JP5649186B2 - Onion-like carbon and method for producing the same - Google Patents

Onion-like carbon and method for producing the same Download PDF

Info

Publication number
JP5649186B2
JP5649186B2 JP2011503891A JP2011503891A JP5649186B2 JP 5649186 B2 JP5649186 B2 JP 5649186B2 JP 2011503891 A JP2011503891 A JP 2011503891A JP 2011503891 A JP2011503891 A JP 2011503891A JP 5649186 B2 JP5649186 B2 JP 5649186B2
Authority
JP
Japan
Prior art keywords
carbon
onion
producing
plasma
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011503891A
Other languages
Japanese (ja)
Other versions
JPWO2010104200A1 (en
Inventor
茂 真下
茂 真下
オムルザクウル エミル
オムルザクウル エミル
岩崎 秀治
秀治 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Kumamoto University NUC
Original Assignee
Kuraray Co Ltd
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Kumamoto University NUC filed Critical Kuraray Co Ltd
Priority to JP2011503891A priority Critical patent/JP5649186B2/en
Publication of JPWO2010104200A1 publication Critical patent/JPWO2010104200A1/en
Application granted granted Critical
Publication of JP5649186B2 publication Critical patent/JP5649186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0815Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes involving stationary electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0822The electrode being consumed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/0828Wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/083Details relating to the shape of the electrodes essentially linear cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0835Details relating to the shape of the electrodes substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0839Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、オニオンライクカーボンおよびその製造方法に関する。   The present invention relates to onion-like carbon and a method for producing the same.

オニオンライクカーボンはカーボンオニオン、炭素オニオン、ナノサイズ真球状黒鉛、オニオングラファイト、オニオンフラーレンなどとも呼ばれ、フラーレンやカーボンナノチューブの同属体であり、新しい炭素材料として注目されている材料である。その形状は、同心球状の炭素構造で、タマネギのように球状炭素構造が入れ子を成して重なっている。   Onion-like carbon is also called carbon onion, carbon onion, nano-sized spherical graphite, onion graphite, onion fullerene, and the like, and is a synonym of fullerene and carbon nanotube, and is a material attracting attention as a new carbon material. Its shape is a concentric spherical carbon structure, and spherical carbon structures are nested and overlapped like an onion.

オニオンライクカーボンは、軽量かつ安定であり、放射線に対する耐性、高温での耐性が優れている。また、その形状から、高弾性が期待され、真空下あるいは無潤滑環境下で使用できる固体潤滑剤としての応用が考えられている。また、医薬品、化粧品、燃料電池用水素吸蔵炭素材料としての用途も考えられている。   Onion-like carbon is lightweight and stable, and has excellent resistance to radiation and resistance at high temperatures. In addition, high elasticity is expected from its shape, and application as a solid lubricant that can be used in a vacuum or non-lubricated environment is considered. Applications for hydrogen storage carbon materials for pharmaceuticals, cosmetics, and fuel cells are also considered.

しかし、オニオンライクカーボンはその生産性に大きな課題があり、従来より様々な製造方法が提案されているが、未だ、実用に供するにはいずれの方法も問題があった。   However, onion-like carbon has a big problem in productivity, and various production methods have been proposed so far. However, all methods still have problems to be put into practical use.

すなわち、(1)オニオンライクカーボンの合成法としては、グラッシーカーボンからなる成形体を熱間静水圧加圧法で、1000〜3000気圧下、2000〜3000℃の熱処理を行って製造する方法が示されている(特許文献1参照)。   That is, (1) as a method for synthesizing onion-like carbon, a method is shown in which a molded body made of glassy carbon is subjected to heat treatment at 1000 to 3000 atmospheres at 2000 to 3000 ° C. by hot isostatic pressing. (See Patent Document 1).

また、(2)ダイヤモンド微粉末を不活性ガス雰囲気中にて1600〜1800℃で加熱する方法(特許文献2参照)、(3)ダイヤモンド微粉末を不活性ガス中で赤外線ランプを用いて1700℃以上に加熱する方法が開示されている(特許文献3参照)。   Further, (2) a method of heating diamond fine powder at 1600 to 1800 ° C. in an inert gas atmosphere (see Patent Document 2), and (3) 1700 ° C. using an infrared lamp in an inert gas. The heating method has been disclosed above (see Patent Document 3).

また、(4)ポリインに光、電子線またはイオンビームを照射、あるいは加熱処理を施すことによりオニオンライクカーボンを製造する方法が示されている(特許文献4参照)。さらに、(5)ポリテトラフルオロエチレン、ポリ塩化ビニリデンまたはポリフッ化ビニリデンに光、電子線またはイオンビームを照射する方法(特許文献5参照)、(6)煤状炭素に電子線、ガンマ線、X線、イオン線などの高エネルギービームを照射してオニオンライクカーボンへ転換する方法が示されている(特許文献6参照)。   Also, (4) a method for producing onion-like carbon by irradiating polyyne with light, an electron beam or an ion beam, or by subjecting it to a heat treatment is described (see Patent Document 4). Furthermore, (5) a method of irradiating polytetrafluoroethylene, polyvinylidene chloride or polyvinylidene fluoride with light, an electron beam or an ion beam (see Patent Document 5), (6) electron beam, gamma ray, X-ray on rod-like carbon A method of converting to onion-like carbon by irradiating a high energy beam such as an ion beam is disclosed (see Patent Document 6).

(7)二重結合または三重結合を持つ炭素材料にX線、マイクロ波および超音波の1種以上を照射し、中空または金属を内包するオニオンライクカーボンを製造する方法が示されている(特許文献7参照)。(8)二重結合または三重結合を持つ材料に光、電子線またはイオンビームを照射し、オニオンライクカーボンを製造する方法も示されている(特許文献8参照)。   (7) A method for producing onion-like carbon containing hollow or metal by irradiating a carbon material having a double bond or triple bond with one or more of X-rays, microwaves and ultrasonic waves (patent) Reference 7). (8) A method for producing onion-like carbon by irradiating a material having a double bond or a triple bond with light, an electron beam or an ion beam is also shown (see Patent Document 8).

(9)アンバランスドマグネトロンスパッタリング法でオニオンライクカーボン膜を製造する方法が示されている(特許文献9参照)。   (9) A method for producing an onion-like carbon film by an unbalanced magnetron sputtering method is shown (see Patent Document 9).

(10)SiC粉末とCu粉末の加圧成形体に35万気圧以上、2700℃以上の超高圧・超高温の圧縮衝撃を加えて生成する方法が示されている(特許文献10参照)。   (10) A method of generating a compression molded body of SiC powder and Cu powder by applying a compressive impact of 350,000 atmospheres or more and 2700 ° C. or more of ultrahigh pressure / ultra high temperature is disclosed (see Patent Document 10).

更に、放電現象を使用した方法としては、(11)水中で、炭素電極間にアーク放電を発生させ、オニオンライクカーボンを製造する方法が示されている(非特許文献1参照)。   Further, as a method using the discharge phenomenon, (11) a method of producing onion-like carbon by generating arc discharge between carbon electrodes in water (see Non-Patent Document 1) is shown.

特開平5−208805号公報Japanese Patent Laid-Open No. 5-208805 特開平11−157818号公報JP-A-11-157818 特開2002−80212号公報JP 2002-80212 A 特開平11−310406号公報Japanese Patent Laid-Open No. 11-310406 特開平11−349307号公報JP 11-349307 A 特開2001−48508号公報JP 2001-48508 A 特開2000−109310号公報JP 2000-109310 A 特開2000−16806号公報JP 2000-16806 A 特開2002−105623号公報JP 2002-105623 A 特開2003−137518号公報JP 2003-137518 A

Materials Research Bulletin 44(2009)324−327. マテリアル リサーチ ブレティン 44巻 2009年 324−327頁Materials Research Bulletin 44 (2009) 324-327. Material Research Bulletin 44, 2009, 324-327

(1)の方法には、ダイヤモンドの高圧合成に相当する高価な装置を必要とし、製造原価も合成ダイヤモンドに匹敵するものと考えられ、汎用的ではない。
(2、3)の方法では、これらの方法は、原料粉末が高価であることから、オニオングラファイトは原料粉末よりさらに高価になるという問題がある。
(4,5,6,7,8)の方法では、これらの方法はいずれも対象とする原料への投入エネルギーが限られており、量産には限界がある。
(9)の方法では、薄膜法ゆえ、オニオンライクカーボン粉末の製造には限界があり、生成速度も低く、量的にも限界がある。
(10)の方法では、高温・高圧という極限環境を作る必要があり装置上の対応が困難であることに加え、合成後の分離精製にも課題を残している。
(11)の方法では、反応の選択率が低く、アモルファス炭素が多量に生成し、分離が困難という問題点がある。
The method (1) requires an expensive apparatus corresponding to high-pressure synthesis of diamond, and the production cost is considered to be comparable to that of synthetic diamond, and is not versatile.
In the methods (2 and 3), since the raw material powder is expensive, there is a problem that onion graphite is more expensive than the raw material powder.
In the methods (4, 5, 6, 7, 8), all of these methods have a limited amount of energy input to the target raw material, and there is a limit to mass production.
In the method (9), because of the thin film method, there is a limit to the production of onion-like carbon powder, the production rate is low, and the quantity is limited.
In the method (10), it is necessary to create an extreme environment of high temperature and high pressure, and it is difficult to cope with the apparatus, and there is also a problem in separation and purification after synthesis.
The method (11) has a problem that the selectivity of the reaction is low, a large amount of amorphous carbon is produced, and separation is difficult.

したがって、本発明の目的は、工業的規模で安定的に、オニオンライクカーボンを製造できる方法を提供することにある。   Accordingly, an object of the present invention is to provide a method capable of producing onion-like carbon stably on an industrial scale.

本発明者らは、上記目的を達成すべく鋭意検討を重ね、溶媒中、触媒存在下で炭素金属電極間にパルスプラズマを発生することにより、オニオンライクカーボンを得ることができることを見出し、本発明に至った。   The inventors of the present invention have made extensive studies to achieve the above object, and found that onion-like carbon can be obtained by generating pulse plasma between carbon metal electrodes in a solvent in the presence of a catalyst. It came to.

すなわち、本発明によれば、以下のものが提供される。
[1]オニオンライクカーボンの製造方法であって、液体中で炭素電極間にパルスプラズマ放電させることを特徴とするオニオンライクカーボンの製造方法。
[2]グラファイト層間距離が0.40nm以上のオニオンライクカーボン。
That is, according to the present invention, the following is provided.
[1] A method for producing onion-like carbon, which comprises performing pulsed plasma discharge between carbon electrodes in a liquid.
[2] Onion-like carbon having a graphite interlayer distance of 0.40 nm or more.

本発明の製造方法により、オニオンライクカーボンを比較的低電圧、低電流であり、パルス放電を行うなどの低エネルギーで製造することができる。また、本発明のオニオンライクカーボンは、グラファイト層間距離が広く、Liイオン2次電池の電極用途などにも有用である。   By the production method of the present invention, onion-like carbon can be produced with a relatively low voltage, low current, and low energy such as performing pulse discharge. Moreover, the onion-like carbon of the present invention has a wide graphite interlayer distance and is useful for electrode applications of Li ion secondary batteries.

実施例1で得られた黒色粉末のTEM写真である(倍率:10万倍)。It is a TEM photograph of the black powder obtained in Example 1 (magnification: 100,000 times). 実施例1で得られた黒色粉末のTEM写真である(倍率:50万倍)。It is a TEM photograph of the black powder obtained in Example 1 (magnification: 500,000 times). 実施例2で得られた黒色粉末のTEM写真である(倍率:10万倍)。It is a TEM photograph of the black powder obtained in Example 2 (magnification: 100,000 times). 実施例2で得られた黒色粉末のTEM写真である(倍率:50万倍)。It is a TEM photograph of the black powder obtained in Example 2 (magnification: 500,000 times). 比較例で得られた黒色粉末のTEM写真である(倍率:20万倍)。It is a TEM photograph of black powder obtained by a comparative example (magnification: 200,000 times).

本発明のオニオンライクカーボンは、その形状が同心球状の炭素構造をしているが、グラファイト層間距離が0.40nm以上、より特定的には0.50nm以上であることが特徴的である。このような広いグラファイト層間距離をもったオニオンライクカーボンは先行技術の方法では得られておらず、新規である。グラファイト層間に各種イオンを収容することができ、特に、Liイオン2次電池の電極用途などに有用である。   The onion-like carbon of the present invention has a concentric spherical carbon structure, but is characterized by a graphite interlayer distance of 0.40 nm or more, more specifically 0.50 nm or more. Onion-like carbon having such a wide graphite interlayer distance has not been obtained by the prior art method and is novel. Various ions can be accommodated between the graphite layers, and is particularly useful for electrode applications of Li ion secondary batteries.

本発明のオニオンライクカーボンの製造方法は、液体中に炭素電極間にパルスプラズマ放電させることを特徴とするものであり、炭素電極としては、グラファイト、アモルファスカーボン、グラッシーカーボンなどいずれの炭素材料を使用することができる。   The onion-like carbon production method of the present invention is characterized in that pulse plasma discharge is performed between carbon electrodes in a liquid, and any carbon material such as graphite, amorphous carbon, and glassy carbon is used as the carbon electrode. can do.

電極の形態としては、棒状、針金状、板状などいずれの形態であってもかまわない。両極の大きさに関しても、どちらかの大きさが異なるなどの形状を有していてもかまわない。また、両極は、同一の炭素材料または異なった材料を使用しても良く、単一または複数の炭素材料で成型されたものを使用しても構わない。   The form of the electrode may be any form such as a bar, wire, or plate. Regarding the size of both poles, it may have a shape such that one of the sizes is different. Moreover, both poles may use the same carbon material or a different material, and may use what was shape | molded by the single or several carbon material.

本発明では、液体中でオニオンライクカーボンを生成させる。使用できる液体(溶媒)としては、特に限定されるものではなく、反応に影響を与えないものであれば、特に制限されない。液体は2種以上の化合物の混合物でもよい。ヘキサン、オクタン、デカン、シクロヘキサン、シクロオクタンなどの飽和炭化水素、ベンゼン、トルエン、キシレン、ナフタレンのような芳香族炭化水素、水、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、1,4−ブタンジオールなどのアルコール類、酢酸メチル、酢酸エチル、酢酸ブチル、安息香酸メチル、フタル酸ジメチルなどのエステル類、テトラヒドロフラン、テトラヒドロピラン、ジプロピルエーテル、ジブチルエーテル、ジエチレングリコール、テトラエチレングリコールなどのエーテル類を使用することもできる。生成する炭素生成物の分散、引火、酸化性を考慮して、水、飽和炭化水素、芳香族炭化水素およびアルコール類の使用が好ましく、メタノール、エタノールの使用が好ましい。   In the present invention, onion-like carbon is generated in a liquid. The liquid (solvent) that can be used is not particularly limited as long as it does not affect the reaction. The liquid may be a mixture of two or more compounds. Saturated hydrocarbons such as hexane, octane, decane, cyclohexane, cyclooctane, aromatic hydrocarbons such as benzene, toluene, xylene, naphthalene, water, methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, 1,4 -Alcohols such as butanediol, esters such as methyl acetate, ethyl acetate, butyl acetate, methyl benzoate and dimethyl phthalate, ethers such as tetrahydrofuran, tetrahydropyran, dipropyl ether, dibutyl ether, diethylene glycol and tetraethylene glycol Can also be used. In consideration of dispersion, flammability, and oxidizability of the produced carbon product, use of water, saturated hydrocarbons, aromatic hydrocarbons and alcohols is preferred, and use of methanol and ethanol is preferred.

液体の使用量としては、特に制限されるものではなく、両電極が液体中にあればよい。より好ましくは、プラズマの発生により液体が飛散したり、生成物濃度によって、液の拡散性がなくならない程度にあればよい。   The amount of liquid used is not particularly limited, and both electrodes only need to be in the liquid. More preferably, it is sufficient that the liquid scatters due to the generation of plasma or the diffusibility of the liquid is not lost depending on the product concentration.

パルスプラズマ放電させる温度としては、特に制限されるものではなく、使用する液体の種類にも依存する。通常、室温〜300℃の範囲で実施される。高すぎる温度では、使用する溶媒の蒸気圧が上がり、プラズマにより引火する可能性があるため好ましくなく、低すぎる温度では、溶媒の粘度が上がり、生成物の拡散性が損なわれるため好ましくない。   The temperature at which the pulsed plasma discharge is performed is not particularly limited and depends on the type of liquid used. Usually, it is carried out in the range of room temperature to 300 ° C. An excessively high temperature is not preferable because the vapor pressure of the solvent to be used increases and there is a possibility of being ignited by plasma. An excessively low temperature is not preferable because the viscosity of the solvent increases and the diffusibility of the product is impaired.

本発明では、液体中で炭素電極間にパルスプラズマ放電させることにより、オニオンライクカーボンが生成される。プラズマを発生させる電圧としては、特に制限されるものではなく、20V〜500Vの範囲、安全性、特殊な装置の必要性を考慮して、60V〜400Vの範囲が好ましく、80V〜300Vの範囲がより好ましい。   In the present invention, onion-like carbon is generated by performing pulsed plasma discharge between carbon electrodes in a liquid. The voltage for generating plasma is not particularly limited, and is preferably in the range of 60V to 400V and in the range of 80V to 300V in consideration of the range of 20V to 500V, safety, and the necessity of special equipment. More preferred.

プラズマを発生させる電流としては、特に制限されるものではなく、0.1〜20Aの範囲、エネルギー効率を考慮して、0.2〜10Aの範囲で実施することが好ましい。   It does not restrict | limit especially as an electric current which generate | occur | produces plasma, It is preferable to implement in the range of 0.2-10A in consideration of the range of 0.1-20A and energy efficiency.

パルスプラズマを与える間隔に関しては、特に制限されるものではないが、5〜100ミリ秒が好ましく、6〜50ミリ秒のサイクルがより好ましい。プラズマを与える間隔が短すぎると、プラズマ放電により発生した炭素ラジカルの消失前に、更に炭素ラジカルの発生を誘発するため、オニオンライクカーボンへの成長のほか、アモルファス炭素の生成に繋がるため好ましくない。また、長すぎる放電間隔では、プラズマを誘起するために使用されるエネルギーが多く必要となり、オニオンライクカーボンの生成効率が低下するため好ましくない。   The interval for applying the pulsed plasma is not particularly limited, but is preferably 5 to 100 milliseconds, and more preferably 6 to 50 milliseconds. If the plasma application interval is too short, the generation of carbon radicals is further induced before the disappearance of the carbon radicals generated by the plasma discharge, which leads to the growth of onion-like carbon and the formation of amorphous carbon, which is not preferable. In addition, an excessively long discharge interval is not preferable because much energy used for inducing plasma is required, and the production efficiency of onion-like carbon is reduced.

パルスプラズマ1回あたりの持続時間もまた、与える電圧および電流によって異なるが、通常1〜50マイクロ秒、放電の効率を考慮して、好ましくは2〜30マイクロ秒の範囲で実施される。プラズマ発生時間が長すぎると、プラズマ放電により発生した炭素ラジカルが多量に誘発されるため、オニオンライクカーボンへの成長のほか、アモルファス炭素の生成に繋がり、選択性が低下するため好ましくない。また、短すぎる放電時間では、十分なエネルギーが供給されず、プラズマを誘起するために使用されるエネルギーが多く必要となり、オニオンライクカーボンの生成効率が低下するため好ましくない。   The duration per pulsed plasma also varies depending on the applied voltage and current, but is usually 1 to 50 microseconds, preferably in the range of 2 to 30 microseconds considering the discharge efficiency. If the plasma generation time is too long, a large amount of carbon radicals generated by plasma discharge are induced, leading to the growth of onion-like carbon and the generation of amorphous carbon, which reduces the selectivity. In addition, when the discharge time is too short, sufficient energy is not supplied, and a lot of energy used for inducing plasma is required, which is not preferable because the production efficiency of onion-like carbon decreases.

本発明では、電極に振動を与えることも可能である。振動を与えることで、電極間に析出する炭素化合物の滞留もなく、滞留物上への反応性生物付着を抑制できるだけでなく、放電が効率的に行われるため好ましい。振動を与える方法としては、特に限定されるものではなく、定期的に振動を与えても、間欠的に振動を与える方法でもかまわない。   In the present invention, it is also possible to apply vibration to the electrode. By giving vibration, there is no stagnation of the carbon compound deposited between the electrodes, and it is possible not only to suppress the attachment of the reactive biological material on the stagnation, but also to discharge efficiently, which is preferable. A method for applying vibration is not particularly limited, and a method for applying vibration periodically or a method for applying vibration intermittently may be used.

本発明を実施する雰囲気としては特に限定するものではなく、減圧下、加圧下、常圧下いずれの状態でも実施することができるが、通常、安全、操作性を考慮して、窒素、アルゴンなどの不活性ガス下で実施することができる。   The atmosphere for carrying out the present invention is not particularly limited, and it can be carried out under reduced pressure, under pressure, or under normal pressure, but usually, in consideration of safety and operability, nitrogen, argon, etc. It can be carried out under an inert gas.

生成するオニオンライクカーボンは、液体中に堆積するので、一般的な方法、例えば、ろ過し、使用した液体を減圧等の操作で除去することにより、オニオンライクカーボンを得ることができる。   Since the produced onion-like carbon is deposited in the liquid, it is possible to obtain the onion-like carbon by a general method, for example, filtering and removing the used liquid by an operation such as decompression.

実施例1
300mlビーカーにトルエン200gを取り、直径6mm、長さ100mmの円柱状のグラファイト電極(純度99%以上)2本を該トルエン中に挿入し、電極間を1mmに固定し、電極表面に反応生成物が堆積することを防止して反応効率を高めるために振動を与えた。各電極を交流電源に接続し、200V、2Aでパルス放電した。パルスプラズマの間隔は20ミリ秒、パルスプラズマ1回あたりの持続時間は10マイクロ秒で行った。放電開始と同時に、黒色の粉体が液中に分散して、反応が起こったことが観測された。30分間反応を継続し、既沈降物を分離、黒色溶液を遠心分離、トルエンを適量加えて、洗浄と分離を行った。電極の消費量は、380mgであった。
Example 1
Take 200g of toluene in a 300ml beaker, insert 2 columnar graphite electrodes (purity 99% or more) with a diameter of 6mm and a length of 100mm into the toluene, fix the distance between the electrodes to 1mm, and reaction products on the electrode surface Vibrating was applied to prevent the deposition of and to increase the reaction efficiency. Each electrode was connected to an AC power source and subjected to pulse discharge at 200V and 2A. The interval between pulse plasmas was 20 milliseconds, and the duration per pulse plasma was 10 microseconds. Simultaneously with the start of discharge, it was observed that the black powder was dispersed in the liquid and the reaction occurred. The reaction was continued for 30 minutes, the sediment was separated, the black solution was centrifuged, and an appropriate amount of toluene was added for washing and separation. The consumption of the electrode was 380 mg.

得られた黒色粉末を真空下加熱乾燥した。得られた黒色粉末は、254.6mgであり、得られた黒色粉末のTEM写真(倍率:10万倍)を図1に(図1のスケールは20nm)、TEM写真(倍率:50万倍)を図2に示す(図2のスケールは10nmであり、図2において層間距離を2つの矢印で示す)。写真から、得られた黒色粉末が、層間距離0.62nmのオニオンライクカーボンであることがわかる。収率は67%であった。   The resulting black powder was heated and dried under vacuum. The obtained black powder is 254.6 mg. A TEM photograph (magnification: 100,000 times) of the obtained black powder is shown in FIG. 1 (scale of FIG. 1 is 20 nm), and a TEM photograph (magnification: 500,000 times). Is shown in FIG. 2 (the scale of FIG. 2 is 10 nm, and the interlayer distance is shown by two arrows in FIG. 2). From the photograph, it can be seen that the obtained black powder is onion-like carbon having an interlayer distance of 0.62 nm. The yield was 67%.

実施例2
実施例1において、溶媒として水を用いた以外は、実施例1と同様に行った。得られた黒色粉末のTEM写真(倍率:10万倍)を図3(図3のスケールは10nm)、TEM写真(倍率:50万倍)を図4に示す(図4のスケールは5nm)。電極の消費量は412mgであり、得られた黒色粉末は271.9mg、収率は66%であり、写真から、層間距離0.55nmのオニオンライクカーボンであることがわかる。
Example 2
In Example 1, it carried out like Example 1 except having used water as a solvent. A TEM photograph (magnification: 100,000 times) of the obtained black powder is shown in FIG. 3 (scale of FIG. 3 is 10 nm), and a TEM photograph (magnification: 500,000 times) is shown in FIG. 4 (scale of FIG. 4 is 5 nm). The consumption of the electrode was 412 mg, the obtained black powder was 271.9 mg, the yield was 66%, and it can be seen from the photograph that it is onion-like carbon having an interlayer distance of 0.55 nm.

比較例
実施例1において、電極を直流電源に接続し、200V 2Aで連続放電した以外は、実施例1と同様におこなった。得られた黒色粉末は312mgであり、得られた黒色粉末のTEM写真(倍率:20万倍)を図5に示す(図5のスケールは5nm)。同心球状のオニオンライクカーボンは観測されなかった。
Comparative Example The same procedure as in Example 1 was performed except that the electrode was connected to a DC power source and was continuously discharged at 200 V 2A. The obtained black powder is 312 mg, and a TEM photograph (magnification: 200,000 times) of the obtained black powder is shown in FIG. 5 (the scale of FIG. 5 is 5 nm). Concentric spherical onion-like carbon was not observed.

本発明の製造方法によれば、オニオンライクカーボンを比較的低電圧、低電流であり、パルス放電を行うなどの低エネルギーで製造することができ、産業上の有用性が大きい。   According to the production method of the present invention, onion-like carbon can be produced at a relatively low voltage and low current, with low energy such as performing pulse discharge, and has great industrial utility.

Claims (2)

オニオンライクカーボンの製造方法であって、液体中で炭素電極間に20〜500Vの範囲の電圧を印加してパルスプラズマ放電させることを特徴とするオニオンライクカーボンの製造方法。 A method for producing onion-like carbon, comprising applying a voltage in the range of 20 to 500 V between carbon electrodes in a liquid to cause pulsed plasma discharge. 前記パルスプラズマ放電は、5〜100ミリ秒の間隔で与え、パルスプラズマ1回あたりの持続時間は1〜50マイクロ秒であることを特徴とする請求項1に記載の製造方法。The manufacturing method according to claim 1, wherein the pulse plasma discharge is given at intervals of 5 to 100 milliseconds, and the duration per pulse plasma is 1 to 50 microseconds.
JP2011503891A 2009-03-11 2010-03-10 Onion-like carbon and method for producing the same Active JP5649186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011503891A JP5649186B2 (en) 2009-03-11 2010-03-10 Onion-like carbon and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009057555 2009-03-11
JP2009057555 2009-03-11
PCT/JP2010/054469 WO2010104200A1 (en) 2009-03-11 2010-03-10 Onion-like carbon and method for producing same
JP2011503891A JP5649186B2 (en) 2009-03-11 2010-03-10 Onion-like carbon and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2010104200A1 JPWO2010104200A1 (en) 2012-09-13
JP5649186B2 true JP5649186B2 (en) 2015-01-07

Family

ID=42728478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011503891A Active JP5649186B2 (en) 2009-03-11 2010-03-10 Onion-like carbon and method for producing the same

Country Status (3)

Country Link
JP (1) JP5649186B2 (en)
TW (1) TW201038473A (en)
WO (1) WO2010104200A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9862606B1 (en) 2017-03-27 2018-01-09 Lyten, Inc. Carbon allotropes
CN108220908A (en) * 2017-12-18 2018-06-29 中国科学院兰州化学物理研究所 A kind of method that frictional interface is formed in situ graphene and onion realizes superslide
US10428197B2 (en) 2017-03-16 2019-10-01 Lyten, Inc. Carbon and elastomer integration
US10920035B2 (en) 2017-03-16 2021-02-16 Lyten, Inc. Tuning deformation hysteresis in tires using graphene

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108377B2 (en) * 2012-04-04 2017-04-05 国立大学法人名古屋大学 Carbon porous body and method for producing the same
JP6044934B2 (en) * 2013-02-13 2016-12-14 国立大学法人名古屋大学 Method for producing graphene
CN104209062B (en) * 2013-05-20 2016-07-06 燕山大学 Ultrahigh hardness nano twin crystal diamond block materials and preparation method thereof
JP6308388B2 (en) * 2014-05-30 2018-04-11 国立大学法人 熊本大学 Graphene dispersion and method for producing graphene
US10160654B2 (en) 2014-11-13 2018-12-25 Yanshan University Ultrahard nanotwinned diamond bulk material and method for preparing the same
CN104726890B (en) * 2015-02-09 2017-07-04 银基烯碳新材料股份有限公司 A kind of method that active carbon nanoparticles liquid is prepared based on electrolysis
JP6833243B2 (en) * 2016-06-15 2021-02-24 国立大学法人 熊本大学 Method for producing graphene and chemically modified graphene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217431A (en) * 1995-02-09 1996-08-27 Res Dev Corp Of Japan Fullerene and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217431A (en) * 1995-02-09 1996-08-27 Res Dev Corp Of Japan Fullerene and its production

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6014016138; N. Sano et al.: 'Properties of carbon onions produced by an arc discharge in water' J. Appl. Phys. Vol. 92, No. 5, 20020901, pp. 2783-2789, American Institute of Physics *
JPN6014016139; C. P. Li et al.: 'Hydrocarbon and carbon nanostructures produced by sonochemical reactions of organic solvents on hydr' Chem. Mater. Vol. 17, No. 23, 20051019, pp. 5780-5788, American Chemical Society *
JPN6014016140; J. Suehiro et al.: 'Production of carbon nanoparticles using pulsed arc discharge triggered by dielectric breakdown in w' Jpn. J. Appl. Phys. Vol. 42, 20031201, pp. L1483-L1485, The Japan Society of Applied Physics *
JPN6014016143; N. Sano et al.: 'Synthesis of carbon 'onions' in water' Nature Vol. 414, No. 6863, 20011129, pp. 506-507, Nature Publishing Group *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10428197B2 (en) 2017-03-16 2019-10-01 Lyten, Inc. Carbon and elastomer integration
US10920035B2 (en) 2017-03-16 2021-02-16 Lyten, Inc. Tuning deformation hysteresis in tires using graphene
US11008436B2 (en) 2017-03-16 2021-05-18 Lyten, Inc. Carbon and elastomer integration
US9862606B1 (en) 2017-03-27 2018-01-09 Lyten, Inc. Carbon allotropes
US10112837B2 (en) 2017-03-27 2018-10-30 Lyten, Inc. Carbon allotropes
US11053121B2 (en) 2017-03-27 2021-07-06 Lyten, Inc. Method and apparatus for cracking of a process gas
CN108220908A (en) * 2017-12-18 2018-06-29 中国科学院兰州化学物理研究所 A kind of method that frictional interface is formed in situ graphene and onion realizes superslide

Also Published As

Publication number Publication date
TW201038473A (en) 2010-11-01
WO2010104200A1 (en) 2010-09-16
JPWO2010104200A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5649186B2 (en) Onion-like carbon and method for producing the same
CN107777674B (en) A method of two-dimensional material is prepared using atmospheric plasma
JP7156648B2 (en) Carbon nanostructured material and method of forming carbon nanostructured material
Bulychev et al. Plasma discharge in liquid phase media under ultrasonic cavitation as a technique for synthesizing gaseous hydrogen
CN108203090B (en) Preparation method of graphene
JP6044934B2 (en) Method for producing graphene
US9096938B2 (en) Graphite oxide and/or graphene preparation method
KR101265939B1 (en) Manufacturing method of graphene using inductively thermal plasma
US20210188646A1 (en) Process, reactor and system for fabrication of free-standing two-dimensional nanostructures using plasma technology
Shizuno et al. Synthesis of diamondoids by supercritical xenon discharge plasma
CN107686108B (en) Method for preparing reduced graphene oxide by dielectric barrier discharge plasma
JP5534456B2 (en) Method for producing carbon nanotube
JP5370887B2 (en) Method for producing nanodiamond
RU2010136236A (en) METHOD FOR PRODUCING NANOPARTICLES
CN109264708B (en) Method for manufacturing two-dimensional material
JP2022081397A (en) Method for continuously mass-producing graphene and graphene produced by the same
CN110451481B (en) Method for preparing nano carbon powder by using plasma
Shoushtari et al. Fabrication and characterization of zinc oxide nanoparticles by DC arc plasma
JPH11349307A (en) Production of functional carbonaceous material
JP2006036575A (en) Single layer carbon nanotube and method for producing the same
Thongpool et al. Preparation of alumina–graphene composites by Long Pulsed Laser Ablation
Musa et al. Carbon synthesis in methane plasma
Amirov et al. Large-scale synthesis of graphene materials using hydrocarbons in a thermal plasma jet
Goli et al. Copper Oxide Nanostructures Synthesized by Using of Arc Discharge Method
JP5142266B2 (en) Single-walled carbon nanotube manufacturing apparatus and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141107

R150 Certificate of patent or registration of utility model

Ref document number: 5649186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250