JP5688685B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP5688685B2
JP5688685B2 JP2011186328A JP2011186328A JP5688685B2 JP 5688685 B2 JP5688685 B2 JP 5688685B2 JP 2011186328 A JP2011186328 A JP 2011186328A JP 2011186328 A JP2011186328 A JP 2011186328A JP 5688685 B2 JP5688685 B2 JP 5688685B2
Authority
JP
Japan
Prior art keywords
layer
inclination angle
crystal
tool
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011186328A
Other languages
Japanese (ja)
Other versions
JP2013046948A (en
Inventor
智行 益野
智行 益野
大介 風見
大介 風見
英利 淺沼
英利 淺沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011186328A priority Critical patent/JP5688685B2/en
Publication of JP2013046948A publication Critical patent/JP2013046948A/en
Application granted granted Critical
Publication of JP5688685B2 publication Critical patent/JP5688685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、硬質被覆層の構造を配向性と組成を特定した所定の積層構造とすることで、先端摩耗が進行しやすい炭素鋼等の高速重切削という厳しい切削条件下で用いた場合でも、硬質被覆層がすぐれた耐熱亀裂性、耐溶着欠損性および耐摩耗性を示し、切削工具の長寿命化が可能となる表面被覆切削工具(以下、被覆工具という)に関するものである。   In the present invention, the structure of the hard coating layer is a predetermined laminated structure in which the orientation and composition are specified, so that even when used under severe cutting conditions such as high-speed heavy cutting such as carbon steel where tip wear is likely to proceed, The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) in which a hard coating layer exhibits excellent thermal crack resistance, welding defect resistance, and wear resistance, and can extend the life of the cutting tool.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またスローアウエイチップを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   Generally, coated tools are used for throwaway inserts that are detachably attached to the tip of cutting tools for drilling and cutting of various materials such as steel and cast iron. There are drills and miniature drills used, as well as solid type end mills used for chamfering, grooving and shoulder machining of work materials, etc. A slow-away end mill tool that performs cutting is known.

具体的な被覆工具としては、例えば、炭化タングステン基(以下、WC基で示す)超硬合金または炭窒化チタン基(以下、TiCN基で示す)サーメット等で構成された工具基体の表面に硬質皮膜を蒸着形成し、被覆工具の耐摩耗性、工具寿命の改善を図ったものが一般的に知られている。
例えば、特許文献1に示すように、工具基体表面に、(Al,Ti)N層からなる下部層と(Al,Cr)N層からなる中間層と、(Al,Ti)N層からなる上部層とから構成される硬質被覆層を形成することによって、下部層が高温硬さ、耐熱性、高温強度を改善し、中間層が高温硬さ、高温強度、高温耐酸化性、耐溶着性を改善し、上部層が耐摩耗性、耐欠損性を改善することによって、これらの効果の相乗効果としてすぐれた耐摩耗性を発揮する被覆工具が知られている。
また、特許文献2に示すように、工具基体表面に、下部層と上部層からなる硬質被覆層を蒸着形成し、下部層は薄層Aと薄層Bの交互積層からなり、また、上部層は薄層Aと薄層Cの交互積層からなり、前記薄層Aは、(Cr,Al)N層あるいは(Cr,Al,Si)N層のいずれか、前記薄層Bは、(Ti,Al)N層あるいは(Ti,Al,Si)N層のいずれか、また、前記薄層Cは、(Ti,Si)N層からなることにより、耐チッピング性、耐摩耗性を改善した被覆工具が知られている。
As a specific coated tool, for example, a hard film is formed on the surface of a tool base made of tungsten carbide group (hereinafter referred to as WC group) cemented carbide or titanium carbonitride group (hereinafter referred to as TiCN group) cermet. Is generally known to improve wear resistance and tool life of coated tools.
For example, as shown in Patent Document 1, on a tool base surface, a lower layer made of an (Al, Ti) N layer, an intermediate layer made of an (Al, Cr) N layer, and an upper portion made of an (Al, Ti) N layer. By forming a hard coating layer composed of layers, the lower layer improves high temperature hardness, heat resistance, and high temperature strength, and the intermediate layer has high temperature hardness, high temperature strength, high temperature oxidation resistance, and welding resistance. There is known a coated tool that exhibits excellent wear resistance as a synergistic effect of these effects by improving and improving the wear resistance and fracture resistance of the upper layer.
Moreover, as shown in Patent Document 2, a hard coating layer composed of a lower layer and an upper layer is formed on the surface of the tool base by vapor deposition, and the lower layer is formed by alternately laminating a thin layer A and a thin layer B. Consists of alternating layers of thin layers A and C, where the thin layer A is either a (Cr, Al) N layer or a (Cr, Al, Si) N layer, and the thin layer B is (Ti, A coated tool having improved chipping resistance and wear resistance by forming either the (Al) N layer or the (Ti, Al, Si) N layer, and the thin layer C comprising the (Ti, Si) N layer. It has been known.

特開2009−125832号公報JP 2009-125832 A 特開2010−207918号公報JP 2010-207918 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴って切削加工は一段と高効率化する傾向にあるが、前記従来被覆工具においては、これを通常条件での切削加工に用いた場合には問題はないが、これを特に、炭素鋼等の高硬度被削材の、高い発熱を伴い、かつ、切刃に高負荷が作用する高送り、高切込みの高速重切削条件で用いた場合には、切削時に発生する高熱によって硬質被覆層が過熱されることにより、高温硬さの低下が生じるとともに、潤滑性が不足し、その結果、耐溶着欠損性の低下が避けられないことに加えて、硬質被覆層と工具表面との密着性が十分でないため、比較的短時間で使用寿命に至るのが現状である。   In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this, cutting tends to become more efficient. In the case of a coated tool, there is no problem when it is used for cutting under normal conditions, but this is accompanied by the high heat generation of a high-hardness work material such as carbon steel, and the cutting edge is high. When used under high feed and high cutting conditions where the load is applied, the hard coating layer is overheated by the high heat generated during cutting, resulting in a decrease in high-temperature hardness and insufficient lubricity. As a result, in addition to the inevitable deterioration of the welding defect resistance, since the adhesion between the hard coating layer and the tool surface is not sufficient, the service life is reached in a relatively short time.

