JP5706938B2 - Detection device - Google Patents

Detection device Download PDF

Info

Publication number
JP5706938B2
JP5706938B2 JP2013185687A JP2013185687A JP5706938B2 JP 5706938 B2 JP5706938 B2 JP 5706938B2 JP 2013185687 A JP2013185687 A JP 2013185687A JP 2013185687 A JP2013185687 A JP 2013185687A JP 5706938 B2 JP5706938 B2 JP 5706938B2
Authority
JP
Japan
Prior art keywords
infrared light
ray
image
infrared
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013185687A
Other languages
Japanese (ja)
Other versions
JP2014028274A (en
Inventor
辻井 修
修 辻井
森下 正和
正和 森下
奥貫 昌彦
昌彦 奥貫
清水 英
英 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013185687A priority Critical patent/JP5706938B2/en
Publication of JP2014028274A publication Critical patent/JP2014028274A/en
Application granted granted Critical
Publication of JP5706938B2 publication Critical patent/JP5706938B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、X線によって被検体のX線画像を検出する検出装置に関する。   The present invention relates to a detection apparatus that detects an X-ray image of a subject using X-rays.

X線撮影によって被検体の乳房のX線画像を取得するX線乳房撮影装置には、半導体2次元画像検出器を使用したX線乳房撮影装置がある。これは、X線源、乳房を圧迫するための圧迫板、乳房を保持すると同時に透過したX線強度分布を画像化する2次元X線画像検出器をその基本構成とする。2次元画像検出器はX線を可視蛍光に変換する蛍光体と半導体2次元画像検出器を貼り合わせて作成される(例えば特許文献1参照)。   An X-ray mammography apparatus that acquires an X-ray image of a subject's breast by X-ray imaging includes an X-ray mammography apparatus using a semiconductor two-dimensional image detector. This has a basic configuration of an X-ray source, a compression plate for compressing the breast, and a two-dimensional X-ray image detector for holding the breast and simultaneously imaging the transmitted X-ray intensity distribution. The two-dimensional image detector is created by bonding a phosphor that converts X-rays into visible fluorescence and a semiconductor two-dimensional image detector (see, for example, Patent Document 1).

X線乳房撮影装置にはX線の散乱線を抑制するためのグリッドが使用されるものがある(例えば特許文献2参照)。   Some X-ray mammography apparatuses use a grid for suppressing scattered X-rays (see, for example, Patent Document 2).

また、乳房のX線画像と超音波画像を同一の圧迫条件で撮影する装置がある。この装置に関する超音波プローブの位置を検出するセンサとしては、例えば赤外線が利用される。乳房はX線画像の取得と超音波画像の取得とで同じように圧迫されているので、結果として、超音波画像とX線画像とを結合することができる(例えば特許文献3参照)。   There is also an apparatus that captures an X-ray image of a breast and an ultrasound image under the same compression condition. For example, infrared light is used as a sensor for detecting the position of the ultrasonic probe with respect to this apparatus. Since the breast is compressed in the same way in the acquisition of the X-ray image and the acquisition of the ultrasonic image, as a result, the ultrasonic image and the X-ray image can be combined (for example, see Patent Document 3).

また、近赤外光を乳房圧縮板を介して乳房に照射し、透過光を光ファイバーで集めて乳房画像を撮影する技術が提案されている(例えば特許文献4参照)。   In addition, a technique has been proposed in which a breast image is captured by irradiating a breast with near-infrared light through a breast compression plate and collecting transmitted light with an optical fiber (see, for example, Patent Document 4).

さらに、振幅変調された複数の近赤外光を一つの光ファイバーに入射させた後に乳房を透過させ、透過した近赤外光をホモダイン検出することで乳房の近赤外画像を得る技術も提案されている(例えば非特許文献1参照)。   Furthermore, a technique for obtaining a near-infrared image of a breast by allowing a plurality of amplitude-modulated near-infrared light to enter a single optical fiber, transmitting the breast, and detecting the transmitted near-infrared light by homodyne is proposed. (For example, refer nonpatent literature 1).

特開平08-238233JP 08-238233 特開2005-013344JP2005-013344 特開2003-260046JP2003-260046 特表平09-505407Special table flat 09-505407

Sergio Fantini他、「Using Near-Infrared Light To Detect Breast Cancer」、Optics&Photonics News, November, 2003Sergio Fantini et al., "Using Near-Infrared Light To Detect Breast Cancer", Optics & Photonics News, November, 2003

X線乳房撮影装置を使用した乳癌診断において、陽性が疑われた場合の細胞診断、組織診断、あるいは術後の経過観察の際に、撮影装置と乳房の位置決めに再現性が求められる場合がある。   In breast cancer diagnosis using an X-ray mammography apparatus, reproducibility may be required for positioning of the imaging apparatus and the breast during cytodiagnosis, tissue diagnosis, or postoperative follow-up when suspected to be positive .

しかし、従来の乳房撮影装置では位置決め機能を有していない。   However, the conventional mammography apparatus does not have a positioning function.

他方、X線乳房画像が不得意とする腫瘤状の癌の発見に近赤外画像が有効である場合があるが、近赤外画像で発見された病変部とX線画像との位置の対応をとることができないという問題もあった。   On the other hand, near-infrared images may be effective in finding mass-like cancers that X-ray breast images are not good at. Correspondence between positions of lesions found in near-infrared images and X-ray images There was also a problem that it was not possible to take.

本発明は以上のような課題に鑑みてなされたものであり、例えば、例えば、異なる波長で被写体を検出できる検出装置を提供することを目的とする。   The present invention has been made in view of the problems as described above. For example, an object of the present invention is to provide a detection device that can detect a subject at different wavelengths.

本発明の一側面によれば、近赤外光を発する近赤外光源と、X線を照射するX線源と、前記近赤外光及び前記X線を検出する検出手段と、前記検出手段の内部に挿入されるグリッドと、被写体を該被写体の載置面に対して圧迫するための圧迫板と、前記近赤外光に基づく近赤外画像の撮影を行う場合、前記圧迫板における前記被写体の接触面の反対側の面に前記近赤外光源を進入させ、前記検出手段の受信面に照射される前記近赤外光を遮らない範囲に前記グリッドを退避させ、前記X線に基づくX線画像の撮影を行う場合、前記検出手段の内部に前記グリッドを挿入させ、前記検出手段の前記受信面に照射される前記X線を遮らない範囲に前記近赤外光源を退避させる制御手段とを備え、前記検出手段は、少なくとも前記近赤外光を透過し且つ可視光を透過しない波長フィルタと、前記波長フィルタを透過した近赤外光を透過し、X線の入射に対しては蛍光を発生する蛍光体と、前記蛍光体を透過した近赤外光及び前記蛍光に感度を有する半導体センサとを含むことを特徴とする検出装置が提供される。 According to one aspect of the present invention, a near-infrared light source that emits near-infrared light, an X-ray source that emits X-rays, a detection unit that detects the near-infrared light and the X-ray, and the detection unit A grid that is inserted into the inside, a compression plate for compressing the subject against the placement surface of the subject, and when taking a near-infrared image based on the near-infrared light, Based on the X-ray, the near-infrared light source enters the surface opposite to the contact surface of the subject, the grid is retracted in a range not blocking the near-infrared light irradiated on the receiving surface of the detection means When photographing an X-ray image, a control unit that inserts the grid into the detection unit and retracts the near-infrared light source within a range that does not block the X-ray irradiated on the reception surface of the detection unit. with the door, said detection means transmits at least the near-infrared light A wavelength filter that does not transmit visible light, a phosphor that transmits near-infrared light that has passed through the wavelength filter, and generates fluorescence in response to X-ray incidence, and a near-infrared light that has transmitted through the phosphor And a semiconductor sensor having sensitivity to the fluorescence .

