed in a cylindrical shape. Further, the center portion of the holder member 26 is formed in a semi-cylindrical shape. Then, the power switch 24 is assembled in the cylindrical space on one end side of the holder member 26. The cylindrical portion on the other end side of the holder member 26 is provided with four through holes in the axial direction. The rod-shaped titanium oxide electrode 16 is formed in each of the two through holes. The proximal end is inserted. In addition, both ends of the U-shaped ultraviolet light guide 20A are inserted into the remaining two through holes. In a semi-cylindrical space formed at the center of the holder member 26, a dry battery holder 30 provided with an electric substrate 28 is assembled, and the dry battery 18 is detachably set in the dry battery holder 30.

電気基板28の裏面側(ホルダー部材26の他端側)には、2本の酸化チタン電極16,16の基端部にそれぞれ接触する2個の電気端子32、32が設けられる。更に、電気基板28の裏面側にはUV−LED20B及び可視光LED20Cが設けられ、紫外線導光路20Aの両端部にそれぞれ接続される。一方、電気基板28の表面側には、制御手段22(ICチップ)が設けられる。   On the back side of the electric substrate 28 (the other end side of the holder member 26), two electric terminals 32 and 32 that are in contact with the base end portions of the two titanium oxide electrodes 16 and 16 are provided. Further, a UV-LED 20B and a visible light LED 20C are provided on the back side of the electric substrate 28, and are connected to both ends of the ultraviolet light guide 20A. On the other hand, the control means 22 (IC chip) is provided on the surface side of the electric substrate 28.

そして、水素水製造装置10が水の電気分解と光分解とを行うための電気配線が、電源スイッチ24、乾電池ホルダー30、電気基板28(電気端子32、UV−LED20B、可視光LED20C、制御手段22を搭載)との間に施される。この場合、酸化チタン電極16間に金属物が接触して短絡(ショート)するなど、水素水製造装置10に過電流が流れた際には、可視光LED20Cが点滅し、過電流が更に大きくなったときには電源が切れるようにすることが好ましい。これにより、水素水製造装置10の電気故障を防止できる。   And the electrical wiring for the hydrogen water production apparatus 10 to perform the electrolysis and photolysis of water is the power switch 24, the dry battery holder 30, the electric board 28 (electric terminal 32, UV-LED 20B, visible light LED 20C, control means). 22). In this case, when an overcurrent flows through the hydrogen water production apparatus 10 such as when a metal object comes into contact with the titanium oxide electrode 16 to cause a short circuit (short circuit), the visible light LED 20C blinks and the overcurrent further increases. It is preferable to turn the power off when Thereby, the electrical failure of the hydrogen water manufacturing apparatus 10 can be prevented.

また、ホルダー部材26の他端側には、ホルダー部材26の径よりも大径なリング状の大径部26Aが形成されており、ホルダー部材26の一端側から円筒状の本体ケーシング12が嵌装され、大径部26Aに当接する。更に、ホルダー部材26の一端側外面には雌ネジが刻設されており、この雌ネジにリング状の止め部材34の内周面に形成された雄ネジが螺合される。これにより、電源スイッチ24、乾電池ホルダー30、電気基板28を支持するホルダー部材26が本体ケーシング12に収納されるとともに、止め部材34によって本体ケーシング12がホルダー部材26から抜けないようにできる。   Further, a ring-shaped large-diameter portion 26A having a diameter larger than the diameter of the holder member 26 is formed on the other end side of the holder member 26, and the cylindrical main body casing 12 is fitted from one end side of the holder member 26. And abuts against the large diameter portion 26A. Further, a female screw is engraved on the outer surface of the holder member 26 on one end side, and a male screw formed on the inner peripheral surface of the ring-shaped stopper member 34 is screwed into this female screw. Thereby, the power switch 24, the dry battery holder 30, and the holder member 26 that supports the electric substrate 28 are accommodated in the main body casing 12, and the main body casing 12 can be prevented from being detached from the holder member 26 by the stop member 34.

