JP5709476B2 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
JP5709476B2
JP5709476B2 JP2010252084A JP2010252084A JP5709476B2 JP 5709476 B2 JP5709476 B2 JP 5709476B2 JP 2010252084 A JP2010252084 A JP 2010252084A JP 2010252084 A JP2010252084 A JP 2010252084A JP 5709476 B2 JP5709476 B2 JP 5709476B2
Authority
JP
Japan
Prior art keywords
frequency
pairing
target
combination
mahalanobis distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010252084A
Other languages
English (en)
Other versions
JP2012103118A (ja
Inventor
やよい 中西
やよい 中西
岸田 正幸
正幸 岸田
Original Assignee
富士通テン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通テン株式会社 filed Critical 富士通テン株式会社
Priority to JP2010252084A priority Critical patent/JP5709476B2/ja
Publication of JP2012103118A publication Critical patent/JP2012103118A/ja
Application granted granted Critical
Publication of JP5709476B2 publication Critical patent/JP5709476B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements

Description

本発明は、レーダ装置に関し、特にFM−CWレーダ方式の装置において、複数の目標物の検出を行うレーダ装置に関する。
目標物との距離と相対速度とを計測することができる車載用のレーダ装置として、FM−CW方式のレーダ装置が知られている(例えば特許文献1)。図1に従来のFM−CW方式のレーダ装置の構成図を示す。発振器4からの送信信号に基づいて送受信機2を介してアンテナ1から電波を目標物(図示せず)に向かって送信し、目標物からの反射波をアンテナ1で受信して送受信機2で受信信号を生成する。送信信号及び受信信号はミキサ3で混合されたのち、LPF5を介してビート信号を生成する。ビート信号はA/D変換器6でデジタル信号に変換された後、アップスイープ・フーリエ変換器7と、ダウンスイープ・フーリエ変換器8によってフーリエ変換された後、信号処理装置9に入力されて、目標物の距離、速度等のデータを算出する。信号処理装置9は、CPU91及びメモリ92を備えている。
FM−CW方式について簡単に説明する。周波数が線形に増加するように周波数変調したアップスイープ信号と、周波数が線形に減少するように周波数変調したダウンスイープ信号を交互に目標物に向けて送信する。図2にレーダ装置における送信波と受信波の時間的変化を表す波形図を示す。送信信号を実線で、受信信号を点線で示している。
アンテナで捉えた目標物からの反射信号の一部とミキシングしてビート信号を得、アップスイープ期間及びダウンスイープ期間におけるビート信号の周波数はそれぞれ次式で与えられる。
ただし、Δfは変調周波数幅、Tmは変調繰返し周期、cは光速、λは波長である。距離Rと速度vは式(1)と(2)の連立方程式を解いて求めることができる。
ここで、目標物が複数存在し、複数の目標物からの反射波を同時に受信した場合、同時に検出された複数のアップ周波数とダウン周波数との組合せを決定することが必要となる。一般に、レーダで同時に観測される移動物体は複数有りうる。例えば、市街地等においては、同時に受信する反射信号が非常に多くなる。従って、アップ周波数と、ダウン周波数もそれぞれ、複数の周波数においてピーク(周波数ピーク)が検出される。さらに、周波数解析の結果として得られる信号の中には、ノイズによる周波数ピークも出現する。図3に一例として、複数の目標物からの反射波から検出されたアップ周波数及びダウン周波数のFFT出力の周波数依存性を示す。アップ周波数(図3(a))及びダウン周波数(図3(b))はそれぞれ複数のピークを有していることがわかる。
特開2004−93242号公報
従来の信号処理方法においては、アップ周波数とダウン周波数のペアを決定する処理(以下、「ペアリング」という)が困難となる場合があった。誤った組合せでペアリングが行われると、算出結果として得られる移動物体までの距離や移動速度も誤ったものになるという問題が生じていた。
本発明のレーダ装置は、送信した電波が複数の目標物で反射された反射波を受信して受信信号を生成し、該受信信号から複数のアップ周波数ピークと複数のダウン周波数ピークとを検出すると共に、アップ周波数ピーク及びダウン周波数ピークにおける目標物に関する特性値を測定し、複数のアップ周波数ピークの各々と複数のダウン周波数ピークをそれぞれ1つずつ組み合わせ、各々の組み合わせについて、測定された特性値に基づいてマハラノビス距離を算出し、マハラノビス距離が所定のしきい値以下の組み合わせをペアリング候補として決定し、該決定したアップ周波数ピークとダウン周波数ピークに基づき、目標物の距離、相対速度及び角度の少なくとも1つを含む今回のデータを算出することを特徴とする。
本発明のレーダ装置は、複数の目標物に関して検出されたアップ周波数ピークとダウン周波数ピークとをマハラノビス距離を用いてペアリングを行うことにより、ミスペアリングを低減することができる。
