JP5665981B2 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP5665981B2
JP5665981B2 JP2013520302A JP2013520302A JP5665981B2 JP 5665981 B2 JP5665981 B2 JP 5665981B2 JP 2013520302 A JP2013520302 A JP 2013520302A JP 2013520302 A JP2013520302 A JP 2013520302A JP 5665981 B2 JP5665981 B2 JP 5665981B2
Authority
JP
Japan
Prior art keywords
refrigerant
indoor
valve
expansion valve
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013520302A
Other languages
English (en)
Other versions
JPWO2012172599A1 (ja
Inventor
裕輔 島津
裕輔 島津
隅田 嘉裕
嘉裕 隅田
幸志 東
幸志 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5665981B2 publication Critical patent/JP5665981B2/ja
Publication of JPWO2012172599A1 publication Critical patent/JPWO2012172599A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0293Control issues related to the indoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Description

この発明は、気液二相冷媒の冷媒流動音を低減する空気調和装置に関する。
空気調和装置において、特にビルやホテルなどの空調用途で多数の室内機を有するものは、冷媒分配のために膨張機構を室内機側に設けているが、冷媒流動音が発生しやすい。特に室内負荷が小さい場合は室内機にある室内ファンの回転数が小さいためファンモータや風切り音が相対的に小さく、逆に冷媒流動音が相対的に騒音の主要因となる。冷媒流動音が高周波数帯にあったり、不連続に発生するので聴感で認知しやすく、室内の快適性を著しく損なう問題があった。
従来の空気調和装置では、例えば、可変式の膨張機構と並列にキャピラリーチューブを設け、小流量時の膨張機構の精度バラツキによる過大冷媒流れを防止して、冷媒音の発生を低減するものが開示されている(例えば、特許文献1参照)。
また例えば、膨張機構の内部構造体に多孔質透過材を用いて冷媒流動音の発生を防止して騒音を低減するものが開示されている(例えば、特許文献2参照)。
また例えば、室内機を停止する場合に室内ファンの回転数の低下タイミングを遅らせ、冷媒音が発生する場合でも聴感として認識されないようにするものが開示されている(例えば、特許文献3参照)。
特開平7−310962号公報(段落[0033]、図1) 特開2000−346495号公報(段落[0082]、図7、図8) 特開平11−141961号公報(段落[0022])
特許文献1に示す技術では、冷媒が小流量流れる場合にキャピラリーで流量調節するので、膨張機構の精度バラツキに起因する冷媒流動音は抑止できるが、キャピラリーチューブ入口の冷媒状態が二相の場合は、ガス相と液相が交互にキャピラリーチューブに流入し、冷媒流動音が発生する、という問題点があった。
特許文献2に示す技術では、冷媒流動音が室内機騒音の主要因となる室内機の停止時や、低負荷時だけでなく、冷媒流動音が室内機騒音の主要因とはならない定格負荷や最大負荷時でも膨張機構にある多孔質透過材(以下、多孔体ともいう)を冷媒が通過する。多孔体は冷媒流動音を抑制するメリットがあるが、冷媒が通過する際の流動抵抗が大きいデメリットがある。そのため、定格負荷や最大負荷に対して十分小さい流動抵抗を発揮するには、膨張機構を大きくする必要があり、省スペースが実現できず、さらには高コストとなる、という問題点があった。
さらには、多孔体は小孔が多数あるため異物捕捉の機能を有しており、常に冷媒が多孔体を通過すれば、多孔体が異物を捕捉してしまう機会が、運転時間の経過と共に単調に増加する。多孔体が異物を大量に捕捉すると、冷媒を整流化できず冷媒流動音抑制ができなくなったり、流動抵抗が大きくなり定格負荷や最大負荷に対して適切な冷媒流量が通過できなくなり、最終的には冷媒流路が詰まってしまい機器が破損してしまう、という問題点があった。
特許文献3に示す技術では、室内機を停止する場合に室内ファンを遅くまで運転させることで、冷媒流動音を相対的に抑止する。しかし、例えば室内が冷え過ぎ、あるいは暑過ぎと使用者が判断した場合に、室内機の停止操作が行われる場合があり、室内ファンを遅くまで運転させると冷風または温風が継続して室内機から吹き出し、使用者が不快に感じる、という問題点があった。さらには室内ファンを遅らせて停止するだけ、消費電力が増大する、という問題点があった。
この発明は、上記のような課題を解決するためになされたもので、膨張機構の入口の冷媒状態に関わらず冷媒流動音を抑制することができる空気調和装置を得るものである。
また、大流量に対応しかつ長期信頼性を確保することができる空気調和装置を得るものである。
また、室内の快適性を損なうことなく、冷媒流動音を抑制することができる空気調和装置を得るものである。
この発明に係る空気調和装置は、圧縮機および室外熱交換器を備えた室外機と、開度可変可能な膨張弁および室内熱交換器をそれぞれ備えた複数の室内機とを冷媒配管で接続した冷媒回路と、前記圧縮機、前記各膨張弁、および前記各室内機にそれぞれ設けられた室内ファンの動作を制御する制御装置とを備え、前記複数の室内機の運転を個別に制御する空気調和装置において、前記膨張弁と並列に、冷媒流路を開閉する開閉弁と、冷媒が通過可能な多孔体を有する絞り機構とが直列に接続され、前記制御装置は、前記圧縮機からの高温の冷媒を前記室内熱交換器に供給する暖房モードにおいて、前記複数の室内機の室内負荷が小さい場合に、前記複数の室内機のうち一部の室内機の運転を停止し、他の一部の室内機を運転させた場合、運転を停止した室内機の、前記膨張弁を閉とし、前記開閉弁を開とし、前記複数の室内機の室内負荷が大きい場合に、前記複数の室内機のうち一部の室内機の運転を停止し、他の一部の室内機を運転させた場合、運転を停止した室内機の、前記膨張弁を閉とし、前記開閉弁を閉とするものである。
この発明は、膨張弁入口の冷媒状態に関わらず冷媒流動音を抑制することができる。
実施の形態1における空気調和装置の冷媒回路図である。 実施の形態1における絞り機構の構成図である。 実施の形態1における絞り機構内のオリフィス構造体の構成図である。 実施の形態1における制御装置の構成および冷房運転時の制御動作を示す図である。 実施の形態1における制御装置の構成および暖房運転時の制御動作を示す図である。
実施の形態1.
図1は実施の形態1における空気調和装置の冷媒回路図である。
図1において、空気調和装置1は、室外機30、および、複数の室内機2を備えている。42は室外機30に接続されるガス主管である。40は個々の室内機2に接続されるガス枝管である。41はガス主管42とガス枝管40との接続点である。37は室外機30に接続される液主管である。39は室内機2に接続される液枝管である。38は液主管37と液枝管39との接続点である。
室内機2は、室内熱交換器3、流量調整弁4、開閉弁6、絞り機構10を備えている。室内機2に接続されるガス枝管40から液枝管39へと順に、室内熱交換器3と流量調整弁4とが接続されている。絞り機構10は、流量調整弁4と並列に接続されている。開閉弁6は、絞り機構10と直列に接続されている。絞り機構10は、低負荷の場合に室内機2に流れる流量に合わせて、流動抵抗を設定している。室内熱交換器3の近傍には室内ファン61が設けられている。なお、流量調整弁4は、本発明における「膨張弁」に相当する。
室外機30は、圧縮機31を備えている。圧縮機31の吐出側には、オイルセパレータ32、流路切替弁である四方弁33、室外熱交換器34、過冷却熱交換器35、室外流量調整弁36が順次配管で接続されている。室外流量調整弁36は液主管37と接続される。圧縮機31吸入側には、アキュームレータ43、および、四方弁33が順次配管で接続されている。四方弁33はガス主管42と接続されている。室外熱交換器34の近傍には室外ファン60が設けられている。
44は過冷却バイパス経路である。過冷却バイパス経路44は、過冷却熱交換器35と液主管37との間より分岐し、アキュームレータ43と四方弁33とを繋ぐ配管へ合流する。45は過冷却調整弁である。過冷却バイパス経路44は、過冷却調整弁45および過冷却熱交換器35が順に接続される。
アキュームレータ43はU字管43aを有している。U字管43aは圧縮機31の吸入側に接続される。U字管43aには返油穴43bが設けられている。また、46は返油経路である。返油経路46は、一方をオイルセパレータ32の下側内部に接続し、他方を圧縮機31の吸入側配管に接続する。返油経路46にはキャピラリーチューブ47が設けられる。50は制御装置である。
室外機30には、圧力センサ46a、47b、48cが設けられ、それぞれ設置場所の冷媒圧力を計測する。圧力センサ46aは圧縮機31の吐出側に設けられている。圧力センサ47bは圧縮機31の吸入側に設けられている。圧力センサ48cは室外流量調整弁36と流量調整弁4との間に設けられている。
室外機30には、温度センサ49a、49b、49c、49d、49e、49jが設けられ、それぞれ設置場所の冷媒温度を計測する。温度センサ49aは圧縮機31とオイルセパレータ32の間に設けられている。温度センサ49bは圧縮機31とアキュームレータ43の間に設けられている。温度センサ49cは室外熱交換器34と四方弁33との間に設けられている。温度センサ49dは室外熱交換器34と過冷却熱交換器35との間に設けられている。温度センサ49eは過冷却熱交換器35と室外流量調整弁36と過冷却調整弁21との間に設けられている。温度センサ49jは過冷却熱交換器35とアキュームレータ43と四方弁33との間に設けられている。また、室外機30には、温度センサ49kが設けられ、室外機30の周囲の空気温度を計測する。
各室内機2には、温度センサ49f、49hが設けられ、それぞれ設置場所の冷媒温度を計測する。温度センサ49fは室内熱交換器3と流量調整弁4との間に設けられている。温度センサ49hは室内熱交換器3とガス枝管40との間に設けられている。
制御装置50は、例えばマイクロコンピュータで構成される。制御装置50は、圧力センサ46a、47b、48cや温度センサ49a〜49kによる計測情報や、空気調和装置1の使用者から指示される運転内容(負荷要求)に基づいて、圧縮機31の運転周波数、四方弁33の流路切替、室外熱交換器34の室外ファン60の回転数、室外流量調整弁36の開度、過冷却調整弁45の開度、流量調整弁4の開度、開閉弁6の開閉状態、室内熱交換器3の室内ファン61の回転数、などを制御する。
なお、図1では制御装置50を室外機30に設ける場合を示すがこれに限るものではない。例えば、制御装置50を、室外機30、および複数ある室内機2に個別に分散して設置し、各種データ等を含む通信を送受信することができるものであっても良い。
[絞り機構10]
次に、絞り機構10の構成について説明する。
図2は実施の形態1における絞り機構の構成図である。
図3は実施の形態1における絞り機構内のオリフィス構造体の構成図である。
図3(a)は、オリフィス構造体10aの正面図である。図3(b)は、オリフィス構造体10aの左側面断面図である。
図2、図3において、オリフィス構造体10aは、オリフィス保持体11の中央部にオリフィス12を形成し、略円盤状のオリフィス保持体11の両端面から入口側多孔体13および出口側多孔体14(以下、総称して多孔体ともいう)によって挟み込むサンドイッチ構造を形成する。このサンドイッチ構造は、オリフィス保持体11のカシメ部15によって、オリフィス保持体11と、入口側多孔体13および出口側多孔体14との周辺部分にカシメが施され、固定される。
オリフィス構造体10aは、図2に示すように、銅管26における冷媒の流れ(暖房時)の入口側から圧入することで銅管26内に固定され、その後、銅管26の端部27,28を絞って細くし、冷媒配管を接続する形状に成形する。これによって、絞り機構10が形成されることになる。絞り機構10に圧入されるオリフィス構造体10aの外径と銅管26の内径との圧入代は、約25μmであり、オリフィス構造体10aを圧入することによって、冷媒の圧力が加わってもオリフィス構造体10aが移動しないようにしている。また、外殻を銅管26で構成することによって、絞り機構10の外殻を低コストで構成することができる。
なお、ここでいう入口側、出口側とは、暖房運転時における冷媒の流れ方向において、冷媒の流入口を入口側、冷媒の流出口を出口側という。冷房運転時には出口側多孔体14から入口側多孔体13へ向かって冷媒が流れることとなる。冷媒の流れについては後述する。
このようにして形成された絞り機構10に、暖房運転時に流れ込んだ冷媒のスラグ(気泡)は、入口側多孔体13の微細で無数の通気孔を通過することによって、小さな気泡になり、蒸気冷媒と液冷媒とが同時にオリフィス12を通過する。そして、オリフィス12の下流の噴流は、出口側多孔体14によって、その内部で冷媒の流速が十分に減速され、速度分布も一様化されるため、流れに大きな渦が発生することがなく、噴流騒音(冷媒流動音)が小さくなる。
また、冷房運転時に流れ込んだ冷媒のスラグ(気泡)は、出口側多孔体14の微細で無数の通気孔を通過することによって、小さな気泡になり、蒸気冷媒と液冷媒とが同時にオリフィス12を通過する。そして、オリフィス12の下流の噴流は、入口側多孔体13によって、その内部で冷媒の流速が十分に減速され、速度分布も一様化されるため、流れに大きな渦が発生することがなく、噴流騒音(冷媒流動音)が小さくなる。
[オリフィス構造体10aの詳細構成]
ここで、オリフィス構造体10aの詳細構成について説明する。
入口側多孔体13および出口側多孔体14の多孔体は、全体が多孔質透過材で形成され、通気孔、すなわち流体が透過できる多孔体表面および内部の気孔、の平均直径が約500μmであり、空隙率が92±6%である。この多孔体は、ウレタンフォームに金属粉末を塗布後、熱処理してウレタンフォームを焼失させ、金属を3次元の格子状に成形したものであり、材料は、Ni(ニッケル)である。なお、多孔体の強度を上げるために、Cr(クロム)をメッキ処理または浸透処理しても良い。
入口側多孔体13および出口側多孔体14と、オリフィス12との間に空間16,17を設けている。この空間16,17を設けることによって、入口側多孔体13および出口側多孔体14と、オリフィス12との間の流路を広く取ることができる。このため、入口側多孔体13および出口側多孔体14のメッシュの一部に異物が積層した場合であっても、他の多孔体部分に複数の流路が存在するために、詰まりの危険性が回避される。また、開閉弁6を絞り機構10と直列に接続し、定格負荷や最大負荷時に開閉弁6を閉とすることで、絞り機構10を通過する冷媒流量をゼロとすることで、異物詰まりといった信頼性の課題がさらに回避される。
そして、入口側多孔体13とオリフィス12との間の空間16の距離16aを、オリフィス12の直径と同じ1mmとすることによって、入口側多孔体13で微細化された気泡が再集結してオリフィス12の直径φ1mmに比して大きな気泡となることを防止する。このため、詰まりの危険性を回避しつつ、圧力の変動が抑制される。
なお、ここでは距離16aをオリフィス12の直径と同じ距離としたが、本発明はこれに限らず、空間16の距離16aがオリフィス12の直径以下であれば良い。
また、オリフィス12を通過した冷媒は円錐状に拡散する。このため、出口側多孔体14とオリフィス12との間の空間17の距離17aを、オリフィス12の直径1mm以上の2mmとすることによって、オリフィス12を通過した冷媒が出口側多孔体14に到達した際、この冷媒の流速が低下することになる。この流速の低下によって、冷媒に金属の微粉末などが含まれる場合に生ずる多孔体のメッシュのサンドエロージョンが抑制される。
なお、ここでは距離17aを2mmとしたが、本発明はこれに限らず、空間17の距離17aがオリフィス12の直径以上であれば良い。
ここで、オリフィス12に対する距離16aと距離17aとを異ならせる場合、オリフィス構造体10aを冷媒回路に組み込む際に、取り付け方向を間違えないようにする必要がある。このため、図3に示すように、入口側多孔体13と出口側多孔体14との直径を変えることによって、出入口の方向を判別することができる。具体的に、入口側多孔体13を直径20mmとし、出口側多孔体14を直径21mmとすることによって、作業者は、組み付ける多孔体が、入口側多孔体13であるのか、出口側多孔体14であるのかを容易に判別することができる。さらに、入口側多孔体13と出口側多孔体14との直径を変えることによって、入口側多孔体13と出口側多孔体14の多孔体材料として異なる材料を使用した場合に、取り付けるべき多孔体の誤使用を防止することができる。
[運転動作]
次に、空気調和装置1の運転動作について説明する。
まず、定格負荷や最大負荷など、冷媒流量が各室内機2にある程度流れている場合について説明する。この時は、開閉弁6が閉か、あるいは流量調整弁4と絞り機構10との流動抵抗差より、ほとんどの冷媒が流量調整弁4を通過するとみなす。また、室内ファン61は大きな回転数で運転するため、ファン起因の風切り音やモータ音が大きく、冷媒動作音が騒音源とならない。
[冷房運転]
まず、冷房運転時の動作について説明する。
四方弁33は、図1の破線方向に接続される。また、室外流量調整弁36は全開または全開に近い状態、過冷却調整弁45および流量調整弁4は適度な開度に設定する。この場合の冷媒の流れは以下の様になる。
圧縮機31から吐出された高圧高温の冷媒ガスは、オイルセパレータ32を通過する時に冷媒に混在する冷凍機油のおよそ大部分が分離され内側底部に溜められ、返油経路46を通り、キャピラリーチューブ47で減圧されつつ返油量を調整され、圧縮機31の吸入側に至る。これによりオイルセパレータ32からアキュームレータ43に存在するする冷凍機油を低減でき圧縮機信頼性改善の効果がある。
一方、冷凍機油が占める割合が低下した高圧高温の冷媒は、四方弁33を通り、室外熱交換器34で凝縮して高圧低温の冷媒となり、過冷却熱交換器35に入る。過冷却熱交換器35を出て分岐した一方の流れは過冷却調整弁45で適度に流量調整され低圧の冷媒となり、室外熱交換器34を出た冷媒と過冷却熱交換器35内で熱交換する。室外熱交換器34を出た冷媒は、過冷却熱交換器35を出ると高圧で温度がさらに低い冷媒となる。過冷却熱交換器35を出た一方の低圧冷媒は、アキュームレータ43と四方弁33とを結ぶ配管に至る。
これにより同一能力の場合、エンタルピ差が増大するため必要冷媒流量を低減でき、圧損低減による性能改善の効果がある。さらには、室外機30から出て室内機2を経由して再度室外機30に戻る経路の冷凍機油を低減でき、圧縮機信頼性改善の効果がある。
なお、ここでいう高圧、低圧は冷媒回路内における圧力の相対的な関係を表すものとする(温度についても同様である)。
一方、過冷却熱交換器35を出た高圧冷媒は、室外流量調整弁36を通るが、全開のためさして減圧することなく高圧低温の冷媒として液主管37に供給される。その後に液主管の接続点38で枝分かれし、液枝管39を通り、室内機2内に入り、流量調整弁4で減圧され低圧低乾き度の気液二相冷媒となり、室内熱交換器3で蒸発ガス化し、ガス枝管40、ガス主管の接続点41、ガス主管42、四方弁33、アキュームレータ43を通り圧縮機31に吸入される。
アキュームレータ43内に気液二相冷媒が流入すると液冷媒が容器下部に溜まり、U字管の上方開口部より流入されたガスリッチな冷媒が、圧縮機31へ吸入される。過渡的な液や気液二相冷媒をアキュームレータ43内に溜めきりオーバーフローするまで、圧縮機31の液バックを一時的に防止することができ、圧縮機信頼性の改善効果が得られる。
また、オイルセパレータ32で分離できなかった冷凍機油は、冷媒回路を長い時間を要しながらも循環してアキュームレータ43内に溜まる。
アキュームレータ43内の冷凍機油は、内部に液冷媒が存在しない場合は油そのもの、内部に液冷媒が存在する場合は液冷媒と冷凍機油が溶解した状態で、U字管43aの上方開口部より最下方に位置する返油穴43bより圧縮機31へ返油される。
[冷房運転時の制御動作]
次に、空気調和装置1の制御装置50により行われる制御動作について説明する。
図4は実施の形態1における制御装置の構成および冷房運転時の制御動作を示す図である。
図4において、制御装置50は、圧縮機制御手段51、室外熱交換量制御手段52、過冷却熱交換器過熱度制御手段53、室外膨張制御手段54、室内熱交換量制御手段55、室内過熱度制御手段56、および、開閉弁制御手段57が設けられる。
冷房運転では室内熱交換器3が蒸発器となるので、ここで所定の熱交換能力が発揮されるように蒸発温度(蒸発器の二相冷媒温度)が設定され、この蒸発温度を実現する低圧値を低圧目標値として設定する。そして、圧縮機制御手段51でインバータによる回転数制御を行う。
圧縮機制御手段51は、圧力センサ47bで計測される低圧側の圧力値が、定められた目標値、例えば飽和温度10℃に相当する圧力になるよう、圧縮機31の運転容量を制御する。また同時に回転数制御により凝縮温度(凝縮器の二相冷媒温度)も変化するが、性能、信頼性確保のため凝縮温度として一定の範囲が設定され、この凝縮温度を実現する圧力の値を、高圧目標値として設定する。圧縮機制御手段51と室外熱交換量制御手段52により、伝熱媒体である空気を搬送する室外ファン60の回転数を、室外熱交換器34の熱交換量や、室内熱交換器3の熱交換量から予め定められた状態を元に、圧力センサ46a、47bで計測される圧力が目標範囲内になるよう制御する。
室内過熱度制御手段56は、流量調整弁4の開度を、(温度センサ49hの温度)−(温度センサ49fの温度)、で演算される室内熱交換器3の出口過熱度が、目標値(温度)となるように開度制御する。この目標値としては、予め定められた目標値、例えば2℃を用いる。目標となる出口過熱度に制御することで、蒸発器内の二相状態の冷媒が占める割合を好ましい状態に保つことができる。また、制御装置50は、室内機2の運転を停止させる場合には、室内過熱度制御手段56により流量調整弁4の開度を全閉にする。
開閉弁制御手段57は、室内過熱度制御手段56と一体となり動作を行い、流量調整弁4の開度が小さい場合(例えば所定開度未満)に開閉弁6を開とし、流量調整弁4の開度が大きい場合(例えば所定開度以上)に開閉弁6を閉とする。また、室内機2の運転が停止し流量調整弁4が全閉時には、開閉弁6を閉とする。この所定開度としては、流量調整弁4の流動抵抗が、絞り機構10の流動抵抗と一致する開度を設定する。なお、上記所定開度はこれに限らず、任意の開度に設定しても良い。例えば流量調整弁4で発生する冷媒流動音が室内ファン61の駆動音と比較して大きくなる開度を設定しても良い。また、冷房運転時と暖房運転時(後述)とで上記所定開度を変更しても良い。
ここで、定格負荷や最大負荷など室内負荷が大きい場合には目標とする出口加熱度を得るために冷媒流量を大きくする必要が有り、流量調整弁4の開度が大きく設定される。このとき、開閉弁6は閉となり、多孔体を有する絞り機構10に冷媒は流通しない。このため、定格負荷や最大負荷など室内負荷が大きく冷媒流量が大きい場合に、絞り機構10の多孔体が異物を捕捉する機会を軽減することができる。また、冷媒流量が大きい場合には絞り機構10に冷媒は流通しないので、絞り機構10の流動抵抗を小さくするための措置を講じる必要がない。
また、後述するように、定格負荷や最大負荷など室内負荷が大きい場合には室内に冷風をより多く室内に供給するため、室内ファン61の回転数が大きくなる。このため、流量調整弁4の冷媒流動音は、室内ファン61の駆動に伴う騒音と比較して相対的に小さく、冷媒流動音が室内機騒音の主要因とはならない。
室内熱交換量制御手段55は、室内ファン61の回転数を制御する。室内ファン61の回転数は、室内機2の吸込み空気温度が、使用者が定める設定温度となるように制御する。または使用者の操作により指定され風量に応じて回転数を制御する。室内熱交換量制御手段55による室内ファン61の回転数制御は、上述した室内過熱度制御手段56による流量調整弁4の開度制御、および、開閉弁制御手段57による開閉弁6の開閉制御より先に行う。なお、室内ファン61の回転数制御には動作の開始および停止が含まれる。
制御装置50は運転中の室内機2を停止させる場合、室内熱交換量制御手段55により室内ファン61の回転数をゼロとして停止させた後、室内過熱度制御手段56による流量調整弁4の開度制御、および、開閉弁制御手段57による開閉弁6の開閉制御を行う。これにより、室内負荷が小さくなり室内機2を停止させる場合や、使用者が冷え過ぎと判断して停止操作がされた場合、室内に冷風が供給されることがなく、快適性が損なわれることがない。また、室内機2を停止する場合には、室内過熱度制御手段56により流量調整弁4の開度が絞られていき最終的には全閉となる。この過渡時において、流量調整弁4の開度が小さくなると開閉弁6が開となり、多孔体を有する絞り機構10に冷媒が流通し、冷媒流動音を抑制することができる。
制御装置50は停止中の室内機2を起動させる場合、室内過熱度制御手段56による流量調整弁4の開度制御、および、開閉弁制御手段57による開閉弁6の開閉制御を行った後、室内熱交換量制御手段55により室内ファン61の回転動作を開始する。これにより、室内熱交換器3を流動する冷媒温度が十分低くなった状態で、室内機2から冷風を吹き出すことができる。
室外膨張制御手段54は、室外流量調整弁36の開度を、予め定められた初期開度、例えば全開または全開に近い開度に制御する。また、過冷却熱交換器過熱度制御手段53は、過冷却調整弁45の開度を、(温度センサ49jの温度)−(圧力センサ48cで計測される圧力から換算される飽和温度)、で演算される過冷却熱交換器35の低圧側出口過熱度が、目標値となるように開度制御する。例えば2℃が用いられ、過冷却熱交換器35の仕様に見合った熱交換が実現できる。
[暖房運転]
次に、暖房運転の動作について説明する。
四方弁33は、図1の実線方向に接続される。室外流量調整弁36は、当該室外流量調整弁36の前後で適度な差圧が生じるように開度が予め設定されている。過冷却調整弁45は全閉に設定し、流量調整弁4は適度な開度に設定する。この場合の冷媒の流れは次のようになる。
圧縮機31から吐出された高圧高温の冷媒ガスは、オイルセパレータ32、四方弁33を通りガス主管42に流入する。オイルセパレータ32は冷房運転時の記述と同じ動作を行う。ガス主管42を通り室内機2に供給された冷媒は、室内機2内の室内熱交換器3で凝縮して高圧低温となり、流量調整弁4で減圧され、中間圧で液相または飽和液に近い気液二相冷媒となる。中間圧の冷媒は液主管37を通った後、室外機30に流入するが、室外流量調整弁36を通過して低圧二相状態となる。低圧二相状態となった冷媒は、過冷却熱交換器35を通り、室外熱交換器34で蒸発し低圧低温の冷媒となり、アキュームレータ43を通り圧縮機31に吸入される。アキュームレータ43は冷房運転時の記述と同じ動作を行う。過冷却調整弁45は全閉であり流れがなく、過冷却熱交換器35で熱交換はない。なお、過冷却調整弁45に流れがあると、熱交換するほど性能低下することとなり、望ましくない。
[暖房運転時の制御動作]
次に、空気調和装置1の制御装置50により行われる制御動作について説明する。
図5は実施の形態1における制御装置の構成および暖房運転時の制御動作を示す図である。
図5において、制御装置50は、圧縮機制御手段51、室外熱交換量制御手段52、過冷却熱交換器過熱度制御手段53、室外膨張制御手段54、室内熱交換量制御手段55、室内過冷却度制御手段58、および、開閉弁制御手段57が設けられる。
暖房運転では室内熱交換器3が凝縮器となるので、ここで所定の熱交換量が発揮されるように凝縮温度が設定され、この凝縮温度を実現する高圧値を高圧目標値として設定する。そして、圧縮機制御手段51でインバータによる回転数制御を行う。
圧縮機制御手段51は、圧力センサ46aで計測される高圧側の圧力値が、定められた目標値、例えば飽和温度50℃に相当する圧力になるよう、圧縮機31の運転容量を制御する。また同時に回転数制御により室外熱交換器34の蒸発温度が変化するが、能力、信頼性確保のため一定の範囲が設定され、この蒸発温度を実現する圧力の値を、低圧目標値として設定する。圧縮機制御手段51と室外熱交換量制御手段52とにより、伝熱媒体である空気を搬送する室外ファン60の回転数を、室外熱交換器34の熱交換量や、室内熱交換器3の熱交換量から予め定められた状態を元に、圧力センサ47bで計測される低圧値が目標範囲内になるよう制御する。
室内過冷却度制御手段58は、流量調整弁4の開度を、(圧力センサ46aで計測される圧力から換算される飽和温度)−(温度センサ49fの温度)、で演算される室内熱交換器3の出口過冷却度が、目標値(温度)となるように開度制御する。この目標値としては、予め定められた目標値、例えば10℃を用いる。
開閉弁制御手段57は、室内過冷却度制御手段58と一体となり動作を行い、流量調整弁4の開度が小さい場合(例えば所定開度未満)に開閉弁6を開とし、流量調整弁4の開度が大きい場合(例えば所定開度以上)に開閉弁6を閉とする。また、室内機2の運転が停止し流量調整弁4が全閉時には、開閉弁6を閉とする。この所定開度としては、流量調整弁4の流動抵抗が、絞り機構10の流動抵抗と一致する開度を設定する。なお、上記所定開度はこれに限らず、任意の開度に設定しても良い。例えば流量調整弁4で発生する冷媒流動音が室内ファン61の駆動音と比較して大きくなる開度を設定しても良い。また、上述した冷房運転時と暖房運転時とで上記所定開度を変更しても良い。
ここで、定格負荷や最大負荷など室内負荷が大きい場合には目標とする出口過冷却度を得るために冷媒流量を大きくする必要が有り、流量調整弁4の開度が大きく設定される。このとき、開閉弁6は閉となり、多孔体を有する絞り機構10に冷媒は流通しない。このため、定格負荷や最大負荷など室内負荷が大きく冷媒流量が大きい場合に、絞り機構10の多孔体が異物を捕捉する機会を軽減することができる。また、冷媒流量が大きい場合には絞り機構10に冷媒は流通しないので、絞り機構10の流動抵抗を小さくするための措置を講じる必要がない。
また、後述するように、定格負荷や最大負荷など室内負荷が大きい場合には室内に温風をより多く室内に供給するため、室内ファン61の回転数が大きくなる。このため、流量調整弁4の冷媒流動音は、室内ファン61の駆動に伴う騒音と比較して相対的に小さく、冷媒流動音が室内機騒音の主要因とはならない。
室内熱交換量制御手段55は、室内ファン61の回転数を制御する。室内ファン61の回転数は、室内機2の吸込み空気温度が、使用者が定める設定温度となるように制御する。または使用者の操作により指定され風量に応じて回転数を制御する。室内熱交換量制御手段55による室内ファン61の回転数制御は、上述した室内過冷却度制御手段58による流量調整弁4の開度制御、および、開閉弁制御手段57による開閉弁6の開閉制御より先に行う。なお、室内ファン61の回転数制御には動作の開始および停止が含まれる。
また、制御装置50は運転中の室内機2を停止させる場合、室内熱交換量制御手段55により室内ファン61の回転数をゼロとして停止させた後、室内過冷却度制御手段58による流量調整弁4の開度制御、および、開閉弁制御手段57による開閉弁6の開閉制御を行う。これにより、室内負荷が小さくなり室内機2を停止させる場合や、使用者が暑過ぎと判断して停止操作がされた場合、室内に温風が供給されることがなく、快適性が損なわれることがない。また、室内機2を停止する場合には、室内過冷却度制御手段58により流量調整弁4の開度が絞られていき最終的には全閉となる。この過渡時において、流量調整弁4の開度が小さくなると開閉弁6が開となり、多孔体を有する絞り機構10に冷媒が流通し、冷媒流動音を抑制することができる。
制御装置50は停止中の室内機2を起動させる場合、室内過冷却度制御手段58による流量調整弁4の開度制御、および、開閉弁制御手段57による開閉弁6の開閉制御を行った後、室内熱交換量制御手段55により室内ファン61の回転動作を開始する。これにより、室内熱交換器3を流動する冷媒温度が十分高くなった状態で、室内機2から温風を吹き出すことができる。
過冷却熱交換器過熱度制御手段53は、過冷却調整弁45の開度を、予め定められた初期開度、例えば全閉または全閉に近い開度に固定して制御する。
室外膨張制御手段54は、室外流量調整弁36の開度を、圧力センサ48cで計測される圧力から換算される飽和温度が、(高圧目標値より定まる飽和温度)−(出口過冷却度の目標値)、となるように開度制御する。
ここで、暖房運転と冷房運転の違いをみると、冷房運転では液主管37、液枝管39に高圧の液冷媒が存在する一方、暖房運転では液主管37、液枝管39に中間圧の液相または飽和液に近い気液二相冷媒が存在する。従って暖房運転では冷房運転に比べて液主管37、液枝管39に冷媒を十分に溜めることができず余剰の冷媒が発生し、この余剰冷媒はアキュームレータ43に液冷媒として存在する。大容量化した空気調和装置では、液主管37、液枝管39の管径、配管長が増加するので余剰冷媒がさらに増大する。
しかし、仮に室外流量調整弁36がないと、液主管37、液枝管39内の冷媒は低圧二相であり、余剰冷媒量が増大する。室外流量調整弁36の開度調整により、液主管37、液枝管39内の密度が大きいため、余剰冷媒量を抑制している。さらに、冷房運転時に室外流量調整弁36の開度を適度に調整すると、冷房運転時の液主管37、液枝管39の液冷媒が減少するので、暖房運転時の余剰冷媒を抑制できる。
なお、一般的に熱交換器内の容積は室内熱交換器3より室外熱交換器34のほうが大きく、凝縮器として使う時の容積差が暖房時の余剰冷媒となる。熱交換器内の余剰冷媒と、前述の液主管37、液枝管39の余剰冷媒の和に安全率を掛け合わせたものがアキュームレータ43の容積となる。空気調和装置1のアキュームレータ43の総計が大きいと、コスト・コンパクト性に影響を及ぼす。
また、過冷却熱交換器35は冷房で使用し、暖房では使用していない。これは冷房時の低圧側回路の圧力損失を低減させるためである。
以上、冷房運転と暖房運転の動作について述べたが、これは室内負荷が、空気調和装置1の定格能力と同等である定格負荷の場合である。
次に、室内負荷が、空気調和装置の定格能力よりも小さい、部分負荷の場合について述べる。
[冷房運転時の部分負荷]
まず、冷房運転時の部分負荷について述べる。
室内負荷が小さいと、それに応じて室内機2の運転台数が減少し、個々の室内機2に流れる冷媒流量が減少し、冷媒流量の総計も減少する。過冷却熱交換器35は熱交換量が減少するが、過冷却熱交換器35に裕度が生じるため、室内機2に流入する冷媒に過冷却がつき、流量調整弁4で冷媒流動音が発生しにくい。
一方、室内負荷が極めて小さい場合、高圧および低圧の圧力が目標値に制御できない可能性があり、高圧と低圧との圧力差が小さくなる。この場合は過冷却熱交換器35で温度差が確保できず、室内機2に気液二相冷媒が流入する場合がある。この気液二相冷媒が流量調整弁4に入ると冷媒流動音が発生するおそれがある。
ここで、室内負荷が極めて小さい場合、室内過熱度制御手段56により、流量調整弁4の開度は小さく設定される。本実施の形態では、流量調整弁4の開度が小さい場合(例えば所定開度未満)に開閉弁6を開とするため、流動抵抗が小さい絞り機構10側に冷媒がより多く流れる。
ここで、通常のオリフィスタイプの流量制御装置では、気液二相冷媒が通過する際、大きな冷媒流動音が絞り部前後で発生する。特に、気液二相冷媒の流動様式がスラグ流となる場合に大きな冷媒流動音が絞り部上流で発生する。
この原因は、気液二相冷媒の流動様式がスラグ流の場合、流れ方向に対して蒸気冷媒が断続的に流れ、絞り部流路よって大きな蒸気スラグもしくは蒸気気泡が絞り部流路を通過する際に、絞り部流路上流の蒸気スラグもしくは蒸気気泡が崩壊することによって、それらが振動するからである。また、絞り部を蒸気冷媒と液冷媒が交互に通過するため、冷媒の速度は蒸気冷媒が通過する際は速く、液冷媒が通過する際は遅くなるため、それに伴って絞り部上流の圧力も変動するからである。また、従来の流量制御装置では、出口流路が例えば複数であるため、冷媒流速が速く、出口部分では高速気液二相流となり、壁面に冷媒が衝突するため、絞り部本体や出口流路が常に振動し騒音が発生する。さらに、出口部分の高速気液二相噴流による乱れや渦の発生によって、噴流騒音(冷媒流動音)も大きくなっている。
これに対し本実施の形態の冷房運転時においては、気液二相冷媒が絞り機構10に流れ込み、さらに、冷房運転時に冷媒の流入側となる出口側多孔体14の微細で無数の通気孔を通過することによって、蒸気スラグ(大気泡)は小さな気泡になり、冷媒の流動状態が均質気液二相流(蒸気冷媒と液冷媒とが、良く混合された状態)となる。このため、蒸気冷媒と液冷媒とが同時にオリフィス12を通過し、冷媒の速度変動が生じず、圧力も変動しない。
また、出口側多孔体14のような多孔質透過材は、内部の流路が複雑に構成され、この内部では圧力変動が繰り返され、一部、熱エネルギに変換しながら圧力変動を一定にする効果があるため、オリフィス12で圧力変動が発生してもこれを吸収する効果があり、これによって上流にその影響が伝えにくくなる。
また、オリフィス12の下流の高速気液二相噴流は、冷房運転時に冷媒の流出側となる入口側多孔体13によって、その内部で冷媒の流速が十分に減速され、速度分布も一様化されるため、高速気液二相噴流が壁面に衝突することもなく、流れに大きな渦が発生することもないので、噴流騒音(冷媒流動音)も小さくなる。
このように、室内機2に気液二相冷媒が供給される場合であっても、冷媒流動音を抑制することができる。
また、制御装置50は、冷房運転時において室内負荷が小さい場合、または使用者からの操作により、複数の室内機2のうち一部の室内機2の運転を停止し、他の一部の室内機2を運転させる。制御装置50は冷房運転中の室内機2を停止させる場合、室内過熱度制御手段56により当該室内機2の流量調整弁4の開度を全閉とし、開閉弁制御手段57により開閉弁6を閉とする。
また、制御装置50は運転中の室内機2を停止させる場合、室内熱交換量制御手段55により室内ファン61の回転数をゼロとして停止させた後、室内過熱度制御手段56による流量調整弁4の開度制御、および、開閉弁制御手段57による開閉弁6の開閉制御を行う。これにより、室内負荷が小さくなり室内機2を停止させる場合や、使用者が冷え過ぎと判断して停止操作がされた場合、室内に冷風が供給されることがなく、快適性が損なわれることがない。また、室内機2を停止する場合には、室内過熱度制御手段56により流量調整弁4の開度が絞られていき最終的には全閉となる。この過渡時において、流量調整弁4の開度が小さくなると開閉弁6が開となり、多孔体を有する絞り機構10に冷媒が流通し、冷媒流動音を抑制することができる。
そして、室内負荷が増加した場合や使用者からの操作により、停止中の室内機2を起動させた場合、制御装置50は、開閉弁制御手段57により起動する室内機の開閉弁6を開とした後、室内過熱度制御手段56により流量調整弁4の開度を設定する。例えば開閉弁6を開として所定時間経過後に流量調整弁4の開度を設定する。これにより、冷媒流量が安定しない過渡時には、絞り機構10に冷媒を流通させて冷媒流動音の発生を抑制することができる。
また、制御装置50は停止中の室内機2を起動させる場合、室内過熱度制御手段56による流量調整弁4の開度制御、および、開閉弁制御手段57による開閉弁6の開閉制御を行った後、室内熱交換量制御手段55により室内ファン61の回転動作を開始する。これにより、室内熱交換器3を流動する冷媒温度が十分低くなった状態で、室内機2から冷風を吹き出すことができる。
[暖房運転時の部分負荷]
次に、暖房運転時の部分負荷について述べる。
室内負荷が小さいと、それに応じて室内機2の運転台数が減少し、個々の室内機2に流れる冷媒流量が減少する。また、室内負荷が小さいと、室内ファン61の回転数が低下し、室内熱交換器3での熱交換量が低下し、十分な熱交換ができずに室内熱交換器3出口で気液二相冷媒となる。
室内熱交換器3出口で気液二相冷媒となった気液二相冷媒が、流量調整弁4に入ると冷媒流動音が発生するおそれがある。
ここで、室内負荷が小さい場合、室内過冷却度制御手段58により、流量調整弁4の開度は小さく設定される。本実施の形態では、流量調整弁4の開度が小さい場合(例えば所定開度未満)に開閉弁6を開とするため、流動抵抗が小さい絞り機構10側に冷媒がより多く流れる。
絞り機構10側に冷媒が流れると、冷房部分負荷の場合と同様に、冷媒流動音を抑制する効果がある。
つまり、本実施の形態の暖房運転時においては、気液二相冷媒が絞り機構10に流れ込み、さらに、入口側多孔体13の微細で無数の通気孔を通過することによって、蒸気スラグ(大気泡)は小さな気泡になり、冷媒の流動状態が均質気液二相流(蒸気冷媒と液冷媒とが、良く混合された状態)となる。このため、蒸気冷媒と液冷媒とが同時にオリフィス12を通過し、冷媒の速度変動が生じず、圧力も変動しない。
また、入口側多孔体13のような多孔質透過材は、内部の流路が複雑に構成され、この内部では圧力変動が繰り返され、一部、熱エネルギに変換しながら圧力変動を一定にする効果があるため、オリフィス12で圧力変動が発生してもこれを吸収する効果があり、これによって上流にその影響が伝えにくくなる。
また、オリフィス12の下流の高速気液二相噴流は、出口側多孔体14によって、その内部で冷媒の流速が十分に減速され、速度分布も一様化されるため、高速気液二相噴流が壁面に衝突することもなく、流れに大きな渦が発生することもないので、噴流騒音(冷媒流動音)も小さくなる。
このように、室内機2に気液二相冷媒が供給される場合であっても、冷媒流動音を抑制することができる。
また、制御装置50は、暖房運転時において室内負荷が小さい場合、または使用者からの操作により、複数の室内機2のうち一部の室内機2の運転を停止し、他の一部の室内機2を運転させる。制御装置50は、運転を停止した室内機2について、室内過冷却度制御手段58により流量調整弁4の開度を全閉とし、開閉弁制御手段57により開閉弁6を開とする。
ここで、暖房運転時に一部の室内機2の運転を停止し、他の一部の室内機2を運転させる場合、圧縮機31が運転状態となるため、停止中の室内機2の流量調整弁4が全閉の場合は、室内熱交換器3内に冷媒が滞留するおそれがあり、停止中の室内機2であっても室内熱交換器3に微小流量の冷媒を流す必要がある。本実施の形態では、上述のように、開閉弁6を開として絞り機構10に冷媒が流通させているため、停止中の室内機2における室内熱交換器3内への冷媒の滞留を抑制することができる。
また、停止中の室内機2は室内ファン61が停止するため、冷媒流動音が室内騒音の主要因となるが、多孔体を有する絞り機構10に冷媒を流通させるので、冷媒流動音を抑制することができる。なお、上述したように、本実施の形態における絞り機構10は、流動抵抗を小さくするための措置を講じる必要がないので、流動抵抗を大きくして、室内熱交換器3の冷媒滞留を抑制するのに必要な微小流量が流れる程度の流動抵抗とすることができる。
また、制御装置50は運転中の室内機2を停止させる場合、室内熱交換量制御手段55により室内ファン61の回転数をゼロとして停止させた後、室内過冷却度制御手段58による流量調整弁4の開度制御、および、開閉弁制御手段57による開閉弁6の開閉制御を行う。これにより、室内負荷が小さくなり室内機2を停止させる場合や、使用者が冷え過ぎと判断して停止操作がされた場合、室内に冷風が供給されることがなく、快適性が損なわれることがない。また、室内機2を停止する場合には、室内過熱度制御手段56により流量調整弁4の開度が絞られていき最終的には全閉となる。この過渡時において、流量調整弁4の開度が小さくなると開閉弁6が開となり、多孔体を有する絞り機構10に冷媒が流通し、冷媒流動音を抑制することができる。
そして、室内負荷が増加した場合や使用者からの操作により、停止中の室内機2を起動させた場合、制御装置50は、開閉弁制御手段57により起動する室内機の開閉弁6を開とした後、室内過熱度制御手段56により流量調整弁4の開度を設定する。例えば開閉弁6を開として所定時間経過後に流量調整弁4の開度を設定する。これにより、冷媒流量が安定しない過渡時には、絞り機構10に冷媒を流通させて冷媒流動音の発生を抑制することができる。
また、制御装置50は停止中の室内機2を起動させる場合、室内過熱度制御手段56による流量調整弁4の開度制御、および、開閉弁制御手段57による開閉弁6の開閉制御を行った後、室内熱交換量制御手段55により室内ファン61の回転動作を開始する。これにより、室内熱交換器3を流動する冷媒温度が十分低くなった状態で、室内機2から冷風を吹き出すことができる。
以上のように本実施の形態においては、流量調整弁4の開度が全閉より大きく所定開度未満のとき開閉弁6を開とし、流量調整弁4の開度が所定開度以上のとき開閉弁6を閉とする。
このため、冷媒流量が大きい場合には絞り機構10に冷媒が流通せず、絞り機構10の多孔体が異物を捕捉する機会を軽減することができる。つまり、本実施の形態では、多孔体を通過する冷媒流量の生涯総計量が、従来技術のような常時冷媒が多孔体を通過する場合と比較して十分小さく、異物の詰まりのような信頼性低下を回避することができる。よって、大流量に対応し、かつ長期信頼性を確保することができる。
また、冷媒流量が大きい場合には絞り機構10に冷媒は流通しないので、絞り機構10の流動抵抗を小さくするための措置を講じる必要がない。よって、絞り機構10の流動抵抗を低負荷時に合わせて設定すれば良く、絞り機構10を小型化することができ、省スペースが実現できる。さらには低コストとなる。例えば、ルームエアコンの再熱除湿弁をそのまま室内機2に搭載でき、省スペースが図れ、生産規模の大きいルームエアコンの部品であるため低コストを実現できる。
また、例えば定格負荷や最大負荷など室内負荷が大きく流量調整弁4の開度が大きくなる場合には、室内ファン61の回転数も大きくなり、流量調整弁4の冷媒流動音は、室内ファン61の駆動に伴う騒音と比較して相対的に小さくなる。よって、流量調整弁4に冷媒が流通しても、冷媒流動音が室内機騒音の主要因とはならない。
また、例えば室内負荷の低下などにより流量調整弁4の開度が小さくなる場合には、室内ファン61の回転数も小さくなり、冷媒流動音が室内騒音の主要因となるが、開閉弁6を開として、多孔体を有する絞り機構10に冷媒を流通させるので、冷媒流動音を抑制することができる。
また本実施の形態においては、流量調整弁4と並列に、開閉弁6と多孔体を有する絞り機構10とが直列に接続されているので、室内機2に気液二相冷媒が流通する場合であっても、冷媒が整流化され、冷媒流動音を抑制することができる。
また本実施の形態では、暖房運転において、複数の室内機2のうち一部の室内機2の運転を停止し、他の一部の室内機2を運転させた場合、運転を停止した室内機2の、流量調整弁4を全閉とし、開閉弁6を開とする。
このため、一部の室内機2が暖房運転を行い、圧縮機31が運転状態となる場合であっても、停止中の室内機2の室内熱交換器3内への冷媒滞留を抑制することができる。また、停止中の室内機2は室内ファン61が停止するため、冷媒流動音が室内騒音の主要因となるが、多孔体を有する絞り機構10に冷媒を流通させるので、冷媒流動音を抑制することができる。
また本実施の形態では、冷房運転において、複数の室内機2のうち一部の室内機2の運転を停止し、他の一部の室内機2を運転させた場合、運転を停止した室内機2の、流量調整弁4を全閉とし、開閉弁6を閉とする。そして、運転を停止した室内機2を運転させた場合、当該室内機2の、開閉弁6を開とした後、流量調整弁4の開度を設定する。
このため、冷媒流動音が発生し易い、冷媒流量が変動する過渡時には、絞り機構10に冷媒を流通させて冷媒流動音の発生を抑制することができる。
また本実施の形態では、運転中の室内機2を停止させる場合、当該室内機2の室内ファン61の動作を停止させた後、流量調整弁4および開閉弁6の動作を制御する。
このため、冷媒回路の動作を停止したあとに室内ファン61が継続して動作することがなく、室内に冷風または温風が継続して供給されることがなく、快適性が損なわれることがない。また、室内機2が停止する場合には、流量調整弁4の開度が全閉とまでの過渡時に、流量調整弁4の開度が小さくなると開閉弁6が開となるので、多孔体を有する絞り機構10に冷媒が流通する。よって、室内ファン61が停止して冷媒流動音が室内騒音の主要因となる場合であっても、多孔体を有する絞り機構10に冷媒が流通するので、冷媒流動音を抑制することができる。
また本実施の形態では、停止中の室内機2を運転させる場合、当該室内機2の流量調整弁4および開閉弁6の動作を制御した後、室内ファン61を動作を開始させる。
これにより、室内熱交換器3を流動する冷媒温度が十分低く、または十分高くなった状態で、室内機2から冷風または温風を吹き出すことができる。よって、室内機2から所望温度の空気を吹き出すことができ、室内の快適性が損なわれることがない。
以上のように本実施の形態における空気調和装置は、冷媒流動音が室内機2の騒音の主要因である場合には、冷媒流動音を抑制し、また大流量を想定しても低コストで省スペースを実現し、なおかつ高信頼性を確保する効果がある。
なお、本実施の形態では、多孔体は多孔質透過材であり、いわゆる発泡金属からなるものを説明したが、本発明はこれに限らず、焼結金属、金属不織布、パンチングメタルなどの空孔が多数あるものであれば良い。
1 空気調和装置、2 室内機、3 室内熱交換器、4 流量調整弁、6 開閉弁、10 絞り機構、10a オリフィス構造体、11 オリフィス保持体、12 オリフィス、13 入口側多孔体、14 出口側多孔体、15 カシメ部、16 空間、16a 距離、17 空間、17a 距離、21 過冷却調整弁、26 銅管、27 端部、28 端部、30 室外機、31 圧縮機、32 オイルセパレータ、33 四方弁、34 室外熱交換器、35 過冷却熱交換器、36 室外流量調整弁、37 液主管、38 接続点、39 液枝管、40 ガス枝管、41 接続点、42 ガス主管、43 アキュームレータ、43a 字管、43b 油戻穴、44 過冷却バイパス経路、45 過冷却調整弁、46 返油経路、46a 圧力センサ、47 キャピラリーチューブ、47b 圧力センサ、48c 圧力センサ、49a 温度センサ、49b 温度センサ、49c 温度センサ、49d 温度センサ、49e 温度センサ、49f 温度センサ、49h 温度センサ、49j 温度センサ、49k 温度センサ、50 制御装置、51 圧縮機制御手段、52 室外熱交換量制御手段、53 過冷却熱交換器過熱度制御手段、54 室外膨張制御手段、55 室内熱交換量制御手段、56 室内過熱度制御手段、57 開閉弁制御手段、58 室内過冷却度制御手段、60 室外ファン、61 室内ファン。

Claims (14)

  1. 圧縮機および室外熱交換器を備えた室外機と、開度可変可能な膨張弁および室内熱交換器をそれぞれ備えた複数の室内機とを冷媒配管で接続した冷媒回路と、前記圧縮機、前記各膨張弁、および前記各室内機にそれぞれ設けられた室内ファンの動作を制御する制御装置とを備え、前記複数の室内機の運転を個別に制御する空気調和装置において、
    前記膨張弁と並列に、冷媒流路を開閉する開閉弁と、冷媒が通過可能な多孔体を有する絞り機構とが直列に接続され、
    前記制御装置は、前記圧縮機からの高温の冷媒を前記室内熱交換器に供給する暖房モードにおいて、
    前記複数の室内機の室内負荷が小さい場合に、前記複数の室内機のうち一部の室内機の運転を停止し、他の一部の室内機を運転させた場合、運転を停止した室内機の、前記膨張弁を閉とし、前記開閉弁を開とし、
    前記複数の室内機の室内負荷が大きい場合に、前記複数の室内機のうち一部の室内機の運転を停止し、他の一部の室内機を運転させた場合、運転を停止した室内機の、前記膨張弁を閉とし、前記開閉弁を閉とする
    ことを特徴とする空気調和装置。
  2. 前記制御装置は、低温の冷媒を前記室内熱交換器に供給する冷房モードにおいて、
    前記複数の室内機のうち一部の室内機の運転を停止し、他の一部の室内機を運転させた場合、運転を停止した室内機の、前記膨張弁を閉とし、前記開閉弁を閉とし、
    前記運転を停止した室内機を運転させた場合、当該室内機の、前記開閉弁を開とした後、前記膨張弁の開度を設定する
    ことを特徴とする請求項1記載の空気調和装置。
  3. 前記制御装置は、運転中の前記室内機を停止させる場合、当該室内機の前記室内ファンの動作を停止させた後、前記膨張弁および前記開閉弁の動作を制御する
    ことを特徴とする請求項1または2記載の空気調和装置。
  4. 前記制御装置は、停止中の前記室内機を運転させる場合、当該室内機の前記膨張弁および前記開閉弁の動作を制御した後、前記室内ファンを動作を開始させる
    ことを特徴とする請求項1〜3の何れか1項に記載の空気調和装置。
  5. 前記制御装置は、
    前記膨張弁の開度が、全閉より大きく所定開度未満になるまで絞られたとき、当該膨張弁に並列に接続された前記開閉弁を開とする
    ことを特徴とする請求項1〜4の何れか1項に記載の空気調和装置。
  6. 前記所定開度は、当該膨張弁を通過する冷媒の流動抵抗が、当該膨張弁に並列に接続された前記絞り機構の流動抵抗となる開度である
    ことを特徴とする請求項5記載の空気調和装置。
  7. 圧縮機および室外熱交換器を備えた室外機と、開度可変可能な膨張弁および室内熱交換器をそれぞれ備えた複数の室内機とを冷媒配管で接続した冷媒回路と、前記圧縮機、前記各膨張弁、および前記各室内機にそれぞれ設けられた室内ファンの動作を制御する制御装置とを備え、前記複数の室内機の運転を個別に制御する空気調和装置において、
    前記膨張弁と並列に、冷媒流路を開閉する開閉弁と、冷媒が通過可能な多孔体を有する絞り機構とが直列に接続され、
    前記制御装置は、前記圧縮機からの高温の冷媒を前記室内熱交換器に供給する暖房モードにおいて、
    前記複数の室内機のうち一部の室内機の運転を停止し、他の一部の室内機を運転させた場合、運転を停止した室内機の、前記膨張弁を閉とし、前記開閉弁を開とし、
    前記膨張弁の開度が、全閉より大きく所定開度未満のとき、当該膨張弁に並列に接続された前記開閉弁を開とし、
    前記膨張弁の開度が、前記所定開度以上のとき、当該膨張弁に並列に接続された前記開閉弁を閉とし、
    前記所定開度は、当該膨張弁を通過する冷媒の流動抵抗が、当該膨張弁に並列に接続された前記絞り機構の流動抵抗となる開度である
    ことを特徴とする空気調和装置。
  8. 前記絞り機構は、
    冷媒の流れに対して入口側および出口側に設けられた前記多孔体によって挟まれたオリフィスを有し、前記オリフィスと前記多孔体との間に空間を形成し、
    前記暖房モード時の冷媒の流れに対して入口側の多孔体と、前記オリフィスとの間に形成した前記空間は、冷媒流れ方向の距離が前記オリフィスの直径以下であり、
    前記暖房モード時の冷媒の流れに対して出口側の多孔体と、前記オリフィスとの間に形成した前記空間は、冷媒流れ方向の距離が前記オリフィスの直径以上である
    ことを特徴とする請求項1〜の何れか1項に記載の空気調和装置。
  9. 室外機に設けられた圧縮機および室外熱交換器、並びに、室内機に設けられた開度可変可能な膨張弁および室内熱交換器が順次配管で接続されて冷媒が循環する冷媒回路と、
    少なくとも前記膨張弁の開度を制御する制御装置と
    を備え、
    前記冷媒回路は、
    冷媒流路を開閉する開閉弁と、冷媒が通過可能な多孔体を有する絞り機構とを備え、前記膨張弁と並列に、前記開閉弁と前記絞り機構とが直列に接続され、
    前記制御装置は、
    前記膨張弁の開度が、全閉より大きく所定開度未満になるまで絞られたとき、前記開閉弁を開とする
    ことを特徴とする空気調和装置。
  10. 前記所定開度は、当該膨張弁を通過する冷媒の流動抵抗が、前記絞り機構の流動抵抗となる開度である
    ことを特徴とする請求項記載の空気調和装置。
  11. 前記冷媒と熱交換する熱媒体を前記室内熱交換器に搬送する熱媒体搬送装置を備え、
    前記制御装置は、前記室内熱交換器での前記冷媒の流通を開始させる場合、前記膨張弁および前記開閉弁の動作を制御した後、前記熱媒体搬送装置の動作を開始させる
    ことを特徴とする請求項または10記載の空気調和装置。
  12. 前記冷媒と熱交換する熱媒体を前記室内熱交換器に搬送する熱媒体搬送装置を備え、
    前記制御装置は、前記冷媒回路での前記冷媒の流通を停止させる場合、前記熱媒体搬送装置の動作を停止させた後、前記膨張弁および前記開閉弁の動作を制御する
    ことを特徴とする請求項9〜11の何れか1項に記載の空気調和装置。
  13. 前記室内機を複数備え、
    前記制御装置は、前記圧縮機からの高温の冷媒を前記室内熱交換器に供給する暖房モードにおいて、
    前記複数の室内機のうち一部の室内機の運転を停止し、他の一部の室内機を運転させた場合、運転を停止した室内機の、前記膨張弁を閉とし、前記開閉弁を開とする
    ことを特徴とする請求項12の何れか1項に記載の空気調和装置。
  14. 前記室内機を複数備え、
    前記制御装置は、低温の冷媒を前記室内熱交換器に供給する冷房モードにおいて、
    前記複数の室内機のうち一部の室内機の運転を停止し、他の一部の室内機を運転させた場合、運転を停止した室内機の、前記膨張弁を閉とし、前記開閉弁を閉とし、
    前記運転を停止した室内機を運転させた場合、当該室内機の、前記開閉弁を開とした後、前記膨張弁の開度を設定する
    ことを特徴とする請求項13の何れか1項に記載の空気調和装置。
JP2013520302A 2011-06-14 2011-06-14 空気調和装置 Active JP5665981B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/003387 WO2012172599A1 (ja) 2011-06-14 2011-06-14 空気調和装置

Publications (2)

Publication Number Publication Date
JP5665981B2 true JP5665981B2 (ja) 2015-02-04
JPWO2012172599A1 JPWO2012172599A1 (ja) 2015-02-23

Family

ID=47356632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013520302A Active JP5665981B2 (ja) 2011-06-14 2011-06-14 空気調和装置

Country Status (5)

Country Link
US (1) US9638443B2 (ja)
EP (1) EP2722616B1 (ja)
JP (1) JP5665981B2 (ja)
CN (1) CN104204691B (ja)
WO (1) WO2012172599A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6064412B2 (ja) * 2012-07-30 2017-01-25 株式会社富士通ゼネラル 空気調和装置
CN103528136B (zh) * 2013-10-17 2016-08-24 深圳麦克维尔空调有限公司 新风机组及其控制系统
CN103759455B (zh) * 2014-01-27 2015-08-19 青岛海信日立空调系统有限公司 热回收变频多联式热泵系统及其控制方法
KR102237600B1 (ko) * 2014-03-18 2021-04-07 삼성전자주식회사 공기 조화기 및 그 제어방법법
CH710088B1 (de) * 2014-09-08 2021-05-14 V Zug Ag Kühlgerät mit wählbaren Geräuschemissionen.
EP3205916A4 (en) * 2014-10-08 2018-05-09 Mitsubishi Electric Corporation Expansion valve, and refrigeration cycle device using expansion valve
KR101639516B1 (ko) * 2015-01-12 2016-07-13 엘지전자 주식회사 공기 조화기
CN104697120A (zh) * 2015-03-24 2015-06-10 广东美的暖通设备有限公司 多联机系统及其的降噪控制方法
WO2016174874A1 (ja) * 2015-04-28 2016-11-03 ダイキン工業株式会社 冷凍装置
CN108291744B (zh) * 2015-11-20 2020-07-31 三菱电机株式会社 制冷循环装置
JP2017172946A (ja) * 2016-03-25 2017-09-28 三菱重工サーマルシステムズ株式会社 空調運転制御装置、空調システム、空調運転制御方法及びプログラム
CN106352488A (zh) * 2016-09-29 2017-01-25 广东美的制冷设备有限公司 一拖多空调器的开度控制方法、装置及一拖多空调器
JP2018059665A (ja) * 2016-10-05 2018-04-12 三菱重工サーマルシステムズ株式会社 冷媒回路システム及び制御方法
US10274235B2 (en) * 2017-03-10 2019-04-30 Lennox Industries Inc. System design for noise reduction of solenoid valve
TWI687642B (zh) * 2018-03-07 2020-03-11 宏碁股份有限公司 循環散熱模組
KR102078720B1 (ko) * 2018-03-09 2020-02-18 엘지전자 주식회사 공기조화기 실내기 및 그 제어 방법
JP6575625B1 (ja) * 2018-03-22 2019-09-18 株式会社富士通ゼネラル 空気調和機
US10775065B2 (en) 2018-04-09 2020-09-15 Haier Us Appliance Solutions, Inc. Air conditioning system including a reheat loop
CN108759064B (zh) * 2018-08-20 2019-07-26 宁波奥克斯电气股份有限公司 一种降噪控制方法、装置及多联机空调系统
CN114279043B (zh) * 2021-12-08 2022-11-25 珠海格力电器股份有限公司 缺冷媒处理方法、装置、多联机空调及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310962A (ja) * 1994-05-17 1995-11-28 Mitsubishi Heavy Ind Ltd ヒートポンプ式マルチタイプ空気調和機
JPH08233379A (ja) * 1995-02-24 1996-09-13 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2002061879A (ja) * 2000-08-21 2002-02-28 Mitsubishi Electric Corp 空気調和装置の室内ユニット
JP2002286300A (ja) * 2001-03-28 2002-10-03 Mitsubishi Electric Corp 空気調和装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722492A (en) * 1980-07-17 1982-02-05 Nippon Denso Co Silencer
EP0959308B1 (en) * 1993-11-12 2004-11-03 SANYO ELECTRIC Co., Ltd. Air conditioner
IT1268893B1 (it) * 1994-12-21 1997-03-13 Carpigiani Group Ali Srl Macchina combinata per la produzione alternativa di granite o di gelato.
US5875651A (en) * 1997-06-12 1999-03-02 Apd Cryogenics, Inc. Low vibration throttling device for throttle-cycle refrigerators
JPH11141961A (ja) 1997-11-05 1999-05-28 Mitsubishi Heavy Ind Ltd 空気調和機
JP3629154B2 (ja) * 1998-09-25 2005-03-16 松下電器産業株式会社 空気調和装置の施工方法
JP3428516B2 (ja) 1999-06-01 2003-07-22 三菱電機株式会社 絞り装置
US6843065B2 (en) * 2000-05-30 2005-01-18 Icc-Polycold System Inc. Very low temperature refrigeration system with controlled cool down and warm up rates and long term heating capabilities
JP3712355B2 (ja) * 2000-09-25 2005-11-02 三菱電機株式会社 冷凍サイクル装置
EP2000757B1 (en) * 2001-01-31 2012-09-19 Mitsubishi Denki K.K. Refrigerating cycle apparatus
KR100437805B1 (ko) * 2002-06-12 2004-06-30 엘지전자 주식회사 냉난방 동시형 멀티공기조화기 및 그 제어방법
KR100459184B1 (ko) * 2002-08-24 2004-12-03 엘지전자 주식회사 냉난방 동시형 멀티공기조화기
KR100504509B1 (ko) * 2003-01-16 2005-08-03 엘지전자 주식회사 차단 가능한 다중 분배기를 갖는 냉난방 동시형멀티공기조화기
KR100688171B1 (ko) * 2004-12-29 2007-03-02 엘지전자 주식회사 냉난방 동시형 멀티 공기조화기 및 냉매 회수방법
JP2007155230A (ja) * 2005-12-06 2007-06-21 Hitachi Appliances Inc 空気調和機
JP2007170686A (ja) * 2005-12-19 2007-07-05 Sanyo Electric Co Ltd 空気調和装置
JP4079177B2 (ja) * 2006-04-07 2008-04-23 ダイキン工業株式会社 膨張弁及びこれを用いた空気調和機
JP4193910B2 (ja) * 2006-06-29 2008-12-10 ダイキン工業株式会社 冷媒分流器一体化構造の膨張弁
KR101176482B1 (ko) * 2006-10-19 2012-08-22 엘지전자 주식회사 냉난방 동시형 멀티 공기조화기
JP4254863B2 (ja) * 2007-01-23 2009-04-15 ダイキン工業株式会社 空気調和装置
JP2008261626A (ja) * 2008-08-01 2008-10-30 Mitsubishi Electric Corp 流量制御装置、絞り装置及び空気調和装置
CN201886685U (zh) * 2010-07-02 2011-06-29 北京工业大学 冰箱制冷系统综合模拟实验装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310962A (ja) * 1994-05-17 1995-11-28 Mitsubishi Heavy Ind Ltd ヒートポンプ式マルチタイプ空気調和機
JPH08233379A (ja) * 1995-02-24 1996-09-13 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2002061879A (ja) * 2000-08-21 2002-02-28 Mitsubishi Electric Corp 空気調和装置の室内ユニット
JP2002286300A (ja) * 2001-03-28 2002-10-03 Mitsubishi Electric Corp 空気調和装置

Also Published As

Publication number Publication date
CN104204691A (zh) 2014-12-10
CN104204691B (zh) 2017-07-28
EP2722616A4 (en) 2015-02-25
EP2722616B1 (en) 2020-04-22
WO2012172599A1 (ja) 2012-12-20
JPWO2012172599A1 (ja) 2015-02-23
US20140083126A1 (en) 2014-03-27
EP2722616A1 (en) 2014-04-23
US9638443B2 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
JP5665981B2 (ja) 空気調和装置
US7225630B2 (en) Refrigerating cycle apparatus, air conditioning apparatus, throttle device and flow controller
JP3428516B2 (ja) 絞り装置
JP2002089988A (ja) 空気調和機、空気調和機の運転方法
JP2006284035A (ja) 空気調和装置およびその制御方法
JP2012122670A (ja) 空気調和装置
JP2006170608A (ja) 空気調和機の熱交換器
JP2008051425A (ja) 空気調和装置
JP4103363B2 (ja) 流量制御装置、冷凍サイクル装置および空気調和装置
JP4462436B2 (ja) 冷凍装置
JP2010032109A (ja) 空気調和機
JP3901103B2 (ja) 空気調和装置
JP2001082761A (ja) 空気調和機
JPH05172429A (ja) 空気調和機
WO2013061365A1 (ja) 空気調和装置
JP2002221353A (ja) 空気調和機
JP2001065953A (ja) 空気調和機及びその制御方法
JP2019158308A (ja) 冷凍サイクル装置
JP3817981B2 (ja) 冷凍サイクル装置および空気調和装置
JP4221922B2 (ja) 流量制御装置、絞り装置及び空気調和装置
JP2000346493A5 (ja)
JP2011163671A (ja) 受液器及びそれを用いた冷凍サイクル装置
JP2010032105A (ja) 空気調和機
JP3417351B2 (ja) 絞り装置
JP2008261626A (ja) 流量制御装置、絞り装置及び空気調和装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5665981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250