そこで、本発明者らは、前述のような観点から、炭素鋼等の高硬度被削材の、高熱を発生し、かつ、切刃に対して高負荷が作用する高速重切削条件で用いた場合にも、硬質被覆層がすぐれた耐熱亀裂性および耐溶着欠損性を発揮する被覆工具を開発すべく、前記従来被覆工具に着目し研究を行った結果、以下の知見を得た。   In view of the above, the inventors of the present invention used high-hardness work materials such as carbon steel in high-speed heavy cutting conditions that generate high heat and a high load acts on the cutting edge. Even in this case, the following knowledge was obtained as a result of conducting research while focusing on the conventional coated tool in order to develop a coated tool exhibiting excellent thermal crack resistance and weld defect resistance with an excellent hard coating layer.

(イ)被覆工具の硬質被覆層をAlTiNで構成した場合、AlTiNからなる硬質被覆層は、硬度および靭性にすぐれ、かつ、化学的安定性にもすぐれることが一般的に知られているが、高硬度被削材を、高熱発生を伴うとともに切刃に高負荷が作用する高速重切削条件で使用した場合には、その硬度、靭性は十分であるとはいえない。
そこで、本発明者らは、AlTiN層を下部層とし、上部層として特定の組成、配向および構造の層を形成することにより、高温硬さと高靭性を備え、かつ、高温条件下での耐熱亀裂性および耐溶着欠損性にすぐれることを見出したのである。
(B) It is generally known that when the hard coating layer of the coated tool is made of AlTiN, the hard coating layer made of AlTiN is excellent in hardness and toughness and in chemical stability. When a high-hardness work material is used under high-speed heavy cutting conditions that cause high heat generation and a high load acts on the cutting edge, the hardness and toughness cannot be said to be sufficient.
Therefore, the present inventors have a high-temperature hardness and high toughness by forming an AlTiN layer as a lower layer and a layer having a specific composition, orientation and structure as an upper layer, and heat-resistant cracks under high-temperature conditions. It has been found that it has excellent properties and resistance to welding defects.

(ロ)即ち、平均層厚0.5〜5μmであって、かつ、組成式:(Al1−xTi)N(ここで、xはTiの含有割合を示し、原子比で、0.25≦x≦0.55である)を満足するAlとTiの複合窒化物層を有する下部層と、
(ハ)0.2〜6.0μmの合計平均層厚を有し、かつ、
A層:
組成式:(Al1−xTi)N(ここで、xはTiの含有割合を示し、原子比で、0.25≦x≦0.55である)を満足するAlとTiの複合窒化物層、
B層:
電子放出型走査電子顕微鏡を用い、工具基体表面に対し垂直な皮膜断面研磨面に存在する結晶粒個々に電子線を照射して、前記工具基体表面の法線に対して、前記結晶粒の結晶面である(200)面の法線がなす結晶角を測定し、前記測定結晶角のうち、0〜60度の範囲内にある測定傾斜角を0.25度ピッチ毎に区分するとともに、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表した場合、0〜35度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜35度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、組成式:(Al1−yCr)N(ここで、yはCrの含有割合を示し、原子比で、0.25≦y≦0.45である)を満足するAlとCrの複合窒化物層、
A層、B層の各層は、0.05〜1.5μmの一層平均層厚を有し、A層+B層を1積層周期とした1周期以上の積層構造を有する上部層とからなる硬質被覆層を備えた被覆工具は、高温硬さと高靭性を備え、かつ、高温条件下での耐熱亀裂性および耐溶着欠損性にすぐれることを見出したのである。
つまり、本発明による(Al,Ti)N層は、単層でも十分な切削性能を示すが、より耐溶着欠損性を向上させる観点から所定の配向を有する(Al,Cr)N層と組み合わせて被覆する。
AlCrを主成分とする硬質皮膜においては、結晶成長方位の配向性比率が切削性能に影響を及ぼすことが分かる。(200)配向性比率が45%を超えると耐溶着欠損性が向上することが発明者らの研究により分かった。
そこで、(Al,Ti)N層と(200)配向性の(Al,Cr)N層との相互関係と膜の特性について鋭意研究したところ、
A層:(Al1−xTi)N(0.25≦x≦0.55)
B層:(200)配向性の(Al1−yCr)N(0.25≦y≦0.45)
としてA層、B層の各層の一層平均層厚を0.05〜1.5μmとし、A層+B層を1積層周期とした1周期以上の積層構造からなる合計平均層厚0.2〜6.0μmの上部層をAlとTiの複合窒化物層を有する下部層と組み合わせることにより本発明を完成するに至った。
なお、前記成膜した(Al1−yCr)Nについての配向性は、電子放出型走査電子顕微鏡を用い、工具基体表面に対し垂直な皮膜断面研磨面に存在する結晶粒個々に電子線を照射して、前記工具基体表面の法線に対して、前記結晶粒の結晶面である(200)面の法線がなす結晶角を測定し、前記測定結晶角のうち、0〜60度の範囲内にある測定傾斜角を0.25度ピッチ毎に区分するとともに、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表すことにより確認することができる。
(B) That is, the average layer thickness is 0.5 to 5 μm, and the composition formula: (Al 1-x Ti x ) N (where x represents the content ratio of Ti, and the atomic ratio is 0. A lower layer having a composite nitride layer of Al and Ti satisfying 25 ≦ x ≦ 0.55),
(C) has a total average layer thickness of 0.2 to 6.0 μm, and
A layer:
Composite nitriding of Al and Ti satisfying the composition formula: (Al 1-x Ti x ) N (where x is the Ti content and atomic ratio is 0.25 ≦ x ≦ 0.55) Layer,
B layer:
Using an electron emission scanning electron microscope, each crystal grain existing on the polished surface of the coating film perpendicular to the surface of the tool base is irradiated with an electron beam, and the crystal of the crystal grain is compared with the normal of the tool base surface. The crystal angle formed by the normal line of the (200) plane, which is a plane, is measured, and among the measured crystal angles, the measurement inclination angle within the range of 0 to 60 degrees is divided for each 0.25 degree pitch, When represented by an inclination angle distribution graph obtained by summing up the frequencies existing in the section, the highest peak exists in the inclination angle section in the range of 0 to 35 degrees, and the inclination angle in the range of 0 to 35 degrees. The inclination angle number distribution graph in which the total of the frequencies existing in the division occupies a ratio of 45% or more of the entire frequency in the inclination angle frequency distribution graph is shown, and the composition formula: (Al 1-y Cr y ) N (where y Indicates the content ratio of Cr, and the atomic ratio is 0.25 ≦ y Composite nitride layer of Al and Cr satisfying a a a) 0.45,
Each of the A layer and the B layer has a single layer average thickness of 0.05 to 1.5 μm, and is a hard coating composed of an upper layer having a laminated structure of one cycle or more in which the A layer + B layer is one lamination cycle. It has been found that a coated tool provided with a layer has high-temperature hardness and high toughness, and is excellent in heat crack resistance and weld defect resistance under high-temperature conditions.
That is, the (Al, Ti) N layer according to the present invention exhibits sufficient cutting performance even with a single layer, but is combined with the (Al, Cr) N layer having a predetermined orientation from the viewpoint of improving the resistance to welding defects. Cover.
It can be seen that the orientation ratio of the crystal growth orientation affects the cutting performance in a hard coating mainly composed of AlCr. It has been found by the inventors' research that the weld defect resistance improves when the (200) orientation ratio exceeds 45%.
Therefore, when earnestly researching the relationship between the (Al, Ti) N layer and the (200) -oriented (Al, Cr) N layer and the characteristics of the film,
A layer: (Al 1-x Ti x ) N (0.25 ≦ x ≦ 0.55)
B layer: (200) -oriented (Al 1-y Cr y ) N (0.25 ≦ y ≦ 0.45)
The average average layer thickness of each layer of the A layer and the B layer is 0.05 to 1.5 μm, and the total average layer thickness is 0.2 to 6 having a laminated structure of one cycle or more in which the A layer + B layer is one lamination cycle. The present invention was completed by combining the upper layer of 0.0 μm with the lower layer having the composite nitride layer of Al and Ti.
The orientation of the deposited (Al 1-y Cr y ) N is determined by using an electron emission scanning electron microscope, and an electron beam is applied to each crystal grain existing on the polished surface of the film cross section perpendicular to the tool substrate surface. Is measured, and the crystal angle formed by the normal of the (200) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the tool base surface. It is possible to confirm by classifying the measured inclination angle within the range of 0.25 degree pitch every 0.25 degree pitch and expressing it by an inclination angle number distribution graph formed by counting the frequencies existing in each section.

(ニ)さらに、本発明者らは、所定の組成と平均層厚を有する(Al1−xTi)N層からなる下部層と(Al1−xTi)N層と(200)配向性の(Al1−yCr)N層とを選択的に形成し、かつ、各層の膜厚が所定の膜厚であって、所定の全体平均膜厚の積層構造を有する上部層とからなる硬質被覆層を構成した場合には、高熱発生を伴い、かつ、切刃に対して高負荷が作用する高送り、高切込みの高速重切削条件において、硬質被覆層がすぐれた耐熱亀裂性および耐溶着性欠損性を発揮することを見出したのである。 (D) Further, the inventors of the present invention have a (Al 1 -x Ti x ) N layer, a (200) orientation, a lower layer made of an (Al 1-x Ti x ) N layer having a predetermined composition and an average layer thickness. And an upper layer having a layered structure with a predetermined overall average film thickness, each of which has a predetermined film thickness, and a selective (Al 1-y Cr y ) N layer is selectively formed. When the hard coating layer is formed, the hard coating layer has excellent heat cracking resistance under high feed rate, high cutting and high-speed heavy cutting conditions with high heat generation and high load acting on the cutting edge. It has been found that it exhibits weld resistance deficiency.

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層が蒸着形成された表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Al1−xTi)N(ここで、xはTiの含有割合を示し、原子比で、0.25≦x≦0.55である)を満足するAlとTiの複合窒化物層からなる下部層と、
(b)0.2〜6.0μmの合計平均層厚を有し、かつ、
A層:組成式:(Al1−xTi)N(ここで、xはTiの含有割合を示し、原子比で、0.25≦x≦0.55である)を満足するAlとTiの複合窒化物層、
B層:電子放出型走査電子顕微鏡を用い、工具基体表面に対し垂直な皮膜断面研磨面に存在する結晶粒個々に電子線を照射して、前記工具基体表面の法線に対して、前記結晶粒の結晶面である(200)面の法線がなす結晶角を測定し、前記測定結晶角のうち、0〜60度の範囲内にある測定傾斜角を0.25度ピッチ毎に区分するとともに、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表した場合、0〜35度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜35度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、組成式:(Al1−yCr)N(ここで、yはCrの含有割合を示し、原子比で、0.25≦y≦0.45である)を満足するAlとCrの複合窒化物層、
A層、B層の各層は、0.05〜1.5μmの一層平均層厚を有し、A層+B層を1積層周期とした1周期以上の積層構造を有する上部層とからなることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.5-5 μm, and
Composite nitriding of Al and Ti satisfying the composition formula: (Al 1-x Ti x ) N (where x is the Ti content and atomic ratio is 0.25 ≦ x ≦ 0.55) A lower layer composed of physical layers,
(B) having a total average layer thickness of 0.2 to 6.0 μm, and
A layer: compositional formula: (Al 1-x Ti x ) N (wherein x represents the Ti content, and atomic ratio is 0.25 ≦ x ≦ 0.55) and Al and Ti Composite nitride layer,
Layer B: Using an electron emission scanning electron microscope, each crystal grain existing on the polished surface of the coating film perpendicular to the surface of the tool base is irradiated with an electron beam, and the crystal is normal to the surface of the tool base. The crystal angle formed by the normal line of the (200) plane, which is the crystal plane of the grain, is measured, and the measured tilt angle within the range of 0 to 60 degrees among the measured crystal angles is divided every 0.25 degree pitch. In addition, when represented by an inclination angle distribution graph obtained by summing up the frequencies existing in each section, the highest peak exists in the inclination angle section within the range of 0 to 35 degrees and within the range of 0 to 35 degrees. An inclination angle distribution graph in which the total of the frequencies existing in the inclination angle section occupies a ratio of 45% or more of the entire frequencies in the inclination angle distribution graph is shown, and a composition formula: (Al 1-y Cr y ) N (here And y represents the content ratio of Cr, and the atomic ratio is 0.2. 5 ≦ y ≦ 0.45) and a composite nitride layer of Al and Cr,
Each layer of the A layer and the B layer has an average layer thickness of 0.05 to 1.5 μm, and is composed of an upper layer having a laminated structure of one cycle or more in which the A layer + B layer is one lamination cycle. A surface-coated cutting tool. "
It has the characteristics.

つぎに、本発明の被覆工具の硬質被覆層について説明する。   Next, the hard coating layer of the coated tool of the present invention will be described.

(a)下部層の組成および平均層厚
下部層を構成する(Al,Ti)N層の構成成分であるAl成分には硬質被覆層における高温硬さを向上させ、同Ti成分には高温強度を向上させる作用があるが、Tiの割合を示すx値がAlとの合量に占める割合(原子比、以下同じ)で0.25未満になると、所定の高温硬さを確保することができず、これが耐摩耗性低下の原因となり、一方、Tiの割合を示すx値が同0.55を越えると、相対的にAlの含有割合が減少し、高速重切削加工で必要とされる高温強度を確保することができず、耐摩耗性が低下することから、x値を0.25〜0.55と定めた。
(A) Lower layer composition and average layer thickness The Al component, which is a component of the (Al, Ti) N layer constituting the lower layer, improves the high temperature hardness of the hard coating layer, and the Ti component has a high temperature strength. However, if the x value indicating the proportion of Ti is less than 0.25 in terms of the total amount with Al (atomic ratio, the same shall apply hereinafter), a predetermined high-temperature hardness can be ensured. However, this causes a decrease in wear resistance. On the other hand, if the x value indicating the Ti ratio exceeds 0.55, the Al content ratio is relatively reduced, which is a high temperature required for high-speed heavy cutting. Since the strength could not be ensured and the wear resistance was lowered, the x value was determined to be 0.25 to 0.55.

また、下部層の平均層厚が0.5μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その平均層厚が5.0μmを越えると、前記の高速重切削では切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜5.0μmと定めた。
このような硬質被覆層の下部層は、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に基体を装入し、ヒーターで装置内を、例えば、500℃の温度に加熱した状態で、装置内に所定組成のAl−Ti合金からなるカソード電極(蒸発源)を配置し、アノード電極とカソード電極(蒸発源)との間に、例えば、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、2Paの反応雰囲気とし、一方、前記基体には、例えば、−100Vのバイアス電圧を印加した条件で蒸着することに形成することができる。
Further, if the average layer thickness of the lower layer is less than 0.5 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time, while if the average layer thickness exceeds 5.0 μm In the high-speed heavy cutting described above, chipping is likely to occur at the cutting edge, so the average layer thickness was determined to be 0.5 to 5.0 μm.
The lower layer of such a hard coating layer is, for example, a base is placed in an arc ion plating apparatus which is one type of physical vapor deposition apparatus shown in the schematic explanatory diagram in FIG. While being heated to a temperature of 500 ° C., a cathode electrode (evaporation source) made of an Al—Ti alloy having a predetermined composition is placed in the apparatus, and, for example, an electric current is applied between the anode electrode and the cathode electrode (evaporation source): A condition in which arc discharge is generated under the condition of 90 A and nitrogen gas is simultaneously introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa, for example, while a bias voltage of, for example, −100 V is applied to the substrate It can be formed by vapor deposition.

(b)上部層の組成および平均膜厚
その後、A層:(Al,Ti)N層とB層:(200)配向性(Al,Cr)N層とした場合、A層+B層を1積層周期とした1周期以上の交互積層構造からなる上部層を構成するが、このような交互積層構造からなる上部層は、例えば、以下の条件のアークイオンプレーティングによって形成することができる。
(B) Composition and average film thickness of upper layer Thereafter, when A layer: (Al, Ti) N layer and B layer: (200) orientation (Al, Cr) N layer, one A layer and B layer are laminated. An upper layer composed of an alternately laminated structure having one or more periods as a period is configured. The upper layer composed of such an alternately laminated structure can be formed by, for example, arc ion plating under the following conditions.

成膜条件:
カソード電極: Al−Cr合金、Al−Ti合金
反応ガス: N
反応ガス圧力: 0.5〜15Pa、
バイアス電圧: −10〜−300V、
ここで、カソード電極をAl−Cr合金として、反応ガス圧力を0.5〜1.5Paまたは、7〜15Paとして形成した(Al,Cr)N層について、電子放出型走査電子顕微鏡を用い、工具基体表面に対し垂直な皮膜断面研磨面に存在する結晶粒個々に電子線を照射して、前記工具基体表面の法線に対して、前記結晶粒の結晶面である(200)面の法線がなす結晶角を測定し、前記測定結晶角のうち、0〜60度の範囲内にある測定傾斜角を0.1度ピッチ毎に区分するとともに、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表した場合、0〜35度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜35度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すことを確認できた。
上部層の積層構造のうちB層を構成する(Al,Cr)N層の構成成分であるCr成分には硬質被覆層における高温硬さを向上させ、同Al成分には高温強度を向上させる作用があるが、Crの割合を示すy値がAlとの合量に占める割合(原子比、以下同じ)で0.25未満になると、所定の高温硬さを確保することができず、これが耐摩耗性低下の原因となり、一方、Crの割合を示すy値が同0.45を越えると、相対的にAlの含有割合が減少し、高速重切削加工で必要とされる高温強度を確保することができず、チッピングの発生を防止することが困難になることから、y値を0.25〜0.45と定めた。
上部層の積層構造のうちA層を構成する(Al,Ti)N層の構成成分であるAl成分には硬質被覆層における高温硬さを向上させ、同Ti成分には高温強度を向上させる作用があるが、Tiの割合を示すx値がAlとの合量に占める割合(原子比、以下同じ)で0.25未満になると、所定の高温硬さを確保することができず、これが耐摩耗性低下の原因となり、一方、Tiの割合を示すx値が同0.55を越えると、相対的にAlの含有割合が減少し、高速重切削加工で必要とされる高温強度を確保することができず、耐摩耗性が低下することから、x値を0.25〜0.55と定めた。
Deposition conditions:
Cathode electrode: Al—Cr alloy, Al—Ti alloy Reaction gas: N 2 ,
Reaction gas pressure: 0.5 to 15 Pa,
Bias voltage: −10 to −300V
Here, for the (Al, Cr) N layer formed with the cathode electrode made of an Al—Cr alloy and the reaction gas pressure of 0.5 to 1.5 Pa or 7 to 15 Pa, an electron emission scanning electron microscope was used. An electron beam is irradiated to each of the crystal grains present on the polished surface of the film perpendicular to the surface of the substrate, and the normal line of the (200) plane that is the crystal plane of the crystal grain with respect to the normal line of the tool substrate surface Is measured, and the measured tilt angles within the range of 0 to 60 degrees of the measured crystal angles are divided every 0.1 degree pitch, and the frequencies existing in each section are totaled. When the inclination angle number distribution graph is expressed, the highest peak exists in the inclination angle section in the range of 0 to 35 degrees, and the total of the frequencies existing in the inclination angle section in the range of 0 to 35 degrees is the inclination. 45% of the total frequency in the angle distribution graph It was confirmed to show an inclination angle frequency distribution graph in a proportion above.
The Cr component, which is a component of the (Al, Cr) N layer constituting the B layer in the upper layered structure, improves the high temperature hardness of the hard coating layer, and the Al component improves the high temperature strength. However, when the y value indicating the ratio of Cr is less than 0.25 in the ratio of the total amount with Al (atomic ratio, the same applies hereinafter), the predetermined high-temperature hardness cannot be secured, On the other hand, if the y value indicating the Cr ratio exceeds 0.45, the Al content ratio is relatively decreased, and the high temperature strength required for high speed heavy cutting is ensured. Therefore, it is difficult to prevent the occurrence of chipping, so the y value was set to 0.25 to 0.45.
The Al component, which is a component of the (Al, Ti) N layer that constitutes the A layer in the laminated structure of the upper layer, improves the high temperature hardness of the hard coating layer, and the Ti component improves the high temperature strength. However, when the x value indicating the proportion of Ti is less than 0.25 in the proportion of the total amount with Al (atomic ratio, the same shall apply hereinafter), the predetermined high-temperature hardness cannot be secured, On the other hand, if the x value indicating the Ti ratio exceeds 0.55, the Al content ratio is relatively reduced, and the high-temperature strength required for high-speed heavy cutting is ensured. X value was determined to be 0.25 to 0.55.

また、上部層の積層構造を構成する各層の一層平均層厚が0.05μm未満では、自身の持つすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その一層平均層厚が1.5μmを越えると、高速重切削加工では、耐溶着性の不足が顕在化し、切刃部にチッピングが発生し易くなることから、その一層平均層厚を0.05〜1.5μmと定めた。
また、A層:(Al,Ti)N層とB層:(200)配向性(Al,Cr)N層とした場合、A層+B層を1積層周期とした1周期以上の積層構造からなる硬質被覆層の上部層は、その合計平均層厚が0.2μm未満では、長期の使用に亘って十分な耐摩耗性を発揮することができず、一方、合計平均層厚が6.0μmを越えると、特に炭素鋼等の難削材の、大きな発熱を伴い、かつ、高負荷のかかる高速重切削加工では切刃部にチッピングが発生し易くなることから、その合計平均層厚を0.2〜6.0μmと定めた。
In addition, if the average layer thickness of each layer constituting the laminated structure of the upper layer is less than 0.05 μm, it is insufficient for exhibiting its excellent wear resistance over a long period of time. When the layer thickness exceeds 1.5 μm, in high-speed heavy cutting, a lack of welding resistance becomes obvious, and chipping tends to occur at the cutting edge, so that the average layer thickness is 0.05-1. It was set to 5 μm.
Further, when the A layer: (Al, Ti) N layer and the B layer: (200) orientation (Al, Cr) N layer are used, the A layer + B layer has a laminated structure of one period or more with one lamination period. When the total average layer thickness of the upper layer of the hard coating layer is less than 0.2 μm, sufficient wear resistance cannot be exhibited over a long period of use, while the total average layer thickness is 6.0 μm. Exceeding that, especially in difficult-to-cut materials such as carbon steel is accompanied by large heat generation, and high-speed heavy cutting with high load tends to cause chipping at the cutting edge portion. It was determined to be 2 to 6.0 μm.

本発明の被覆工具は、硬質被覆層が、(a)0.5〜5μmの平均層厚を有し、かつ、 組成式:(Al1−xTi)N(ここで、xはTiの含有割合を示し、原子比で、0.25≦x≦0.55である)を満足するAlとTiの複合窒化物層からなる下部層と、(b)0.2〜6.0μmの合計平均層厚を有し、かつ、A層:組成式:(Al1−xTi)N(ここで、xはTiの含有割合を示し、原子比で、0.25≦x≦0.55である)を満足するAlとTiの複合窒化物層、B層:電子放出型走査電子顕微鏡を用い、工具基体表面に対し垂直な皮膜断面研磨面に存在する結晶粒個々に電子線を照射して、前記工具基体表面の法線に対して、前記結晶粒の結晶面である(200)面の法線がなす結晶角を測定し、前記測定結晶角のうち、0〜60度の範囲内にある測定傾斜角を0.25度ピッチ毎に区分するとともに、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表した場合、0〜35度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜35度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、組成式:(Al1−yCr)N(ここで、yはCrの含有割合を示し、原子比で、0.25≦y≦0.45である)を満足するAlとCrの複合窒化物層、A層、B層の各層は、0.05〜1.5μmの一層平均層厚を有し、A層+B層を1積層周期とした1周期以上の積層構造を有する上部層とからなることによって、(Al1−xTi)N層が鋼切削時における耐熱亀裂性の向上に寄与し、(200)配向性(Al1−yCr)N層が鋼切削時における耐溶着欠損性の向上に寄与し、さらに、これらの層を積層構造にすることにより、耐熱亀裂性、耐溶着欠損性および耐摩耗性を向上させることができる。 In the coated tool of the present invention, the hard coating layer has (a) an average layer thickness of 0.5 to 5 μm, and a composition formula: (Al 1-x Ti x ) N (where x is Ti A lower layer made of a composite nitride layer of Al and Ti satisfying the content ratio and satisfying an atomic ratio of 0.25 ≦ x ≦ 0.55, and (b) a total of 0.2 to 6.0 μm It has an average layer thickness, and layer A: composition formula: (Al 1-x Ti x ) N (where x represents the content ratio of Ti, and the atomic ratio is 0.25 ≦ x ≦ 0.55 A composite nitride layer of Al and Ti that satisfies the following conditions: B layer: An electron emission scanning electron microscope is used to irradiate individual crystal grains existing on the polished surface of the film cross section perpendicular to the surface of the tool substrate with an electron beam. Then, the crystal angle formed by the normal of the (200) plane that is the crystal plane of the crystal grain is measured with respect to the normal of the tool base surface, and the measured crystal angle When the measured inclination angle within the range of 0 to 60 degrees is divided for each 0.25 degree pitch, and the degree of inclination existing in each division is represented by an inclination angle number distribution graph, 0 The highest peak exists in the inclination angle section within the range of ˜35 degrees, and the sum of the frequencies existing in the inclination angle section within the range of 0 to 35 degrees is 45% or more of the entire degrees in the inclination angle frequency distribution graph. The inclination angle number distribution graph which occupies the ratio is shown, and the composition formula: (Al 1-y Cr y ) N (where y represents the Cr content ratio, and the atomic ratio is 0.25 ≦ y ≦ 0.45. Each of the composite nitride layer of Al and Cr, A layer, and B layer satisfying (1) has an average layer thickness of 0.05 to 1.5 μm, and A layer + B layer is 1 by comprising a top layer having a periodic or more layered structure, (Al 1-x Ti ) N layer contributes to the improvement of the thermal crack resistance during steel cutting, (200) orientation (Al 1-y Cr y) N layer contributes to the improvement of the welding resistance defective during steel cutting, further, these By making this layer into a laminated structure, it is possible to improve the thermal crack resistance, weld defect resistance and wear resistance.

被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置の概略正面図である。It is a schematic front view of the arc ion plating apparatus used for forming the hard coating layer which comprises a coating tool. 本発明の(Al,Cr)N層:B層における(200)面についての傾斜角度数分布グラフ。(Al, Cr) N layer of the present invention: An inclination angle number distribution graph for the (200) plane in the B layer.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、Co粉末、TiC粉末、TaC粉末、NbC粉末、VC粉末、Cr粉末、およびWC粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・SEEN1203AFEN1のチップ形状をもったWC基超硬合金製の工具基体A1〜A5、および 焼結後、切刃部分にR:0.8のホーニング加工を施してISO規格・CNMG120408−MSのチップ形状をもったWC基超硬合金製の工具基体A6〜A10を形成した。 As raw material powders, WC powder, Co powder, TiC powder, TaC powder, NbC powder, VC powder, Cr 3 C 2 powder, and WC powder each having an average particle diameter of 1 to 3 μm are prepared. , Blended in the composition shown in Table 1, wet-mixed for 72 hours in a ball mill, dried, and then pressed into a green compact at a pressure of 100 MPa, and the green compact was vacuumed at 6 Pa, temperature: 1400 ° C. The tool base A1 made of WC-based cemented carbide with ISO standard / SEEN1203AFEN1 chip shape after the sintering is subjected to a honing process of R: 0.03 on the condition of holding for 1 hour. ~ A5, and after sintering, the tool base A6 made of WC-base cemented carbide with ISO standard / CNMG120408-MS chip shape by applying R: 0.8 honing to the cutting edge part ~ A10 was formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するCo粉末、Ni粉末、ZrC粉末、TaC粉末、NbC粉末、MoC粉末、WC粉末およびTiCN(質量比で、TiC/TiN=50/50)粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・SEEN1203AFEN1のチップ形状をもったTiCN基サーメット製の工具基体B1〜B3および、焼結後、切刃部分にR:0.8のホーニング加工を施してISO規格・CNMG120408−MSのチップ形状をもったWC基超硬合金製の工具基体B4〜B6を形成した。 In addition, as raw material powders, all of Co powder, Ni powder, ZrC powder, TaC powder, NbC powder, Mo 2 C powder, WC powder and TiCN having an average particle diameter of 0.5 to 2 μm (by mass ratio, TiC / TiN = 50/50) powder is prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 and ISO standard / SEEN1203AFEN1. Tool bases B1 to B3 made of TiCN-based cermets having the following chip shape, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.8 and ISO standard / CNMG1204 Tool bases B4 to B6 made of WC-base cemented carbide having a chip shape of 08-MS were formed.

(a)ついで、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)を配置し、その一方には、カソード電極(蒸発源)として所定組成の上部層形成用のAl−Cr合金を配置し、その他方には、カソード電極(蒸発源)として所定組成の上部および下部層形成用のAl−Ti合金を配置し、また、ヒーターと対向する側にTiボンバード洗浄用カソード電極(蒸発源)としてTi合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつTiボンバード洗浄用カソード電極のTi合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極のAl−Ti合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表3に示される目標組成、目標層厚の単層としての下部層としての(Al,Ti)N層を0.5〜5μmの平均層厚で蒸着形成した後、前記カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
(d)ついで、装置内に反応ガスとして、窒素ガスを導入して0.5〜1.5Paまたは、7〜15Paの反応雰囲気とすると共に、カソード電極のAl−Ti合金とアノード電極との間およびカソード電極のAl−Cr合金とアノード電極に100Aの電流を交互に流してアーク放電を発生させる。このようにして、前記回転テーブル上で自転しながら回転する工具基体に表3に示される一層目標層厚の(Al,Ti)N層、(Al,Cr)N層を交互に蒸着形成することにより、
ISO・SEEN1203AFEN1および、ISO・CNMG120408−MSに規定するスローアウエイチップ形状の本発明被覆工具1〜16(以下、本発明チップ1〜16という)をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus shown in FIG. It is mounted along the outer periphery at a position that is a predetermined distance in the radial direction from the central axis on the inner rotary table, and cathode electrodes (evaporation sources) are arranged on both sides facing each other across the rotary table. Has an Al-Cr alloy for forming an upper layer having a predetermined composition as a cathode electrode (evaporation source), and Al-Ti for forming upper and lower layers having a predetermined composition as a cathode electrode (evaporation source). An alloy is disposed, and a Ti alloy is disposed as a cathode electrode (evaporation source) for cleaning the Ti bombard on the side facing the heater,
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied and a current of 100 A is passed between the Ti alloy of the cathode electrode for Ti bombard cleaning and the anode electrode to generate an arc discharge, thereby cleaning the tool base surface with Ti bombard.
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and An arc discharge is generated by flowing a current of 120 A between the Al—Ti alloy of the cathode electrode and the anode electrode, and a lower portion as a single layer having the target composition and target layer thickness shown in Table 3 is formed on the surface of the tool base. After the (Al, Ti) N layer as a layer is formed by vapor deposition with an average layer thickness of 0.5 to 5 μm, the arc discharge between the cathode electrode (evaporation source) and the anode electrode is stopped,
(D) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 0.5 to 1.5 Pa or 7 to 15 Pa, and between the Al—Ti alloy of the cathode electrode and the anode electrode. Arc current is generated by alternately supplying a current of 100 A to the Al—Cr alloy of the cathode electrode and the anode electrode. In this manner, the (Al, Ti) N layer and (Al, Cr) N layer having the target layer thickness shown in Table 3 are alternately deposited on the tool base that rotates while rotating on the rotary table. By
The present invention coated tools 1 to 16 (hereinafter referred to as present invention chips 1 to 16) having a throwaway tip shape defined in ISO · SEEN1203AFEN1 and ISO · CNMG120408-MS were produced, respectively.

比較の目的で、前記工具基体A1〜A10およびB1〜B6のそれぞれを、本発明と同様な方法でTiボンバード洗浄し、
次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極のAl−Ti合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表4に示される目標組成、目標層厚の単層としての下部層としての(Al,Ti)N層を0.5〜5μmの平均層厚で蒸着形成した後、前記カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
ついで、装置内に反応ガスとして、窒素ガスを導入し、カソード電極のAl−Ti合金とアノード電極との間およびカソード電極のAl−Cr合金とアノード電極に100Aの電流を交互に流してアーク放電を発生させる。このようにして、前記回転テーブル上で自転しながら回転する工具基体に表4に示される一層目標層厚の(Al,Ti)N層、(Al,Cr)N層を交互に蒸着形成することにより、
ISO・SEEN1203AFEN1および、ISO・CNMG120408−MSに規定するスローアウエイチップ形状の比較被覆工具1〜16(以下、比較チップ1〜16という)をそれぞれ製造した。
For the purpose of comparison, each of the tool bases A1 to A10 and B1 to B6 is cleaned by Ti bombarding in the same manner as the present invention,
Next, nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 4 Pa, a DC bias voltage of −100 V is applied to the rotating tool base while rotating on the rotary table, and the cathode electrode An arc discharge is generated by passing a current of 120 A between the Al—Ti alloy and the anode electrode, and the surface of the tool base is formed as a lower layer as a single layer having a target composition and a target layer thickness shown in Table 4. After vapor-depositing the (Al, Ti) N layer with an average layer thickness of 0.5 to 5 μm, the arc discharge between the cathode electrode (evaporation source) and the anode electrode is stopped,
Next, nitrogen gas is introduced as a reaction gas into the apparatus, and an arc discharge is performed by alternately supplying a current of 100 A between the Al—Ti alloy and anode electrode of the cathode electrode and between the Al—Cr alloy and anode electrode of the cathode electrode. Is generated. In this way, the (Al, Ti) N layer and the (Al, Cr) N layer having the target layer thickness shown in Table 4 are alternately deposited on the tool base that rotates while rotating on the rotary table. By
Comparative coating tools 1 to 16 (hereinafter referred to as comparative tips 1 to 16) having a throwaway tip shape defined in ISO · SEEN1203AFEN1 and ISO · CNMG120408-MS were produced.

つぎに、前記各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明チップ1〜5,11〜13および比較例チップ1〜5,11〜13について、
被削材:JIS・S50Cの板材、
切削速度: 300m/min、
切り込み: 径方向(ae)100mm,軸方向(ap)3mm、
一刃あたり送り(fz): 0.3mm/tooth、
エアブロー
の条件(切削条件B)での炭素鋼の乾式高速高送り転削加工試験(通常の切削速度および送りは、それぞれ、180m/min、ae:80mm,ap:1.5、fz:0.2mm/tooth )、
を行い、切刃の逃げ面摩耗幅0.2mmに達するまでの切削長を測定した。この測定結果を表5に示した。
また、前記各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明チップ6〜10,14〜16および比較例チップ6〜10,14〜16について、
被削材:JIS・S45Cの丸材、
切削速度: 250m/min、
切り込み(ap): 1.5mm、
送り(f) : 0.3mm/rev
エアブロー
の条件(切削条件B)での炭素鋼の乾式高速連続旋削加工試験(通常の切削速度および送りは、それぞれ、150m/min、ap:1.5、fz:0.1mm/rev )、
を行い、切刃の逃げ面摩耗幅0.2mmに達するまでの切削時間を測定した。この測定結果を表5に示した。
Next, the chips 1 to 5, 11 to 13 of the present invention and the comparative chips 1 to 5, 11 are compared with the above various coated chips screwed to the tip of the tool steel tool with a fixing jig. About ~ 13
Work material: JIS / S50C plate material,
Cutting speed: 300 m / min,
Cutting: radial direction (ae) 100 mm, axial direction (ap) 3 mm,
Feed per tooth (fz): 0.3 mm / tooth,
Dry high-speed high-feed milling test of carbon steel under air blow conditions (cutting condition B) (normal cutting speed and feed are 180 m / min, ae: 80 mm, ap: 1.5, fz: 0.00 2mm / tooth),
The cutting length until the flank wear width of the cutting edge reached 0.2 mm was measured. The measurement results are shown in Table 5.
Moreover, in the state where all of the various coated chips are screwed to the tip of the tool steel tool with a fixing jig, the chips 6 to 10 and 14 to 16 of the present invention and the chips 6 to 10 and 14 of the comparative example are used. About 16
Work material: JIS / S45C round material,
Cutting speed: 250 m / min,
Incision (ap): 1.5 mm,
Feed (f): 0.3 mm / rev
Dry high-speed continuous turning test of carbon steel under air blow conditions (cutting condition B) (normal cutting speed and feed are 150 m / min, ap: 1.5, fz: 0.1 mm / rev, respectively)
The cutting time until the flank wear width of the cutting edge reached 0.2 mm was measured. The measurement results are shown in Table 5.

表3〜5に示される結果から、本発明の被覆工具は、炭素鋼等の高硬度被削材を、高熱発生を伴い、かつ、切刃に高負荷が作用する高送り、高切込みの高速重切削条件で加工した場合にも、硬質被覆層がすぐれた耐熱亀裂性および耐溶着欠損性を有し、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、比較例の被覆工具においては、高硬度被削材を高速重切削条件で加工した場合、硬さ、潤滑性、靭性の不足によって、溶着、チッピング等の発生によって、比較的短時間で使用寿命に至ることが明らかである。
なお、被覆チップばかりでなく、被覆エンドミル、被覆ドリルを作製し、同様な切削試験を行ったところ、被覆エンドミル、被覆ドリルについても、被覆チップの場合と同様な結果が得られた。
From the results shown in Tables 3 to 5, the coated tool of the present invention is a high-hardness work material such as carbon steel. Even when machined under heavy cutting conditions, the hard coating layer has excellent thermal crack resistance and welding defect resistance, and exhibits excellent wear resistance over a long period of time. It is clear that when a high-hardness work material is machined under high-speed heavy cutting conditions, the service life will be reached in a relatively short time due to lack of hardness, lubricity and toughness, due to occurrence of welding, chipping, etc. is there.
In addition, not only the coated chip, but also a coated end mill and a coated drill were produced, and the same cutting test was performed. As a result, the same results as the coated chip were obtained for the coated end mill and the coated drill.

前述のように、本発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、炭素鋼等の高硬度被削材の高い発熱を伴うとともに、切刃に高負荷が作用する高速重切削加工に用いた場合でも、長期に亘ってすぐれた耐熱亀裂性および耐溶着欠損性を発揮し、すぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention not only cuts general steel and ordinary cast iron, but also involves high heat generation of a high-hardness work material such as carbon steel, and a high load acts on the cutting blade. Even when used for high-speed heavy cutting, it exhibits excellent thermal crack resistance and weld defect resistance over a long period of time and exhibits excellent cutting performance. It can be used satisfactorily for labor saving, energy saving, and cost reduction.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層が蒸着形成された表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Al1−xTi)N(ここで、xはTiの含有割合を示し、原子比で、0.25≦x≦0.55である)を満足するAlとTiの複合窒化物層からなる下部層と、
(b)0.2〜6.0μmの合計平均層厚を有し、かつ、
A層:組成式:(Al1−xTi)N(ここで、xはTiの含有割合を示し、原子比で、0.25≦x≦0.55である)を満足するAlとTiの複合窒化物層、
B層:電子放出型走査電子顕微鏡を用い、工具基体表面に対し垂直な皮膜断面研磨面に存在する結晶粒個々に電子線を照射して、前記工具基体表面の法線に対して、前記結晶粒の結晶面である(200)面の法線がなす結晶角を測定し、前記測定結晶角のうち、0〜60度の範囲内にある測定傾斜角を0.25度ピッチ毎に区分するとともに、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表した場合、0〜35度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜35度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、組成式:(Al1−yCr)N(ここで、yはCrの含有割合を示し、原子比で、0.25≦y≦0.45である)を満足するAlとCrの複合窒化物層、
A層、B層の各層は、0.05〜1.5μmの一層平均層厚を有し、A層+B層を1積層周期とした1周期以上の積層構造を有する上部層とからなることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.5-5 μm, and
Composite nitriding of Al and Ti satisfying the composition formula: (Al 1-x Ti x ) N (where x is the Ti content and atomic ratio is 0.25 ≦ x ≦ 0.55) A lower layer composed of physical layers,
(B) having a total average layer thickness of 0.2 to 6.0 μm, and
A layer: compositional formula: (Al 1-x Ti x ) N (wherein x represents the Ti content, and atomic ratio is 0.25 ≦ x ≦ 0.55) and Al and Ti Composite nitride layer,
Layer B: Using an electron emission scanning electron microscope, each crystal grain existing on the polished surface of the coating film perpendicular to the surface of the tool base is irradiated with an electron beam, and the crystal is normal to the surface of the tool base. The crystal angle formed by the normal line of the (200) plane, which is the crystal plane of the grain, is measured, and the measured tilt angle within the range of 0 to 60 degrees among the measured crystal angles is divided every 0.25 degree pitch. In addition, when represented by an inclination angle distribution graph obtained by summing up the frequencies existing in each section, the highest peak exists in the inclination angle section within the range of 0 to 35 degrees and within the range of 0 to 35 degrees. An inclination angle distribution graph in which the total of the frequencies existing in the inclination angle section occupies a ratio of 45% or more of the entire frequencies in the inclination angle distribution graph is shown, and a composition formula: (Al 1-y Cr y ) N (here And y represents the content ratio of Cr, and the atomic ratio is 0.2. 5 ≦ y ≦ 0.45) and a composite nitride layer of Al and Cr,
Each layer of the A layer and the B layer has an average layer thickness of 0.05 to 1.5 μm, and is composed of an upper layer having a laminated structure of one cycle or more in which the A layer + B layer is one lamination cycle. A surface-coated cutting tool.
JP2011186328A 2011-08-29 2011-08-29 Surface coated cutting tool Active JP5688685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011186328A JP5688685B2 (en) 2011-08-29 2011-08-29 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011186328A JP5688685B2 (en) 2011-08-29 2011-08-29 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2013046948A JP2013046948A (en) 2013-03-07
JP5688685B2 true JP5688685B2 (en) 2015-03-25

Family

ID=48010278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011186328A Active JP5688685B2 (en) 2011-08-29 2011-08-29 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP5688685B2 (en)

Also Published As

Publication number Publication date
JP2013046948A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP6331003B2 (en) Surface coated cutting tool
JP5088469B2 (en) Surface-coated cutting tool exhibiting excellent fracture resistance with hard coating layer in heavy-duty machining and manufacturing method thereof
JP2016093857A (en) Surface-coated cutting tool
JP2009090395A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP5152690B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting
JP5445847B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer
JP5783462B2 (en) Surface coated cutting tool
JP5035527B2 (en) Surface coated cutting tool
JP2011240438A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP4244377B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP5686254B2 (en) Surface coated cutting tool
JP2011189436A (en) Surface coated cutting tool
JP2016175161A (en) Surface-coated cutting tool
JP5688685B2 (en) Surface coated cutting tool
JP6471546B2 (en) Surface coated cutting tool
JP5688686B2 (en) Surface coated cutting tool
JP5692636B2 (en) Surface coated cutting tool
JP5975338B2 (en) Surface coated cutting tool
JP6102653B2 (en) Surface coated cutting tool
JP2004338008A (en) Cutting tool made of surface coated hard metal with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JP2012081548A (en) Surface coated cutting tool
JP2007313582A (en) Surface-coated cutting tool having hard coating layer with excellent chipping resistance in heavy cutting difficult-to-cut material
JP4682826B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials
JP2008260098A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150105

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5688685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150118