本発明によれば、複数の異なる波長で被写体を撮影できる。   According to the present invention, a subject can be photographed at a plurality of different wavelengths.

これにより、近赤外画像とX線画像を同一位置条件で撮影が可能になる。   Thereby, it is possible to capture the near-infrared image and the X-ray image under the same position condition.

また、近赤外とX線を用いて撮影した場合には近赤外画像とX線画像を重ね合わせ表示することで石灰化癌と腫瘤癌の重ね合わせを精度良く行えるようになる。   In addition, when imaging is performed using near-infrared and X-rays, the near-infrared image and the X-ray image are superimposed and displayed so that the calcified cancer and the mass cancer can be accurately superimposed.

また、近赤外画像からX線撮影の際の好適な撮影線量を推定することが可能になる。   In addition, it is possible to estimate a suitable imaging dose at the time of X-ray imaging from a near-infrared image.

実施形態におけるX線乳房撮影装置の概略図。1 is a schematic diagram of an X-ray mammography apparatus in an embodiment. 乳房位置決め画像撮影時の圧迫板の運動を示す図。The figure which shows the motion of the compression board at the time of a breast positioning image imaging | photography. 2次元検出器の構造を示す図。The figure which shows the structure of a two-dimensional detector. レーザーダイオードマトリクスの進入退避を表す図。The figure showing the approaching and evacuation of a laser diode matrix. レーザーダイオードマトリクスの構造を示す図。The figure which shows the structure of a laser diode matrix. 半導体センサの一つの画素を示す図。The figure which shows one pixel of a semiconductor sensor. 半導体センサの画素を二次元状に配列した図。The figure which arranged the pixel of the semiconductor sensor in two dimensions. 実施形態に係るX線乳房撮影に係る制御処理のフローチャート。The flowchart of the control processing which concerns on the X-ray mammography which concerns on embodiment.

以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の実施に有利な具体例を示すにすぎない。また、以下の実施形態の中で説明されている特徴の組み合わせの全てが本発明の課題解決手段として必須のものであるとは限らない。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment, It shows only the specific example advantageous for implementation of this invention. In addition, not all combinations of features described in the following embodiments are indispensable as means for solving the problems of the present invention.

本発明の好ましい実施形態を添付図面(図1乃至図8)を参照しながら詳細に説明する。   Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings (FIGS. 1 to 8).

図1に本実施形態に係るX線乳房撮影装置の概略を示す。   FIG. 1 schematically shows an X-ray mammography apparatus according to the present embodiment.

図1の(A)は、乳房6のCC像を撮影する時の装置状態を示す正面図であり、X線乳房撮影装置を被検者(患者)から見た図である。上方から順に、X線源1、レーザーダイオードマトリクス2、圧迫板3、X線グリッド4、2次元検出器5が配置されている。(B)は、乳房6のMLO像を撮影する時の装置状態を示す正面図である。(A)の正面図(CC時)との相違は撮影部がチルトされている点にある。   FIG. 1A is a front view showing an apparatus state when a CC image of the breast 6 is taken, and is a view of the X-ray mammography apparatus as seen from a subject (patient). In order from the top, an X-ray source 1, a laser diode matrix 2, a compression plate 3, an X-ray grid 4, and a two-dimensional detector 5 are arranged. (B) is a front view showing an apparatus state when an MLO image of the breast 6 is taken. The difference from the front view (in CC) of (A) is that the photographing unit is tilted.

ここで、2次元検出器5は、X線源1と対向する側に乳房6を載置する載置面を有する検出部となっている。   Here, the two-dimensional detector 5 is a detection unit having a placement surface on which the breast 6 is placed on the side facing the X-ray source 1.

図1の(C)に示す、赤外線画像取得時及び乳房位置決め時の装置状態を説明する。この状態ではX線源1からX線の曝射はしない。2次元検出器5の載置面に載置された被検者の乳房6は、当該載置面に対して圧迫板3で圧迫されている。圧迫板3の上方には、この圧迫板3に沿って2次元状に配される2次元近赤外光源であるレーザーダイオードマトリクス2が設けられている。レーザーダイオードマトリクス2は、圧迫板3と密着する第1の位置と、X線画像の撮影領域外の第2の位置との間に移動可能に構成されている。レーザーダイオードマトリクス2には近赤外レーザーダイオードがマトリクス状に複数個配置される。圧迫板3は近赤外光を透過する光学的に透明又は半透明な材料で、且つ、X線を透過しやすい材料、例えばアクリルなどが適当である。   The apparatus state at the time of infrared image acquisition and breast positioning shown in FIG. In this state, no X-rays are emitted from the X-ray source 1. The breast 6 of the subject placed on the placement surface of the two-dimensional detector 5 is pressed against the placement surface by the compression plate 3. A laser diode matrix 2, which is a two-dimensional near-infrared light source, is provided above the compression plate 3 in a two-dimensional manner along the compression plate 3. The laser diode matrix 2 is configured to be movable between a first position in close contact with the compression plate 3 and a second position outside the imaging region of the X-ray image. In the laser diode matrix 2, a plurality of near infrared laser diodes are arranged in a matrix. The compression plate 3 is made of an optically transparent or translucent material that transmits near-infrared light and a material that easily transmits X-rays, such as acrylic.