また、本発明のレーダ装置は、過去のペアリング候補を数回前の走査分まで保持することにより、目標物の周波数ピークがノイズや他の物標によって一時的に埋もれて検出できなかった場合でも、次回検出できれば速やかに検出することができるため、ペアリング確定することができる。
さらに、本発明のレーダ装置は、目標新規検出時のみ、目標出力に時間を掛けることで、間違った組合せでのペアリングを抑制でき、ペアリングの信頼性を上げることができる。
従来のFM−CW方式のレーダ装置の構成図である。 レーダ装置における送信波と受信波の時間的変化を示す波形図である。 複数の目標物からの反射波から検出されたアップ周波数及びダウン周波数のFFT出力の周波数依存性を示す図である。 本発明の実施例1に係るレーダ装置を構成する信号処理装置の機能ブロック図である。 本発明の実施例1に係るレーダ装置の信号処理方法の手順を示すフローチャートである。 マハラノビス距離の算出方法を説明するための図である。 アップ周波数ピークとダウン周波数ピークとのペアリング候補の決定方法を説明するための図である。 ペアリング候補グループの中からマハラノビス距離が最小となるものを選択する方法を説明するための図である。 ペアリング候補グループの中からマハラノビス距離が所定の閾値以下となるものを選択する方法を説明するための図である。 本発明の実施例2に係るレーダ装置を構成する信号処理装置の機能ブロック図である。 本発明の実施例2に係るレーダ装置の信号処理方法の手順を示すフローチャートである。 マハラノビス距離の算出方法を説明するための図である。 本発明の実施例3に係るレーダ装置の信号処理方法の手順を示すフローチャートである。 目標物の確定方法を説明するための図である。
以下、図面を参照して、本発明に係るレーダ装置について説明する。ただし、本発明の技術的範囲はそれらの実施の形態には限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。
まず、本発明の実施例1に係るレーダ装置について説明する。図4に実施例1に係るレーダ装置を構成する信号処理装置の機能ブロック図を示す。図4には、図1に示した信号処理装置の構成のみを示している。信号処理装置9は、周波数ピーク検出部10と、第1の組み合わせグループ決定部11と、第1のペアリング候補グループ決定部12と、第2の組み合わせグループ決定部13と、第2のペアリング候補グループ決定部14と、ペアリング候補グループ抽出部15と、今回ペアリング候補グループ決定部16と、今回データ算出部17とを備えている。本発明のレーダ装置を構成する信号処理装置以外の構成は、図1に示した従来のレーダ装置と同様の構成を有する。
本発明のレーダ装置の信号処理方法について図面を用いて説明する。図5は本発明の実施例1に係るレーダ装置の信号処理方法の手順を示すフローチャートである。まず、ペアリングを行うための周波数ピークを求めるために、周波数ピーク検出部10は、FM−CWレーダ装置において、送信した電波が複数の目標物で反射された反射波を受信して受信信号を生成し、該受信信号から複数のアップ周波数ピークと複数のダウン周波数ピークとを検出すると共に、アップ周波数ピーク及びダウン周波数ピークにおける目標物に関する特性値を測定する。検出した周波数のピークは図3に示すように複数存在する。ここで、アップ周波数ピークがn個あった場合、アップ周波数ピークをfu1, fu2, … funと表し、ダウン周波数ピークがm個あった場合、ダウン周波数ピークをfd1, fd2, … fdmと表すこととする。
この周波数ピークを示す周波数における目標物に関する特性値としては、アップ周波数ピーク及びダウン周波数ピークにおける目標物の存在する位置の角度、受信信号のパワー、スペクトラム強度が挙げられる。スペクトラム強度とは、アレーアンテナによる到来方向推定法(ビームフォーマ法、Capon法、線形予測法など)によって得られる、到来波の角度分布(角度スペクトラム)において、それぞれの角度の強さを表すものをいう。
次に、ステップS101において、第1の組み合わせグループ決定部11は、複数のアップ周波数ピークの各々に対して、全てのダウン周波数ピークを組み合わせて、第1の組み合わせグループを決定する。例えば、アップ周波数ピークがn個存在し、ダウン周波数ピークがm個存在する場合、第1の組み合わせグループに含まれる組合せの数はn×m個となる。具体的には、第1の組み合わせグループに含まれる組合せは、(fu1, fd1), (fu1, fd2), … (fu1, fdm), (fu2, fd1), (fu2, fd2), … (fu2, fdm), (fun, fd1), (fun, fd2) … (fun, fdm)と表せる。
次に、ステップS102において、第1のペアリング候補グループ決定部12は、第1の組み合わせグループを構成する各々の組み合わせについて、測定された特性値に基づいてマハラノビス距離を算出し、1つのアップ周波数ピークに対して1つのダウン周波数ピークを対応させるようにマハラノビス距離が最小となる第1のペアリング候補グループを決定する。ここで、第1のペアリング候補グループに含まれる組合せは、(fu1, fda), (fu2, fdb), … (fun, fdc)(a,b,cはm以下の整数)と表せる。
マハラノビス距離は、アップ周波数ピークとダウン周波数ピークとの角度、パワー、スペクトラム強度それぞれの差である、角度差、パワー差、スペクトラム強度差の値を用いて算出する。図6を用いてマハラノビス距離の算出方法について説明する。x軸にスペクトラム強度差、y軸に角度差、z軸にパワー差をとった3次元のグラフ上に、アップ周波数ピークとダウン周波数ピークとの角度差、パワー差、スペクトラム強度差をプロットしている。図中で21(●印)は正常にペアリングされた組合せの角度差、パワー差、スペクトラム強度差を示し、正常にペアリングされた組合せの全体の平均値を22(★印)で示している。この場合、マハラノビス距離を算出する対象の組合せのデータ23(四角形の印)のマハラノビス距離は、平均値22との間の距離24で求めることができる。
具体的には、平均がμ=(μ1, μ2, μ3)T で、共分散行列がΣであるような多変数ベクトルx=(x1, x2, x3)で表される一群の値に対するマハラノビス距離は、次のように算出できる。
上記のステップS102における、第1のペアリング候補グループの決定方法について図面を用いて説明する。図7に、アップビート信号及びダウンビート信号の一例を示す。同図では、アップビート信号(UPビート)には、4つのアップ周波数ピーク(fu1, fu2, fu3, fu4)が存在し、ダウンビート信号(DOWNビート)には、5つのダウン周波数ピーク(fd1, fd2, fd3, fd4, fd5)が存在する例を示しており、例えば、アップ周波数ピークfu1に対しダウン周波数ピークfd1 〜fd5の中でマハラノビス距離が最小となるダウン周波数ピークがfd2であることを示している。このように、マハラノビス距離に基づいて、1つのアップ周波数ピークから、1つのダウン周波数ピークをペアリングする第1のペアリング候補グループは、同図の実線の矢印で示すように、(fu1, fd2), (fu2, fd5), (fu3, fd2), (fu4, fd3)と決定される。
尚、上記の例では1つのピークが1つの目標物の角度、パワー、スペクトラム強度情報を有するものとして説明したが、目標物の角度推定方式によっては1つのピークから複数の目標物の角度情報を分離できる場合がある。その場合、1つのピークに対して複数の目標物の角度、パワー、スペクトラム強度情報を持つ。例えば1つのピークが3つの目標物の情報を持つとすれば、アップ周波数ピークfunはfun-1、fun-2、fun-3、ダウン周波数ピークfdmはfdm-1、fdm-2、fdm-3と各目標物毎に分離され、組み合わせは各目標物毎になされる。従って、アップ周波数ピーク数がn個、ダウン周波数ピーク数がm個ある場合、組み合わせの数は3n×3mとなる。この組み合わせについてマハラノビス距離が最小となる第1のペアリング候補グループを決定する。このことは、次のステップS103、S104についても同様である。
次に、ステップS103において、第2の組み合わせグループ決定部13は、複数のダウン周波数ピークの各々に対して、全てのアップ周波数ピークを組み合わせて、第2の組み合わせグループを決定する。例えば、アップ周波数ピークがn個存在し、ダウン周波数ピークがm個存在する場合、第2の組み合わせグループに含まれる組合せの数はn×m個となる。具体的には、第2の組み合わせグループに含まれる組合せは、(fd1, fu1), (fd1, fu2), … (fd1, fun), (fd2, fu1), (fd2, fu2), … (fd2, fun), (fdm, fu1), (fdm, fu2) … (fdm, fun)と表せる。
次に、ステップS104において、第2のペアリング候補グループ決定部14は、第2の組み合わせグループを構成する各々の組み合わせについて、測定された特性値に基づいてマハラノビス距離を算出し、1つのダウン周波数ピークに対して1つのアップ周波数ピークを対応させるようにマハラノビス距離が最小となる第2のペアリング候補グループを決定する。マハラノビス距離の算出方法は上記と同様である。ここで、第2のペアリング候補グループに含まれる組合せは、(fd1, fui), (fd2, fuj), … (fdn, fuk)(i,j,kはn以下の整数)と表せる。
上記のステップS104における、第2のペアリング候補グループの決定方法について図7を用いて説明する。第1のペアリング候補グループの決定方法と同様に、マハラノビス距離に基づいて、1つのダウン周波数ピークから、1つのアップ周波数ピークをペアリングする第2のペアリング候補グループは、同図の破線の矢印で示すように、(fd1, fu1), (fd2, fu1), (fd3, fu2), (fd4, fu4), (fd5, fu4)と決定される。
次に、ステップS105において、ペアリング候補グループ抽出部15は、第1のペアリング候補グループ及び第2のペアリング候補グループからなるグループにおいて、同一周波数において複数の組み合わせが存在する場合には、該複数の組み合わせの中からマハラノビス距離が大きい組み合わせを除去してペアリング候補グループを抽出する。
具体的には、本実施例では、アップ周波数ピークとダウン周波数ピークとの組合せを第1の組み合わせグループ決定ステップと第2の組み合わせグループ決定ステップの2回のステップで実行しているため、同一のアップ周波数ピークに対して複数のダウン周波数ピークが組み合わされる可能性がある。即ち、アップ側から組み合わせたときの組合せ(fu1、fd1)に対し、ダウン側から組み合わせたときの組合せ(fd1、fu1)、(fd2、fu1) 、(fd3、fu1)等が存在する場合がある。そこで、複数の組合せの中からマハラノビス距離が大きいものを除去して、マハラノビス距離が小さい組合せをペアリング候補と決定する。図8を用いて、同一周波数における複数の組合せの中から1つの組合せを選択する方法について説明する。図7に示したようにステップS102及びS104において、アップ周波数ピークとダウン周波数ピークは図7の実線及び破線の矢印で示すように、同一の周波数において複数の組合せが存在する場合がある。例えば、アップ周波数ピークfu1に対しては、(fu1, fd2), (fd1, fu1), (fd2, fu1)の3つの組合せが存在する。このように複数の組合せの中からマハラノビス距離が最小となる組合せを1つだけ選択する。同様に他のアップ周波数ピークfu2〜fu4、ダウン周波数ピークfd1〜fd5についてもマハラノビス距離が最小となる組合せを選択する。図8(a)に、マハラノビス距離が最小となる組合せを○で示し、それ以外の組合せを×で示す。また、図8(b)にマハラノビス距離が最小となる組合せのみを示す。この例では3つの組み合わせ(fu2, fd5), (fd2, fu1), (fd5, fu4)のみが選択されている。
次に、ステップS106において、ペアリング候補と決定する今回ペアリング候補グループ決定部16は、ペアリング候補グループを構成する組み合わせのうち、マハラノビス距離が所定のしきい値以上の組み合わせを除去して今回ペアリング候補グループと決定する。
ペアリング候補決定ステップ(S105)において、マハラノビス距離が小さい組合せを抽出したとしても、その絶対値が大きい場合にはペアリングが正常に行われていない可能性も考えられる。そこで、マハラノビス距離が所定の閾値以上である場合には正常にペアリングが行われていないと判断し、そのような組合せを除去する。
図9にマハラノビス距離が所定の閾値以上の組合せを除去した結果を示す。図8(b)に示すように、ステップS105において、マハラノビス距離が最小となる3つの組み合わせ(fu2, fd5), (fd2, fu1), (fd5, fu4)が得られた場合、(fu2, fd5)のマハラノビス距離が所定の閾値以上となっているとすると、図9に示すように2つの組合せ(fd2, fu1), (fd5, fu4)が今回のペアリンググループとして決定される。
次に、ステップS107において、今回データ算出部17は、今回ペアリング候補グループに含まれるアップ周波数ピークとダウン周波数ピークとの組み合わせについて、目標物の距離、相対速度及び角度の少なくとも1つを含む今回のデータを算出する。
ここで、第1の組み合わせグループ決定部及び第2の組み合わせグループ決定部の少なくとも1つにおいて、特性値が所定の範囲内である場合に、アップ周波数ピークとダウン周波数ピークとの組み合わせを行うようにしてもよい。アップ周波数ピーク及びダウン周波数ピークのそれぞれにおける角度、パワー、スペクトラム強度のそれぞれの差が明らかに大きい場合はペアリングが正常に行われていない可能性が高いと考えられるので、そのような組合せは行わないようにすることで、ペアリングが正常に行われているか否かを検証するための演算量を削減することができ、ペアリングの判定を高速化することができる。
本実施例では、マハラノビス距離に基づいてペアリングが正常に行われているか否かを判断しているが、判断基準はマハラノビス距離に限られず、他の相関値に基づいてペアリングが正常に行われているか否かを判断するようにしてもよい。
さらに、本実施例では、角度差、パワー差、スペクトラム強度差の3つの値を基準にしてマハラノビス距離を算出した例を示したが、これには限られず、他のパラメータに基づいてマハラノビス距離を算出してもよいし、パラメータの数も3つには限られない。
以上のようにして、本発明の実施例1に係るレーダ装置によれば、複数の目標物に関して検出されたアップ周波数ピークとダウン周波数ピークとをマハラノビス距離を用いてペアリングを行うことにより、ミスペアリングを低減することができる。
次に、本発明の実施例2に係るレーダ装置について説明する。図10に本発明の実施例2に係るレーダ装置を構成する信号処理装置の機能ブロック図を示す。図10には、図1に示した信号処理装置の構成のみを示している。信号処理装置9は、実施例1で示した構成に加えて、過去データ抽出部18と、予測データ算出部19と、ペアリング確定部20とを備えている。
本発明のレーダ装置の信号処理方法について図面を用いて説明する。図11は、本発明の実施例2に係るレーダ装置の信号処理方法の手順を示すフローチャートであり、図5に示した実施例1の手順を示すフローに続けて実行される。
まず、ステップS201において、過去データ抽出部18が、今回データ算出ステップで今回のデータを算出する以前に検出された目標物の距離、相対速度及び角度の少なくとも1つを含む過去のデータを抽出する。ここで、「過去のデータ」とは、ペアリング候補グループ決定段階(S106、S107)のデータをいう。即ち、本発明の信号処理装置は、目標物に対して繰り返し電波を照射した際に受信した信号から算出した、目標物に関する検出データを順次記憶し、過去データ抽出部18が記憶された過去のデータを抽出する。過去のデータは信号処理装置9内に備えられたメモリ92(図1参照)に格納してもよいし、信号処理装置9の外部に設けられた記憶媒体(図示せず)に記憶するようにしてもよい。
次に、ステップS202において、予測データ算出部19が、抽出された過去のデータに基づいて、目標物に関して今回のデータに対応すると予測される予測データを算出する。即ち、過去数回にわたって検出し記憶された目標物の過去のデータに基づいて、今回のデータを予測するものである。例えば、過去3回分のデータに基づいて今回のデータを予測するようにしてもよい。ただし、3回分には限られず、2回分でもよいし、4回分以上の過去のデータを用いて今回のデータを予測するようにしてもよい。
次に、ステップS203において、ペアリング確定部20が、予測データと今回のデータとを用いてマハラノビス距離を算出し、算出したマハラノビス距離が所定の範囲内である場合に、目標物に関してアップ周波数ピークとダウン周波数ピークとのペアリングを確定する。
マハラノビス距離は、過去のデータに基づいて予測した目標物のデータと、今回のデータとを用いて算出する。図12を用いてマハラノビス距離の算出方法について説明する。本実施例では、目標物の位置情報、即ち縦位置誤差と横位置誤差とを用いた例を示す。x軸に横位置誤差、y軸に縦位置誤差をとったグラフ上に、過去において予測した目標物の横位置、縦位置データとそのときに正しいペアリングが行なわれたとして確定した目標物の横位置、縦位置データとの差分、即ち横位置誤差、縦位置誤差を31(●印)としてプロットしている。ここで、過去の横位置誤差、縦位置誤差は、事前に測定し正しいペアリングと判定されたデータであって、その今回ペアデータと前回ペアデータからの予測値との差を求めたものを使用している。その平均値を32(★印)で示している。尚、ペアリング確定部20で予測と確定が行なわれるたびにそのときの予測目標物と確定目標物との横位置誤差、縦位置誤差を過去データに追加してもよい。今回の処理においては、ステップS107で算出された今回の目標物データの横位置、縦位置データと、過去のデータから今回予測した横位置、縦位置データとの横位置誤差、縦位置誤差(今回のデータ33(四角形の印)として示している)と、平均値32とのマハラノビス距離(平均値32との間の距離34で求めることができる。)を求め、算出したマハラノビス距離が所定の範囲内である場合に、目標物に関してアップ周波数ピークとダウン周波数ピークとのペアリングを確定する。
上記の説明においては、目標物の位置のマハラノビス距離に基づいてアップ周波数ピークとダウン周波数ピークとのペアリングを確定する方法について説明したが、目標物の確定のためには、目標物の位置情報だけでなく、目標物の相対速度に関しても同様にマハラノビス距離を算出してアップ周波数ピークとダウン周波数ピークとのペアリングを確定する。実際にペアリングを確定するには位置と相対速度が予測値と近いことが必要であるためである。
上記のようにして算出したマハラノビス距離が所定の範囲内である場合には、正常にペアリングが行われているものと考えられるので、アップ周波数ピークとダウン周波数ピークとのペアリングを確定する。
以上のようにして、マハラノビス距離に基づいて正常にペアリングが行われているか否かを判断しているので、ミスペアリングを抑制することができる。
さらに、過去のデータを用いて今回のデータを予測することにより、目標物の周波数ピークがノイズや他の目標物により一時的に埋もれて検出できなかった場合でも、その次に検出できれば速やかにペアリングを確定することができるため、目標物を見失う危険性を低減することができる。
また、上記の実施例ではマハラノビス距離に基づいて相関値を算出する例を示したが、マハラノビス距離以外の他の計算方法で相関値を算出するようにしてもよい。さらに、本実施例では、縦位置誤差及び横位置誤差の2つのパラメータを基準にして正常にペアリングが行われたか否かを判断する例を示したが、他のパラメータを基準にして判断するようにしてもよいし、位置情報、相対速度情報を含む3個以上のパラメータを用いて判断してもよい。
次に、本発明の実施例3に係るレーダ装置について図面を用いて説明する。図13は、本発明の実施例3に係るレーダ装置の信号処理方法の手順を示すフローチャートであり、図11に示した実施例2の手順を示すフローに続けて実行される。本実施例では、ペアリング確定部20が、同一目標物に対してペアリングが確定するたびにペアリング確定回数をカウントし、ペアリング確定回数が所定の回数以上となった場合に目標物に関する今回データを出力する点を特徴としている。即ち、目標物が複数存在する場合には、各目標物毎にペアリング確定回数をカウントする。
目標物の確定方法について図14を用いて説明する。ここでは、2つの目標物の候補101,102があり、前回のペアリング候補から求めた目標物の位置をそれぞれP1、P2とする。また、前回のペアリング候補から求めた今回の予想位置を△101´、□102´とし、それぞれの値を中心として今回のペアリング候補と関連付ける、即ち目標物の同一性を判断するための境界を201、202で示す。ここで、今回のペアリング候補には3つの候補があり、それぞれの候補から求めた位置をP11(111)、P12(112)、P13(113)とする。そこで、各ペアリング候補について、目標物の同一性を今回の予想位置から所定の範囲(201、202)内にあるか否かを判定し、所定の範囲内にあるとき、更にマハラノビス距離が所定の閾値以下なら前回のペアリング候補と同一目標物とみなす。
例えば、今回のペアリング候補から求めた位置P11(111)は、前回のペアリング候補から求めた今回の予想位置△101´に対し所定範囲201にあるため今回のペアリング候補は目標物101と同一目標物の候補とする。そして今回のペアリング候補から求めた位置P11(111)と今回の予想位置△101´から横位置誤差、縦位置誤差についてのマハラノビス距離が所定の閾値の範囲内にあれば同一物とみなす。この場合は目標物101用のカウントをアップする。なお、カウンタは目標物101用と102用とで別々に持つ。
同様にして、目標物102の今回のペアリング候補から求めた位置P13(113)は、前回のペアリング候補から求めた今回の予想位置□102´に対し所定範囲202内にあるため、その横位置誤差、縦位置誤差についてのマハラノビス距離が所定の閾値の範囲内にあれば、同一物とみなす。この場合は目標物102用のカウントをアップする。
一方、今回のペアリング候補P12(112)は、目標物101の前回のペアリング候補から求めた今回の予想位置△101´からの所定範囲、及び目標物102の前回のペアリング候補から求めた今回の予想位置□102´からの所定範囲の何れの予想位置にも入らないため、除外する。
上記のようにして、ペアリング確定部20は、ペアリングが確定するたびにペアリング確定回数をカウントし、ペアリング確定回数を記憶手段に格納する。次に、ステップS301において、ペアリング確定部20は記憶手段を参照してペアリング確定回数が所定の回数以上であるか否かを判断する。
ペアリング確定回数が所定の回数以上である場合には、ステップ302において、目標物のデータを出力する。一方、ペアリング確定回数が所定の回数未満である場合には、再度測定を開始する。
以上のように、本発明の実施例3に係るレーダ装置の信号処理装置によれば、連続性を有する同一目標物のペアリング確定回数が所定の回数となった場合、即ち目標物の存在が確かめられたときにのみ目標物データの出力を行うようにしているので、ミスペアリングした目標物のデータの出力を抑制することができる。
以上の説明において、図示したレーダ装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示のように構成されていることを要しない。
さらに、各構成要素にて行なわれる各処理機能は、その全部または任意の一部が、CPU等及びCPU等においてにて解析実行されるプログラムにて実現され、あるいは、論理回路によるハードウェアとして実現されてもよい。
1 アンテナ
2 送受信機
3 ミキサ
4 発振器
5 LPF
6 A/D変換器
7 アップスイープ・フーリエ変換器
8 ダウンスイープ・フーリエ変換器
9 信号処理装置
10 周波数ピーク検出部
11 第1の組み合わせグループ決定部
12 第1のペアリング候補グループ決定部
13 第2の組み合わせグループ決定部
14 第2のペアリング候補グループ決定部
15 ペアリング候補グループ抽出部
16 今回ペアリング候補グループ決定部
17 今回データ算出部
18 過去データ抽出部
19 予測データ算出部
20 ペアリング確定部
91 CPU
92 メモリ

Claims (3)

  1. 送信した電波が複数の目標物で反射された反射波を受信して受信信号を生成し、該受信信号から複数のアップ周波数ピークと複数のダウン周波数ピークとを検出すると共に、前記アップ周波数ピーク及び前記ダウン周波数ピークにおける前記目標物に関する特性値を測定し、
    複数のアップ周波数ピークの各々と複数のダウン周波数ピークの各々とをそれぞれ1つずつ組み合わせ、各々の組み合わせについて、測定された前記特性値に基づいてマハラノビス距離を算出し、マハラノビス距離が最小となる組み合わせをペアリング候補として決定し、該決定したアップ周波数ピークとダウン周波数ピークに基づき、前記目標物の距離、相対速度及び角度の少なくとも1つを含む今回のデータを算出し、
    前記今回のデータを算出する以前に、目標物に対して繰り返し電波を照射した際に受信した信号から算出した目標物の距離、相対速度及び角度の少なくとも1つを含む過去のデータを順次記憶し、記憶された過去のデータを抽出し、
    抽出された前記過去のデータに基づいて、目標物に関して今回のデータに対応すると予測される予測データを算出し、
    前記予測データと前記今回のデータとを用いてマハラノビス距離を算出し、算出したマハラノビス距離が所定の範囲内である場合に、目標物に関してアップ周波数ピークとダウン周波数ピークとのペアリングを確定し、
    複数のアップ周波数ピークの各々に対して、全てのダウン周波数ピークの各々を組み合わせて、第1の組み合わせグループを決定し、
    前記第1の組み合わせグループの中でマハラノビス距離が最小となる第1のペアリング候補グループを決定し、
    複数のダウン周波数ピークの各々に対して、全てのアップ周波数ピークの各々を組み合わせて、第2の組み合わせグループを決定し、
    前記第2の組み合わせグループの中でマハラノビス距離が最小となる第2のペアリング候補グループを決定し、
    前記第1のペアリング候補グループ及び前記第2のペアリング候補グループにおいて、前記複数のアップ周波数ピークの各々と前記複数のダウン周波数ピークの各々との組合せが同一周波数において複数存在する場合は、前記同一周波数における前記特性値に基づいて算出したマハラノビス距離が最小となるアップ周波数ピークとダウン周波数ピークとの組合せを選択する、
    ことを特徴とするレーダ装置。
  2. 前記複数のアップ周波数ピークの各々と前記複数のダウン周波数ピークの各々との組合せは、アップ周波数ピークに対してダウン周波数ピークを組合せた組合せと、ダウン周波数ピークに対してアップ周波数ピークを組み合わせた組合せを含む、請求項1に記載のレーダ装置。
  3. 同一目標物に対してペアリングが確定するたびにペアリング確定回数をカウントし、ペアリング確定回数が所定の回数以上となった場合に目標物に関する今回のデータを出力する、請求項1または2に記載のレーダ装置。
JP2010252084A 2010-11-10 2010-11-10 レーダ装置 Active JP5709476B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010252084A JP5709476B2 (ja) 2010-11-10 2010-11-10 レーダ装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010252084A JP5709476B2 (ja) 2010-11-10 2010-11-10 レーダ装置
US13/289,528 US8933834B2 (en) 2010-11-10 2011-11-04 Radar device
EP20110188360 EP2453259B1 (en) 2010-11-10 2011-11-09 Radar device

Publications (2)

Publication Number Publication Date
JP2012103118A JP2012103118A (ja) 2012-05-31
JP5709476B2 true JP5709476B2 (ja) 2015-04-30

Family

ID=45491240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010252084A Active JP5709476B2 (ja) 2010-11-10 2010-11-10 レーダ装置

Country Status (3)

Country Link
US (1) US8933834B2 (ja)
EP (1) EP2453259B1 (ja)
JP (1) JP5709476B2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024809B2 (en) * 2011-03-17 2015-05-05 Sony Corporation Object detection system and method
JP6280319B2 (ja) 2012-10-30 2018-02-14 株式会社デンソーテン レーダ装置、および、信号処理方法
JP6200644B2 (ja) 2012-12-07 2017-09-20 富士通テン株式会社 レーダ装置、及び、信号処理方法
JP2014115137A (ja) * 2012-12-07 2014-06-26 Fujitsu Ten Ltd レーダ装置、及び、信号処理方法
CN103064080B (zh) * 2012-12-25 2015-04-29 西安天伟电子系统工程有限公司 一种连续波目标引导雷达
JP6127554B2 (ja) * 2013-02-08 2017-05-17 株式会社デンソー レーダ装置
US9024808B2 (en) * 2013-03-07 2015-05-05 Rosemount Tank Radar Ab Filling level determination using transmit signals with different frequency steps
DE102013215117A1 (de) * 2013-08-01 2015-02-05 Robert Bosch Gmbh Objektbestimmung mittels Radarsensor
JP6313981B2 (ja) 2014-01-22 2018-04-18 株式会社デンソーテン レーダ装置、車両制御システム、および、信号処理方法
JP2015155807A (ja) * 2014-02-20 2015-08-27 富士通テン株式会社 レーダ装置、車両制御システム、および、信号処理方法
US10422649B2 (en) * 2014-02-24 2019-09-24 Ford Global Technologies, Llc Autonomous driving sensing system and method
US9834207B2 (en) * 2014-04-15 2017-12-05 GM Global Technology Operations LLC Method and system for detecting, tracking and estimating stationary roadside objects
US10018709B2 (en) * 2014-09-19 2018-07-10 GM Global Technology Operations LLC Radar target detection via multi-dimensional cluster of reflectors
JP6534808B2 (ja) * 2014-11-28 2019-06-26 株式会社デンソーテン レーダ装置、および、信号処理方法
US10082563B2 (en) * 2014-12-17 2018-09-25 Northrop Grumman Systems Corporation Synthesized profile
CN105279315B (zh) * 2015-09-29 2018-11-27 昆明理工大学 一种基于相关分析和马氏距离的变压器在线监测信息聚合分析方法
JP2017223634A (ja) 2016-06-17 2017-12-21 株式会社デンソーテン レーダ装置及びピーク処理方法
CN108363058A (zh) * 2018-03-06 2018-08-03 电子科技大学 频控阵成像雷达的信号参数设计方法
CN109407071A (zh) * 2018-12-13 2019-03-01 广州极飞科技有限公司 雷达测距方法、雷达测距装置、无人机和存储介质

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559372A (ja) 1991-09-02 1993-03-09 Sanwa Kako Kk ポリオレフイン系樹脂から燃料油を製造する方法
JP3471392B2 (ja) * 1993-08-05 2003-12-02 トヨタ自動車株式会社 周波数変調レーダ装置
JP3060792B2 (ja) * 1993-08-23 2000-07-10 トヨタ自動車株式会社 周波数変調レーダ装置
JP4082473B2 (ja) * 1997-12-19 2008-04-30 富士通テン株式会社 レーダ装置の信号処理方法および装置
JP3114700B2 (ja) * 1998-06-30 2000-12-04 日本電気株式会社 Fm−cwレーダ装置
JP2002236170A (ja) * 2001-02-06 2002-08-23 Fujitsu Ten Ltd Fm−cwレーダ処理装置
JP3902738B2 (ja) * 2001-12-11 2007-04-11 富士通テン株式会社 レーダのデータ処理装置
JP3753071B2 (ja) * 2002-01-07 2006-03-08 株式会社村田製作所 レーダ
JP3801068B2 (ja) * 2002-02-19 2006-07-26 株式会社デンソー Fmcwレーダ装置,プログラム
JP3797277B2 (ja) * 2002-06-04 2006-07-12 株式会社村田製作所 レーダ
JP4223767B2 (ja) * 2002-08-30 2009-02-12 富士通テン株式会社 クロスオーバ検出方法、レーダ装置及びクロスオーバ検出プログラム
GB0315349D0 (en) * 2003-07-01 2003-08-06 Qinetiq Ltd Signal processing with reduced combinatorial complexity
US20070008210A1 (en) * 2003-09-11 2007-01-11 Noriko Kibayashi Radar device
JP4278507B2 (ja) 2003-12-26 2009-06-17 富士通テン株式会社 Fm−cwレーダ装置
JP4536381B2 (ja) * 2004-01-09 2010-09-01 富士通テン株式会社 組合せ決定装置、組合せ決定方法、組合せ決定プログラムおよびレーダ装置
NL1032520C2 (nl) 2006-09-15 2008-03-18 Thales Nederland Bv Werkwijze en systeem voor het volgen van een object.
JP2008082956A (ja) * 2006-09-28 2008-04-10 Mazda Motor Corp 車両の障害物検知装置及びその検知方法
GB2442776A (en) * 2006-10-11 2008-04-16 Autoliv Dev Object detection arrangement and positioning system for analysing the surroundings of a vehicle
US20090292468A1 (en) 2008-03-25 2009-11-26 Shunguang Wu Collision avoidance method and system using stereo vision and radar sensor fusion
JP5317570B2 (ja) * 2008-08-07 2013-10-16 富士通テン株式会社 レーダ装置及び物標検出方法
JP5210179B2 (ja) * 2008-10-30 2013-06-12 本田技研工業株式会社 物体検知装置
US8638254B2 (en) * 2009-08-27 2014-01-28 Fujitsu Ten Limited Signal processing device, radar device, vehicle control system, signal processing method, and computer-readable medium

Also Published As

Publication number Publication date
JP2012103118A (ja) 2012-05-31
US20120112951A1 (en) 2012-05-10
EP2453259B1 (en) 2015-01-28
US8933834B2 (en) 2015-01-13
EP2453259A1 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
CN106796282B (zh) 使用连续波和chirp信号来确定物体的距离、相对速度和方位的雷达系统和方法
JP6533288B2 (ja) Mimoレーダー測定方法
JP3487857B2 (ja) レーダ装置及び該装置の作動方法
JP4415040B2 (ja) レーダ装置
US7714771B2 (en) Method and device for measuring the distance and relative speed of multiple objects
JP5549560B2 (ja) Fm−cwレーダ装置、ペアリング方法
DE102008014786B4 (de) Verfahren zur Bestimmung des Pegels eines Grundrauschens und Radar zur Anwendung des Verfahrens sowie eine Interferenzerfassungsvorrichtung
US6888494B2 (en) FMCW radar system
JP2015141109A (ja) レーダ装置、及び、信号処理方法
EP1698910B1 (en) Fm/cw radar signal processing method
AU2012351668B2 (en) A method and a sensor for determining a direction-of-arrival of impingent radiation
US7460052B2 (en) Multiple frequency through-the-wall motion detection and ranging using a difference-based estimation technique
JP4045043B2 (ja) レーダ装置
JP2015137915A (ja) レーダ装置、車両制御システム、および、信号処理方法
EP1925948B1 (en) Radar apparatus and signal processing method
JP5407272B2 (ja) レーダ装置
KR100824552B1 (ko) 수동 코히어런트 위치 확인 애플리케이션에서 특징을 검출 및 추출하는 시스템 및 방법
JP4857644B2 (ja) レーダ装置
JP4492628B2 (ja) 干渉判定方法,fmcwレーダ
JP2011127910A (ja) レーダ装置及びレーダシステム
JP2004340755A (ja) 車両用レーダ装置
JP2004163340A (ja) 車載用レーダ装置
JP5468304B2 (ja) レーダ装置
JP5256223B2 (ja) レーダシステム、及び方位検出方法
US7355545B2 (en) Through the wall ranging with triangulation using multiple spaced apart radars

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150303

R150 Certificate of patent or registration of utility model

Ref document number: 5709476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250