また、ホルダー部材26の他端側からキャップ14が嵌装され、ホルダー部材26の大径部26Aに当接する。これにより、2本の酸化チタン電極16,16及び紫外線導光路20Aがキャップ14に収納され、図3に示したように、外観が万年筆形状に形成された水素水製造装置10が形成される。なお、ホルダー部材26を透光性の素材で形成することにより、本装置動作中に可視光LED20Cから出射された光の一部がホルダー部材26内部で散乱することとなる。その一部は大径部26Aから外部に出射されるので、キャップ14を嵌めた後でも電源スイッチ24の切り忘れ等、動作状態の確認が行える。   Further, the cap 14 is fitted from the other end side of the holder member 26 and abuts on the large diameter portion 26 </ b> A of the holder member 26. As a result, the two titanium oxide electrodes 16 and 16 and the ultraviolet light guide 20A are accommodated in the cap 14, and as shown in FIG. 3, the hydrogen water production apparatus 10 having an outer appearance formed in a fountain pen shape is formed. By forming the holder member 26 from a light-transmitting material, part of the light emitted from the visible light LED 20C during the operation of the apparatus is scattered inside the holder member 26. A part of the light is emitted to the outside from the large-diameter portion 26A. Therefore, even after the cap 14 is fitted, the operation state such as forgetting to turn off the power switch 24 can be confirmed.

図6は、飲料水が入った市販の飲料水ボトル36を用いて、水素水製造装置10によって水素水を製造する図である。本発明の実施の形態の水素水製造装置10では、このように市販の飲料水ボトル36を用いる場合の利便性を図る為に、ボトル口36Aのキャップネジ36Bに螺合してボトル口36Aを封止する蓋部材38を更に備えていても良い。蓋部材38は、水素水製造装置10に対して脱着自在の別体として備えていても良いし、水素水製造装置10に固着されていても良い。   FIG. 6 is a diagram for producing hydrogen water by the hydrogen water production apparatus 10 using a commercially available drinking water bottle 36 containing drinking water. In the hydrogen water producing apparatus 10 according to the embodiment of the present invention, for convenience in using the commercially available drinking water bottle 36 as described above, the bottle mouth 36A is screwed into the cap screw 36B of the bottle mouth 36A. A lid member 38 for sealing may be further provided. The lid member 38 may be provided as a separate body that is detachable from the hydrogen water production apparatus 10 or may be fixed to the hydrogen water production apparatus 10.

蓋部材38は、その内周面にボトル口36Aのキャップねじ36Bに螺合可能なネジ38Bと、Oリング50を装着するためのリング状溝38Aが形成されている。これにより、蓋部材38を本体ケーシング12に装着したとき、蓋部材38は、Oリング50の摩擦力により本体ケーシング12の上の任意の位置で固定することができるとともに、キャップネジ36Bとネジ38Bとを螺合させて締めていったとき、Oリング50がボトル口36Aの先端に圧着され、飲料水ボトル36内の水が外部に漏れ出ることを防止することができる。   The lid member 38 is formed with a screw 38B that can be screwed into the cap screw 36B of the bottle mouth 36A and a ring-shaped groove 38A for mounting the O-ring 50 on the inner peripheral surface thereof. Thus, when the lid member 38 is mounted on the main body casing 12, the lid member 38 can be fixed at an arbitrary position on the main body casing 12 by the frictional force of the O-ring 50, and the cap screw 36B and the screw 38B. And the O-ring 50 is pressure-bonded to the tip of the bottle mouth 36A, and the water in the drinking water bottle 36 can be prevented from leaking outside.

これにより、2本の酸化チタン電極16,16と紫外線導光路20Aを飲料水ボトル36の飲料水中に真っ直ぐに挿入した状態で本体ケーシング12を飲料水ボトル36にしっかりと固定することができる。   Thereby, the main body casing 12 can be firmly fixed to the drinking water bottle 36 with the two titanium oxide electrodes 16 and 16 and the ultraviolet light guide 20 </ b> A inserted straight into the drinking water of the drinking water bottle 36.

図7は、飲料水が入ったコップ40を用いて、水素水製造装置10によって水素水を製造する図である。本発明の実施の形態の水素水製造装置10では、このようにコップ40を用いる場合の利便性を図る為に、蓋部材38にコップ40の上端に嵌入するクリップ部材42を設けることが好ましい。これにより、2本の酸化チタン電極16,16と紫外線導光路20Aをコップ40の飲料水中に挿入した状態で、コップ40の上端にクリップ部材42を嵌入することによって、本体ケーシング12をコップ40にしっかりと固定することができる。
また、図6及び図7のように、本体ケーシング12には、蓋部材38とクリップ部材42との両方を備えていることが一層好ましい。
FIG. 7 is a diagram for producing hydrogen water by the hydrogen water production apparatus 10 using a cup 40 containing drinking water. In the hydrogen water producing apparatus 10 according to the embodiment of the present invention, it is preferable to provide the lid member 38 with a clip member 42 that fits into the upper end of the cup 40 in order to improve the convenience when the cup 40 is used. Thereby, the main body casing 12 is inserted into the cup 40 by inserting the clip member 42 into the upper end of the cup 40 in a state where the two titanium oxide electrodes 16 and 16 and the ultraviolet light guide 20A are inserted into the drinking water of the cup 40. Can be fixed firmly.
Further, as shown in FIGS. 6 and 7, the main body casing 12 is more preferably provided with both the lid member 38 and the clip member 42.

次に上記の如く構成された水素水製造装置10を用いて、飲料水から水素水を製造する方法を説明する。説明は、図6の市販の飲料水ボトル36の例で説明する。
なお、本発明の水素水製造装置10で製造された水素水には、水素以外に酸素も含まれているが、酸素が溶存した水を飲んでも健康上問題はない。
Next, a method for producing hydrogen water from drinking water using the hydrogen water production apparatus 10 configured as described above will be described. The description will be given with an example of a commercially available drinking water bottle 36 in FIG.
The hydrogen water produced by the hydrogen water production apparatus 10 of the present invention contains oxygen in addition to hydrogen, but there is no health problem even if drinking water in which oxygen is dissolved.

先ず、市販の飲料水ボトル36のキャップ(図示せず)を外して、水素水製造装置10の2本の酸化チタン電極16,16と紫外線導光路20Aを、ボトル口36Aからボトル内に挿入し、本体ケーシング12の蓋部材38をボトルのボトル口36Aに螺合する。これにより、図6のように、飲料水中に2本の酸化チタン電極16,16と紫外線導光路20Aとを水没させた状態で水素水製造装置10が飲料水ボトル36に固定される。   First, the cap (not shown) of the commercially available drinking water bottle 36 is removed, and the two titanium oxide electrodes 16 and 16 and the ultraviolet light guide 20A of the hydrogen water production apparatus 10 are inserted into the bottle through the bottle mouth 36A. The lid member 38 of the main body casing 12 is screwed into the bottle opening 36A of the bottle. Thereby, as shown in FIG. 6, the hydrogen water producing apparatus 10 is fixed to the drinking water bottle 36 in a state where the two titanium oxide electrodes 16 and 16 and the ultraviolet light guide 20 </ b> A are submerged in the drinking water.

次に、水素水製造装置10の電源スイッチ24を押して電源をONにし、2本の酸化チタン電極16,16に電圧を印加するとともに、紫外線導光路20Aから2本の酸化チタン電極16,16に紫外線を照射する。また、制御手段22は、2本の酸化チタン電極16,16の極性を2秒〜15秒間隔で切り替える。   Next, the power switch 24 of the hydrogen water production apparatus 10 is pressed to turn on the power, and a voltage is applied to the two titanium oxide electrodes 16, 16, and the two titanium oxide electrodes 16, 16 are applied from the ultraviolet light guide 20 A. Irradiate ultraviolet rays. Moreover, the control means 22 switches the polarity of the two titanium oxide electrodes 16 and 16 at intervals of 2 seconds to 15 seconds.

これにより、水の電気分解により、陽極の酸化チタン電極16からは酸素が発生し、陰極の酸化チタン電極16からは水素が発生する。更に、紫外線導光路20Aから2本の酸化チタン電極16,16に紫外線を照射することにより、水の光分解により酸素と水素が発生する(本多-藤嶋効果)とともにマイナスイオンが発生する。   Thus, oxygen is generated from the anode titanium oxide electrode 16 and hydrogen is generated from the cathode titanium oxide electrode 16 by electrolysis of water. Furthermore, by irradiating the two titanium oxide electrodes 16 and 16 with ultraviolet rays from the ultraviolet light guide 20A, oxygen and hydrogen are generated by photolysis of water (Honda-Fujishima effect) and negative ions are generated.