近赤外レーザーダイオードから発せられた近赤外光は、圧迫板3を透過し乳房6中を減衰拡散しながら進み2次元検出器5に到達する。近赤外光を透過しないX線グリッド4は退避している。2次元検出器5は、可視光、近赤外光に感度を有する2次元半導体検出器を含む。すなわち、2次元検出器は、X線を検出可能な他、可視光、近赤外光を検出可能である。2次元検出器5に入射した光強度分布を元に乳房6の近赤外画像が計算される。ここで乳房位置決め時と定義しているのは、乳房6の近赤外像をリアルタイムで表示することにより、撮影技師は、乳房6中の血管配置を元に乳房6の位置決め状態を再現することが可能になるからである。   Near-infrared light emitted from the near-infrared laser diode passes through the compression plate 3, travels while being attenuated and diffused in the breast 6, and reaches the two-dimensional detector 5. The X-ray grid 4 that does not transmit near-infrared light is retracted. The two-dimensional detector 5 includes a two-dimensional semiconductor detector having sensitivity to visible light and near infrared light. That is, the two-dimensional detector can detect X-rays and can detect visible light and near-infrared light. A near-infrared image of the breast 6 is calculated based on the light intensity distribution incident on the two-dimensional detector 5. Here, the time of breast positioning is defined by displaying a near-infrared image of the breast 6 in real time, so that the radiographer reproduces the positioning state of the breast 6 based on the blood vessel arrangement in the breast 6. This is because it becomes possible.

乳房位置決めの撮影と近赤外画像撮影との相違について説明しておく。これらの画像は何れも近赤外光を使用して形成される画像である。しかし、乳房位置決めの撮影時は撮影技師による乳房設定の変更に対応するために画像形成時間の高速化が要求される。ところで、レーザーダイオードマトリクス2中の複数波長の近赤外レーザーダイオードによる乳房スペクトルスコピー画像は撮影に時間を要する。   Differences between breast positioning imaging and near-infrared imaging will be described. These images are all images formed using near infrared light. However, at the time of photographing for breast positioning, it is required to increase the image forming time in order to cope with the change of the breast setting by the photographing engineer. By the way, it takes time to capture a breast spectrum scan image by a near-infrared laser diode having a plurality of wavelengths in the laser diode matrix 2.

撮影時間の短縮は、レーザーダイオードマトリクス2に組み込まれた全てのレーザーダイオードを点灯させず、間引き点灯し、画像分解能を犠牲にしてリアルタイムを優先することにより可能となる。   The imaging time can be shortened by not illuminating all the laser diodes incorporated in the laser diode matrix 2, but by decimating lighting and giving priority to real time at the expense of image resolution.

近赤外画像撮影では乳房位置決めの撮影に比べて、高分解能であり、スペクトルスコピーであるが、撮影時間は長くなる。   Near-infrared image capturing has a higher resolution and spectral scan than imaging for breast positioning, but the imaging time is longer.

次に、図1(D)に示すX線画像撮影時の装置状態を説明する。   Next, the apparatus state at the time of X-ray imaging shown in FIG.

X線画像は乳房位置決めが完了した後に撮影される。乳房位置決めの撮影、及び近赤外画像の撮影が完了するとレーザーダイオードマトリクス2はX線画像の撮影領域から退避する。   X-ray images are taken after breast positioning is complete. Upon completion of breast positioning imaging and near-infrared imaging, the laser diode matrix 2 is withdrawn from the X-ray image imaging area.

他方、乳房位置決めの撮影時には退避していたX線グリッド4が2次元検出器5上面に挿入される。レーザーダイオードマトリクス2の退避、X線グリッド4の挿入が確認されるとX線が曝射される。   On the other hand, the X-ray grid 4 retracted at the time of imaging for breast positioning is inserted into the upper surface of the two-dimensional detector 5. When retraction of the laser diode matrix 2 and insertion of the X-ray grid 4 are confirmed, X-rays are exposed.

ところで、近赤外画像を撮影するときの近赤外光透過量とX線透過量には相関がある。乳房厚、乳腺密度と2次元検出器5への到達光量には正の相関が知られている。この関係を利用してX線画像撮影時のX線ターゲット、X線フィルタ、管電流、撮影時間を決定することが可能である。例えば、到達光量が一定値以下の場合はX線ターゲットをモリブデンではなくロジウムにすることが考えられる。また、到達光量に反比例して管電流を増加させることが出来る。X線源の制約により管電流を増加させることが出来ない場合は撮影時間を増加させる。   By the way, there is a correlation between the near-infrared light transmission amount and the X-ray transmission amount when photographing a near-infrared image. A positive correlation is known between the breast thickness and the density of the mammary gland and the amount of light reaching the two-dimensional detector 5. Using this relationship, it is possible to determine the X-ray target, X-ray filter, tube current, and imaging time during X-ray image capturing. For example, when the amount of light reached is a certain value or less, the X-ray target may be rhodium instead of molybdenum. In addition, the tube current can be increased in inverse proportion to the amount of light reaching. If the tube current cannot be increased due to the limitations of the X-ray source, the imaging time is increased.

図2は乳房位置決め画像撮影時の圧迫板3の運動と近赤外レーザーダイオードの点灯のタイミングを表している。乳房の位置設定及び乳房の圧迫開始は患者の安全を確認しながら撮影技師により決定されるが、圧迫板3に予め決められた圧迫力以上が加わるとレーザーダイオードの点灯が自動開始する。位置決め画像の撮影が完了するとレーザーダイオードの点灯は停止する。   FIG. 2 shows the timing of the movement of the compression plate 3 and the lighting of the near-infrared laser diode when the breast positioning image is captured. The position setting of the breast and the start of breast compression are determined by the imaging technician while confirming the safety of the patient, but when a predetermined compression force or more is applied to the compression plate 3, the laser diode is automatically turned on. When the positioning image is completely captured, the laser diode is turned off.

位置決め画像は図示しない表示装置に表示される。撮影技師が、位置決めが適切であると判断すれば、高分解能の近赤外画像の撮影へと移行する。位置決めの適否を判断する画像は、過去に撮影した画像と並列表示する他に、過去画像と現在画像の差分画像を表示することもできる。差分画像を作成する際には、画像の相対関係が重要である。相対関係の指標としては二つの画像の相関係数を計算することができる。相関係数をもとに相関係数が大きくなる方向に画像シフトすることで位置決めを良好にすることができる。   The positioning image is displayed on a display device (not shown). If the imaging engineer determines that the positioning is appropriate, the process shifts to capturing a high-resolution near-infrared image. In addition to displaying an image for determining whether positioning is appropriate in parallel with an image captured in the past, a difference image between the past image and the current image can also be displayed. When creating a difference image, the relative relationship between the images is important. As an index of the relative relationship, the correlation coefficient between the two images can be calculated. Positioning can be improved by shifting the image in the direction in which the correlation coefficient increases based on the correlation coefficient.

図3は2次元検出器5の構造を示す図である。   FIG. 3 is a diagram showing the structure of the two-dimensional detector 5.

図3の(A)に示す位置決め画像及び近赤外画像の撮影時には圧迫板3上面にレーザーダイオードマトリクス2が密着配置される。以下で、近赤外画像と言う場合は、位置決め画像及び近赤外画像の両方を指すものとする。   When the positioning image and the near-infrared image shown in FIG. 3A are taken, the laser diode matrix 2 is disposed in close contact with the upper surface of the compression plate 3. Hereinafter, the term “near infrared image” refers to both a positioning image and a near infrared image.

圧迫板3、乳房6を透過した近赤外光が2次元検出器5に入射する。2次元検出器5は保護板8、波長フィルタ9、X線蛍光体10、半導体センサ11、及びセンサ上下機構12を有する。   Near infrared light that has passed through the compression plate 3 and the breast 6 enters the two-dimensional detector 5. The two-dimensional detector 5 includes a protection plate 8, a wavelength filter 9, an X-ray phosphor 10, a semiconductor sensor 11, and a sensor up / down mechanism 12.

保護板8は乳房圧迫時に半導体センサ11を保護する。保護板8は、X線減衰の小さく、近赤外光を透過する材料である。例としてはアクリルや強化ガラスが使用できる。   The protective plate 8 protects the semiconductor sensor 11 when the breast is compressed. The protective plate 8 is a material that has a small X-ray attenuation and transmits near-infrared light. As an example, acrylic or tempered glass can be used.

波長フィルタ9は、近赤外光又は近赤外光より長波長の光を透過するフィルタであり、可視光、遠赤外光は透過しない膜である。   The wavelength filter 9 is a filter that transmits near-infrared light or light having a longer wavelength than near-infrared light, and is a film that does not transmit visible light or far-infrared light.

X線蛍光体10は、近赤外光は透過し、X線の入射に対して蛍光を発生する。X線蛍光体10の例としては、CsIの柱結晶が適切である。柱状であるためにX線蛍光、近赤外光の拡散を軽減することが可能である。   The X-ray phosphor 10 transmits near-infrared light and generates fluorescence in response to the incidence of X-rays. As an example of the X-ray phosphor 10, a CsI column crystal is suitable. Since it is columnar, it is possible to reduce the diffusion of X-ray fluorescence and near-infrared light.

半導体センサ11の例としてはCMOSセンサが好ましい。X線画像で広く利用されているアモルファスシリコンのセンサは近赤外に感度がないので使用することはできない。   As an example of the semiconductor sensor 11, a CMOS sensor is preferable. Amorphous silicon sensors widely used in X-ray images cannot be used because they have no sensitivity in the near infrared.

センサ上下機構12は、保護板8の下面と波長フィルタ9の上面の距離を調整するための機構である。保護板8の下面と波長フィルタ9の上面を密着させることによって近赤外画像の分解能劣化を小さくすることが可能になる。   The sensor up / down mechanism 12 is a mechanism for adjusting the distance between the lower surface of the protective plate 8 and the upper surface of the wavelength filter 9. By bringing the lower surface of the protection plate 8 and the upper surface of the wavelength filter 9 into close contact, it is possible to reduce the resolution degradation of the near-infrared image.

乳房撮影の場合、X線画像は高分解能が要求され、例えば画素ピッチ100μmが必要である。   In the case of mammography, high resolution is required for the X-ray image, and for example, a pixel pitch of 100 μm is required.

しかし、X線画像は静止画像であるので高速画像読み出しは要求されない。他方、近赤外画像の要求分解能は1〜3mm程度である。近赤外画像では高速の画像読み出しが必要になる。   However, since the X-ray image is a still image, high-speed image reading is not required. On the other hand, the required resolution of the near-infrared image is about 1 to 3 mm. Near-infrared images require high-speed image readout.

そこで、半導体センサ11の構造は、画素サイズを100μmとして、8×8画像、16×16画像あるいは32×32画素の束ね読みが可能な構造とする。   Therefore, the structure of the semiconductor sensor 11 is such that the pixel size is 100 μm and the 8 × 8 image, the 16 × 16 image, or the 32 × 32 pixel can be read in a bundle.

また、X線画像は半導体センサ11全面に一度に形成されるが、近赤外画像は一つのレーザーダイオードに対して10mm×10mm程度の領域に画像が限定される。よって、近赤外画像の撮影の時には束ね読みすると同時に部分的(局所的)に高速に読み出せる必要がある。   In addition, the X-ray image is formed on the entire surface of the semiconductor sensor 11 at once, but the near-infrared image is limited to an area of about 10 mm × 10 mm for one laser diode. Therefore, when taking a near-infrared image, it is necessary to read the bundle at the same time as it is bundled and read at a high speed partially (locally).

また、半導体センサ11は、近赤外画像撮影時に設定された分解能に対応して画像取り込み領域を変更する。レーザーダイオードマトリクス2と2次元検出器5の相対位置関係はキャリブレーションで予め知ることができる。   Further, the semiconductor sensor 11 changes the image capturing area in accordance with the resolution set at the time of capturing the near-infrared image. The relative positional relationship between the laser diode matrix 2 and the two-dimensional detector 5 can be known in advance by calibration.

次に、図3(B)のX線画像撮影時の構造を説明する。   Next, the structure at the time of X-ray image capturing in FIG.

X線画像撮影の際にはレーザーダイオードマトリクス2が退避し保護板8と波長フィルタ9の間にX線グリッド4が挿入される。X線グリッド4はX線散乱を低減させる効果がある。保護板8と波長フィルタ9の間のギャップはセンサ上下機構12により波長フィルタ9、X線蛍光体10、半導体センサ11が一体で下方にシフトすることで形成される。   During X-ray imaging, the laser diode matrix 2 is retracted and the X-ray grid 4 is inserted between the protective plate 8 and the wavelength filter 9. The X-ray grid 4 has an effect of reducing X-ray scattering. The gap between the protective plate 8 and the wavelength filter 9 is formed by the sensor up-and-down mechanism 12 that the wavelength filter 9, the X-ray phosphor 10, and the semiconductor sensor 11 are integrally shifted downward.

他方、波長フィルタ9を保護板8の下面に密着させ、波長フィルタ9とX線蛍光体10との間隙にX線グリッド4を挿入することも可能である。しかし、半導体センサ11を遮光する観点では前述の保護板8と波長フィルタ9の間にX線グリッド4を挿入する方法が有利である。   On the other hand, the wavelength filter 9 can be brought into close contact with the lower surface of the protective plate 8 and the X-ray grid 4 can be inserted into the gap between the wavelength filter 9 and the X-ray phosphor 10. However, from the viewpoint of shielding the semiconductor sensor 11, the method of inserting the X-ray grid 4 between the protective plate 8 and the wavelength filter 9 is advantageous.

ところで、公知のX線グリッド4は近赤外光を透過させる構造にはなっていない。X線グリッド4は鉛箔の間に木やファイバー等を挟み込む構造になっている。   By the way, the known X-ray grid 4 does not have a structure for transmitting near-infrared light. The X-ray grid 4 has a structure in which wood or fiber is sandwiched between lead foils.

しかし、鉛箔の間に近赤外光を透過するファイバーを挟み込むことが可能である。   However, it is possible to sandwich a fiber that transmits near-infrared light between lead foils.

このような近赤外を透過可能なX線グリッド4を使用するとグリッドの挿入退避動作が不要になり2次元検出器5の光遮蔽が容易になる。   When such an X-ray grid 4 capable of transmitting near-infrared is used, the grid insertion / retraction operation becomes unnecessary, and the light shielding of the two-dimensional detector 5 is facilitated.

図4はレーザーダイオードマトリクス2の進入退避を表した図である。   FIG. 4 is a diagram showing the approach and retreat of the laser diode matrix 2.

圧迫板3は圧迫板保持フレーム13に固定されている。圧迫板保持フレーム13は撮影装置の架台上部フレーム7に上下移動可能に取り付けられている。   The compression plate 3 is fixed to the compression plate holding frame 13. The compression plate holding frame 13 is attached to the gantry upper frame 7 of the photographing apparatus so as to be vertically movable.

近赤外画像撮影時には、図4(A)に示すように、レーザーダイオードマトリクス2は圧迫板保持フレーム13をスライドして圧迫板3上面に進入する。レーザーダイオードマトリクス2は進入の後に吸着或は圧着機構(図示しない)により圧迫板3に密着する。   At the time of taking a near-infrared image, the laser diode matrix 2 slides on the compression plate holding frame 13 and enters the upper surface of the compression plate 3 as shown in FIG. After entering, the laser diode matrix 2 is brought into close contact with the compression plate 3 by an adsorption or pressure bonding mechanism (not shown).

X線画像撮影時には、図4(B)に示すように、レーザーダイオードマトリクス2は密着を解除された後に圧迫板保持フレーム13をスライドして退避する。   At the time of X-ray image photographing, as shown in FIG. 4B, the laser diode matrix 2 slides away from the compression plate holding frame 13 after the close contact is released.

図5はレーザーダイオードマトリクス2の構造を示している。レーザーダイオードマトリクス2は2層構造になっている。   FIG. 5 shows the structure of the laser diode matrix 2. The laser diode matrix 2 has a two-layer structure.

最初に同図の実施例(A)を説明する。   First, the embodiment (A) in FIG.

上部はレーザーダイオード14を2次元状に配列し、下部はファイバーを2次元状に配列してある。レーザーダイオード14とファイバーは一対一に対応し吸着、圧着或は接着されている。   In the upper part, the laser diodes 14 are arranged two-dimensionally, and in the lower part, the fibers are arranged two-dimensionally. The laser diode 14 and the fiber are in one-to-one correspondence and are adsorbed, pressed or bonded.

同図の実施例(B)は4個の周波数の異なる近赤外レーザーダイオード16が一組になって一つのファイバーに対応している。複数の周波数の近赤外光を利用することにより乳房6のスペクトロスコピーを得ることが可能になる。   In the embodiment (B) in the figure, a set of four near-infrared laser diodes 16 having different frequencies corresponds to one fiber. By using near-infrared light of a plurality of frequencies, it becomes possible to obtain a spectroscopy of the breast 6.

スペクトロスコピーを得る場合に(B)の実施例では4個の周波数の異なる近赤外レーザーダイオード16を一つのファイバーに対応させたが、各周波数のレーザーダイオードそれぞれに一つのファイバーを対応させてもよい。   In obtaining the spectroscopy, in the embodiment of (B), the four near-infrared laser diodes 16 having different frequencies correspond to one fiber, but one fiber may correspond to each laser diode of each frequency. Good.

図6は半導体センサ11の一つの画素を示している。フォトダイオード17に入射した光が電子信号に変換され、転送スイッチ信号18がONになり且つ行選択されることによって前置増幅器を介して出力される。   FIG. 6 shows one pixel of the semiconductor sensor 11. Light incident on the photodiode 17 is converted into an electronic signal, and the transfer switch signal 18 is turned on and selected through a row, and then output through a preamplifier.

図7は図6の画素を2次元状に配列した図である。8×8個の画素の各出力は垂直シフトレジスタ24及び水平シフトレジスタ25によって選択される。選択された画素の出力が増幅器26を介して出力される。乳房画像全体を撮像するためには、少なくとも20cm×24cmの有効面積の2次元検出器5は必要である。アモルファスシリコンを使用した半導体センサ11では当該サイズは1枚で可能であるがCMOS等のクリスタル半導体では当面不可能なサイズである。他方、近赤外画像を撮像する際には局所的に高速の読み出しが必要である。よって、本実施形態では256×256画素程度のセンサをタイル状に配列して全体として20cm×24cm程度を実現する。   FIG. 7 is a diagram in which the pixels of FIG. 6 are two-dimensionally arranged. Each output of 8 × 8 pixels is selected by a vertical shift register 24 and a horizontal shift register 25. The output of the selected pixel is output via the amplifier 26. In order to capture the entire breast image, a two-dimensional detector 5 having an effective area of at least 20 cm × 24 cm is necessary. In the semiconductor sensor 11 using amorphous silicon, the size can be one, but it is impossible for the time being with a crystal semiconductor such as CMOS. On the other hand, when a near-infrared image is captured, high-speed readout is necessary locally. Therefore, in the present embodiment, sensors of about 256 × 256 pixels are arranged in a tile shape to realize about 20 cm × 24 cm as a whole.

図7の増幅器26の機能について説明する。   The function of the amplifier 26 in FIG. 7 will be described.

X線画像読み出し時は、垂直シフトレジスタ24及び水平シフトレジスタ25によって画素は1画素づつ選択される。ゲイン変更信号27には定数倍の設定がされるので選択された画素の信号は定数倍の増幅がされて出力される。近赤外画像の読み出しの際には破線で囲んだ範囲の画素が同時に選択されて出力される。図7の場合は4×4画素が同時に選択される。選択された画素信号の加算信号が増幅器26により増幅される。増幅の際にはゲイン変更信号27によりゲイン変更される。ゲイン変更信号27にはレーザーダイオードの強度変調信号の周波数に近似する周波数の信号が使用される。   At the time of X-ray image reading, pixels are selected one by one by the vertical shift register 24 and the horizontal shift register 25. Since the gain change signal 27 is set to a constant multiple, the signal of the selected pixel is amplified by a constant multiple and output. When reading a near-infrared image, pixels in a range surrounded by a broken line are simultaneously selected and output. In the case of FIG. 7, 4 × 4 pixels are selected simultaneously. The added signal of the selected pixel signal is amplified by the amplifier 26. At the time of amplification, the gain is changed by the gain change signal 27. As the gain change signal 27, a signal having a frequency approximate to the frequency of the intensity modulation signal of the laser diode is used.

近赤外光を利用したスペクトロスコピーの撮像方法は、前述の非特許文献1に詳しく記載されている。ここでは、4波長の近赤外光を利用した方法について簡単に説明する。   The imaging method of spectroscopy using near-infrared light is described in detail in Non-Patent Document 1 described above. Here, a method using four-wavelength near infrared light will be briefly described.

4波長には、690nm、750nm、788nm、856nmのレーザーダイオードの光を使用する。4波長の光は、それぞれ70.45MHz、70.20MHz、69.80MHz、69.5MHzで振幅変調される。   For the four wavelengths, laser diode light of 690 nm, 750 nm, 788 nm, and 856 nm is used. The four wavelengths of light are amplitude-modulated at 70.45 MHz, 70.20 MHz, 69.80 MHz, and 69.5 MHz, respectively.

振幅変調した光は、図5(B)に示した構造で示したように一つのファイバーに束ねられて乳房6に入射される。乳房6を透過した光は図7で示した束ね読み画素23の一つの領域に入射する。入射した信号は増幅器26で増幅されるが、増幅される際のゲイン変更信号27には70MHzの信号が使用される。   The amplitude-modulated light is bundled into one fiber and incident on the breast 6 as shown in the structure shown in FIG. The light transmitted through the breast 6 enters one area of the bundle reading pixel 23 shown in FIG. The incident signal is amplified by the amplifier 26, and a 70 MHz signal is used as the gain change signal 27 at the time of amplification.

ゲイン変更出力信号28から4波長の信号を分離して4枚の近赤外像を形成することができる。   Four near-infrared images can be formed by separating the four-wavelength signal from the gain change output signal 28.

前記4画像を画像処理により組み合わせることでスペクトロスコピーが作られる。本方式はFrequency Domain Optical Mammographyと呼ばれるが、本発明で使用される近赤外像は本方式に限定されるものではなく、他の方式でも本発明に係る構成は利用可能である。   A spectroscopy is made by combining the four images by image processing. This method is called Frequency Domain Optical Mammography, but the near-infrared image used in the present invention is not limited to this method, and the configuration according to the present invention can be used in other methods.

非特許文献1に開示されたFrequency Domain方式と差異が生じる場合について説明する。近赤外光を収集する場合に、上記の説明では一つのレーザーダイオード(図5(B)の場合は一群をなす4個のレーザーダイオード)の発光に対して一箇所の束ね読み画素23のみを読み出している。   A case where a difference from the Frequency Domain method disclosed in Non-Patent Document 1 occurs will be described. In the case of collecting near-infrared light, in the above description, only one bundled reading pixel 23 is used for light emission of one laser diode (four laser diodes forming a group in the case of FIG. 5B). Reading out.

しかし近赤外光の拡散情報にも情報がある場合を考慮すると複数の束ね読み画素23を読み出すことが考えられる。   However, considering the case where there is information in the diffusion information of near infrared light, it is conceivable to read out a plurality of bundle reading pixels 23.

例えば4つの束ね読み画素23を読み出す場合には、シリアルに(順次に)読み出すのでゲイン変更に位相差が生じる。   For example, when reading out the four bundle reading pixels 23, since reading is performed serially (sequentially), a phase difference occurs in gain change.

よって、ホモダイン検知によりビートを取り出す際には4画素で位相差があることを考慮する必要がある。ただし、4つの束ね読み画像の位相差は半導体センサの読み込み周波数に対応するので既知である。   Therefore, when taking out a beat by homodyne detection, it is necessary to consider that there is a phase difference between four pixels. However, the phase difference between the four bundle reading images is known because it corresponds to the reading frequency of the semiconductor sensor.

画像の補正方法について説明する。従来のX線画像専用の2次元検出器5は波長フィルタ9に代わって薄いアルミシートが使用される。この場合は可視光、近赤外光、赤外光が入射する虞はない。しかし、波長フィルタ9に特性によっては、レーザーダイオードから近赤外光を発射していない時に半導体センサ11に可視光、近赤外光、赤外光が微量に入射する虞がある。   An image correction method will be described. The conventional two-dimensional detector 5 dedicated to X-ray images uses a thin aluminum sheet instead of the wavelength filter 9. In this case, there is no possibility that visible light, near infrared light, or infrared light may enter. However, depending on the characteristics of the wavelength filter 9, visible light, near-infrared light, and infrared light may be incident on the semiconductor sensor 11 in minute amounts when near-infrared light is not emitted from the laser diode.

また、従来のX線画像専用の2次元検出器5に比して複雑な構造をしているために上記光が微量に入射する虞もある。これらの光はオフセットとなり画像のコントラストを減少させる。   Further, since the structure is more complicated than that of the conventional two-dimensional detector 5 dedicated to X-ray images, there is a possibility that the above-mentioned light may enter a minute amount. These lights become offsets and reduce the contrast of the image.

そこで、図3の近赤外像撮影時、X線画像撮影に先立って、それぞれ黒画像(ダーク画像)を撮影して収集された画像からそれぞれ減算する。また、近赤外像撮影時、X線画像撮影時でそれぞれ白画像を撮影して収集された画像と割り算することでシェーディング補正が可能にある。白画像は被写体なしの状態でレーザーダイオード、X線を発射した場合の画像である。   Therefore, at the time of capturing the near-infrared image in FIG. 3, prior to the X-ray image capturing, black images (dark images) are respectively subtracted from the acquired images. Further, shading correction can be performed by dividing a white image taken by an infrared ray image and an X-ray image taken by dividing the acquired white image. The white image is an image when a laser diode or X-ray is emitted without a subject.

最後に、本実施形態に係るX線乳房撮影に係る制御処理を、図8のフローチャートを用いて説明する。   Finally, a control process related to the X-ray mammography according to the present embodiment will be described with reference to the flowchart of FIG.

患者の撮影に先立ってS0では補正画像の収集が行われる。補正画像は2次元検出器5の温度ドリフトを考慮して患者撮影の直前に行われる。   Prior to imaging of the patient, correction images are collected in S0. The correction image is performed immediately before the patient photographing in consideration of the temperature drift of the two-dimensional detector 5.

S1では患者の撮影を開始する。S2では技師が患者の乳房6を撮影台に初期設置する。S3では、レーザーダイオードマトリクス2が圧迫板3と密着する第1の位置に進入し、X線グリッド4が退避する。S4では技師の操作で圧迫板3が下降し、S5で圧力が検出されると、S6でレーザーダイオードから光が発射され撮影が開始する。   In S1, patient imaging is started. In S2, the technician initially installs the patient's breast 6 on the imaging table. In S3, the laser diode matrix 2 enters the first position where it is in close contact with the compression plate 3, and the X-ray grid 4 is retracted. In S4, the compression plate 3 is lowered by the operation of the engineer, and when pressure is detected in S5, light is emitted from the laser diode in S6 and photographing starts.

S7で各レーザーダイオードからの曝射および透過光検出が完了すると、S8では過去の近赤外画像との比較が行われる。比較は差分画像を表示することもできる。   When the exposure from each laser diode and the detection of transmitted light are completed in S7, comparison with past near-infrared images is performed in S8. The comparison can also display a difference image.

S9で位置再現性の確認を行う。再現性が確認されれば、S10で高精度の近赤外画像が撮影される。   Check position reproducibility at S9. If reproducibility is confirmed, a high-precision near-infrared image is taken in S10.

S11ではレーザーダイオードマトリクス2がX線画像の撮影領域外の第2の位置に退避し、X線グリッド4が挿入される。S12ではX線の曝射が行われて、S13でX線画像の収集が行われる。近赤外画像とX線画像は同一条件で撮影されているので、S14で幾何学変換をする必要なく画像を重ね合わせる画像処理を行うことが可能である。X線画像を白黒表示して近赤外画像をカラー表示してオーバーレイすることが出来る。S15で撮影が完了する。   In S11, the laser diode matrix 2 is retracted to the second position outside the imaging region of the X-ray image, and the X-ray grid 4 is inserted. In S12, X-ray exposure is performed, and in S13, X-ray images are collected. Since the near-infrared image and the X-ray image are taken under the same conditions, it is possible to perform image processing for superimposing the images without having to perform geometric conversion in S14. An X-ray image can be displayed in black and white, and a near-infrared image can be displayed in color to be overlaid. Shooting is completed in S15.

Claims (17)

近赤外光を発する近赤外光源と、
X線を照射するX線源と、
前記近赤外光及び前記X線を検出する検出手段と、
前記検出手段の内部に挿入されるグリッドと、
被写体を該被写体の載置面に対して圧迫するための圧迫板と、
前記近赤外光に基づく近赤外画像の撮影を行う場合、前記圧迫板における前記被写体の接触面の反対側の面に前記近赤外光源を進入させ、前記検出手段の受信面に照射される前記近赤外光を遮らない範囲に前記グリッドを退避させ、前記X線に基づくX線画像の撮影を行う場合、前記検出手段の内部に前記グリッドを挿入させ、前記検出手段の前記受信面に照射される前記X線を遮らない範囲に前記近赤外光源を退避させる制御手段と、
を備え
前記検出手段は、
少なくとも前記近赤外光を透過し且つ可視光を透過しない波長フィルタと、
前記波長フィルタを透過した近赤外光を透過し、X線の入射に対しては蛍光を発生する蛍光体と、
前記蛍光体を透過した近赤外光及び前記蛍光に感度を有する半導体センサと、
を含むことを特徴とする検出装置。
A near-infrared light source that emits near-infrared light;
An X-ray source that emits X-rays;
Detection means for detecting the near infrared light and the X-ray;
A grid inserted into the detection means;
A compression plate for pressing the subject against the placement surface of the subject;
When taking a near-infrared image based on the near-infrared light, the near-infrared light source enters the surface of the compression plate opposite to the contact surface of the subject, and is irradiated on the receiving surface of the detection means. When the grid is retracted within a range that does not block the near-infrared light and an X-ray image based on the X-ray is taken, the grid is inserted into the detection unit, and the reception surface of the detection unit Control means for retracting the near-infrared light source in a range that does not block the X-rays irradiated on the surface;
Equipped with a,
The detection means includes
A wavelength filter that transmits at least the near-infrared light and does not transmit visible light;
A phosphor that transmits near-infrared light that has passed through the wavelength filter and generates fluorescence upon incidence of X-rays;
A semiconductor sensor having sensitivity to near-infrared light transmitted through the phosphor and the fluorescence;
A detection device comprising:
前記蛍光体は柱状結晶であることを特徴とする請求項に記載の検出装置。 The detection apparatus according to claim 1 , wherein the phosphor is a columnar crystal. 前記柱状結晶はCsIであることを特徴とする請求項に記載の検出装置。 The detection apparatus according to claim 2 , wherein the columnar crystal is CsI. 前記半導体センサは、CMOSセンサで構成されることを特徴とする請求項乃至のいずれか1項に記載の検出装置。 The semiconductor sensor, detecting device according to any one of claims 1 to 3, characterized in that it is constituted by a CMOS sensor. 前記受信面を保護すると共に被写体を載置する載置面を有する保護板を更に備えることを特徴とする請求項乃至のいずれか1項に記載の検出装置。 Detection device according to any one of claims 1 to 4, wherein, further comprising a protective plate having a mounting surface for placing the subject to protect the receiving surface. 前記制御手段は、前記保護板と前記波長フィルタとの間に前記グリッドを挿脱する制御を行うことを特徴とする請求項に記載の検出装置。 The detection device according to claim 5 , wherein the control unit performs control to insert and remove the grid between the protection plate and the wavelength filter. 前記保護板と前記半導体センサとの間隔を変更する機構を更に備え、
前記制御手段は、前記X線が照射される場合の前記間隔を前記近赤外光が照射される場合の間隔に対して広げる制御を前記機構に対して行う
ことを特徴とする請求項又はに記載の検出装置。
A mechanism for changing a distance between the protective plate and the semiconductor sensor;
The control means according to claim 5 or and performs control to widen the interval when the X-rays are irradiated to interval if the near-infrared light is irradiated to the mechanism 6. The detection device according to 6 .
前記近赤外光を発する光源は、前記圧迫板に沿って2次元状に配される2次元近赤外光源であることを特徴とする請求項乃至のいずれか1項に記載の検出装置。 The light source emitting near-infrared light is detected according to any one of claims 5 to 7, characterized in that said a two-dimensional near infrared light source arranged two-dimensionally along the compression plate apparatus. 前記グリッドは、前記波長フィルタと前記保護板との間に挿入されることを特徴とする請求項乃至のいずれか1項に記載の検出装置。 The grid detection device according to any one of claims 5 to 7, characterized in that it is inserted between the protective plate and the wavelength filter. 前記制御手段は、前記近赤外光が照射される場合に、前記グリッドを退避して前記波長フィルタと前記保護板とが接するように制御することを特徴とする請求項乃至のいずれか1項に記載の検出装置。 Wherein, when said near-infrared light is irradiated, any one of claims 5 to 9 retreats the grid and controls so that the protection plate is in contact with said wavelength filter The detection apparatus according to item 1. 前記制御手段は、更に、被写体位置決め撮影として近赤外画像の撮影を行うときは、前記近赤外光を発する光源の間引き点灯を行うことを特徴とする請求項乃至10のいずれか1項に記載の検出装置。 It said control means further when performing photographing of the near-infrared image as an object positioning shooting, any one of claims 1 to 10, characterized in that thinned out lighting of the light source for emitting the near-infrared light The detection device according to 1. 前記半導体センサは、複数波長の近赤外光に感度を有し、
X線が照射される場合に前記検出手段から出力される信号をX線画像として処理し、X線が照射されていない期間で複数波長の近赤外光が照射される場合に当該複数波長にそれぞれ対応する近赤外画像として処理する処理手段を更に備えることを特徴とする請求項乃至11のいずれか1項に記載の検出装置。
The semiconductor sensor has sensitivity to multiple wavelengths of near-infrared light,
When the X-ray is irradiated, the signal output from the detection means is processed as an X-ray image, and when a plurality of wavelengths of near-infrared light is irradiated in a period when the X-ray is not irradiated, detection device according to any one of claims 1 to 11, further comprising a processing means for processing the infrared image corresponding respectively.
前記複数波長のそれぞれの近赤外光は所定周波数からそれぞれそれ異なる振幅変調がされており、
前記半導体センサの出力信号を前記所定周波数のゲイン変更信号でゲインを変調して増幅する増幅器を更に備え、
前記処理手段は、前記増幅器から出力されるゲイン変更信号を分離する処理をして前記それぞれの波長に対応する画像を得る
ことを特徴とする請求項12に記載の検出装置。
The near-infrared light of each of the plurality of wavelengths is subjected to different amplitude modulation from a predetermined frequency,
An amplifier for modulating and amplifying the gain of the output signal of the semiconductor sensor with a gain change signal of the predetermined frequency;
The detection apparatus according to claim 12 , wherein the processing unit obtains an image corresponding to each wavelength by performing a process of separating a gain change signal output from the amplifier.
前記半導体センサは、二次元に配置された複数の画素で構成され、
前記増幅器は、当該複数の画素毎の出力信号を増幅する
ことを特徴とする請求項13に記載の検出装置。
The semiconductor sensor is composed of a plurality of pixels arranged two-dimensionally,
The detection apparatus according to claim 13 , wherein the amplifier amplifies an output signal for each of the plurality of pixels.
前記近赤外光源は、複数波長の近赤外光を発光することを特徴とする請求項12乃至14のいずれか1項に記載の検出装置。 The near infrared light source, detecting device according to any one of claims 12 to 14, characterized in that emits near-infrared light of multiple wavelengths. 前記処理手段で得られた複数の画像を組み合わせることでスペクトロスコピーの画像を得る画像処理手段を更に備えることを特徴とする請求項15に記載の検出装置。 The detection apparatus according to claim 15 , further comprising an image processing unit that obtains a spectroscopic image by combining a plurality of images obtained by the processing unit. 近赤外光及びX線を検出する検出手段と、
前記検出手段の受信面側に配置されるグリッドと、
前記近赤外光が照射される場合に、前記検出手段の前記受信面に照射される前記近赤外光を遮らない範囲に前記グリッドを退避させる制御手段とを備え、
前記検出手段は、少なくとも前記近赤外光を透過し且つ可視光を透過しない波長フィルタと、前記波長フィルタを透過した近赤外光を透過し、X線の入射に対しては蛍光を発生する蛍光体と、前記蛍光体を透過した近赤外光及び前記蛍光を検出する半導体センサとを含むことを特徴とする検出装置。
Detection means for detecting near-infrared light and X-rays;
A grid disposed on the receiving surface side of the detection means;
Control means for retracting the grid in a range that does not block the near-infrared light irradiated on the receiving surface of the detection means when the near-infrared light is irradiated;
The detection means transmits at least the near-infrared light and does not transmit visible light, and transmits near-infrared light that has passed through the wavelength filter, and generates fluorescence when X-rays are incident. A detection apparatus comprising: a phosphor; and a semiconductor sensor that detects near-infrared light transmitted through the phosphor and the fluorescence.
JP2013185687A 2013-09-06 2013-09-06 Detection device Expired - Fee Related JP5706938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013185687A JP5706938B2 (en) 2013-09-06 2013-09-06 Detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013185687A JP5706938B2 (en) 2013-09-06 2013-09-06 Detection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008285707A Division JP5361336B2 (en) 2008-11-06 2008-11-06 X-ray mammography device

Publications (2)

Publication Number Publication Date
JP2014028274A JP2014028274A (en) 2014-02-13
JP5706938B2 true JP5706938B2 (en) 2015-04-22

Family

ID=50201303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013185687A Expired - Fee Related JP5706938B2 (en) 2013-09-06 2013-09-06 Detection device

Country Status (1)

Country Link
JP (1) JP5706938B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI85775C (en) * 1990-11-22 1992-05-25 Planmed Oy Method and apparatus for X-ray technology
US7962187B2 (en) * 2002-03-13 2011-06-14 Tufts University Optical imaging and oximetry of tissue
DE10332301B4 (en) * 2003-07-16 2009-07-30 Siemens Ag Device for medical diagnosis
JP4407278B2 (en) * 2003-12-25 2010-02-03 コニカミノルタエムジー株式会社 Radiation imaging equipment
US7245694B2 (en) * 2005-08-15 2007-07-17 Hologic, Inc. X-ray mammography/tomosynthesis of patient's breast
JP5052123B2 (en) * 2006-12-27 2012-10-17 富士フイルム株式会社 Medical imaging system and method

Also Published As

Publication number Publication date
JP2014028274A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5361336B2 (en) X-ray mammography device
JP5143471B2 (en) Imaging device
US20140194748A1 (en) Imaging device
US7330532B2 (en) Dual energy imaging using optically coupled digital radiography system
US7550754B2 (en) Method for registering a storage phosphor screen
JP2015531061A (en) Sample chamber for optical imaging of radiopharmaceuticals
JP2010094209A (en) Radiation imaging apparatus
KR101215917B1 (en) Dual-purpose digital X-ray system with reduced low radiation dose and the radiographic application methods
JP5677539B2 (en) Detection device
KR101337489B1 (en) Multi Function Mammographic Apparatus
JP2016029505A (en) Stimulable plate reading device
JP5706938B2 (en) Detection device
JP2009240467A (en) Image pickup device for breasts
JP5697726B2 (en) Detection device
KR101710902B1 (en) An astral lamp and astral lamp system about projection for near infrared fluoresence diagnosis
KR102229064B1 (en) Radiation imaging apparatus and radiation imaging method using the same
JP2006329905A (en) Line sensor, line sensor unit, and radiation nondestructive inspection system
US20130015371A1 (en) Thermoluminescent computed radiography reader and method for using same
JP2006254969A (en) Radiation image acquisition apparatus and radiation image acquisition method
JP2006026016A (en) Mammography fluorescent image acquisition device
JPH026730A (en) Optical scanner
KR20190052398A (en) Diagnosing apparatus for breast lesion
RU2515203C1 (en) Tomographic fluorescent imaging device
KR20120011983A (en) Line Type Digital Radiography Sensor Using Direct Conversion Method, Digital Radiography Sensing unit Composed of the Same and Digital Radiography System having the Same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141021

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150227

R151 Written notification of patent or utility model registration

Ref document number: 5706938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees