JP5728662B2 - Wastewater treatment of hydrophilic polymer colloid materials - Google Patents

Wastewater treatment of hydrophilic polymer colloid materials Download PDF

Info

Publication number
JP5728662B2
JP5728662B2 JP2009101399A JP2009101399A JP5728662B2 JP 5728662 B2 JP5728662 B2 JP 5728662B2 JP 2009101399 A JP2009101399 A JP 2009101399A JP 2009101399 A JP2009101399 A JP 2009101399A JP 5728662 B2 JP5728662 B2 JP 5728662B2
Authority
JP
Japan
Prior art keywords
colloid
hydrophilic polymer
wastewater
treatment
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009101399A
Other languages
Japanese (ja)
Other versions
JP2010227922A (en
Inventor
良造 栗田
良造 栗田
美枝子 立花
美枝子 立花
勇 熊木
勇 熊木
英夫 橋本
英夫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HINODE SANGYO CO., LTD.
Original Assignee
HINODE SANGYO CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HINODE SANGYO CO., LTD. filed Critical HINODE SANGYO CO., LTD.
Priority to JP2009101399A priority Critical patent/JP5728662B2/en
Publication of JP2010227922A publication Critical patent/JP2010227922A/en
Application granted granted Critical
Publication of JP5728662B2 publication Critical patent/JP5728662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、合成有機物コロイド、酵素と好気性微生物処理を併用して成る排水処理に関する。The present invention relates to a wastewater treatment comprising a combination of a synthetic organic colloid, an enzyme and an aerobic microorganism treatment.

近年、果物、豆類や根菜類は工場での加工が多くなり、種々の加工品がスーパー等の棚に並んでいる。例えば、大豆やグリーンピースに代表される茹でた豆類、ホウレン草やブロッコリー等の茹でた葉物類の冷凍野菜類、下ろした山芋や大根の凍結乾燥品、カット果物の容器入り、カット野菜の袋入り等々多くの加工品が増加している。これらの果物、豆類や根菜類の加工は衛生的に加工されていて、すぐにでも家庭で食卓に乗せられる。また、総菜食品業者やレストランに卸すことも主流になってきている。これらの市場の増加に伴い、根菜類等の加工工場の排水の処理が大きな問題となっている。In recent years, fruits, beans and root vegetables have been processed at factories, and various processed products are lined up on shelves such as supermarkets. For example, boiled beans typified by soybeans and green peas, frozen vegetables boiled leaves such as spinach and broccoli, freeze dried products of dried yam and radishes, cut fruit containers, cut vegetable bags Many processed products are increasing. These fruits, beans, and root vegetables are processed in a sanitary manner and can be put on the table immediately at home. It is also becoming mainstream to wholesale to side dish food dealers and restaurants. With the increase in these markets, the treatment of wastewater from processing plants such as root vegetables has become a major problem.

これらの果物、豆類や根菜類のカットや茹でる等の加工による工場の排水は他の食品工場とは異なり、繊維質を中心とした高分子の有機物を含有するものになっており、植物の細胞を構成している成分の流出が主となる。取り分け、細胞壁付近に存在するセルロース、ヘミセルロース、ペクチン質、デンプン類、タンパク質は排水中に溶解・分散し、親水性高分子コロイドとして存在している。これらの物質は分子量が大きく、又細胞壁成分が微生物に分解しづらい構造を有していて、単純な好気性微生物による排水処理では対応しきれない。このまま河川に排水する事は稲作への悪害や環境への公害を引き起こす恐れがあり、少なくても排出基準以下に保つことが要求されている。Unlike other food factories, the factory wastewater from processing such fruits, beans, and root vegetables is cut and boiled, and contains high-molecular organic substances such as fiber. The main component is the outflow of components. In particular, cellulose, hemicellulose, pectic substances, starches, and proteins present in the vicinity of the cell wall are dissolved and dispersed in the waste water and exist as hydrophilic polymer colloids. These substances have a large molecular weight and have a structure in which cell wall components are difficult to decompose into microorganisms, and cannot be handled by simple wastewater treatment with aerobic microorganisms. Draining into the river as it is may cause harm to rice cultivation or environmental pollution, and it is required to keep it at least below the emission standard.

従来、工場排水などに含まれる有機物を処理する技術としては微生物処理法、凝集沈殿処理法や加圧浮上処理法が一般的である。排水量に対して、有機物が低含有の場合は好気性微生物を使用した微生物処理法等が行われ、濃度が高い場合は凝集沈殿法が好ましく、加圧浮上法は油脂の分離に適している。しかし、野菜加工工場の排水には不溶性繊維質、可溶性多糖類やタンパク質等が親水性高分子コロイドを形成し混在していることが多く、通常の排水処理では除去する事は困難である。Conventionally, microbial treatment methods, coagulation sedimentation treatment methods, and pressurized flotation treatment methods are commonly used as techniques for treating organic substances contained in factory wastewater and the like. When the amount of organic matter is low with respect to the amount of wastewater, a microbial treatment method using aerobic microorganisms is performed, and when the concentration is high, the coagulation sedimentation method is preferable, and the pressure flotation method is suitable for separation of fats and oils. However, wastewater from vegetable processing factories often contains insoluble fiber, soluble polysaccharides, proteins, etc., forming a hydrophilic polymer colloid and is difficult to remove by ordinary wastewater treatment.

処理の難しい親水性高分子コロイドの成分を除去する技術としては、これまで種々の方法が一般的にはとられているが、それぞれの方法には、なお改善すべき課題が残されている。Various techniques have been generally used as techniques for removing components of hydrophilic polymer colloids that are difficult to treat, but problems still need to be improved in each method.

イオン交換樹脂をイオン交換樹脂塔に充填し、排水を通水し、溶解性COD成分を排水から除去する方法が示されている(例えば、特許文献1)がある。しかし、食品加工などの排水処理に使用するには、排水中に粘性を及ぼすような種々の物質が入っているために、樹脂塔に閉塞を起こす場合があり課題が多い。There is a method in which an ion exchange resin is filled in an ion exchange resin tower, drainage is passed through, and a soluble COD component is removed from the drainage (for example, Patent Document 1). However, when used for wastewater treatment such as food processing, since various substances that have viscosity are contained in the wastewater, the resin tower may be clogged and there are many problems.

水中で膨潤し、実質的に水に溶解しないカチオン性ポリマー微粒子を水に添加するデンプン含有水の処理方法(例えば、特許文献2)がある。しかし、水中で膨潤したポリマー微粒子であるために、重合条件、共存イオンなどの水質の影響を大きく受け多種多様な荷電を有する物質が混在している排水処理には適さず、膨潤した微粒子の粒子径や表面積が一定しないために、凝集効果が安定しない課題がある。There is a method for treating starch-containing water (for example, Patent Document 2) in which cationic polymer fine particles that swell in water and do not substantially dissolve in water are added to water. However, because they are polymer fine particles swollen in water, they are greatly affected by water quality such as polymerization conditions and coexisting ions, and are not suitable for wastewater treatment in which various charged substances are mixed. Since the diameter and the surface area are not constant, there is a problem that the aggregation effect is not stable.

水溶性COD成分に対し、微粒状のカチオン性官能基、アニオン性の官能基、又は水素結合能を持つ有機系微粒子を使用して、可溶性COD成分を除去する方法が取られている(例えば、特許文献3)。しかし、排水中のCOD成分がアニオン性、カチオン性、ノニオン性の成分が混在する場合には、処理できるCOD成分が限られてしまうなどの課題がある。A method of removing the soluble COD component by using fine particulate cationic functional group, anionic functional group, or organic fine particles having hydrogen bonding ability with respect to the water-soluble COD component (for example, Patent Document 3). However, when the COD component in the wastewater contains anionic, cationic, and nonionic components, there is a problem that COD components that can be treated are limited.