したがって、本発明に係る水素水製造装置10は、以下述べるように、従来の電気分解のみで水素水を製造する場合に比べて水素発生効率を高くすることができる。
(1)電気分解による水素発生と光分解による水素発生の両方を並行して行うので、電気分解のみの場合に比べて水素発生効率が高い。
Therefore, as described below, the hydrogen water production apparatus 10 according to the present invention can increase the hydrogen generation efficiency as compared with the case where hydrogen water is produced only by conventional electrolysis.
(1) Since both hydrogen generation by electrolysis and hydrogen generation by photolysis are performed in parallel, the hydrogen generation efficiency is higher than in the case of only electrolysis.

(2)酸化チタン電極16に紫外線を照射することにより、電極表面の親水性が大きくなるので、発生した水素や酸素が電極から離れ易くなる。これにより、電極に酸素や水素の気泡が付着することによる電解性能の低下を防止するので、水素発生効率が一層大きくなる。そして、発生した水素や酸素が2本の酸化チタン電極16,16から離れ易くなることにより、小さな気泡の水素を形成し易くなるので、水素が水中に溶存し易くなる。   (2) By irradiating the titanium oxide electrode 16 with ultraviolet rays, the hydrophilicity of the electrode surface is increased, so that generated hydrogen and oxygen are easily separated from the electrode. This prevents a reduction in electrolysis performance due to oxygen or hydrogen bubbles adhering to the electrode, thereby further increasing hydrogen generation efficiency. Then, since the generated hydrogen and oxygen are easily separated from the two titanium oxide electrodes 16, 16, it is easy to form small bubble hydrogen, so that hydrogen is easily dissolved in water.

(3)2本の酸化チタン電極16に紫外線を照射すると電極表面の親水性が大きくなるので、電極表面の汚れの下から水が濡れてゆくことにより汚れを剥がすとともに、電極表面についた有機物などの汚れを分解する自浄効果を発揮することができる。これにより、電極表面を正常に保つことができるので、水素発生効率を高い状態で維持することができる。   (3) When the two titanium oxide electrodes 16 are irradiated with ultraviolet rays, the hydrophilicity of the electrode surface increases, so that the water gets wet from under the dirt on the electrode surface and the dirt is removed, and organic substances attached to the electrode surface, etc. The self-cleaning effect that decomposes dirt can be demonstrated. Thereby, since the electrode surface can be kept normal, hydrogen generation efficiency can be maintained in a high state.

(4)2本の酸化チタン電極16,16の極性を切り替えることにより、水中のミネラル成分が2本の酸化チタン電極16,16に付着して電解性能の低下させることを防止できる。
(5)また、紫外線照射による副次的な効果として、水の殺菌も合わせて行うことができる。
(4) By switching the polarities of the two titanium oxide electrodes 16, 16, it is possible to prevent mineral components in water from adhering to the two titanium oxide electrodes 16, 16 and reducing the electrolytic performance.
(5) Further, as a secondary effect of ultraviolet irradiation, water can be sterilized.

このように、電気分解による水素発生に光分解による水素発生を併用するとともに、電極の極性を所定間隔で切り替えるようにしたので、電気分解による水素発生効率を相乗的に高めることができる。したがって、装置を小型化しても高い発生効率で水素を発生させることができるので、上記したように、家庭用向けに好適な小型の水素水製造装置10を提供することができる。   Thus, hydrogen generation by photolysis is used in combination with hydrogen generation by electrolysis, and the polarity of the electrodes is switched at predetermined intervals, so that the efficiency of hydrogen generation by electrolysis can be synergistically increased. Accordingly, even if the apparatus is downsized, hydrogen can be generated with high generation efficiency. As described above, the small-sized hydrogen water production apparatus 10 suitable for home use can be provided.

本実施の形態で説明した上記構成の水素水製造装置を実際に試作した結果、長さが約18cm、直径が約2cmと、極めて小型化することができた。また、試作品で水素水を製造した結果、市販されている水素水の水素濃度である0.2〜1.2ppmにすることができた。   As a result of actually making a prototype of the hydrogen water production apparatus having the above-described configuration described in this embodiment, the length was about 18 cm and the diameter was about 2 cm. Moreover, as a result of manufacturing hydrogen water with a prototype, it was able to be 0.2-1.2 ppm which is the hydrogen concentration of commercially available hydrogen water.

更には、装置の小型化が可能となったので、直流電源として内部電源(乾電池、バッテリー)を使用した構成を採用することができる。これにより、好きな時に好きな場所で簡易に水素水を製造できる携帯可能な水素水製造装置10を提供することができる。   Furthermore, since the apparatus can be downsized, a configuration using an internal power source (dry battery, battery) as a DC power source can be employed. Thereby, the portable hydrogen water manufacturing apparatus 10 which can manufacture hydrogen water easily at a favorite place at any time can be provided.

なお、以上説明した本発明の水素水製造装置10の実施の形態では、2本の酸化チタン電極16,16を備え、直流電源として乾電池18を用いた携帯可能な装置の例で説明したが、これに限定されるものではない。例えば、3本以上の酸化チタン電極16,16…を用いても良く、乾電池18の代わりに、AC電源をDC電源に変換する変換装置(図示せず)及び電圧可変装置(図示せず)を備えた電源装置(図示せず)を用いて家庭のコンセントから電源を供給しても良い。   In the embodiment of the hydrogen water production apparatus 10 of the present invention described above, the example of a portable apparatus including two titanium oxide electrodes 16 and 16 and using a dry battery 18 as a DC power source has been described. It is not limited to this. For example, three or more titanium oxide electrodes 16, 16... May be used, and instead of the dry battery 18, a converter (not shown) for converting AC power into DC power and a voltage variable device (not shown) are used. You may supply a power supply from a household outlet using the power supply device (not shown) provided.

3本以上の酸化チタン電極16,16…を用いる場合には、陰極の本数を陽極の本数よりも多くして、水素が発生する陰極の表面積を大きくすることが好ましい。   When three or more titanium oxide electrodes 16, 16,... Are used, it is preferable to increase the surface area of the cathode where hydrogen is generated by increasing the number of cathodes than the number of anodes.

10…水素水製造装置、12…本体ケーシング、14…キャップ、16…酸化チタン電極、18…乾電池、20…紫外線照射手段、20A…紫外線導光路、20B…紫外線の発光源、20C…青色LED、20D…捩れ防止板、22…制御手段、24…電源スイッチ、26…ホルダー部材、26A…大径部、28…電気基板、30…乾電池ホルダー、32…電気端子、34…止め部材、36…飲料水ボトル、36A…ボトル口、36B…キャップネジ、38…蓋部材、38A…リング状溝、38B…ネジ、40…コップ、42…クリップ部材、50…Oリング   DESCRIPTION OF SYMBOLS 10 ... Hydrogen water production apparatus, 12 ... Main body casing, 14 ... Cap, 16 ... Titanium oxide electrode, 18 ... Dry cell, 20 ... Ultraviolet irradiation means, 20A ... Ultraviolet light guide, 20B ... Ultraviolet light source, 20C ... Blue LED, 20D ... Anti-twisting plate, 22 ... Control means, 24 ... Power switch, 26 ... Holder member, 26A ... Large diameter part, 28 ... Electric substrate, 30 ... Dry cell holder, 32 ... Electric terminal, 34 ... Stopping member, 36 ... Beverage Water bottle, 36A ... Bottle mouth, 36B ... Cap screw, 38 ... Lid member, 38A ... Ring groove, 38B ... Screw, 40 ... Cup, 42 ... Clip member, 50 ... O-ring

Claims (8)

水素水を製造する水素水製造装置において、
陽極と陰極とを構成する複数本の酸化チタン電極と、
前記複数本の酸化チタン電極に電圧を印加する直流電源と、
前記複数本の酸化チタン電極に紫外線を照射する紫外線導光路を有する紫外線照射手段と、
前記複数本の酸化チタン電極の極性を切替え制御する制御手段と、
を備え、水素水を製造するための水に前記酸化チタン電極及び前記紫外線導光路を水没させて使用する水素水製造装置。
In a hydrogen water production apparatus for producing hydrogen water,
A plurality of titanium oxide electrodes constituting an anode and a cathode;
A DC power source for applying a voltage to the plurality of titanium oxide electrodes;
An ultraviolet irradiation means having an ultraviolet light guide for irradiating the plurality of titanium oxide electrodes with ultraviolet rays;
Control means for switching and controlling the polarity of the plurality of titanium oxide electrodes;
A hydrogen water production apparatus using the titanium oxide electrode and the ultraviolet light guide path in water for producing hydrogen water.
前記直流電源は、乾電池、バッテリー等の内部電源である請求項1に記載の水素水製造装置。   The hydrogen water production apparatus according to claim 1, wherein the DC power source is an internal power source such as a dry battery or a battery. 前記酸化チタン電極の表面はポーラス状に形成される請求項1又は2に記載の水素水製造装置。   The hydrogen water production apparatus according to claim 1, wherein a surface of the titanium oxide electrode is formed in a porous shape. 前記水素水製造装置は、2本の平行な酸化チタン電極が、U字形状の紫外線導光路を挟んで対向配置される請求項1〜3のいずれか1に記載の水素水製造装置。   The hydrogen water production apparatus according to any one of claims 1 to 3, wherein two parallel titanium oxide electrodes are disposed to face each other with a U-shaped ultraviolet light guide interposed therebetween. 前記水素水製造装置は、3本の平行な酸化チタン電極が、断面視において正三角形の頂点位置に配置され、紫外線導光路が断面視において前記正三角形の外心位置及び前記正三角形の3辺の垂直2等分線上にそれぞれ配置されるとともに、それぞれの紫外線導光路は一本に連通されている請求項1〜3のいずれか1に記載の水素水製造装置。   In the hydrogen water production apparatus, three parallel titanium oxide electrodes are arranged at the apex position of an equilateral triangle in a cross-sectional view, and the ultraviolet light guide path is an outer center position of the equilateral triangle and three sides of the equilateral triangle in the cross-sectional view. The hydrogen water producing apparatus according to any one of claims 1 to 3, wherein each of the ultraviolet light guides is arranged on a vertical bisector of the first and second ultraviolet light guides. 前記水素水製造装置は、
前記直流電源、前記紫外線照射手段の発光源、前記制御手段を収納する本体ケーシングと、
前記複数本の酸化チタン電極及び前記紫外線導光路を収納するキャップと、
により万年筆形状に形成される請求項2〜5の何れか1項に記載の水素水製造装置。
The hydrogen water production apparatus
A body casing that houses the DC power source, a light source of the ultraviolet irradiation means, and the control means;
A cap for housing the plurality of titanium oxide electrodes and the ultraviolet light guide;
The hydrogen water production apparatus according to any one of claims 2 to 5, wherein the hydrogen water production apparatus is formed into a fountain pen shape.
前記本体ケーシングには、前記ボトル口のキャップネジに螺合してボトル口を封止する蓋部材が設けられている請求項6に記載の水素水製造装置。   The hydrogen water production apparatus according to claim 6, wherein the main body casing is provided with a lid member that is screwed into a cap screw of the bottle mouth to seal the bottle mouth. 前記本体ケーシングには、コップ部材の上端に嵌入するクリップ部材が設けられている請求項6又は7に記載の水素水製造装置。   The apparatus for producing hydrogen water according to claim 6 or 7, wherein the main body casing is provided with a clip member that fits into an upper end of the cup member.
JP2013247418A 2013-11-29 2013-11-29 Hydrogen water production apparatus and electrode used therefor Expired - Fee Related JP5747390B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013247418A JP5747390B2 (en) 2013-11-29 2013-11-29 Hydrogen water production apparatus and electrode used therefor
PCT/JP2013/083203 WO2015079594A1 (en) 2013-11-29 2013-12-11 Hydrogen water production apparatus, and electrode for use in same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013247418A JP5747390B2 (en) 2013-11-29 2013-11-29 Hydrogen water production apparatus and electrode used therefor

Publications (2)

Publication Number Publication Date
JP2015104690A JP2015104690A (en) 2015-06-08
JP5747390B2 true JP5747390B2 (en) 2015-07-15

Family

ID=53198577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013247418A Expired - Fee Related JP5747390B2 (en) 2013-11-29 2013-11-29 Hydrogen water production apparatus and electrode used therefor

Country Status (2)

Country Link
JP (1) JP5747390B2 (en)
WO (1) WO2015079594A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200483412Y1 (en) * 2015-08-31 2017-05-24 선전아이피엠바이오테크놀리지컴퍼니리미티드 Hydrogen-rich Water Sticker

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088220A (en) * 2015-11-11 2017-05-25 パナソニックIpマネジメント株式会社 Lidded mag
JP6391659B2 (en) * 2016-12-26 2018-09-19 株式会社コスモスエンタープライズ Hydrogen water generator
JP7075465B2 (en) * 2020-10-26 2022-05-25 株式会社日本トリム Electrolyzed water generator and electrolyzed water generation method
WO2023100933A1 (en) * 2021-11-30 2023-06-08 王子ホールディングス株式会社 Portable water treatment device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193972A (en) * 1990-11-28 1992-07-14 Takao Miyanoo Electrode for electrolysis of titania semiconductor
JPH0623361A (en) * 1992-07-07 1994-02-01 Japan Carlit Co Ltd:The Ionized water producing device
KR200146979Y1 (en) * 1996-10-11 1999-06-15 양덕희 Apparatus for the purification of drinking water
JP2001096276A (en) * 1999-09-29 2001-04-10 Sanyo Electric Co Ltd Electrolytic device of water
JP4922508B2 (en) * 2001-08-10 2012-04-25 三浦電子株式会社 ELECTROLYTIC WATER GENERATION DEVICE FOR EMPTY BOTTLE AND METHOD FOR PRODUCING ELECTROLYTIC WATER FOR EMPTY BOTTLE
JP4801877B2 (en) * 2003-09-26 2011-10-26 シンワ工業株式会社 Stirrer for hydrogen water production
WO2005063393A1 (en) * 2003-12-26 2005-07-14 Kansai Technology Licensing Organization Co., Ltd. Method for electrolyzing water using organic photocatalyst
JP2005281758A (en) * 2004-03-29 2005-10-13 Takao Miyanoo TiOx-MnOx MIXED ELECTRODE AND WATER TREATMENT METHOD USING THE SAME
JP4852696B2 (en) * 2005-04-18 2012-01-11 国立大学法人東京工業大学 Titanium oxide thin film, photocatalytic material including titanium oxide thin film, method for producing the same, photocatalytic water purification device, and water purification method utilizing photocatalytic reaction
CA2547183A1 (en) * 2006-05-17 2007-11-17 Ozomax Inc. Portable ozone generator for purifying water and use thereof
JP5093801B2 (en) * 2007-06-08 2012-12-12 国立大学法人静岡大学 Method for producing titanium oxide film molded member, photocatalyst, photoelectrode, and water treatment apparatus
JP2010214355A (en) * 2009-03-13 2010-09-30 Chiyoda Newtec:Kk Method of generating alkaline water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200483412Y1 (en) * 2015-08-31 2017-05-24 선전아이피엠바이오테크놀리지컴퍼니리미티드 Hydrogen-rich Water Sticker

Also Published As

Publication number Publication date
JP2015104690A (en) 2015-06-08
WO2015079594A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP5747390B2 (en) Hydrogen water production apparatus and electrode used therefor
EP2902365B1 (en) Portable apparatus for producing hydrogen water
KR101020982B1 (en) Water ionizer
WO2018083835A1 (en) Electrolysis cell, device for ejecting ozone water, and method for producing electroconductive diamond electrode
US20180209050A1 (en) Hydrogen generation apparatus
JP2009052105A (en) Ozone water production apparatus
JP2011110541A (en) Portable electrolytic water spray device
US20150027940A1 (en) Portable sterilization apparatus
JP6646828B2 (en) Mug with lid
JP2021119012A (en) Method of generating electrolyzed water, and device and apparatus for generating and spraying electrolyzed water
JP2014100648A (en) Cleaning water generator
JP2017088220A (en) Lidded mag
CN204369997U (en) Hand-held hydrogen peroxide generator
KR200490319Y1 (en) Hydrogen water generator
JP3198341U (en) Simple electrolytic hydrogen water generator
JP2021120140A (en) Ozone water generation method, generation sprayer and generation spraying device
WO2018123147A1 (en) Hydrogen water generator
EP3929329A1 (en) Portable hydrogen-containing ozone water humidifier
CN203581593U (en) Bottle cap with purification function and bottle body
KR102097168B1 (en) Bottle cap for sterilizing beverages with uv lamp
JP6258566B1 (en) Electrolytic cell, ozone water jetting device, and method for producing conductive diamond electrode
JP2011092883A (en) Portable electrolytic water spray device
KR101972893B1 (en) Portable water tank having hydrogen-generator
JP2014208337A (en) Hydrogen water generator and hydrogen water generation method
CN212842000U (en) Portable hydrogen-containing ozone water humidifier

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150423

R150 Certificate of patent or registration of utility model

Ref document number: 5747390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees