JP5649170B2 - Tetrahydro-β-carboline derivative and method for producing the same - Google Patents

Tetrahydro-β-carboline derivative and method for producing the same Download PDF

Info

Publication number
JP5649170B2
JP5649170B2 JP2010263276A JP2010263276A JP5649170B2 JP 5649170 B2 JP5649170 B2 JP 5649170B2 JP 2010263276 A JP2010263276 A JP 2010263276A JP 2010263276 A JP2010263276 A JP 2010263276A JP 5649170 B2 JP5649170 B2 JP 5649170B2
Authority
JP
Japan
Prior art keywords
group
tetrahydro
alkyl group
carboline
acyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010263276A
Other languages
Japanese (ja)
Other versions
JP2012111724A (en
Inventor
孝義 荒井
孝義 荒井
真希子 和才
真希子 和才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2010263276A priority Critical patent/JP5649170B2/en
Publication of JP2012111724A publication Critical patent/JP2012111724A/en
Application granted granted Critical
Publication of JP5649170B2 publication Critical patent/JP5649170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、テトラヒドロ−β−カルボリン誘導体及びその製造方法に関する。   The present invention relates to a tetrahydro-β-carboline derivative and a method for producing the same.

従来にない分子の供給技術は、特異な生物活性を有する化合物の探索に必要であり、開発に成功した新規生物活性物質は医薬品や農薬などへの利用が期待される。高度に官能基化されたテトラヒドロ−β−カルボリンはしばしば高い生物活性を有し、種々の医薬品や天然物中に存在する有用な化合物である。したがって多置換テトラヒドロ−β−カルボリン化合物の効率的な合成法の開発は極めて重要である。   Unprecedented molecular supply technology is necessary for the search for compounds having specific biological activity, and new biologically active substances that have been successfully developed are expected to be used in pharmaceuticals and agricultural chemicals. Highly functionalized tetrahydro-β-carbolines often have high biological activity and are useful compounds present in various pharmaceuticals and natural products. Therefore, the development of an efficient method for synthesizing polysubstituted tetrahydro-β-carboline compounds is extremely important.

現在、テトラヒドロ−β−カルボリン誘導体の合成は様々な手法で達成されているが、特に4位炭素に置換基を有するβ−カルボリン誘導体の合成例が下記文献に記載されている。   At present, synthesis of tetrahydro-β-carboline derivatives has been achieved by various techniques. In particular, synthesis examples of β-carboline derivatives having a substituent at the 4-position carbon are described in the following documents.

C.A.Busacca,M.C.Eriksson,Y.Dong,A.S.Prokopowicz,A.M.Salvagno,M.A.Tschantz,J.Org.Chem.1999,64.4564−4568.C. A. Busacca, M .; C. Eriksson, Y.M. Dong, A.D. S. Prokopowicz, A.M. M.M. Salvagno, M .; A. Tschantz, J.A. Org. Chem. 1999, 64.4564-4568. M.Bandini,A.Melloni,F.Piccinelli,R.Sinisi,S.Tommasi,A.Umani−Ronchi,J.Am.Chem.Soc.2006,128.1424−1425.M.M. Bandini, A.M. Meloni, F.M. Piccinelli, R.M. Sinisi, S .; Tommasi, A .; Umani-Ronchi, J.A. Am. Chem. Soc. 2006, 128.1424-1425. C.Rannoux,F.Roussi,P.Retailleau,F.Gueritte,Org.Lett.2010,12,1240−1243.C. Rannoux, F.M. Roussi, P .; Retailleau, F.M. Guerrite, Org. Lett. 2010, 12, 1240-1243.

しかしながら、その重要性にもかかわらず4位炭素に置換基を有するテトラヒドロ−β−カルボリン誘導体の合成例はいまだ少なく、4位炭素への置換基の導入は煩雑な多段階反応を必要とする。また上記文献に記載の合成法では特定の立体化学を有するβ−カルボリン誘導体のみが得られ、新規生物活性物質の探索のためには新たなβ−カルボリン誘導体合成法の開発が望まれる。   However, in spite of its importance, there are still few synthesis examples of tetrahydro-β-carboline derivatives having a substituent at the 4-position carbon, and introduction of the substituent at the 4-position carbon requires a complicated multi-step reaction. In addition, only the β-carboline derivative having a specific stereochemistry is obtained by the synthesis method described in the above-mentioned literature, and development of a new β-carboline derivative synthesis method is desired in order to search for a novel bioactive substance.

そこで、本発明は、上記課題を鑑み、(1)で示されるインドール誘導体を用いたテトラヒドロ−β‐カルボリン誘導体合成を提供することを目的とする。   Then, in view of the said subject, this invention aims at providing the tetrahydro-beta-carboline derivative synthesis | combination using the indole derivative shown by (1).

本発明者らは、上記課題について鋭意検討を行なっていたところ、(1)で示されるインドール誘導体に対してニトロ基の還元およびヒドロキシ基の保護、続くアルデヒドとのピクテット・スペングラー反応を行うことで(2)で示されるテトラヒドロ−β−カルボリン誘導体を得ることができる点を発見し、本発明を完成させるに至った。   The inventors of the present invention have been diligently studying the above-mentioned problems, and by performing reduction of the nitro group and protection of the hydroxy group and subsequent octet-Spengler reaction with the aldehyde on the indole derivative represented by (1). The inventors discovered that a tetrahydro-β-carboline derivative represented by (2) can be obtained, and completed the present invention.

即ち、本発明の一手段に係るテトラヒドロ−β−カルボリンを製造する方法は、下記式(1)で示されるインドール誘導体に対しニトロ基の還元およびヒドロキシ基の保護、続くアルデヒドとのピクテット・スペングラー反応を行う。
That is, the method for producing tetrahydro-β-carboline according to one means of the present invention comprises reducing the nitro group and protecting the hydroxy group with respect to the indole derivative represented by the following formula (1), followed by the Pictet-Spengler reaction with the aldehyde I do.

ここで上記式中R、R、Rは、アリ−ル基、アルキル基、もしくはアシル基である。また、インドール骨格上に、アルキル基、アルコキシ基、ハロゲン基、ニトロ基などの置換基を有していても良い。 Here, R 1 , R 2 , and R 3 in the above formula are an aryl group, an alkyl group, or an acyl group. Moreover, you may have substituents, such as an alkyl group, an alkoxy group, a halogen group, and a nitro group, on the indole skeleton.

なおこの結果、下記式(2)で示されるテトラヒドロ−β−カルボリン誘導体を得ることができる。
As a result, a tetrahydro-β-carboline derivative represented by the following formula (2) can be obtained.

ここで上記式中R、R、R、Rは、アリ−ル基、アルキル基、もしくはアシル基である。また、インドール骨格上に、アルキル基、アルコキシ基、ハロゲン基、ニトロ基などの置換基を有していても良い。 Here, R 1 , R 2 , R 3 , and R 4 in the above formula are an aryl group, an alkyl group, or an acyl group. Moreover, you may have substituents, such as an alkyl group, an alkoxy group, a halogen group, and a nitro group, on the indole skeleton.

以上、本発明により、従来報告のない新規なテトラヒドロ−β−カルボリン化合物を短工程で効果的に得ることができ、多様な化合物の合成・供給が可能になる。   As described above, according to the present invention, a novel tetrahydro-β-carboline compound that has not been reported so far can be effectively obtained in a short process, and various compounds can be synthesized and supplied.

以下、本発明の実施形態について図面を参照しつつ説明する。ただし、本発明は多くの異なる態様で実施することが可能であり、以下に示す実施形態に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, the present invention can be implemented in many different modes and is not limited to the embodiments shown below.

(実施形態1)
本実施形態に係るテトラヒドロ−β−カルボリンを製造する方法は、下記式(1)で示されるインドール誘導体に対しニトロ基の還元およびヒドロキシ基の保護、続くアルデヒドとのピクテット・スペングラー反応を行う。なおインドール誘導体(1)の合成法に関しては、合成できる限りにおいて限定されるわけではないが、例えば、特開2008−117919公報に記載されている方法を用いることができる。
(Embodiment 1)
In the method for producing tetrahydro-β-carboline according to the present embodiment, the indole derivative represented by the following formula (1) is subjected to reduction of the nitro group and protection of the hydroxy group, followed by a pitet-Spengler reaction with the aldehyde. The method for synthesizing the indole derivative (1) is not limited as long as it can be synthesized. For example, a method described in JP-A-2008-117919 can be used.

ここで上記式中R、R、Rは、アリ−ル基、アルキル基、もしくはアシル基である。また、インドール骨格上に、アルキル基、アルコキシ基、ハロゲン基、ニトロ基などの置換基を有していても良い。 Here, R 1 , R 2 , and R 3 in the above formula are an aryl group, an alkyl group, or an acyl group. Moreover, you may have substituents, such as an alkyl group, an alkoxy group, a halogen group, and a nitro group, on the indole skeleton.

まず上記式(1)で示されるインドール誘導体に対しメタノール溶媒中、酢酸および塩酸を加え、酸性条件下Zn粉末を用いてニトロ基を還元することで下記式(3)で示されるβ−アミノアルコールを得ることができる。
First, β-amino alcohol represented by the following formula (3) is added to the indole derivative represented by the above formula (1) by adding acetic acid and hydrochloric acid in a methanol solvent and reducing the nitro group using Zn powder under acidic conditions. Can be obtained.

ここで上記式中R、R、Rは、アリ−ル基、アルキル基、もしくはアシル基である。また、インドール骨格上に、アルキル基、アルコキシ基、ハロゲン基、ニトロ基などの置換基を有していても良い。 Here, R 1 , R 2 , and R 3 in the above formula are an aryl group, an alkyl group, or an acyl group. Moreover, you may have substituents, such as an alkyl group, an alkoxy group, a halogen group, and a nitro group, on the indole skeleton.

上記反応は、RまたはRがアルキル基である場合、より粒子の細かいZnナノ粉末を用いることが望ましい。 In the above reaction, when R 1 or R 2 is an alkyl group, it is desirable to use Zn nanopowder with finer particles.

次に上記式(3)で示されるβ−アミノアルコールは、アルキル基もしくはアリール基で置換されたハロゲン化ケイ素試薬を用い、水酸基を保護することができる。例えば、ジメチルホルムアミド中、イミダゾール存在下トリエチルクロライドを反応させることで下記式(4)で示される化合物を得ることができる。
Next, the β-aminoalcohol represented by the above formula (3) can protect the hydroxyl group using a silicon halide reagent substituted with an alkyl group or an aryl group. For example, a compound represented by the following formula (4) can be obtained by reacting triethyl chloride in the presence of imidazole in dimethylformamide.

ここで上記式中R、R、Rは、アリ−ル基、アルキル基、もしくはアシル基である。また、インドール骨格上に、アルキル基、アルコキシ基、ハロゲン基、ニトロ基などの置換基を有していても良い。 Here, R 1 , R 2 , and R 3 in the above formula are an aryl group, an alkyl group, or an acyl group. Moreover, you may have substituents, such as an alkyl group, an alkoxy group, a halogen group, and a nitro group, on the indole skeleton.

次に上記式(4)で示される化合物に対しクロロホルム中硫酸マグネシウム存在下でトリフルオロ酢酸を酸触媒としてアルデヒドとのピクテット・スペングラー反応を行うことで下記式(2)で示されるテトラヒドロ−β−カルボリン誘導体を得ることができる。
Next, by subjecting the compound represented by the above formula (4) to a Pictet-Spengler reaction with an aldehyde using trifluoroacetic acid as an acid catalyst in the presence of magnesium sulfate in chloroform, tetrahydro-β- represented by the following formula (2) A carboline derivative can be obtained.

ここで上記式中R、R、R、Rは、アリ−ル基、アルキル基、もしくはアシル基である。また、インドール骨格上に、アルキル基、アルコキシ基、ハロゲン基、ニトロ基などの置換基を有していても良い。 Here, R 1 , R 2 , R 3 , and R 4 in the above formula are an aryl group, an alkyl group, or an acyl group. Moreover, you may have substituents, such as an alkyl group, an alkoxy group, a halogen group, and a nitro group, on the indole skeleton.

上記反応は、酸触媒を加える前にアミンとアルデヒドを反応させ十分にイミンの形成を行うことが望ましい。   In the above reaction, it is desirable to sufficiently form an imine by reacting an amine with an aldehyde before adding an acid catalyst.

上記反応において、反応基質として用いられるアルデヒドは下記式(5)で示される。ここにおいてRはアリール基、アルキル基、もしくはアシル基を用いることができる。
In the above reaction, an aldehyde used as a reaction substrate is represented by the following formula (5). Here, R 4 can be an aryl group, an alkyl group, or an acyl group.

以上本実施形態に係る方法によると、テトラヒドロ−β−カルボリン誘導体を短工程で効果的に得ることが可能である。   As described above, according to the method according to the present embodiment, the tetrahydro-β-carboline derivative can be effectively obtained in a short process.

ここで、上記実施形態に係る方法により、実際にテトラヒドロ−β−カルボリン誘導を合成し、その結果を確認した。以下に具体的に説明する。なおもちろん、上記実施形態に係る反応も多くの異なる実施が可能であり、以下に示す実施例に限定されるわけではない。   Here, tetrahydro-β-carboline induction was actually synthesized by the method according to the above embodiment, and the result was confirmed. This will be specifically described below. Of course, the reaction according to the above embodiment can be carried out in many different ways and is not limited to the following examples.

まず、(1)で示されるインドール誘導体のニトロ基の還元反応を行った。   First, a reduction reaction of the nitro group of the indole derivative represented by (1) was performed.

(実施例1)
本実施例は、メタノール2.50ml中に下記式(1−1)で示されるインドール誘導体0.104gを溶解させ、これに酢酸0.834ml、1規定塩酸1.67mlおよびZn粉末0.364gを加え、室温、15時間反応させることで行なった。この結果、下記に示す化合物(3−1)を0.0942g得ることができた。また(3−1)の収率は99%であった。
Example 1
In this example, 0.104 g of an indole derivative represented by the following formula (1-1) was dissolved in 2.50 ml of methanol, and 0.834 ml of acetic acid, 1.67 ml of 1N hydrochloric acid and 0.364 g of Zn powder were added thereto. In addition, the reaction was performed at room temperature for 15 hours. As a result, 0.0942 g of the following compound (3-1) was obtained. The yield of (3-1) was 99%.

H NMR(400MHz,CDCl)δ8.10(br,1H),7.74(d, J=8.2Hz,1H),7.45(m,2H),7.15−7.36(m,11H),7.11(m,1H),4.69(d,J=1.4Hz,1H),4.43(d,J=9.9Hz,1H),3.90(dd,J=2.3,10.0Hz,1H),1.28(br,2H);
13C NMR(125MHz,CDCl3)δ144.0,142.4,136.3,128.7,128.6,128.3,127.0,126.6,125.6,122.2,121.5,119.6,119.5,117.8,111.1,71.8,60.1,46.0;
HRMS calcd for C2323O(M+H):343.1805, found:m/z 343.1800;
[α] 25.0=+2.0(c=0.71,CHCl);
IR(neat)3416,3059,3028,1453,908,737,701cm−1
1 H NMR (400 MHz, CDCl 3 ) δ 8.10 (br, 1H), 7.74 (d, J = 8.2 Hz, 1H), 7.45 (m, 2H), 7.15-7.36 ( m, 11H), 7.11 (m, 1H), 4.69 (d, J = 1.4 Hz, 1H), 4.43 (d, J = 9.9 Hz, 1H), 3.90 (dd, J = 2.3, 10.0 Hz, 1H), 1.28 (br, 2H);
13 C NMR (125 MHz, CDCl 3) δ 144.0, 142.4, 136.3, 128.7, 128.6, 128.3, 127.0, 126.6, 125.6, 122.2, 121. 5, 119.6, 119.5, 117.8, 111.1, 71.8, 60.1, 46.0;
HRMS calcd for C 23 H 23 N 2 O (M + H): 343.1805, found: m / z 343.1800;
[Α] D 25.0 = + 2.0 (c = 0.71, CHCl 3 );
IR (neat) 3416, 3059, 3028, 1453, 908, 737, 701 cm −1 .

(実施例2)
本実施例2は、メタノール1.18ml中に下記式(1−2)で示されるインドール誘導体0.0496gを溶解させ、これに酢酸0.393ml、1規定塩酸0.786mlおよびZnナノ粉末0.171gを加え、室温、3時間反応させることで行なった。この結果、下記に示す化合物(3−2)を0.0452g得ることができた。また(3−2)の収率は99%であった。
(Example 2)
In this Example 2, 0.0496 g of an indole derivative represented by the following formula (1-2) was dissolved in 1.18 ml of methanol, and 0.393 ml of acetic acid, 0.786 ml of 1N hydrochloric acid and 0. It was performed by adding 171 g and reacting at room temperature for 3 hours. As a result, 0.0452 g of the following compound (3-2) could be obtained. The yield of (3-2) was 99%.

NMR(500MHz,CDCl)δ8.04(br,1H),7.64(d,J=8.0Hz,1H),7.42(m,2H),7.25−7.33(m,3H),7.12−7.19(m,2H),7.10(d,J=2.3Hz,1H),7.06,(m,1H),4.36(d,J=10.3Hz,1H),3.80(dd,J=1.1,10.3Hz,1H),3.23(dd,J=1.1,8.0Hz,1H)1.92(br,1H),0.98−1.82(m,8H),0.80−0.96(m,2H);
13 NMR(125MHz,CDCl)δ143.0,136.2,128.7,128.6,127.1,126.5,122.1,121.0,119.4,117.9,111.0,74.4,54.0,46.6,41.5,29.4,29.3,26.4,26.2,26.0;
HRMS calcd for C2329O(M+H):349.2274,found:m/z 349.2264;
[α] 24.2=−4.5(c=0.41,CHCl);
IR(neat)3413,3297,3059,2924,2851,1452,741cm−1
1 H NMR (500 MHz, CDCl 3 ) δ 8.04 (br, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.42 (m, 2H), 7.25-7.33 (m, 3H), 7.12-7.19 (m, 2H), 7.10 (d, J = 2.3 Hz, 1H), 7.06, (m, 1H), 4.36 (d, J = 10 .3 Hz, 1H), 3.80 (dd, J = 1.1, 10.3 Hz, 1H), 3.23 (dd, J = 1.1, 8.0 Hz, 1H) 1.92 (br, 1H) ), 0.98-1.82 (m, 8H), 0.80-0.96 (m, 2H);
13 C NMR (125 MHz, CDCl 3 ) δ 143.0, 136.2, 128.7, 128.6, 127.1, 126.5, 122.1, 121.0, 119.4, 117.9, 111.0 74.4, 54.0, 46.6, 41.5, 29.4, 29.3, 26.4, 26.2, 26.0;
HRMS calcd for C 23 H 29 N 2 O (M + H): 349.2274, found: m / z 349.2264;
[Α] D 24.2 = −4.5 (c = 0.41, CHCl 3 );
IR (neat) 3413, 3297, 3059, 2924, 2851, 1452, 741 cm −1 .

得られた化合物(3)に対しヒドロキシ基の保護を行った。   The resulting compound (3) was protected with a hydroxy group.

(実施例1)
本実施例1は無水ジメチルホルムアミド1.39ml中に化合物(3−1)を0.0949g溶解させ、トリエチルシリルクロライド0.0930ml、イミダゾール0.0943gと0℃で1時間反応させることで行なった。この結果、下記に示す化合物(4−1)を0.104g得ることができた。また(4−1)の収率は82%であった。
Example 1
Example 1 was carried out by dissolving 0.0949 g of compound (3-1) in 1.39 ml of anhydrous dimethylformamide and reacting with 0.0930 ml of triethylsilyl chloride and 0.0943 g of imidazole at 0 ° C. for 1 hour. As a result, 0.104 g of the following compound (4-1) was obtained. The yield of (4-1) was 82%.

NMR(400MHz,CDCl)δ8.10(br,1H),7.52(d,J=8.0Hz,1H),7.41(m,2H),7.19−7.35(m,9H),7.11−7.18(m,2H),7.05(m,1H),4.84(d,J=3.6Hz,1H),4.22(d,J=8.4Hz,1H),3.65(dd,J=3.8,8.6Hz,1H),0.76(t,J=7.9Hz,9H),0.30−0.42(m,6H);
13 NMR(100MHz,CDCl)δ143.9,142.8,136.3,129.1,128.3,128.0,127.2,126.9,126.6,126.2,122.0,121.3,119.4,119.2,118.3,111.0,75.3,61.0,46.6,6.7,4.8;
HRMS calcd for C2937OSi(M+H):457.2670 found:m/z 457.2661;
[α] 24.6=−2.0(c=0.33,CHCl);
IR(neat)3421,3166,3060,3027,2953,2911,2875,1454,1060,738,700cm−1
1 H NMR (400 MHz, CDCl 3 ) δ 8.10 (br, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.41 (m, 2H), 7.19-7.35 (m, 9H), 7.11-7.18 (m, 2H), 7.05 (m, 1H), 4.84 (d, J = 3.6 Hz, 1H), 4.22 (d, J = 8. 4 Hz, 1H), 3.65 (dd, J = 3.8, 8.6 Hz, 1H), 0.76 (t, J = 7.9 Hz, 9H), 0.30-0.42 (m, 6H) );
13 C NMR (100 MHz, CDCl 3 ) δ 143.9, 142.8, 136.3, 129.1, 128.3, 128.0, 127.2, 126.9, 126.6, 126.2, 122.0 , 121.3, 119.4, 119.2, 118.3, 111.0, 75.3, 61.0, 46.6, 6.7, 4.8;
HRMS calcd for C 29 H 37 N 2 OSi (M + H): 457.2670 found: m / z 457.2661;
[Α] D 24.6 = −2.0 (c = 0.33, CHCl 3 );
IR (neat) 3421, 3166, 3060, 3027, 2953, 2911, 2875, 1454, 1060, 738, 700 cm −1 .

(実施例2)
本実施例は、無水ジメチルホルムアミド0.685ml中に化合物(3−1)を0.0477g溶解させ、トリエチルシリルクロライド0.0460ml、イミダゾール0.0466gと室温、1時間反応させることで行なった。この結果、下記化合物(4−2)を0.0507g得ることができた。また(4−2)の収率は80%であった。
(Example 2)
In this example, 0.0477 g of compound (3-1) was dissolved in 0.685 ml of anhydrous dimethylformamide and reacted with 0.0460 ml of triethylsilyl chloride and 0.0466 g of imidazole at room temperature for 1 hour. As a result, 0.0507 g of the following compound (4-2) could be obtained. The yield of (4-2) was 80%.

NMR(500MHz,CDCl)δ8.03(br,1H),7.53(d,J=7.7Hz,1H),7.29−7.35(m,3H),7.22−7.27(m,2H),7.10−7.15(m,3H),7.02(m,1H),4.19(d,J=10.0Hz,1H),3.70(dd,J=1.4,7.2Hz,1H),3.58(dd,J=1.5,10.0Hz,1H),1.88(br,1H),1.62−1.84(m,5H),0.90−1.33(m,5H),0.86(t,J=8.0Hz,9H),0.51(q,J=8.0Hz,6H);
13 NMR(125MHz,CDCl)δ143.4,136.1,128.9,128.4,127.3,126.2,122.0,120.4,119.4,119.2,118.3,110.9,54.9,48.0,42.3,30.1,30.0,26.6,26.5,26.4,7.0,5.6;
HRMS calcd for C2943OSi(M+H):463.3139,found:m/z 463.3127;
[α] 23.0=−63.1(c=1.0,CHCl3);
IR(neat)3418,3166,3060,2925,2875,2852,1455,1011,738,702cm−1
1 H NMR (500 MHz, CDCl 3 ) δ 8.03 (br, 1H), 7.53 (d, J = 7.7 Hz, 1H), 7.29-7.35 (m, 3H), 7.22-7. 27 (m, 2H), 7.10-7.15 (m, 3H), 7.02 (m, 1H), 4.19 (d, J = 10.0 Hz, 1H), 3.70 (dd, J = 1.4, 7.2 Hz, 1H), 3.58 (dd, J = 1.5, 10.0 Hz, 1H), 1.88 (br, 1H), 1.62-1.84 (m) , 5H), 0.90-1.33 (m, 5H), 0.86 (t, J = 8.0 Hz, 9H), 0.51 (q, J = 8.0 Hz, 6H);
13 C NMR (125 MHz, CDCl 3 ) δ 143.4, 136.1, 128.9, 128.4, 127.3, 126.2, 122.0, 120.4, 119.4, 119.2, 118.3 110.9, 54.9, 48.0, 42.3, 30.1, 30.0, 26.6, 26.5, 26.4, 7.0, 5.6;
HRMS calcd for C 29 H 43 N 2 OSi (M + H): 463.3139, found: m / z 463.3127;
[Α] D 23.0 = −63.1 (c = 1.0, CHCl 3);
IR (neat) 3418, 3166, 3060, 2925, 2875, 2852, 1455, 1011, 738, 702 cm −1 .

得られた化合物(4)に対しピクテット・スペングラー反応を行った。   The resulting compound (4) was subjected to Pictet-Spengler reaction.

(実施例1)
本実施例1は無水クロロホルム0.805ml中に化合物(4−1)を0.0388g溶解させ、硫酸マグネシウム0.0805gおよびベンズアルデヒド0.0245mlと室温、5時間反応させた。その後トリフルオロ酢酸0.00658mlを加え、室温、19時間反応させることで行った。この結果、下記に示す化合物(2−1)を0.0232g得ることができた。また(2−1)の収率は67%であった。
Example 1
In Example 1, 0.0388 g of Compound (4-1) was dissolved in 0.805 ml of anhydrous chloroform, and reacted with 0.0805 g of magnesium sulfate and 0.0245 ml of benzaldehyde at room temperature for 5 hours. Thereafter, 0.00658 ml of trifluoroacetic acid was added and reacted at room temperature for 19 hours. As a result, 0.0232 g of the following compound (2-1) was obtained. The yield of (2-1) was 67%.

NMR(400MHz,CDCl)δ7.53−7.62(m,3H),7.35−7.50(m,6H),7.18−7.30(m,7H),7.06−7.16(m, 2H),7.02(m,1H),6.87(m,1H),5.35(d,J=1.6Hz,1H),4.02(d,J=9.7Hz,1H),3.95(dd,J=1.8,4.1Hz,1H),3.83(dd,J=4.1,9.7Hz,1H),3.40(br,1H),2.37(br,1H);
13C NMR(100MHz,CDCl)δ140.9,140.4,140.0,136.2,135.2,129.9,129.2,128.7,128.6,128.5,127.9,126.7,126.5,121.9,119.5,118.5,114.4,110.8,74.5,64.0,59.5,39.9;
HRMS calcd for C3026ONa(M+Na):453.1937,found:m/z 453.1920;
[α] 25.7=−6.4(c=1.0,CHCl);
IR(neat)3412,3332,3060,3030,2919,1493,1454,909,737,701cm−1
1 H NMR (400MHz, CDCl 3) δ7.53-7.62 (m, 3H), 7.35-7.50 (m, 6H), 7.18-7.30 (m, 7H), 7.06- 7.16 (m, 2H), 7.02 (m, 1H), 6.87 (m, 1H), 5.35 (d, J = 1.6 Hz, 1H), 4.02 (d, J = 9.7 Hz, 1H), 3.95 (dd, J = 1.8, 4.1 Hz, 1H), 3.83 (dd, J = 4.1, 9.7 Hz, 1H), 3.40 (br , 1H), 2.37 (br, 1H);
13 C NMR (100 MHz, CDCl 3 ) δ 140.9, 140.4, 140.0, 136.2, 135.2, 129.9, 129.2, 128.7, 128.6, 128.5, 127 .9, 126.7, 126.5, 121.9, 119.5, 118.5, 114.4, 110.8, 74.5, 64.0, 59.5, 39.9;
HRMS calcd for C 30 H 26 N 2 ONa (M + Na): 453.1937, found: m / z 453.1920;
[Α] D 25.7 = −6.4 (c = 1.0, CHCl 3 );
IR (neat) 3412, 3332, 3060, 3030, 2919, 1493, 1454, 909, 737, 701 cm −1 .

(実施例2)
本実施例2は無水クロロホルム1.10ml中に化合物(4−2)を0.0509g溶解させ、硫酸マグネシウム0.110gおよび4−ニトロベンズアルデヒド0.0499gと室温、5時間反応させた。その後トリフルオロ酢酸0.00899mlを加え、室温、24時間反応させることで行った。この結果、下記に示す化合物(2−2)を0.0275g得ることができた。また(2−2)の収率は52%であった。
(Example 2)
In Example 2, 0.0509 g of compound (4-2) was dissolved in 1.10 ml of anhydrous chloroform and reacted with 0.110 g of magnesium sulfate and 0.0499 g of 4-nitrobenzaldehyde at room temperature for 5 hours. Thereafter, 0.00899 ml of trifluoroacetic acid was added and reacted at room temperature for 24 hours. As a result, 0.0275 g of the following compound (2-2) could be obtained. The yield of (2-2) was 52%.

NMR(500MHz,CDCl)δ8.32(m,2H),7.74(m,2H),7.44−7.52(m,3H),7.19−7.33(m,5H),7.11(m,1H),6.99(m,1H),5.39(d,J=1.5Hz,1H),4.28(dd,J=1.7,4.0Hz,1H),3.50(dd,J=4.3,9.1Hz,1H),3.05(d,J=8.9Hz,1H),2.25(br,2H),1.66−1.92(m,5H),1.10−1.40(m,6H);
13C NMR(125MHz,CDCl)δ148.4,148.0,140.5,136.5,133.8,129.5,129.4,128.3,126.9,126.5,124.3,122.4,119.9,118.6,114.7,110.9,75.0,60.2,58.8,40.4,38.7,30.8,26.9,26.5,26.4,25.3;
HRMS calcd for C3032(M+H):482.2438, found:m/z 482.2429;
[α] 21.4=−30.6(c=1.0,CHCl);
IR(neat)3401,3059,2925,2851,1521,1452,1347,744,710cm−1
1 H NMR (500 MHz, CDCl 3 ) δ 8.32 (m, 2H), 7.74 (m, 2H), 7.44-7.52 (m, 3H), 7.19-7.33 (m, 5H) 7.11 (m, 1H), 6.99 (m, 1H), 5.39 (d, J = 1.5 Hz, 1H), 4.28 (dd, J = 1.7, 4.0 Hz, 1H), 3.50 (dd, J = 4.3, 9.1 Hz, 1H), 3.05 (d, J = 8.9 Hz, 1H), 2.25 (br, 2H), 1.66 1.92 (m, 5H), 1.10-1.40 (m, 6H);
13 C NMR (125 MHz, CDCl 3 ) δ 148.4, 148.0, 140.5, 136.5, 133.8, 129.5, 129.4, 128.3, 126.9, 126.5, 124 3,122.4,119.9,118.6,114.7,110.9,75.0,60.2,58.8,40.4,38.7,30.8,26.9 , 26.5, 26.4, 25.3;
HRMS calcd for C 30 H 32 N 3 O 3 (M + H): 482.2438, found: m / z 482.2429;
[Α] D 21.4 = −30.6 (c = 1.0, CHCl 3 );
IR (neat) 3401, 3059, 2925, 2851, 1521, 1452, 1347, 744, 710 cm −1 .

以上の通り、本実施例によると、多置換テトラヒドロ−β−カルボリン化合物を合成できることを確認した。   As described above, according to this example, it was confirmed that a polysubstituted tetrahydro-β-carboline compound could be synthesized.

本発明は、高度に官能基化されたテトラヒドロ−β−カルボリン化合物を高い立体選択性で供給できることから、医薬・農薬の開発と生産に有用であり、産業上の利用可能性がある。   The present invention can supply a highly functionalized tetrahydro-β-carboline compound with high stereoselectivity, and thus is useful for the development and production of pharmaceuticals and agricultural chemicals, and has industrial applicability.

Claims (2)

下記式(1)で示されるインドール誘導体を用いて下記式(2)で示されるテトラヒドロ−β−カルボリン誘導体を合成する方法。
(ここでR は、アリ−ル基、アルキル基、アシル基、もしくは水素原子であり、、Rは、アリ−ル基、アルキル基、もしくはアシル基である。また、インドール骨格上に、アルキル基、アルコキシ基、ハロゲン基、もしくはニトロ基の置換基を有していても良い。)

(ここでR は、アリ−ル基、アルキル基、アシル基、もしくは水素原子であり、、R、Rは、アリ−ル基、アルキル基、もしくはアシル基である。また、インドール骨格上に、アルキル基、アルコキシ基、ハロゲン基、もしくはニトロ基の置換基を有していても良い。)
A method of synthesizing a tetrahydro-β-carboline derivative represented by the following formula (2) using an indole derivative represented by the following formula (1).
(Wherein R 1 is an aryl group, an alkyl group, an acyl group, or a hydrogen atom, and R 2 and R 3 are an aryl group, an alkyl group, or an acyl group. And may have a substituent of an alkyl group, an alkoxy group, a halogen group, or a nitro group .

(Here, R 1 is an aryl group, an alkyl group, an acyl group, or a hydrogen atom, and R 2 , R 3 , and R 4 are an aryl group, an alkyl group, or an acyl group. (It may have an alkyl group, alkoxy group, halogen group, or nitro group substituent on the indole skeleton.)
下記式(2)で示されるテトラヒドロ−β−カルボリン誘導体。
(ここでR は、アリ−ル基、アルキル基、アシル基、もしくは「水素原子」であり、、R、Rは、アリ−ル基、アルキル基、もしくはアシル基である。また、インドール骨格上に、アルキル基、アルコキシ基、ハロゲン基、もしくはニトロ基の置換基を有していても良い。)
A tetrahydro-β-carboline derivative represented by the following formula (2).
(Here, R 1 is an aryl group, an alkyl group, an acyl group, or a “hydrogen atom”, and R 2 , R 3 , and R 4 are an aryl group, an alkyl group, or an acyl group. In addition, an alkyl group, an alkoxy group, a halogen group, or a nitro group substituent may be present on the indole skeleton.
JP2010263276A 2010-11-26 2010-11-26 Tetrahydro-β-carboline derivative and method for producing the same Active JP5649170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010263276A JP5649170B2 (en) 2010-11-26 2010-11-26 Tetrahydro-β-carboline derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010263276A JP5649170B2 (en) 2010-11-26 2010-11-26 Tetrahydro-β-carboline derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012111724A JP2012111724A (en) 2012-06-14
JP5649170B2 true JP5649170B2 (en) 2015-01-07

Family

ID=46496347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010263276A Active JP5649170B2 (en) 2010-11-26 2010-11-26 Tetrahydro-β-carboline derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP5649170B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2140797A (en) * 1983-06-04 1984-12-05 Tanabe Seiyaku Co Tetrahydro-b-carboline derivatives
GB8416719D0 (en) * 1984-06-30 1984-08-01 Tanabe Seiyaku Co Tetrahydro-beta-carboline derivative
EP0357122A3 (en) * 1988-08-29 1991-10-23 Duphar International Research B.V Use of beta-carbolines, their bio-isosteric benzofuran and benzothiophene analogues for the manufacture of a medicament having cytostatic properties
CN102408425A (en) * 2004-03-15 2012-04-11 Ptc医疗公司 Carboline derivatives useful in inhibition of angiogenesis and application thereof
FR2914924A1 (en) * 2007-04-13 2008-10-17 Fourtillan Snc DERIVATIVES OF 4,5,11,11A-TETRAHYDRO-1H, 6H-OXAZOLO [3 ', 4': 1.6] PYRIDO [3,4-B] INDOL-3-ONE AND THEIR USE IN THERAPEUTICS.

Also Published As

Publication number Publication date
JP2012111724A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP2020097607A (en) Novel manufacturing method of chromanone derivative
JP5649971B2 (en) Process for producing 2-hydroxy-5-phenylalkylaminobenzoic acid derivatives and salts thereof
KR20140128926A (en) Process for the production of bendamustine alkyl ester, bendamustine, and derivatives thereof
CN103980188B (en) The synthetic method of a kind of pyrrole Lun Panai and the synthetic method of intermediate and intermediate thereof
JP5649170B2 (en) Tetrahydro-β-carboline derivative and method for producing the same
JP6228210B2 (en) Method for purifying fluvoxamine free base and method for producing high purity fluvoxamine maleate using the same
KR100574350B1 (en) Process for preparation of 2-aminopyridine derivatives
JP2018525376A (en) Novel process for producing chromanol derivatives
JP5419545B2 (en) Method for producing orthoester compound
CN113801062B (en) Preparation method of 3-amino-5- (3, 5-difluorobenzyl) -1H-indazole
CN108484495B (en) Synthetic method of 3-bromo-7-hydroxyquinoline
CN108929226B (en) Method for preparing benzoyl formate derivative
US20210040029A1 (en) Synthesis of 2-(2-aminoethoxy) ethanol
CN108558878B (en) Synthesis process of quinoline and derivatives thereof
CN111848423B (en) Preparation method of tert-butyl 3-oxocyclobutylcarbamate
JP2011057619A (en) Method for producing optically active amine compound, and diastereomer salt and method for producing the same
JP6887022B2 (en) Methods for Producing Ketolide Compounds
JP4587139B2 (en) A method for producing an aminoalkoxycarbostyril derivative.
CN109627207A (en) A kind of preparation method of 3- (difluoro-methoxy) piperidine hydrochlorate
JP2015518014A (en) Synthesis of diamide gelling agents by using Dane salts of amino acids
CN112979643A (en) 3- (2-chloroethyl) -9-hydroxy-2-methyl-4H-pyrido [1,2-a ] pyrimidin-4-one
CN115233244A (en) Method for electrochemically synthesizing 3-hydroxyalkyl quinoxaline-2 (1H) -ketone compound
JP2022135241A (en) Method of producing tetra acyl gluconolactone derivative
WO2015062103A1 (en) Refining method for 2-nitro-4-methylsulfonyl benzoic acid and intermediate thereof
CN114195702A (en) Intermediate for synthesizing antitumor drug nilapali and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141107

R150 Certificate of patent or registration of utility model

Ref document number: 5649170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250