特開2001−276825JP 2001-276825 A 特公平7−83869JP 7-83869 特開2007−313492JP2007-31492A

親水性高分子コロイド物質は、天然又は加工品であれ低分子状の物質と比較すると微生物による分解速度は遅く、好気性微生物による種々の排水処理法でも効率よく分解できない。また、生物膜による方法では表面を粘性物が被い嫌気化してしまうので、排水中のBODやCOD成分の低下が困難であった。他方、活性炭処理ではすぐにろ過層が閉塞してしまい、又、凝集沈殿法ではカチオン及びアニオンの電荷を有する物質が混在している排水には可溶性COD成分除去剤の使用が困難であるという課題があった。Hydrophilic polymer colloidal substances, whether natural or processed, have a slower decomposition rate by microorganisms than low molecular weight substances, and cannot be efficiently decomposed by various wastewater treatment methods using aerobic microorganisms. Further, in the method using a biofilm, since the surface is covered with a viscous material and anaerobic, it is difficult to reduce BOD and COD components in the waste water. On the other hand, the activated carbon treatment immediately clogs the filtration layer, and the coagulation sedimentation method makes it difficult to use a soluble COD component remover in wastewater containing substances having charges of cation and anion. was there.

即ち、多種多様の親水性高分子コロイド物質の混在する排水は、種々の好気性微生物処理法又は活性炭処理法又はイオン交換法又は凝集沈殿法では種々のトラブルが生じ、排水中のBOD成分やCOD成分の低下が困難であった。そこで、親水性高分子状コロイド物質又は多種の親水性高分子状コロイド物質の混在する排水の処理方法及び装置を提供することを目的とする。In other words, wastewater mixed with a wide variety of hydrophilic polymer colloid substances causes various troubles in various aerobic microorganism treatment methods, activated carbon treatment methods, ion exchange methods, and coagulation sedimentation methods. It was difficult to reduce the components. Then, it aims at providing the processing method and apparatus of the waste_water | drain in which a hydrophilic polymeric colloid substance or various hydrophilic polymeric colloid substances are mixed.

請求項1の好気性微生物処理は、排水に含まれる親水性高分子コロイド物質を合成有機コロイド物質又は合成有機コロイド物質及び酵素で処理することを特徴とする活性汚泥法又は生物膜固定床法又は生物膜流動床法等による。The aerobic microorganism treatment according to claim 1 comprises treating the hydrophilic polymer colloid material contained in the waste water with a synthetic organic colloid material or a synthetic organic colloid material and an enzyme, or an activated sludge method or a biofilm fixed bed method, By biofilm fluidized bed method.

請求項2の好気性微生物処理は、合成有機コロイド物質がイオン官能基を有することを特徴とする。The aerobic microorganism treatment according to claim 2 is characterized in that the synthetic organic colloidal substance has an ionic functional group.

請求項3の好気性微生物処理は、合成有機コロイド物質がメラミン・アルデヒド酸コロイド物質から成ることを特徴とする。The aerobic microorganism treatment according to claim 3 is characterized in that the synthetic organic colloid material is composed of a melamine / aldehyde acid colloid material.

請求項4の好気性微生物処理は、酵素が加水分解酵素から成ることを特徴とする。The aerobic microorganism treatment according to claim 4 is characterized in that the enzyme comprises a hydrolase.

請求項5の好気性微生物処理法は、合成有機コロイド物質を添加する装置又は合成有機コロイド物質及び酵素をそれぞれ添加する装置を有することから成る。The aerobic microorganism treatment method of claim 5 comprises a device for adding a synthetic organic colloid material or a device for adding a synthetic organic colloid material and an enzyme, respectively.

天然又は加工品であれ、種々の親水性高分子コロイド物質、例えばペクチンなどは低分子状の物質と比較すると微生物における分解速度は非常に遅い傾向があり、セルロースやリグニンは特殊な微生物しか分解資化できず、排水の好気性微生物処理法ではほとんど分解が困難であった。また、高分子状コロイド物質は、他方、活性炭処理やイオン交換樹脂塔ではすぐにろ過層や樹脂層が閉塞してしまい、又、凝集沈殿法ではカチオン及びアニオンの官能基を有する親水性コロイド物質が混在している際には可溶性COD成分除去剤と称するものや凝集剤の使用が困難であるという課題があった。Various hydrophilic polymer colloidal substances, such as natural or processed products, such as pectin, tend to degrade very slowly in microorganisms compared to low molecular weight substances. Cellulose and lignin can only be decomposed by special microorganisms. It was difficult to decompose the wastewater by the aerobic microbial treatment method. On the other hand, the polymer colloidal substance is a hydrophilic colloidal substance having functional groups such as cation and anion in the activated carbon treatment and ion exchange resin tower, and the filtration layer and resin layer are immediately clogged. When these are mixed, there is a problem that it is difficult to use a soluble COD component remover or a flocculant.

本発明者が研究を重ねた結果、排水中に親水性高分子コロイド物質が存在する場合、荷電を有する親水性高分子コロイド物質に対峙する荷電を有する合成有機コロイド物質で不溶化させ、後の工程で汚泥とともに回収し、又、多種の親水性高分子コロイド物質が存在する場合、他の親水性高分子コロイド物質は酵素にて分解し、好気性微生物処理を同時に行うことで、幅広い親水性コロイド物質を処理して、有機物(COD成分及びBOD成分)を低下する方法及び設備を提供する。As a result of the inventor's repeated research, when a hydrophilic polymer colloid substance exists in the wastewater, it is insolubilized with a synthetic organic colloid substance having a charge opposite to the hydrophilic polymer colloid substance having a charge, and a subsequent process. When various kinds of hydrophilic polymer colloid materials exist, other hydrophilic polymer colloid materials are decomposed by enzymes and treated with aerobic microorganisms at the same time. Methods and equipment for treating materials to reduce organics (COD and BOD components) are provided.

本発明の設備は、かかる知見に基づくものであり、従来の好気性微生物による排水処理と併用し、合成有機物コロイド物質又は合成有機物コロイド物質及び酵素液を排水に添加することによって、種々の親水性高分子コロイド物質を除去する事を可能とした。The equipment of the present invention is based on such knowledge, and in combination with wastewater treatment by conventional aerobic microorganisms, various hydrophilic properties can be obtained by adding synthetic organic colloid material or synthetic organic colloid material and enzyme solution to wastewater. It was possible to remove the polymer colloidal material.

以下に本発明の詳細を報告する。Details of the present invention are reported below.

以下、本発明の親水性高分子コロイド物質の好気的微生物処理の第一の実施形態について説明する。第一の実施形態では、排水に含まれる有機成分である親水性高分子コロイド物質は微生物による短時間での分解が困難であり、排水に含まれる親水性高分子コロイド物質を合成有機コロイド物質又は合成有機コロイド物質及び酵素で処理し、同時に活性汚泥法又は生物膜固定床法又は生物膜流動床法の好気性微生物により排水処理を行う。Hereinafter, a first embodiment of the aerobic microorganism treatment of the hydrophilic polymer colloid substance of the present invention will be described. In the first embodiment, the hydrophilic polymer colloid material, which is an organic component contained in the wastewater, is difficult to decompose in a short time by microorganisms, and the hydrophilic polymer colloid material contained in the wastewater is converted into a synthetic organic colloid material or Treated with synthetic organic colloidal substance and enzyme, and at the same time, wastewater treatment with aerobic microorganisms of activated sludge method, biofilm fixed bed method or biofilm fluidized bed method.

本発明は、例えば親水性高分子コロイド物質の一つの荷電に対峙する荷電を有する合成有機コロイドを添加して不溶化(ゲル化)せしめ、また、他の電荷を帯びたものや荷電を有しない親水性高分子コロイド物質が存在した場合は酵素を加えて分解すると共に曝気槽の好気性微生物により酸化処理し、不溶化物は汚泥とともに沈殿槽で分離排出する。In the present invention, for example, a synthetic organic colloid having a charge opposite to one charge of a hydrophilic polymer colloid substance is added to be insolubilized (gelled), and other charged or uncharged hydrophilic When the colloidal polymer is present, it is decomposed by adding enzymes and oxidized by aerobic microorganisms in the aeration tank, and the insolubilized material is separated and discharged together with the sludge in the sedimentation tank.

物質の存在する状態において、原子あるいは低分子よりは大きい物質が分散しているとき、その物質はコロイド状態にあるという。本発明の親水性高分子コロイド物質とは、単位分子等を複数個以上持つ高分子で糖質やタンパク質等で球状や糸状等の水和性のコロイドを称する。本発明の合成有機コロイド物質とは、天然物でなく化学的に合成され水に分散又は可溶化してコロイドを形成する有機物をいう。When a substance larger than atoms or small molecules is dispersed in the presence of the substance, the substance is said to be in a colloidal state. The hydrophilic polymer colloid substance of the present invention is a polymer having a plurality of unit molecules and the like, and refers to a hydrated colloid of saccharides, proteins, etc., such as spheres and threads. The synthetic organic colloidal substance of the present invention refers to an organic substance which is not a natural product but is chemically synthesized and dispersed or solubilized in water to form a colloid.

排水に含まれる高分子コロイド物質は、植物の細胞膜を構成している成分でセルロース、ペクチン、ヘミセルロースが主であり、この他デンプン、タンパク質、リグニン、キチンを含むものもある。また、皮革や骨等を材料とするニカワや革の加工の排水に含まれるニカワ系難分解タンパク質や食品工場のゼラチン、ペクチン、タンパク質、捺染業者や製紙工場の加工糊料、甲殻類の加工ではキトサン等々種々のものが存在する。これらの高分子物質コロイド物質は分子として荷電を有しているものと中性なものとが存在し、これらの物質は活性汚泥菌では短時間の分解や資化が困難なものが多い。The colloidal polymer contained in the wastewater is a component constituting plant cell membranes, mainly cellulose, pectin, and hemicellulose. In addition, there are those containing starch, protein, lignin, and chitin. In addition, in the processing of hides and leathers made from leather, bones, etc. There are various things such as chitosan. These high molecular weight colloidal substances are charged as molecules and are neutral, and these substances are often difficult to decompose or assimilate in a short time by activated sludge bacteria.

例えば、植物はプロトペクチンを含むが、これはペクチンにセルロースと糖やリン酸などが結合したものであり、水に分散してアニオンに荷電したコロイドとして存在する。ペクチンは高等植物に含まれている多糖類で、セルロースやリグニンが一度形成されると分解を受けることがないのに対し、ペクチン質は合成したり、分解したりする酵素が植物中に共存し、果実や植物体が若いうちはプロトペクチンとして水不溶性で存在し、酵素により可溶性のペクチンとなるため、排水処理対応が難しいものとなっている。For example, plants contain protopectin, which is a combination of pectin with cellulose, sugar, phosphate, etc., and exists as a colloid dispersed in water and charged with anions. Pectin is a polysaccharide contained in higher plants. Cellulose and lignin do not undergo degradation once they are formed, whereas pectin is synthesized and degraded by enzymes that coexist in the plant. When fruits and plants are young, they are water-insoluble as protopectin and become soluble pectin by enzymes, making it difficult to deal with wastewater treatment.

ペクチン質は、水に不溶性のプロトペクチン、可溶性のペクチンで構成糖もガラクチュロン酸、ラクチュロン酸メチル、ラクチュロン酸アミド、アセチルラクチュロン酸から成るハイメトキシペクチン、ローメトキシペクチンを含めて、全てがアニオンに荷電している親水性高分子コロイド物質である。Pectic substances are water-insoluble protopectin, soluble pectin, and high sugar pectin consisting of galacturonic acid, methyl lacturonic acid, lacturonic acid amide, acetyl lacturonic acid, and low methoxy pectin. It is a hydrophilic polymer colloidal substance that is electrically charged.

アニオンの荷電を有する親水性高分子コロイド物質は、カルボシル多糖類のプロトペクチン、ペクチン、アルギン酸ナトリウム、ポリアクリル酸ナトリウム、キサンタンガム、アラビアガム等、硫酸多糖類の寒天、カラギーナン等、リン酸多糖類のデンプンなどがある。カチオン性高分子コロイド物質には、アミノ基を有するものが代表的であり、キトサンはアミノ基を有するカチオン性の高分子多糖類であり、カニ・エビの殻等に含まれる。タンパク質としてゼラチンなどはカルボキシル基とアミノ基を有し両性親水性高分子コロイド物質である。また、加工デンプンでは、中性からカチオン性に至るものまで製造され使用されている。中性のものは、グアーガム、ローカストビーンガム、セルロースなどである。Anionic charged hydrophilic polymer colloids include carbosyl polysaccharides such as protopectin, pectin, sodium alginate, sodium polyacrylate, xanthan gum, gum arabic, etc., sulfate agar, carrageenan, etc. There is starch. Typical examples of the cationic polymer colloidal substance include those having an amino group, and chitosan is a cationic polymer polysaccharide having an amino group, and is contained in crab / shrimp shells and the like. Gelatin or the like as a protein is an amphoteric hydrophilic polymer colloid substance having a carboxyl group and an amino group. Further, modified starches are manufactured and used from neutral to cationic. Neutral ones are guar gum, locust bean gum, cellulose and the like.

本発明に使用する酵素とは、粉末又は液体の純粋酵素、粗酵素、固定化酵素や酵素分泌固定化微生物でもでもよく、反応型も種類も限定しないが加水分解酵素が好適である。The enzyme used in the present invention may be a pure powder or liquid enzyme, a crude enzyme, an immobilized enzyme, or an enzyme-secreted microorganism, and a hydrolase is preferred, although the reaction type and type are not limited.

好気性微生物処理である生物膜固定床施設や回転円板施設、又生物膜流動床施設では、排水に含まれる粘性を持つ親水性高分子コロイド物質、例えばペクチンが生物膜に付着すると好気性微生物の発育ができず、好気的微生物処理の効果が悪化するトラブルが生じ、これを避けるため本発明の合成有機コロイド物質又は合成有機コロイド物質及び酵素を加えることが好適である。In biofilm fixed bed facilities, rotating disk facilities, and biofilm fluidized bed facilities that are treated with aerobic microorganisms, aerobic microorganisms when hydrophilic polymer colloidal substances, such as pectin, contained in wastewater adhere to the biofilm. It is preferable to add the synthetic organic colloid substance or the synthetic organic colloid substance and the enzyme of the present invention in order to avoid the trouble that the effect of the aerobic microorganism treatment deteriorates.

本発明の好気性微生物処理とは、細菌を中心とした生物群から成り、水中の溶存酸素を高め、この酸素と餌として取り入れた有機物を微生物が酸化分解する方法である。有機物は二酸化炭素、水、硝酸塩、硫酸塩などに酸化分解されると共に微生物細胞の成分として取り込まれる。生育した微生物と不溶性物質が汚泥を作り、BOD成分を低下させた処理水を放流して汚泥を回収する。本発明では、好気性微生物処理は活性汚泥法(高速法、標準法、長時間法、純酸素法等)と生物膜法があり、生物膜法は生物膜固定床法(回転円板法を含む)及び生物膜流動床法に大別した。The aerobic microbial treatment of the present invention is a method comprising a group of organisms centered on bacteria, increasing dissolved oxygen in water, and microorganisms oxidatively decomposing organic substances taken as oxygen and feed. Organic substances are oxidatively decomposed into carbon dioxide, water, nitrates, sulfates and the like and are taken up as components of microbial cells. The grown microorganisms and insoluble substances create sludge, and the treated water with reduced BOD components is discharged to collect the sludge. In the present invention, the aerobic microorganism treatment includes an activated sludge method (high-speed method, standard method, long-time method, pure oxygen method, etc.) and a biofilm method, and the biofilm method uses a biofilm fixed bed method (rotating disk method). And biofilm fluidized bed method.

本発明の活性汚泥法とは、原水調整槽、曝気槽、沈殿槽、汚泥脱水プロセスから成りたつ排水の好気性微生物処理法で、細菌を中心とした生物群から成り、曝気槽にて水中の溶存酸素を高め、この酸素で餌として取り入れた有機物を酸化分解する方法である。生育した微生物と不溶性物質が汚泥を作り、沈殿槽にて汚泥を沈殿させ、上澄み水のBOD成分の低下した処理水を放流して汚泥を回収する。汚泥は余剰汚泥として引き抜くものと返送されて、曝気槽の活性微生物量を保持するものである。合成有機コロイド物質又は合成有機コロイド物質及び酵素の添加は原水調整槽、曝気槽、沈殿槽の何れでもよい。The activated sludge method of the present invention is an aerobic microbial treatment method of wastewater consisting of raw water adjustment tank, aeration tank, sedimentation tank, sludge dewatering process, and consists of a group of organisms mainly bacteria, It is a method of increasing the dissolved oxygen and oxidatively decomposing organic matter taken up as feed with this oxygen. The grown microorganisms and insoluble substances create sludge, and the sludge is precipitated in a settling tank, and the treated water having a reduced BOD component in the supernatant water is discharged to collect the sludge. The sludge is returned to be extracted as excess sludge and retains the amount of active microorganisms in the aeration tank. The synthetic organic colloid substance or the synthetic organic colloid substance and the enzyme may be added to any of a raw water adjustment tank, an aeration tank, and a precipitation tank.

本発明の生物膜固定床法とは、原水調整槽、生物膜固定床槽、沈殿槽、汚泥脱水プロセスから成りたつ排水の好気性微生物処理法で、曝気槽に適当な生物膜を設置し、微生物を付着させて排水中の有機物を分解する方法で、空気中に生物膜が出るもの(回転円板等)も同様である。原則的に微生物は生物膜に付着しているため、活性汚泥法のように汚泥を返送する必要性はないが返送しても良い。素材は布、プラスティック、鉱物、サンゴ、貝殻等表面積が増加するものであれば何でもよい。回転円板法も同様であるが、合成有機コロイド物質又は合成有機コロイド物質及び酵素の添加は原水調整槽、生物膜固定床槽又は回転円板槽、沈殿槽の何れでもよい。The biofilm fixed bed method of the present invention is an aerobic microbial treatment method of wastewater consisting of a raw water adjustment tank, a biofilm fixed bed tank, a sedimentation tank, and a sludge dewatering process, and an appropriate biofilm is installed in the aeration tank. The same applies to the method of decomposing organic matter in the waste water by attaching microorganisms and producing a biofilm in the air (such as a rotating disk). In principle, microorganisms adhere to the biofilm, so there is no need to return the sludge as in the activated sludge method, but it may be returned. Any material can be used as long as the surface area is increased, such as cloth, plastic, mineral, coral, and shell. The same applies to the rotating disk method, but the addition of the synthetic organic colloid substance or the synthetic organic colloid substance and the enzyme may be any of a raw water adjustment tank, a biofilm fixed bed tank, a rotating disk tank, and a precipitation tank.

本発明の生物膜流動床法とは、原水調整槽、生物膜流動床槽、沈殿槽、汚泥脱水プロセスから成りたち、曝気槽に適度に軽い充填剤(担体)を投入し、微生物を付着させて曝気攪拌力で流動させ、排水中の有機物を分解する方法である。原則的に微生物は担体に付着しているため、活性汚泥法のように汚泥を返送する必要性はないが返送しても良い。素材は布、ポリウレタン、プラスティック、合成樹脂(硬、軟どちらでもよい)等表面積が増大して流動すれば何でもよい。合成有機コロイド物質又は合成有機コロイド物質及び酵素の添加は原水調整槽、生物膜流動床槽、沈殿槽の何れでもよい。The biofilm fluidized bed method of the present invention consists of a raw water adjustment tank, a biofilm fluidized bed tank, a sedimentation tank, and a sludge dewatering process. A moderately light filler (carrier) is introduced into an aeration tank to attach microorganisms. This is a method of decomposing organic matter in waste water by flowing with aeration and stirring force. In principle, since microorganisms adhere to the carrier, there is no need to return the sludge as in the activated sludge method, but it may be returned. The material may be anything as long as the surface area increases such as cloth, polyurethane, plastic, synthetic resin (which may be hard or soft) and flows. The synthetic organic colloid substance or the synthetic organic colloid substance and the enzyme may be added to any of a raw water adjustment tank, a biofilm fluidized bed tank, and a precipitation tank.

本発明の親水性高分子コロイド物質の好気性微生物処理の第二の実施形態について説明する。第二の実施形態では、合成有機コロイド物質がイオン官能基を有し、これを添加することで、排水に含まれる親水性高分子コロイド物質を不溶化させ、同時に好気性微生物による排水処理又は酵素を加えて好気性微生物処理を行う。この際に、親水性高分子コロイド物質の荷電に対峙するイオン官能基を有する合成有機コロイドを添加して不溶化せしめるのが好適である。A second embodiment of the aerobic microorganism treatment of the hydrophilic polymer colloid substance of the present invention will be described. In the second embodiment, the synthetic organic colloidal material has an ionic functional group, and by adding this, the hydrophilic polymer colloidal material contained in the wastewater is insolubilized, and at the same time, the wastewater treatment or enzyme by aerobic microorganisms is performed. In addition, aerobic microorganism treatment is performed. At this time, it is preferable to add a synthetic organic colloid having an ionic functional group which counters the charge of the hydrophilic polymer colloid substance to insolubilize it.

本発明の合成有機コロイド物質のイオン官能基とは、カチオン性官能基としてはアミノ基、N−アルキルアミノ基、N、N−ジアリルアミノ基、N、N、N−トリアルキルアンモニウムハライド、Nを有する複素環等であり、酸性pH域でカチオン性を示す官能基で代表的なものとして三級アミノ基の塩酸塩や四級アンモニウム基のトリメチルアンモニウムクロライド等の官能基を挙げることができる。また、アニオン性官能基としては、カルボキシル基、スルホン基、硫酸基等を挙げることができる。水素結合基を持つ官能基としては、上記アミノ基やカルボキシル基も含まれるが、水酸基、エーテル基、アミド基などのノニオン基も挙げることができる。この合成有機コロイド素材としてはイオン交換樹脂が使用できる。The ionic functional group of the synthetic organic colloidal material of the present invention includes an amino group, N-alkylamino group, N, N-diallylamino group, N, N, N-trialkylammonium halide, and N as a cationic functional group. Typical examples of functional groups that are cationic in the acidic pH range include functional groups such as hydrochlorides of tertiary amino groups and trimethylammonium chlorides of quaternary ammonium groups. In addition, examples of the anionic functional group include a carboxyl group, a sulfone group, and a sulfate group. Examples of the functional group having a hydrogen bonding group include the amino group and the carboxyl group described above, and also include nonionic groups such as a hydroxyl group, an ether group, and an amide group. An ion exchange resin can be used as the synthetic organic colloid material.

本発明の親水性高分子コロイド物質の好気性微生物処理の第三の実施形態について説明する。第三の実施形態では、合成有機コロイド物質がメラミン・アルデヒド酸コロイドで、これを好気性微生物処理工程に加えることで、排水に含まれる難分解性の親水性高分子コロイド物質を不溶化させ、同時に好気性微生物による排水処理又は酵素を加えて好気性微生物処理を行う。この際に、カチオン性のメラミン・アルデヒド酸コロイド物質の添加は、アニオンに帯電した親水性高分子コロイド物質の荷電に影響を及ぼして不溶化せしめ、容易に除去することができる。A third embodiment of the aerobic microorganism treatment of the hydrophilic polymer colloid substance of the present invention will be described. In the third embodiment, the synthetic organic colloidal material is a melamine / aldehyde acid colloid, which is added to the aerobic microbial treatment step to insolubilize the hardly degradable hydrophilic polymer colloidal material contained in the wastewater, and at the same time Wastewater treatment with aerobic microorganisms or aerobic microorganism treatment is performed by adding enzymes. At this time, the addition of the cationic melamine / aldehyde acid colloidal substance affects the charge of the hydrophilic polymer colloidal substance charged to the anion so that it is insolubilized and can be easily removed.

親水性高分子コロイド物質が、アニオン性のカルボシル多糖類のプロトペクチン、ペクチン、アルギン酸ナトリウム、ポリアクリル酸ナトリウム、キサンタンガム、アラビアガム等、硫酸多糖類の寒天、カラギーナン等、リン酸多糖類のデンプン等はメラミン・アルデヒド酸の荷電に影響を及ぼし不溶化する。また、中性セルロースなどもメラミン・アルデヒド酸と水素結合等にて不溶化すると推測している。Hydrophilic polymer colloidal substances are anionic carbosyl polysaccharides such as protopectin, pectin, sodium alginate, sodium polyacrylate, xanthan gum, gum arabic, etc., sulfate agar, carrageenan, etc., phosphate polysaccharide starch, etc. Affects the charge of melamine / aldehyde acid and insolubilizes. In addition, it is assumed that neutral cellulose and the like are insolubilized with melamine / aldehyde acid through hydrogen bonding.

カチオン官能基を有する合成有機コロイド物質はイオン交換樹脂でよいが、水に対するコロイド性を考慮するとメラミン・アルデヒド酸が好適である。メラミン・アルデヒド酸コロイドの製造方法としては、例えば特開昭62−266159号公報に記載された方法が用いられる。詳細には、例えば、蒸留水93mlにメラミン63g(0.5モル)とパラホルムアルデヒド30g(ホルムアルデヒドとして1.0モル)を加え、NaOHでpHを10.0に調整し、70℃に加熱してメラミンを溶解する。更に70℃で5分間反応した後、室温下に放置して徐々に冷却するとメチロール化メラミンの結晶が析出する。この析出物をブフナーロート上に集め、メタノールで洗浄した後に減圧乾燥する。このメチロール化メラミン10g(0.05モル)を1.35%塩酸溶液100mlに添加し(対メラミン0.75モル)、攪拌して酸コロイド溶液を得る。The synthetic organic colloidal substance having a cationic functional group may be an ion exchange resin, but melamine / aldehyde acid is preferred in consideration of the colloidal property with respect to water. As a method for producing a melamine / aldehyde acid colloid, for example, a method described in JP-A-62-266159 is used. Specifically, for example, 63 g (0.5 mol) of melamine and 30 g of paraformaldehyde (1.0 mol as formaldehyde) are added to 93 ml of distilled water, the pH is adjusted to 10.0 with NaOH, and heated to 70 ° C. Melt melamine. Furthermore, after reacting at 70 ° C. for 5 minutes, when it is allowed to stand at room temperature and slowly cooled, crystals of methylolated melamine precipitate. The precipitate is collected on a Buchner funnel, washed with methanol, and dried under reduced pressure. 10 g (0.05 mol) of this methylolated melamine is added to 100 ml of a 1.35% hydrochloric acid solution (with respect to 0.75 mol of melamine) and stirred to obtain an acid colloid solution.

10%のメチロールメラミン酸コロイドを使用した場合、排水に対する添加量はpH等にて変動するが、親水性高分子コロイド1,000mg/Lに対し1mg/Lから100,000mg/Lでよいが、10mg/L〜10,000mg/Lが好適である。When 10% methylol melamic acid colloid is used, the amount added to the waste water varies depending on pH and the like, but it may be 1 mg / L to 100,000 mg / L with respect to 1,000 mg / L of the hydrophilic polymer colloid, 10 mg / L to 10,000 mg / L is preferred.

本発明の親水性高分子コロイド物質の好気性微生物処理の第四の実施形態について説明する。第四の実施形態では、合成有機コロイド物質に酵素を加えることで排水中の電荷の異なる多種類の親水性高分子コロイド物質を処理することができるが、好気性微生物の資化性を考慮したとき加水分解酵素が好適である。A fourth embodiment of the aerobic microorganism treatment of the hydrophilic polymer colloid material of the present invention will be described. In the fourth embodiment, various kinds of hydrophilic polymer colloid materials having different charges in the wastewater can be treated by adding an enzyme to the synthetic organic colloid material, but considering the utilization of aerobic microorganisms. Sometimes hydrolases are preferred.

排水に含まれる親水性高分子コロイド物質は微生物による短時間での分解が困難なものが多く、排水に含まれる電荷を有する親水性高分子コロイド物質を合成有機コロイド物質で処理し、それ以外の親水性高分子コロイド物質を加水分解酵素で単分子化すると活性汚泥法又は生物膜固定床法又は生物膜流動床法による好気性微生物による資化性がよくなり、排水処理が容易になる。Many of the hydrophilic polymer colloid materials contained in wastewater are difficult to decompose in a short time by microorganisms. The hydrophilic polymer colloid materials contained in wastewater are treated with synthetic organic colloid materials and other When a hydrophilic polymer colloid substance is made into a single molecule with a hydrolase, assimilation by an aerobic microorganism by an activated sludge method, a biofilm fixed bed method or a biofilm fluidized bed method is improved, and wastewater treatment becomes easy.

本発明の加水分解酵素とは、植物細胞膜物質の分解に関連した酵素では、セルロースと他の繊維素の混合したヘミセルロースを分解するヘミセルラーゼ、セルロースのグルコシド結合を切断する加水分解酵素のセルラーゼ、果実や根菜の柔組織の細胞膜及び細胞膜の間隙を埋めているペクチン質に作用する酵素のペクチナーゼ、デンプンに作用するアミラーゼ等である。タンパク質や高分子ペプチドをいくつかのペプチドに分解するペプチダーゼでよい。絹の精錬工場、皮革工場、ニカワやゼラチン製造工場の排水には、タンパク質の高分子両性コロイド物質が含有しているので、酵素の分解にはプロテアーゼを利用すればよい。The hydrolase of the present invention is an enzyme related to the degradation of plant cell membrane material, such as hemicellulase that degrades hemicellulose mixed with cellulose and other fibrin, cellulase of hydrolase that breaks the glucoside bond of cellulose, fruit These include pectinase, an enzyme that acts on the cell membrane of soft tissue of roots and root vegetables, and pectin that fills the gap between cell membranes, amylase that acts on starch, and the like. It may be a peptidase that decomposes proteins and macromolecular peptides into several peptides. Since the effluents of silk refining factories, leather factories, glues and gelatin manufacturing factories contain high molecular amphoteric colloidal substances of proteins, proteases may be used for the degradation of enzymes.

本発明の親水性高分子コロイド物質の好気性微生物処理の第五の実施形態について説明する。第五の実施形態では、合成高分子コロイド物質又は合成高分子コロイド物質及び酵素をそれぞれ添加する装置を有する好気性微生物処理設備である。合成有機コロイド物質の粒子は、水に分散した際に沈殿がないことが望ましく、水に高濃度に分散させておき、添加装置により添加すればよい。酵素は液体でも、個体でもよく、添加装置により添加すればよい。A fifth embodiment of the aerobic microorganism treatment of the hydrophilic polymer colloid substance of the present invention will be described. In the fifth embodiment, an aerobic microorganism treatment facility having a device for adding a synthetic polymer colloid material or a synthetic polymer colloid material and an enzyme, respectively. The particles of the synthetic organic colloidal substance are desirably free of precipitation when dispersed in water, and may be dispersed in water at a high concentration and added by an adding device. The enzyme may be liquid or solid, and may be added by an adding device.

好気性微生物処理である生物膜固定床施設や回転円板法施設、又生物膜流動床施設では、排水に含まれる親水性高分子コロイド物質は粘性を持つ場合が多く、特にペクチンは接触材、円板や担体に付着しやすく、これが付着すると好気性微生物の発育ができず、好気性微生物処理の効果が悪化する。このトラブルを避けるため、本発明の合成有機コロイド物質又は合成有機コロイド物質及び酵素の添加は生物膜を設置している曝気槽(生物処理槽)又は生物膜装置の設置槽又はその工程以前が好適である。また、活性汚泥法でも配管等に詰まるため曝気槽又はそれ以前の添加が好適である。In a biofilm fixed bed facility, a rotating disk method facility, or a biofilm fluidized bed facility that is an aerobic microorganism treatment, the hydrophilic polymer colloidal substance contained in the wastewater is often viscous, and in particular, pectin is a contact material, It easily adheres to a disc or a carrier, and if this adheres, aerobic microorganisms cannot grow, and the effect of the aerobic microorganism treatment deteriorates. In order to avoid this trouble, the addition of the synthetic organic colloid substance or the synthetic organic colloid substance and the enzyme of the present invention is preferably performed in the aeration tank (biological treatment tank) in which the biofilm is installed or in the installation tank of the biofilm apparatus or before that process. It is. In addition, since the activated sludge method also clogs the pipes and the like, the addition of an aeration tank or earlier is suitable.

合成有機コロイド物質及び酵素をそれぞれ連続的に添加する量は、排水負荷に対応して添加すればよいが、自働的添加装置を付けることが好適である。The amount of the synthetic organic colloidal substance and the enzyme to be continuously added may be added in accordance with the drainage load, but it is preferable to attach an automatic addition device.

以下、実施例及び比較例について説明する。Hereinafter, examples and comparative examples will be described.

親水性高分子コロイド物質とメラミン・アルデヒド酸(M・A)コロイドによる反応性親水性高分子コロイドの(1)ペクチン0.03%液(柑橘由来;和光純薬株式会社)、(2)寒天0.03%液(寒天粉末;和光純薬株式会社)、(3)デンプン0.03%液(溶解性澱粉;和光純薬株式会社)、(4)ゼラチン0.03%液(粉末;和光純薬株式会社)、(5)市販玉ねぎの下ろし液の10%水溶液、(6)市販大根の下ろし液の10%水溶液、それぞれ100mlにメラミン・アルデヒド酸コロイド10%液を0.1〜0.4ml加え、不溶3物を作るか否かを判定した(pH7.0〜6.5)。(1) 0.03% pectin solution (derived from citrus; Wako Pure Chemical Industries, Ltd.), (2) agar of reactive hydrophilic polymer colloid with hydrophilic polymer colloid and melamine / aldehyde acid (MA) colloid 0.03% liquid (agar powder; Wako Pure Chemical Industries, Ltd.), (3) Starch 0.03% liquid (soluble starch; Wako Pure Chemical Industries, Ltd.), (4) Gelatin 0.03% liquid (powder; Japanese) (5) 10% aqueous solution of a commercial onion unloading solution, (6) 10% aqueous solution of a commercial radish unloading solution, 0.1 ml to 0.1 ml of a melamine / aldehyde acid colloid 10% solution in 100 ml each. 4 ml was added, and it was determined whether or not three insoluble substances were to be formed (pH 7.0 to 6.5).

反応結果は表1に示したが、ペクチン液、寒天液、玉ねぎ下ろし汁、大根下ろし汁が白濁したゲル状物質を生じて不容化したことから、アニオンに荷電している親水性高分子コロイド物質をメラミン・アルデヒド酸が電荷を中和して、可溶性物質を不溶性ゲル化物とし沈殿させ、排水処理に有効に利用できると判断した。The results of the reaction are shown in Table 1. Since the pectin solution, agar solution, onion juice, and radish juice produced a cloudy gel material that was inactivated, the anionic charged hydrophilic polymer colloid material It was judged that melamine / aldehyde acid neutralized the charge and precipitated the soluble substance as an insoluble gelled product, which can be effectively used for wastewater treatment.

Figure 0005728662
Figure 0005728662

カット野菜工場の生物膜流動床による排水処理
この工場は、大根、玉ねぎ、イモ類の根菜類を生のままでカットする加工工場で、その排水は日量約130トンで、根菜類のカット時の生汁が主であり、排水のBODが200〜300mg/Lであった。その設備概要は原水調整槽(70m)、流量調整槽(40m)、第一流動床曝気槽(20m)、第二流動床曝気槽(20m)、凝集槽1(1m)、凝集槽2(1m)、沈殿槽(9m)、汚泥脱水機の設備及びプロセスで、処理水量は約6.5m/時間であった。
Wastewater treatment using a fluidized-bed biofilm from a cut vegetable factory This factory is a processing plant that cuts radish, onion, and potato root vegetables as they are. The wastewater is about 130 tons per day. And the wastewater BOD was 200 to 300 mg / L. The equipment outline is raw water adjustment tank (70 m 3 ), flow rate adjustment tank (40 m 3 ), first fluidized bed aeration tank (20 m 3 ), second fluidized bed aeration tank (20 m 3 ), flocculation tank 1 (1 m 3 ), In the equipment and process of the coagulation tank 2 (1 m 3 ), the sedimentation tank (9 m 3 ), and the sludge dehydrator, the amount of treated water was about 6.5 m 3 / hour.

第一、第二流動床曝気槽にそれぞれ2cmのポリウレタン担体を4m加え、曝気量各1.3m/分で曝気し流動させた。凝集槽1にはポリ塩化アルミニウムA−25(多木化学株式会社)56ml/分、凝集槽2にはエバグロース−151(荏原エンジニアリングサービス株式会社)150ml/分を加えて沈殿槽に送り汚泥を沈殿させて上澄み液を放流した。この設備の第一、第二流動曝気槽に10%のメラミン・アルデヒド酸コロイド液(M・A)を排水に対して合計150mg/Lになるように1カ月間自動添加した。比較例として、メラミン・アルデヒド酸コロイドを全く加えない処理を1カ月間おこない比較した。(5〜6月)First, the second fluidized bed aeration tank to the polyurethane carriers each 2 cm 3 4m 3 added was aerated fluidized aeration amount each 1.3 m 3 / min. Coagulation tank 1 is added with polyaluminum chloride A-25 (Taki Chemical Co., Ltd.) 56 ml / min, and coagulation tank 2 is added Ebagrose-151 (Ebara Engineering Service Co., Ltd.) 150 ml / min and sent to the precipitation tank to precipitate sludge. The supernatant liquid was discharged. A 10% melamine / aldehyde acid colloid solution (MA) was automatically added to the first and second fluidized aeration tanks of this facility for one month so that the total amount was 150 mg / L with respect to the waste water. As a comparative example, a treatment in which no melamine / aldehyde acid colloid was added at all was performed for one month and compared. (May-June)

まず、メラミン・アルデヒド酸コロイドを添加しない1カ月間の原水BODは145〜310mg/L(平均228mg/L)で、メラミン・アルデヒド酸コロイドを添加した条件下の1カ月間の原水BODは155〜330mg/L(平均232mg/L)であった。この際の平均値は、始業前2時間から工場ライン洗浄後2時間まで、3時間置きに原液調整槽から200ml採取し、採取液を冷蔵保存しておき、等量混合して1サンプルとして定法にて測定し、その日の平均BODとした。月平均はその月の日々の値を合算して日数で除し算出した。First, raw water BOD for one month without adding melamine / aldehyde acid colloid is 145 to 310 mg / L (average 228 mg / L), and raw water BOD for one month under the condition of adding melamine / aldehyde acid colloid is 155 to 330 mg / L (average 232 mg / L). In this case, the average value is taken from 2 hours before the start of work to 2 hours after the factory line is washed, and every 3 hours, 200 ml is collected from the stock solution adjustment tank, the collected solution is refrigerated and mixed, and the same amount is mixed as one sample. And measured as the average BOD of the day. The monthly average was calculated by adding the daily values for the month and dividing by the number of days.

メラミン・アルデヒド酸コロイド液を加えた場合と加えない処理の比較データを表2に示したが、加えた場合は処理水の平均BODも12mg/Lで担体に粘着物質の付着もなかった。これに対し、メラミン・アルデヒド酸コロイド液を加えない場合はBOD112mg/Lと悪く、担体に粘着物質が多量に付着しており、ポリウレタン担体をつぶす様に圧力をかけた後、圧力を除いても元に戻らず流動担体が嫌気化されて効果を示していないことが危惧された。The comparison data of the treatment with and without the addition of the melamine / aldehyde acid colloidal solution are shown in Table 2. When added, the average BOD of the treated water was 12 mg / L, and there was no adhesion of the adhesive substance to the carrier. On the other hand, when the melamine / aldehyde acid colloid liquid is not added, the BOD is 112 mg / L, and a large amount of the adhesive substance is adhered to the carrier, and after applying pressure so as to crush the polyurethane carrier, the pressure can be removed. It was feared that the fluid carrier was anaerobic without returning to its original state and not showing any effect.

Figure 0005728662
Figure 0005728662

生物膜固定床法による排水処理モデル実験
深さ40cmで、10L容量の水槽に固定床としてペット樹脂で直径約3〜5cmのタワシ状のものを深さ35cmまで投入した後、デンプンを含んだ食品工場排水(COD540mg/L)4部、大根の下ろし汁(COD5000mg/L)0.5部と水道水を加えて10部とした。(1)メラミン・アルデヒド酸コロイド液10ml加えたもの、(2)メラミン・アルデヒド酸コロイド液10mlとデンプン分解酵素90DUN(α−アミラーゼ;和光純薬株式会社)加えたもの、(3)比較例として無添加の生物膜固定床法にて行った。
Drainage treatment model experiment by biofilm fixed bed method 40cm deep, 10L capacity water tank with fixed bed as a fixed bed with 3 to 5cm diameter scrubbing and up to 35cm deep, food containing starch 4 parts of factory effluent (COD 540 mg / L), 0.5 parts of radish lowering juice (COD 5000 mg / L) and tap water were added to make 10 parts. (1) 10 ml of melamine / aldehyde acid colloid solution added, (2) 10 ml of melamine / aldehyde acid colloid solution and starch degrading enzyme 90DUN (α-amylase; Wako Pure Chemical Industries, Ltd.), (3) as a comparative example The biofilm fixed bed method without additives was used.

上記組成の排水が1L/日流入し併設の沈殿槽から1L/日排出させた。1日当たり1L加える液にも(1)はメラミン・アルデヒド酸コロイド液を1ml加えたもの、(2)はメラミン・アルデヒド酸コロイド液を1ml及びデンプン分解酵素9DUNを加えたもの、(3)は比較例として無添加で行った。処理した条件は、pH6.0、曝気量165ml/分で水温は35℃でおこない、定法の過マンガン酸法でCODを測定した。The wastewater having the above composition flowed in at 1 L / day and was discharged from the settling tank provided at 1 L / day. (1) 1 ml of melamine / aldehyde acid colloid solution is added to the solution added 1L per day, (2) is 1 ml of melamine / aldehyde acid colloid solution and 9DUN of amylolytic enzyme, (3) is comparison As an example, no addition was performed. The treatment conditions were pH 6.0, aeration volume of 165 ml / min, water temperature of 35 ° C., and COD was measured by a conventional permanganate method.

活性汚泥法による排水処理モデル実験
実施例3と同様な容器を使用して、実施例3のゼラチンを含んだ食品工場排水(COD580mg/L)4部と玉ねぎ下ろし汁(COD2100)1部と水道水を加えて10部とした。これを混合して曝気した水槽に(4)メラミン・アルデヒド酸コロイド液20ml加えたもの、(5)メラミン・アルデヒド酸コロイド溶液20mlと200PUN(プロテアーゼ生化学用;和光純薬株式会社)を加えたもの、(6)比較例として無添加の活性汚泥法にて行った。
Model wastewater treatment by activated sludge method Using the same container as in Example 3, 4 parts of food factory wastewater (COD580 mg / L) containing gelatin in Example 3 and 1 part of onion juice (COD2100) and tap water To make 10 parts. (4) 20 ml of melamine / aldehyde acid colloid solution and (5) 20 ml of melamine / aldehyde acid colloid solution and 200 PUN (for protease biochemistry; Wako Pure Chemical Industries, Ltd.) were added to the aerated and aerated water tank. (6) As a comparative example, an additive sludge method without additives was used.

上記組成の排水が1L/日流入させ、併設の沈殿槽から1L/日排出させた。1日当たり1L加える液にも(4)はメラミン・アルデヒド酸コロイド液を2ml、(5)はメラミン・アルデヒド酸コロイド液を2ml及び酵素20PUNを加え、(6)は比較例として無添加とした。処理した条件は、pH7.5、曝気量165ml/分で水温は35℃でおこない、定法の過マンガン酸法でCODを測定した。The wastewater having the above composition was introduced at 1 L / day and discharged from a settling tank provided at 1 L / day. (4) also added 2 ml of melamine / aldehyde acid colloid solution, (5) added 2 ml of melamine / aldehyde acid colloid solution and 20 PUN of enzyme, and (6) was not added as a comparative example. The treatment conditions were pH 7.5, an aeration amount of 165 ml / min, a water temperature of 35 ° C., and COD was measured by a conventional permanganate method.

実施例3の生物膜固定床法の好気性微生物処理法の結果は表3の(1)〜(3)示したが、微生物が分解しにくいものが多く含まれており、定法の過マンガン酸法でCODを測定した。生物膜固定床法ではアニオンに荷電している大根プロトペクチン及びデンプンが混入しているため、メラミン・アルデヒド酸コロイド液に酵素を加えた処理が最もCODが低くなり、続いてメラミン・アルデヒド酸コロイド液を加え条件がよく、比較例の固定床は固定床に粘着物質が付着し最もCODが高かった。The results of the aerobic microorganism treatment method of the biofilm fixed bed method of Example 3 are shown in Table 3 (1) to (3), but many of the microorganisms are difficult to decompose, and the permanganic acid of the usual method is included. The COD was measured by the method. In the biofilm fixed bed method, radish protopectin and starch charged with anions are mixed, so the treatment with the enzyme added to the melamine / aldehyde acid colloid solution has the lowest COD, followed by the melamine / aldehyde acid colloid. The liquid was added and the conditions were good, and the fixed bed of the comparative example had the highest COD due to adhesion of the adhesive substance to the fixed bed.

実施例4の活性汚泥法の好気性微生物処理法の結果は表3の(4)〜(6)に示したが、微生物が分解しにくいものが多く含まれており、分析値はCODにて記載した。活性汚泥法ではアニオンに荷電している玉ねぎプロトペクチン及びゼラチンが混入しているため、メラミン・アルデヒド酸コロイド液に酵素を加えた処理が最もCODが低くなり、続いてメラミン・アルデヒド酸コロイド液を加え条件がよく、比較例の活性汚泥法が最もCODが高かった。The results of the aerobic microorganism treatment method of the activated sludge method of Example 4 are shown in Table 3 (4) to (6). Many of the microorganisms are difficult to decompose, and the analysis value is COD. Described. In the activated sludge method, the onion protopectin and gelatin charged in the anion are mixed, so the treatment with the enzyme added to the melamine / aldehyde acid colloid solution has the lowest COD, followed by the melamine / aldehyde acid colloid solution. The addition conditions were good, and the activated sludge method of the comparative example had the highest COD.

Figure 0005728662
Figure 0005728662

Claims (2)

排水に含まれる、プロトペクチン、ペクチン、アルギン酸ナトリウム、キサンタンガム、アラビアガム、寒天及びカラギーナンからなる群から選択される少なくとも一種を含む天然由来アニオン性親水性高分子コロイドを、カチオン性メラミン・アルデヒド酸コロイドで不溶化し、除去することを特徴とする生物膜流動床法又は生物膜固定床法による排水処理方法。 Naturally derived anionic hydrophilic polymer colloid containing at least one selected from the group consisting of protopectin, pectin, sodium alginate, xanthan gum, gum arabic, agar and carrageenan contained in wastewater , cationic melamine / aldehyde acid colloid in was not solubilized, waste water treatment method according to the biofilm fluidized bed process or biofilm fixed-bed method, and removing. 前記天然由来アニオン性親水性高分子コロイドが、プロトペクチン及びペクチンの少なくとも一種を含む、請求項1に記載の排水処理方法。The wastewater treatment method according to claim 1, wherein the naturally-derived anionic hydrophilic polymer colloid contains at least one of protopectin and pectin.
JP2009101399A 2009-03-27 2009-03-27 Wastewater treatment of hydrophilic polymer colloid materials Active JP5728662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101399A JP5728662B2 (en) 2009-03-27 2009-03-27 Wastewater treatment of hydrophilic polymer colloid materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101399A JP5728662B2 (en) 2009-03-27 2009-03-27 Wastewater treatment of hydrophilic polymer colloid materials

Publications (2)

Publication Number Publication Date
JP2010227922A JP2010227922A (en) 2010-10-14
JP5728662B2 true JP5728662B2 (en) 2015-06-03

Family

ID=43044305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101399A Active JP5728662B2 (en) 2009-03-27 2009-03-27 Wastewater treatment of hydrophilic polymer colloid materials

Country Status (1)

Country Link
JP (1) JP5728662B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5856749B2 (en) * 2011-04-01 2016-02-10 旭化成ケミカルズ株式会社 Biofilm remover
CN109371692B (en) * 2018-11-01 2022-12-02 广州邦葳新材料有限公司 Method for processing APEO (amorphous polyethylene oxide) of fabric
CN110436696B (en) 2019-07-16 2021-03-12 北京科技大学 Method for controlling biological slime of clean circulating water system by physicochemical-superconducting HGMS coupling process
CN115215432B (en) * 2022-07-09 2023-07-21 同济大学 Granular sludge suitable for town sewage treatment and rapid generation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134164A (en) * 1973-04-26 1974-12-24
JPS59177190A (en) * 1983-03-28 1984-10-06 Kurita Water Ind Ltd Coagulation of organic waste water
JPS60129184A (en) * 1983-12-13 1985-07-10 Kurita Water Ind Ltd Treatment of water containing starch
JPH074597B2 (en) * 1985-02-08 1995-01-25 栗田工業株式会社 Organic wastewater treatment equipment
JPH0710390B2 (en) * 1991-01-21 1995-02-08 四国化成工業株式会社 Method for forming microbial flocs
JP2003205295A (en) * 2002-01-17 2003-07-22 Nippon Kankyo Plant Kk Treatment method of organic waste water and apparatus therefor

Also Published As

Publication number Publication date
JP2010227922A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
Bakar et al. A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment
Saritha et al. Analysis and optimization of coagulation and flocculation process
Oumer Pectinase: substrate, production and their biotechnological applications
Barbera et al. Wastewater treatment and reuse in the food industry
El-Naggar et al. Immobilization of horseradish peroxidase on cationic microporous starch: Physico-bio-chemical characterization and removal of phenolic compounds
Dhillon et al. Green synthesis approach: extraction of chitosan from fungus mycelia
Oladoja Advances in the quest for substitute for synthetic organic polyelectrolytes as coagulant aid in water and wastewater treatment operations
Sajjad et al. Development of a novel process to mitigate membrane fouling in a continuous sludge system by seeding aerobic granules at pilot plant
Cheng et al. Using chitosan as a coagulant in recovery of organic matters from the mash and lauter wastewater of brewery
Shet et al. Pectinolytic enzymes: classification, production, purification and applications
Sila et al. Chitin and chitosan extracted from shrimp waste using fish proteases aided process: efficiency of chitosan in the treatment of unhairing effluents
JP5728662B2 (en) Wastewater treatment of hydrophilic polymer colloid materials
Saranya et al. Effectiveness of natural coagulants from non-plant-based sources for water and wastewater treatment—a review
Patel et al. A review on pectinase properties, application in juice clarification, and membranes as immobilization support
Elgarahy et al. Use of biopolymers in wastewater treatment: A brief review of current trends and prospects
Sudha et al. Marine carbohydrates of wastewater treatment
CN104781196A (en) Potabilization process
Fu et al. An ultra-light sustainable sponge for elimination of microplastics and nanoplastics
Getahun et al. Optimization of indigenous natural coagulants process for nitrate and phosphate removal from wet coffee processing wastewater using response surface methodology: In the case of Jimma Zone Mana district
JP4172294B2 (en) Organic sludge treatment method and treatment system
Gundala et al. Extremophilic pectinases
Kolhe et al. Degradation of Phenol Containing Wastewater by Advance Catalysis System-A Review
Vijayalakshmi et al. Industrial applications of alginate
JP2001129310A (en) Flocculant and sludge treatment method
Asharuddin et al. The assessment of coagulation and flocculation performance and interpretation of mechanistic behavior of suspended particles aggregation by alum assisted by tapioca peel starch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5728662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250