JP5647766B2 - Greenhouse air conditioner - Google Patents

Greenhouse air conditioner Download PDF

Info

Publication number
JP5647766B2
JP5647766B2 JP2009047460A JP2009047460A JP5647766B2 JP 5647766 B2 JP5647766 B2 JP 5647766B2 JP 2009047460 A JP2009047460 A JP 2009047460A JP 2009047460 A JP2009047460 A JP 2009047460A JP 5647766 B2 JP5647766 B2 JP 5647766B2
Authority
JP
Japan
Prior art keywords
air
heat exchanger
cooling
heating
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009047460A
Other languages
Japanese (ja)
Other versions
JP2010200634A (en
Inventor
啓明 富田
啓明 富田
Original Assignee
トミタテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トミタテクノロジー株式会社 filed Critical トミタテクノロジー株式会社
Priority to JP2009047460A priority Critical patent/JP5647766B2/en
Publication of JP2010200634A publication Critical patent/JP2010200634A/en
Application granted granted Critical
Publication of JP5647766B2 publication Critical patent/JP5647766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Greenhouses (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Description

本発明は、パプリカなどの植物を栽培するための温室に関し、特に、温室内の空気の温度や湿度を調整するための温室用空調装置(エアートリートメントユニット)に関するものである。   The present invention relates to a greenhouse for growing plants such as paprika, and more particularly to a greenhouse air conditioner (air treatment unit) for adjusting the temperature and humidity of air in the greenhouse.

パプリカは、例えば、栽培棚を地面から所定高さとなるように設置した温室内で栽培されていて、外気温が低下する冬期には、温室に設けられた暖房装置によって温室内が加温される。外気温が上昇する夏期では、特に温室内の温度調整に細かな注意が払われない場合も多いが、より行き届いた温度制御を行おうとするときや、外気温が比較的高くなる地域では、温室に冷房構造を構成して、夏期の高温状態に対処する場合もある。   For example, paprika is cultivated in a greenhouse in which a cultivation shelf is set at a predetermined height from the ground, and the inside of the greenhouse is heated by a heating device provided in the greenhouse in the winter when the outside air temperature decreases. . In summer when the outside air temperature rises, there are many cases where detailed attention is not paid especially to the temperature adjustment in the greenhouse.However, in the area where the outside air temperature is relatively high or when the outside air temperature is relatively high, In some cases, a cooling structure is configured to cope with high temperature conditions in summer.

温室内の温度を冷暖房制御する構造としては、例えば特許文献1に記載されたものが知られている。特許文献1に記載された温度制御構造は、栽培ベッドの下側にダクトを設け、このダクト内に散水管を通すとともに、ダクトの一端に送風機を取り付けて構成され、この送風機によって温室内の空気をダクト内に吸い込み、ダクトの他端から再び温室内に送り出すといった機能を有している。そして、ダクト内を通過する温室内の空気と、散水管から噴射された地下水とを接触させ、熱交換することにより、ダクトの他端から送り出される空気の温度を適切に制御している。   As a structure for controlling the heating and cooling of the temperature in the greenhouse, for example, the structure described in Patent Document 1 is known. The temperature control structure described in Patent Document 1 is configured such that a duct is provided below the cultivation bed, a sprinkler pipe is passed through the duct, and a blower is attached to one end of the duct. Is sucked into the duct and sent out from the other end of the duct into the greenhouse. And the temperature of the air sent out from the other end of a duct is controlled appropriately by contacting the air in the greenhouse which passes through the inside of a duct, and the groundwater injected from the water spray pipe, and exchanging heat.

また、夏期の高温多湿な状態は、パプリカにうどんこ病や灰色かび病などの病気を発生させるおそれがある。したがって、例えば特許文献2には、温室内の上層部と施肥室との間に、換気扇を設けたダクトを配置し、上層部の空気をダクト内を通過させることにより、再び温室内に戻すようにした空気循環設備で、ダクト内の空気の水分が施肥室で結露し、ダクトから再び温室内に送り出される空気が除湿されるように構成した湿度調整構造が記載されている。   In addition, hot and humid conditions in summer can cause paprika to develop diseases such as powdery mildew and gray mold. Therefore, for example, in Patent Document 2, a duct provided with a ventilation fan is disposed between the upper layer portion in the greenhouse and the fertilization chamber, and the air in the upper layer portion is returned to the greenhouse by passing the air through the duct. A humidity adjustment structure is described in which the moisture in the air in the duct is condensed in the fertilizer chamber and the air sent out from the duct back into the greenhouse is dehumidified in the air circulation facility.

特開2002−330640号公報JP 2002-330640 A 特開2007−061014号公報JP 2007-061014 A

ところで、特許文献2に記載されたような湿度調整構造では、ダクト内の空気の湿度を十分に低下させようとすれば、ダクトから再び温室内に送り出される空気の温度は、それだけ低下する。しかしながら、温室内の少なくとも大幅な温度の低下は、パプリカなどの栽培植物によい影響を与えないことは明らかである。   By the way, in the humidity adjusting structure as described in Patent Document 2, if the humidity of the air in the duct is sufficiently reduced, the temperature of the air sent out from the duct into the greenhouse again decreases accordingly. However, it is clear that at least a significant temperature drop in the greenhouse does not have a positive effect on cultivated plants such as paprika.

そこで本発明は、温室内の空気の温度制御及び湿度制御を簡単な構造で効果的に行うことのできる温室用空調装置の提供を目的とする。   Therefore, an object of the present invention is to provide a greenhouse air conditioner capable of effectively performing temperature control and humidity control of air in a greenhouse with a simple structure.

この目的を達成するための本発明の温室用空調装置は、植物栽培用の温室内を空調する温室用空調装置であって、空気循環用ファンが設けられた空調用ダクトと、この空調用ダクト内の空気又はこの空調用ダクト内を通過する前記温室内の空気の温度を調整するための又は調整するために用いられる空調流体供給源と、を備え、前記空調用ダクトは、吸気口及び出口を有する空調用入口部と、この空調用入口部の前記出口に接続されたダクト本体と、を有し、前記空気循環用ファンの作動によって、前記温室内の空気を、前記空調用入口部の前記吸気口から吸い込み、前記空調用入口部の前記出口を通過させて前記ダクト本体から前記温室内に戻すように構成され、前記空調用入口部には、この空調用入口部内を通過する前記温室内の空気を冷却するための冷却用熱交換器(例えば間接式熱交換器)が設けられるとともに、この冷却用熱交換器よりも前記出口側で、前記空調用入口部内を通過する前記温室内の空気を暖めるための加温用熱交換器(例えば間接式熱交換器)が設けられていて、前記空調流体供給源は、前記冷却用熱交換器に冷却流体を供給し、かつ、前記加温用熱交換器に加温流体を供給するものである。空調流体供給源は、例えば、冷却用熱交換器への冷却流体の供給及び加温用熱交換器への加温流体の供給を別々に行うことも同時に行うこともできるように構成される。   In order to achieve this object, a greenhouse air conditioner of the present invention is a greenhouse air conditioner that air-conditions a greenhouse for plant cultivation, and includes an air conditioning duct provided with an air circulation fan, and the air conditioning duct. An air conditioning fluid supply source for adjusting or used for adjusting the temperature of the air in the greenhouse or the air in the greenhouse passing through the air conditioning duct, and the air conditioning duct has an inlet and an outlet. An air-conditioning inlet section and a duct body connected to the outlet of the air-conditioning inlet section, and by operating the air circulation fan, the air in the greenhouse is converted into the air-conditioning inlet section. It is configured to suck in from the air inlet, pass through the outlet of the air conditioning inlet and return from the duct body into the greenhouse, and the air conditioning inlet includes the greenhouse passing through the air conditioning inlet. The air inside A cooling heat exchanger (for example, an indirect heat exchanger) is provided, and the air in the greenhouse passing through the air-conditioning inlet is warmer on the outlet side than the cooling heat exchanger. A heating heat exchanger (for example, an indirect heat exchanger) is provided, the air conditioning fluid supply source supplies a cooling fluid to the cooling heat exchanger, and the heating heat exchange The heating fluid is supplied to the vessel. The air conditioning fluid supply source is configured, for example, so that the cooling fluid supply to the cooling heat exchanger and the heating fluid supply to the heating heat exchanger can be performed separately or simultaneously.

冷却用熱交換器(冷房用熱交換器)に、空調流体供給源から冷却流体を供給することにより、空調用入口部に吸い込まれた温室内の空気を、冷却流体との熱交換により冷却することができる。また、加温用熱交換器に、空調流体供給源から加温流体を供給することにより、空調用入口部に吸い込まれた温室内の空気を加温流体との熱交換により加温することができる。ここで、冷却用熱交換器に冷却流体を供給し、加温用熱交換器に加温流体を供給しなければ、空調用入口部に吸い込まれた温室内の空気は冷却されてダクト本体内に流入する。逆に、加温用熱交換器に加温流体を供給し、冷却用熱交換器に冷却流体を供給しなければ、空調用入口部に吸い込まれた温室内の空気は加温されてダクト本体内に流入する。そして、冷却用熱交換器に冷却流体を供給し、かつ、加温用熱交換器に加温流体を供給すれば、空調用入口部に吸い込まれた温室内の空気を冷却し、空気中の水分を結露させて空気の除湿を行い、その後、除湿された空気を加温してダクト本体内に流すことができる。冷却用熱交換器及び加温用熱交換器は、例えば、空調用入口部内に設けられる。   By supplying the cooling fluid from the air conditioning fluid supply source to the cooling heat exchanger (cooling heat exchanger), the air in the greenhouse sucked into the air conditioning inlet is cooled by heat exchange with the cooling fluid. be able to. Further, by supplying the heating fluid to the heating heat exchanger from the air conditioning fluid supply source, the air in the greenhouse sucked into the air conditioning inlet can be heated by heat exchange with the heating fluid. it can. Here, if the cooling fluid is supplied to the cooling heat exchanger and the heating fluid is not supplied to the heating heat exchanger, the air in the greenhouse sucked into the air-conditioning inlet is cooled and the inside of the duct body is cooled. Flow into. Conversely, if the heating fluid is supplied to the heating heat exchanger and the cooling fluid is not supplied to the cooling heat exchanger, the air in the greenhouse sucked into the air conditioning inlet is heated and the duct body Flows in. If the cooling fluid is supplied to the cooling heat exchanger and the heating fluid is supplied to the heating heat exchanger, the air in the greenhouse sucked into the air conditioning inlet is cooled, Moisture is condensed to dehumidify the air, and then the dehumidified air can be heated and flowed into the duct body. The cooling heat exchanger and the heating heat exchanger are provided in, for example, an air conditioning inlet.

循環用ファンが、送風容量を制御できるように構成されていれば、より精緻な温室内の空調が可能となる。また、空調用入口部に結露水排水構造を設けるのが得策である。   If the circulation fan is configured to control the air blowing capacity, more precise air conditioning in the greenhouse becomes possible. It is also a good idea to provide a condensed water drainage structure at the air conditioning entrance.

本発明では、空調用入口部が、一端に吸気口を有する冷却部(冷房部)と、この冷却部の他端に一端が接続され、冷却部と角度を有して延びる加温部と、を有し、冷却用熱交換器が冷却部(例えば冷却部内)に設けられるとともに、加温用熱交換器が加温部(例えば加温部内)に設けられ、ダクト本体が、加温部の他端の出口に接続されるといったように構成できる。このように構成しておけば、冷却用熱交換器に空気が接触して生じた結露水が、加温用熱交換器に接触するといったことを防止することが可能となる。冷却部が垂直下方又はほぼ垂直下方に延び、加温部が、冷却部の下端から水平方向又はほぼ水平方向に延びるように構成できる。ここでは、例えば、冷却部と加温部との境界位置で、空調用入口部に結露水排水構造が設けられる。   In the present invention, the air-conditioning inlet section has a cooling section (cooling section) having an intake port at one end, and a heating section having one end connected to the other end of the cooling section and extending at an angle with the cooling section, A cooling heat exchanger is provided in the cooling unit (for example, in the cooling unit), a heating heat exchanger is provided in the heating unit (for example, in the heating unit), and the duct body is connected to the heating unit. It can be configured such that it is connected to the outlet at the other end. If comprised in this way, it will become possible to prevent that the dew condensation water produced when air contacted the cooling heat exchanger contacts the heating heat exchanger. The cooling unit may be configured to extend vertically downward or substantially vertically downward, and the heating unit may extend horizontally or substantially horizontally from the lower end of the cooling unit. Here, for example, a condensed water drainage structure is provided at the air conditioning inlet at the boundary position between the cooling unit and the heating unit.

本発明の温室用空調装置に用いる空調流体供給源では、種々の熱源を用いることができる。例えば、ヒートポンプを用いれば省力的構成となるし、ボイラを用いれば強力な加熱効果を期待できる。また、環境に配慮してLPGを使用することもできる。   Various heat sources can be used in the air conditioning fluid supply source used in the greenhouse air conditioner of the present invention. For example, if a heat pump is used, it becomes a labor-saving structure, and if a boiler is used, a powerful heating effect can be expected. Also, LPG can be used in consideration of the environment.

以上説明したように、本発明の温室用空調装置では、暖房、冷房及び除湿された空気の加温をダクト内に構成した熱交器により行うことができる。   As described above, in the greenhouse air conditioner of the present invention, heating, cooling, and heating of dehumidified air can be performed by a heat exchanger configured in a duct.

パプリカ栽培用温室の全体的構造を示すための図である。It is a figure for showing the whole structure of the greenhouse for paprika cultivation. 空調用入口部個所の構造を示すための図である。It is a figure for showing the structure of the entrance part for air-conditioning. 温室用空調装置が温室内を暖房している状態を示す図である。It is a figure which shows the state which the greenhouse air conditioner is heating the inside of a greenhouse. 温室用空調装置が温室内を冷房している状態を示す図である。It is a figure which shows the state which the air conditioner for greenhouses is cooling the inside of a greenhouse. 温室用空調装置が温室内を除湿している状態を示す図である。It is a figure which shows the state which the air conditioner for greenhouses dehumidifies the inside of a greenhouse. 温水冷水循環配管又は温水冷水供給流路を地熱ヒートポンプシステム17及び温水ボイラシステム19とともに示す図である。It is a figure which shows a warm water cold water circulation piping or a warm water cold water supply flow path with the geothermal heat pump system 17 and the warm water boiler system 19. FIG. 温水冷水循環配管の暖房モードを示す図である。It is a figure which shows the heating mode of warm water cold water circulation piping. 温水冷水循環配管の冷房モードを示す図である。It is a figure which shows the air_conditioning | cooling mode of warm water cold water circulation piping. 温水冷水循環配管の除湿モードを示す図であるIt is a figure which shows the dehumidification mode of warm water cold water circulation piping.

以下、本発明の実施の形態を図面を参照して説明する。    Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1はパプリカ栽培用温室の全体的構造を示すための図である。   FIG. 1 is a diagram for illustrating the overall structure of a greenhouse for paprika cultivation.

パプリカ栽培用温室1は、透明のガラス又はビニールで構成された側壁3及び天井5を有して構成され、内部に、地面7から所定の高さとなるように吊紐9で吊り下げられた細長い栽培棚10を、所定の間隔で複数列備えている。それぞれの栽培棚10上には、長さ方向に沿って所定の間隔で、パプリカ11が栽培されている。そして、温室1内にはまた、温室用空調装置(エアートリートメントユニット)13が設けられていて、この温室用空調装置13は、空調用ダクト15と、地熱ヒートポンプシステム17及び温水ボイラシステム19(空調流体供給源、図6参照)とを備え、空調用ダクト15は、空調用入口部21と、この空調用入口部21に接続されたダクト本体23とを有している。空調用入口部21は、上端に吸気口25を有する縦型の冷房用角ダクト27(冷房部)の下端に、横型の加温用角ダクト29(加温部)を一体的に接続してL字形に構成され、ダクト本体23は、加温用角ダクト29の先端に接続されて、栽培棚10と直交する方向に延びるメインダクト31と、このメインダクト31からそれぞれの栽培棚7の下側を通って延びる複数本の分岐ダクト33とを有している。それぞれの分岐ダクト33には、小さな排気孔35が長さ方向に沿って多数設けられていて、冷房用角ダクト27の吸気口25から吸い込まれた温室1内の空気は、空調用入口部21からダクト本体23に入り、分岐ダクト33の排気孔35から温室1内に放出される。   The greenhouse 1 for paprika cultivation is configured to have a side wall 3 and a ceiling 5 made of transparent glass or vinyl, and is elongated inside by a hanging strap 9 so as to have a predetermined height from the ground 7. A plurality of rows of cultivation shelves 10 are provided at predetermined intervals. On each cultivation shelf 10, the paprika 11 is cultivated at predetermined intervals along the length direction. A greenhouse air conditioner (air treatment unit) 13 is also provided in the greenhouse 1. The greenhouse air conditioner 13 includes an air conditioning duct 15, a geothermal heat pump system 17, and a hot water boiler system 19 (air conditioner). The air conditioning duct 15 includes an air conditioning inlet portion 21 and a duct body 23 connected to the air conditioning inlet portion 21. The air conditioning inlet 21 has a horizontal heating square duct 29 (heating part) integrally connected to the lower end of a vertical cooling corner duct 27 (cooling part) having an air inlet 25 at the upper end. The duct main body 23 is connected to the tip of the heating square duct 29 and extends in a direction orthogonal to the cultivation shelf 10, and from the main duct 31 to the bottom of the cultivation shelf 7. And a plurality of branch ducts 33 extending through the side. Each branch duct 33 is provided with a large number of small exhaust holes 35 along the length direction, and the air in the greenhouse 1 sucked from the air inlet 25 of the cooling corner duct 27 is the air conditioning inlet 21. Enters the duct body 23 and is discharged into the greenhouse 1 from the exhaust hole 35 of the branch duct 33.

図2は空調用入口部21個所の構造を示すための図である。   FIG. 2 is a view for showing the structure of 21 air conditioning inlets.

空調用入口部21の冷房用角ダクト27内には、例えばコイル式又はフィンチューブ式の冷房用熱交換器37が設けられている。また、空調用入口部21の加温用角ダクト29内には、例えばコイル式又はフィンチューブ式の加温用熱交換器39が設けられ、この加温用熱交換器39よりも出口41側で、空気循環ファン43が配置されている。冷房用角ダクト27の底部45には排水孔47が開けられていて、この排水孔47は、地面7に設けられた排水溝49に連なっている。   For example, a coil-type or fin-tube type heat exchanger 37 for cooling is provided in the cooling square duct 27 of the air conditioning inlet 21. In addition, a heating heat exchanger 39 of, for example, a coil type or a fin tube type is provided in the heating rectangular duct 29 of the air conditioning inlet 21, and the outlet 41 side from the heating heat exchanger 39. Therefore, an air circulation fan 43 is arranged. A drain hole 47 is formed in the bottom 45 of the cooling square duct 27, and the drain hole 47 is connected to a drain groove 49 provided in the ground 7.

図3乃至図5は温室用空調装置13の作動状態を示す図であり、図3は温室用空調装置13が温室1内を暖房している状態を示す図、図4は温室用空調装置13が温室1内を冷房している状態を示す図、図5は温室用空調装置13が温室1内を除湿している状態を示す図である。   3 to 5 are diagrams showing the operating state of the greenhouse air conditioner 13, FIG. 3 is a diagram showing a state in which the greenhouse air conditioner 13 is heating the inside of the greenhouse 1, and FIG. FIG. 5 is a diagram showing a state in which the inside of the greenhouse 1 is cooled, and FIG. 5 is a diagram showing a state in which the greenhouse air conditioner 13 is dehumidifying the inside of the greenhouse 1.

図3に示す温室用空調装置13の暖房モード(例えば冬期でのモード)では、空調用入口部21の加温用角ダクト29内に配置された加温用熱交換器39又は加温用熱交換器39の内部に、温室用空調装置13の温水冷水循環配管又は温水冷水供給流路から、例えばほぼ45度あるいは40度以上の温水が供給されていて、空気循環ファン43の作動により空調用入口部21内に吸い込まれた温室1内の空気は、加温用熱交換器39又は加温用熱交換器39の壁と接触して加温され、ダクト本体23に送られて温室1内に戻される(太矢印参照)。この暖房モードでは、冷房用熱交換器37に冷却水は供給されていない。また、図4に示す温室用空調装置13の冷房モード(例えば夏期でのモード)では、空調用入口部21の冷房用角ダクト27内に配置された冷房用熱交換器37又は冷房用熱交換器37の内部に、温水冷水循環配管から、例えばほぼ7度あるいは7度乃至10度程度の冷却水が供給されていて、空気循環ファン43の作動により空調用入口部21内に吸い込まれた温室1内の空気は、冷房用熱交換器37又は冷房用熱交換器37の壁と接触して冷却され、ダクト本体23に送られて温室1内に戻される(太矢印参照)。ここで、生じた結露水51は、冷房用角ダクト27の底部45の排水孔47から排水溝49に排水される。この冷房モードでは、加温用熱交換器39に加温水は供給されていない。さらに、図5に示す温室用空調装置13の除湿モード(例えば夏期でのモード)では、空調用入口部21の冷房用角ダクト27内に配置された冷房用熱交換器37又は冷房用熱交換器37の内部に、温水冷水循環配管から、例えばほぼ7度あるいは7度乃至10度程度の冷却水が供給されるとともに、空調用入口部21の加温用角ダクト29内に配置された加温用熱交換器39又は加温用熱交換器39の内部に、温水冷水循環配管から、所定温度の又は適温の温水が供給されていて、空気循環ファン43の作動により空調用入口部21内に吸い込まれた温室1内の空気は、冷房用熱交換器37又は冷房用熱交換器37の壁と接触して冷却され、結露した水分53が取り除かれた後に、加温用熱交換器39又は加温用熱交換器39の壁と接触して加温され、ダクト本体23に送られて温室1内に戻される(太矢印参照)。ここで、生じた結露水53は、冷房用角ダクト27の底部45の排水孔47から排水溝49に排水される。   In the heating mode (for example, the winter mode) of the greenhouse air conditioner 13 shown in FIG. 3, the heating heat exchanger 39 or the heating heat disposed in the heating rectangular duct 29 of the air conditioning inlet 21. For example, hot water of approximately 45 degrees or 40 degrees or more is supplied from the hot water / cold water circulation pipe or the hot / cold water supply flow path of the greenhouse air conditioner 13 to the inside of the exchanger 39. The air in the greenhouse 1 sucked into the inlet 21 is heated in contact with the heating heat exchanger 39 or the wall of the heating heat exchanger 39 and is sent to the duct body 23 to be sent into the greenhouse 1. (See thick arrow). In this heating mode, cooling water is not supplied to the cooling heat exchanger 37. In the cooling mode of the greenhouse air conditioner 13 shown in FIG. 4 (for example, the summer mode), the cooling heat exchanger 37 or the cooling heat exchange disposed in the cooling square duct 27 of the air conditioning inlet 21 is used. The greenhouse 37 is supplied with cooling water of about 7 degrees or 7 degrees to 10 degrees, for example, from the hot water / cold water circulation pipe and is sucked into the air conditioning inlet 21 by the operation of the air circulation fan 43. The air in 1 is cooled in contact with the cooling heat exchanger 37 or the wall of the cooling heat exchanger 37, sent to the duct body 23, and returned to the greenhouse 1 (see thick arrows). Here, the generated dew condensation water 51 is drained from the drain hole 47 of the bottom 45 of the cooling square duct 27 to the drain groove 49. In this cooling mode, the heating water is not supplied to the heating heat exchanger 39. Furthermore, in the dehumidifying mode (for example, the summer mode) of the greenhouse air conditioner 13 shown in FIG. 5, the cooling heat exchanger 37 or the cooling heat exchange disposed in the cooling corner duct 27 of the air conditioning inlet 21. Cooling water of approximately 7 degrees or 7 degrees to 10 degrees, for example, is supplied from the hot water / cold water circulation pipe to the inside of the chamber 37, and the heating 37 disposed in the heating angular duct 29 of the air conditioning inlet 21 is provided. Hot water of a predetermined temperature or appropriate temperature is supplied from the hot water / cold water circulation pipe into the heat exchanger 39 or the heating heat exchanger 39, and the air circulation fan 43 is operated to operate the air conditioning inlet 21. The air in the greenhouse 1 sucked in is cooled in contact with the cooling heat exchanger 37 or the wall of the cooling heat exchanger 37, and after the condensed moisture 53 is removed, the heating heat exchanger 39 is heated. Or contact with the wall of the heat exchanger 39 for heating. Is warmed and returned to the greenhouse 1 is sent to the duct body 23 (see a thick arrow). Here, the generated condensed water 53 is drained from the drain hole 47 of the bottom 45 of the cooling square duct 27 to the drain groove 49.

図6は温水冷水循環配管又は温水冷水供給流路を地熱ヒートポンプシステム17及び温水ボイラシステム19とともに示す図である。   FIG. 6 is a view showing the hot water / cold water circulation pipe or the hot water / cold water supply passage together with the geothermal heat pump system 17 and the hot water boiler system 19.

温水冷水循環配管は、地熱ヒートポンプシステム17の第1システムポート57から冷房用熱交換器37の入口側に延びる冷却水供給路59と、冷房用熱交換器37の出口側から地熱ヒートポンプシステム17の第2システムポート61に延びる熱回収水戻り路63とを有する第1の循環配管又は第1の流路を備えている。第1の循環配管では、冷却水供給路59に、冷房用熱交換器37の入口側近くで冷水用ポンプ65が配置され、また、冷水用ポンプ65よりも上流側で冷水用3方バルブ67が設けられている。また、熱回収水戻り路63からは、循環路69が分岐し、この循環路69は冷水用3方バルブ67に接続されている。したがって、第1の循環配管では、冷水用3方バルブ67の切り換えにより、冷水用3方バルブ67から冷房用熱交換器37及び循環路69を通って冷水用3方バルブ67に戻る第1の閉回路を構成することができる。   The hot water / cold water circulation pipe includes a cooling water supply path 59 extending from the first system port 57 of the geothermal heat pump system 17 to the inlet side of the cooling heat exchanger 37, and an outlet side of the cooling heat exchanger 37 of the geothermal heat pump system 17. A first circulation pipe or a first flow path having a heat recovery water return path 63 extending to the second system port 61 is provided. In the first circulation pipe, a chilled water pump 65 is disposed in the cooling water supply passage 59 near the inlet side of the cooling heat exchanger 37, and a chilled water three-way valve 67 is located upstream of the chilled water pump 65. Is provided. A circulation path 69 branches from the heat recovery water return path 63, and the circulation path 69 is connected to a cold water three-way valve 67. Therefore, in the first circulation pipe, the switching of the chilled water three-way valve 67 causes the first chilled water three-way valve 67 to return to the chilled water three-way valve 67 through the cooling heat exchanger 37 and the circulation path 69. A closed circuit can be constructed.

また、温水冷水循環配管は、地熱ヒートポンプシステム17の第2システムポート61から加温用熱交換器39の入口側まで延びる第1の加温水供給路71と、加温用熱交換器39の出口側から地熱ヒートポンプシステム17の第1システムポート57に延びる第1の熱放出水戻り路73とを有する第2の循環配管又は第2の流路を備えている。第1の加熱水供給路71では、上流側から下流側に向かって、第1の温水用3方バルブ75、第2の温水用3方バルブ77、そして温水用ポンプ79が順次配置されている。そして、第1の熱放出水戻り路73からは、循環路81が分岐し、この循環路81は、第1の温水用3方バルブ75に接続されている。したがって、第2の循環配管は、第1の温水用3方バルブ75の切り換えにより、第1の温水用3方バルブ75から、第2の温水用3方バルブ77、加温用熱交換器39及び循環路81を通って第1の温水用3方バルブ75に戻る第2の閉回路又は第2の循環回路を構成することができる。   The hot water / cold water circulation pipe includes a first heated water supply passage 71 extending from the second system port 61 of the geothermal heat pump system 17 to the inlet side of the heating heat exchanger 39 and an outlet of the heating heat exchanger 39. A second circulation pipe or a second flow path having a first heat release water return path 73 extending from the side to the first system port 57 of the geothermal heat pump system 17 is provided. In the first heated water supply path 71, a first hot water three-way valve 75, a second hot water three-way valve 77, and a hot water pump 79 are sequentially arranged from the upstream side toward the downstream side. . A circulation path 81 branches off from the first heat release water return path 73, and the circulation path 81 is connected to the first hot water three-way valve 75. Therefore, the second circulation pipe is switched from the first warm water three-way valve 75 to the second warm water three-way valve 77 and the heating heat exchanger 39 by switching the first warm water three-way valve 75. In addition, a second closed circuit or a second circulation circuit that returns to the first hot water three-way valve 75 through the circulation path 81 can be configured.

そして、温水冷水循環配管は、地熱ヒートポンプシステム17とは別の空調流体供給源である温水ボイラシステム19の高温供給側83から、第2の温水用3方バルブ77及び温水用ポンプ79を通り、加温用熱交換器39の入口側まで延びる第2の加温水供給路85と、加温用熱交換器39の出口側から、第1の温水用3方バルブ75を通って温水ボイラシステム19の低温戻り側87まで延びる第2の熱放出水戻り路89とを有する第3の循環配管又は第3の流路を備えている。第2の加温水供給路85は、第2の温水用3方バルブ77から下流側を、第1の加温水供給路71と供給し、第2の熱放出水戻り路89は、加温用熱交換器39の出口側から循環路81までを、第1の熱放出水戻り路73と共有している。そして、第3の循環配管は、第2の温水用3方バルブ77の切り換えにより、第2の循環配管と同様に、第2の閉回路又は第2の循環回路を構成することができる。   The hot water / cold water circulation pipe passes through the second hot water three-way valve 77 and the hot water pump 79 from the high temperature supply side 83 of the hot water boiler system 19 which is an air conditioning fluid supply source different from the geothermal heat pump system 17, The hot water boiler system 19 passes from the second heated water supply path 85 extending to the inlet side of the heating heat exchanger 39 and the outlet side of the heating heat exchanger 39 through the first three-way valve 75 for hot water. A third circulation pipe or a third flow path having a second heat release water return path 89 extending to the low temperature return side 87 is provided. The second warming water supply path 85 supplies the downstream side from the second warm water three-way valve 77 to the first warming water supply path 71, and the second heat release water return path 89 is for heating. The first heat release water return path 73 is shared from the outlet side of the heat exchanger 39 to the circulation path 81. And the 3rd circulation piping can comprise the 2nd closed circuit or the 2nd circulation circuit similarly to the 2nd circulation piping by switching of the 2nd way valve 77 for warm water.

地熱ヒートポンプシステム17は、ヒートポンプ91と、井戸ポンプ93を有し、井戸水をヒートポンプ91の第1の熱交換器95に循環させて、ヒートポンプ91の冷媒配管97との間で熱交換を行わせる地熱循環路99と、地熱ヒートポンプシステム17の第1システムポート57及び第2システムポート61としてのタンクポートを有するバランシングタンク101と、作動水循環路103と、を備えている。作動水循環路103は、バランシングタンク101の第3タンクポート105から4方バルブ107の第1ポート109に延びる第1ライン111と、バランシングタンク101の第4タンクポート113から4方バルブ107の第2ポート115に延びる第2ライン117と、4方バルブ107の第3ポート119からヒートポンプ91の第2の熱交換器121の入口側に延びる、循環ポンプ123を有する第3ライン125と、第2の熱交換器121の出口側から4方バルブ107の第4ポート127に延びる第4ライン129と、を有し、バランシングタンク101及び配管内の水を冷媒配管97と熱交換させる。ヒートポンプ91の冷媒配管97には、圧縮器(ポンプ)131、4方バルブ133及び膨張バルブ135が設けられ、加熱運転と冷却運転とを切り換えることができるように構成されている。   The geothermal heat pump system 17 has a heat pump 91 and a well pump 93, and circulates well water to the first heat exchanger 95 of the heat pump 91 to perform heat exchange with the refrigerant pipe 97 of the heat pump 91. A circulation path 99, a balancing tank 101 having tank ports as the first system port 57 and the second system port 61 of the geothermal heat pump system 17, and a working water circulation path 103 are provided. The working water circulation path 103 includes a first line 111 extending from the third tank port 105 of the balancing tank 101 to the first port 109 of the four-way valve 107, and a second line of the four-way valve 107 from the fourth tank port 113 of the balancing tank 101. A second line 117 extending to the port 115; a third line 125 having a circulation pump 123 extending from the third port 119 of the four-way valve 107 to the inlet side of the second heat exchanger 121 of the heat pump 91; A fourth line 129 extending from the outlet side of the heat exchanger 121 to the fourth port 127 of the four-way valve 107, and heat-exchanges the water in the balancing tank 101 and the pipe with the refrigerant pipe 97. The refrigerant pipe 97 of the heat pump 91 is provided with a compressor (pump) 131, a four-way valve 133, and an expansion valve 135 so that the heating operation and the cooling operation can be switched.

温水ボイラシステム19では、温水ボイラ137から温水が高温供給側83に供給されるとともに、低温戻り側87から温水ボイラ137に、より低い温度水が戻されるように構成されている。なお、高温供給側83から延び、上流側から、暖房用3方バルブ139、暖房用ポンプ141を順次有する暖房用供給ライン143及び低温戻り側87に戻って接続される暖房用戻りライン145は、栽培棚10の下側の循環パイプ(図示せず)に温水を循環させて、栽培棚10付近を暖房するためのものであり、夏期には使用しない場合が多い。また、暖房用戻りライン145からは、循環ライン147が分岐して暖房用3方バルブ139に接続されていて、暖房用3方バルブ139の切り換えにより、循環パイプ用の閉回路を構成することができるようになっている。   The hot water boiler system 19 is configured such that hot water is supplied from the hot water boiler 137 to the high temperature supply side 83 and lower temperature water is returned from the low temperature return side 87 to the hot water boiler 137. The heating return line 145 extending from the high temperature supply side 83 and connected upstream from the upstream side to the heating supply line 143 having the heating three-way valve 139 and the heating pump 141 in sequence and the low temperature return side 87 is: The hot water is circulated through a circulation pipe (not shown) on the lower side of the cultivation shelf 10 to heat the vicinity of the cultivation shelf 10 and is often not used in summer. In addition, the circulation line 147 branches from the heating return line 145 and is connected to the heating three-way valve 139. By switching the heating three-way valve 139, a closed circuit for the circulation pipe can be configured. It can be done.

図7乃至図9はそれぞれ、温水冷水循環配管の暖房モード、冷房モード及び除湿モードを示す図である。   7 to 9 are diagrams showing a heating mode, a cooling mode, and a dehumidification mode of the hot water / cold water circulation pipe, respectively.

暖房モードでは、図7に示すように、地熱ヒートポンプシステム17の4方バルブ107の第1ポート109と第4ポート127とが連結されるとともに、4方バルブ107の第2ポート115と第3ポート119とが連結され、加熱運転状態であるヒートポンプ91の第2の熱交換器121の出口側から、ほぼ45°に加熱された温水が、循環ポンプ123によって供給され、第4ライン129及び第1ライン111を通り、第3タンクポート105からバランシングタンク101内に入る(白矢印参照)。一方、バランシングタンク101の第4タンクポート113からは、例えば40度程度のより低温の温水が引き出され、第2ライン117及び第3ライン125を通過して第2の熱交換器121の入口側に入る(黒矢印参照)。また、温水冷水循環配管の第2の循環配管を使用して加温用熱交換器39に温水を供給する。第2の循環配管では、第2の閉回路を構成し、温水用ポンプ79を作動させて、加温用熱交換器39に温水を供給するのを基本とし(内側白矢印参照)、第2の閉回路の温度(具体的には加温用熱交換器39の入口側近くの温度)を監視して、温度が低下したときに、第1の温水用3方バルブ75を切り換えて、バランシングタンク101の第2タンクポート61から、温水用ポンプ79を用い、温水を加温用熱交換器39に供給し(外側黒矢印参照)、その後は、第1の温水用3方バルブ75を切り換えて、再び第2の閉回路を構成する。なお、第2の閉回路の温度が低下したときに、第2の温水用3方バルブ77を切り換えて、温水ボイラシステム19から温水を加温用熱交換器39に供給してもよい(除湿モード参照)。また、暖房モードでは、暖房用供給ライン143と暖房用戻りライン145とを用いて循環パイプに温水を循環させる場合があるが、ここでも、循環パイプ用の閉回路を構成し、暖房用ポンプ141を作動させて温水を循環させるのを基本とし(内側白矢印参照)、循環パイプ用の閉回路の温度が低下したときに、暖房用3方バルブ139を切り換えて、暖房用ポンプ141を用い、高温供給側83から温水を供給する(外側黒矢印参照)。   In the heating mode, as shown in FIG. 7, the first port 109 and the fourth port 127 of the four-way valve 107 of the geothermal heat pump system 17 are connected, and the second port 115 and the third port of the four-way valve 107 are connected. The hot water heated to approximately 45 ° is supplied by the circulation pump 123 from the outlet side of the second heat exchanger 121 of the heat pump 91 that is connected to the 119 and is in the heating operation state, and the fourth line 129 and the first It passes through the line 111 and enters the balancing tank 101 from the third tank port 105 (see white arrow). On the other hand, from the fourth tank port 113 of the balancing tank 101, hot water having a lower temperature of, for example, about 40 degrees is drawn out, passes through the second line 117 and the third line 125, and enters the inlet side of the second heat exchanger 121. Enter (see black arrow). Moreover, warm water is supplied to the heat exchanger 39 for heating using the 2nd circulation piping of warm water cold water circulation piping. In the second circulation pipe, a second closed circuit is configured, and the hot water pump 79 is operated to supply hot water to the heating heat exchanger 39 (see the inner white arrow). The temperature of the closed circuit (specifically, the temperature near the inlet side of the heat exchanger 39 for heating) is monitored, and when the temperature drops, the first hot water three-way valve 75 is switched to perform balancing. Warm water is supplied from the second tank port 61 of the tank 101 to the heat exchanger 39 for warming using the warm water pump 79 (see the outer black arrow), and then the first warm water three-way valve 75 is switched. Thus, the second closed circuit is formed again. When the temperature of the second closed circuit decreases, the second hot water three-way valve 77 is switched to supply hot water from the hot water boiler system 19 to the heating heat exchanger 39 (dehumidification). Mode). In the heating mode, hot water may be circulated through the circulation pipe using the heating supply line 143 and the heating return line 145. However, a closed circuit for the circulation pipe is also formed here, and the heating pump 141 is provided. Is used to circulate hot water (see the white arrow on the inside), and when the temperature of the closed circuit for the circulation pipe decreases, the heating three-way valve 139 is switched and the heating pump 141 is used. Hot water is supplied from the high temperature supply side 83 (see the outer black arrow).

冷房モードでは、図8に示すように、地熱ヒートポンプシステム17の4方バルブ107の第1ポート109と第3ポート119とが連結されるとともに、4方バルブ107の第2ポート115と第4ポート127とが連結され、冷却運転状態であるヒートポンプ91の第2の熱交換器121の出口側から、ほぼ7°に冷却された冷却水が循環ポンプ123によって供給され、第4ライン129及び第2ライン117を通り、第4タンクポート113からバランシングタンク101内に入る(白矢印参照)。一方、バランシングタンク101の第3タンクポート105からは、例えば12度程度のより暖かい冷水が引き出され、、第1ライン111及び第3ライン125を通過して第2の熱交換器121の入口側に入る(黒矢印参照)。また、温水冷水循環配管の第1の循環配管を使用して冷房用熱交換器37に冷却水を供給する。第1の循環配管では、第1の閉回路を構成し、冷水用ポンプ65を作動させて、冷房用熱交換器37に冷却水を供給するのを基本とし(内側白矢印参照)、第1の閉回路の温度(具体的には冷房用熱交換器37の入口側近くの温度)を監視して、温度が上昇したときに、冷水用3方バルブ67を切り換えて、バランシングタンク101の第1タンクポート57から、冷水用ポンプ65を用い、冷却水を冷房用熱交換器37に供給し(外側黒矢印参照)、その後は、冷房用3方バルブ67を切り換えて、再び第1の閉回路を構成する。   In the cooling mode, as shown in FIG. 8, the first port 109 and the third port 119 of the four-way valve 107 of the geothermal heat pump system 17 are connected, and the second port 115 and the fourth port of the four-way valve 107 are connected. 127, the cooling water cooled to approximately 7 ° is supplied from the outlet side of the second heat exchanger 121 of the heat pump 91 which is in the cooling operation state by the circulation pump 123, and the fourth line 129 and the second line 129 It passes through the line 117 and enters the balancing tank 101 from the fourth tank port 113 (see white arrow). On the other hand, from the third tank port 105 of the balancing tank 101, for example, warmer cold water of about 12 degrees is drawn, passes through the first line 111 and the third line 125, and enters the second heat exchanger 121. Enter (see black arrow). Moreover, cooling water is supplied to the heat exchanger 37 for cooling using the 1st circulation piping of warm water cold water circulation piping. In the first circulation pipe, the first closed circuit is configured, and the cooling water pump 65 is operated to supply cooling water to the cooling heat exchanger 37 (see the inner white arrow). The temperature of the closed circuit (specifically, the temperature near the inlet side of the cooling heat exchanger 37) is monitored, and when the temperature rises, the chilled water three-way valve 67 is switched to The cooling water is supplied from one tank port 57 to the cooling heat exchanger 37 using the cooling water pump 65 (see the black arrow on the outside), and then the cooling three-way valve 67 is switched and the first closed again. Configure the circuit.

除湿モードでは、図9に示すように、温水冷水循環配管の第1の循環配管及び冷房モードの地熱ヒートポンプ17システムを使用して、冷房モードと同様に、冷房用熱交換器37に冷却水を供給する。また、温水冷水循環配管の第3の循環配管を使用して加温用熱交換器39に温水を供給する。第3の循環配管では、第2の閉回路を構成し、温水用ポンプ79を作動させて、加温用熱交換器39に温水を供給するのを基本とし(内側白矢印参照)、第2の閉回路の温度(具体的には加温用熱交換器39の入口側近くの温度)を監視して、温度が低下したときに、第2の温水用3方バルブ77を切り換えて、温水用ポンプ79を用い、高温供給側83から温水を加温用熱交換器39に供給し(外側黒矢印参照)、その後は、第2の温水用3方バルブ77を切り換えて、再び第2の閉回路を構成する。   In the dehumidifying mode, as shown in FIG. 9, the cooling water is supplied to the cooling heat exchanger 37 by using the first circulating piping of the hot water / cold water circulating piping and the geothermal heat pump 17 system in the cooling mode. Supply. Moreover, warm water is supplied to the heat exchanger 39 for heating using the 3rd circulation piping of warm water cold water circulation piping. In the third circulation pipe, a second closed circuit is configured, and the hot water pump 79 is operated to supply hot water to the heating heat exchanger 39 (see the inner white arrow). The temperature of the closed circuit (specifically, the temperature near the inlet side of the heat exchanger 39 for heating) is monitored, and when the temperature drops, the second hot water three-way valve 77 is switched to The hot water is supplied from the high-temperature supply side 83 to the heat exchanger 39 for heating (see the outer black arrow) using the pump 79, and then the second three-way valve 77 for hot water is switched to turn the second water again. Configure a closed circuit.

以上説明したように、本発明の温室用空調装置は、植物栽培用温室に設置して、キメの細かい温室内の空調を行うことができる。   As described above, the greenhouse air conditioner of the present invention can be installed in a greenhouse for plant cultivation to perform air conditioning in a fine greenhouse.

1 パプリカ栽培用温室
13 温室用空調装置
15 空調用ダクト
17 地熱ヒートポンプシステム
19 温水ボイラ
21 空調用入口部
23 ダクト本体
37 冷房用熱交換器
39 加温用熱交換器
43 空気循環ファン
DESCRIPTION OF SYMBOLS 1 Greenhouse for paprika cultivation 13 Air conditioner for greenhouse 15 Air conditioning duct 17 Geothermal heat pump system 19 Hot water boiler 21 Air conditioning inlet 23 Duct body 37 Heat exchanger for cooling 39 Heat exchanger for heating 43 Air circulation fan

Claims (8)

植物栽培用の温室内を空調する温室用空調装置であって、
空気循環用ファンが設けられた空調用ダクトと、この空調用ダクト内の空気の温度を調整するために用いる空調流体供給源と、を備え、
前記空調用ダクトは、吸気口及び出口を有する空調用入口部と、この空調用入口部の前記出口に接続されたダクト本体と、を有し、前記空気循環用ファンの作動によって、前記温室内の空気を、前記空調用入口部の前記吸気口から吸い込み、前記空調用入口部の前記出口を通過させて前記ダクト本体から前記温室内に戻すように構成され、
前記空調用入口部には、この空調用入口部内を通過する前記温室内の空気を冷却するための冷却用熱交換器が設けられるとともに、この冷却用熱交換器よりも前記出口側で、前記空調用入口部内を通過する前記温室内の空気を暖めるための加温用熱交換器が設けられていて、
前記空調流体供給源は、前記冷却用熱交換器に冷却流体を供給し、かつ、前記加温用熱交換器に加温流体を供給するものであり、
前記ダクト本体は、栽培棚の延びる方向と直交する方向に延びるように前記空調用入口部の前記出口に接続されたメインダクトと、このメインダクトから前記栽培棚の下側を通り、この栽培棚の延びる方向に沿って延びる、多数の排気孔が長さ方向に沿って形成された分岐ダクトと、を備え
前記空調用入口部には結露水排水構造が設けられていて、この結露水排水構造は、空調用入口部に設けられた排水孔と、この排水孔が連なる、地面に設けられた排水溝と、を有している、ことを特徴とする温室用空調装置。
A greenhouse air conditioner for air conditioning a greenhouse for plant cultivation,
An air-conditioning duct provided with an air circulation fan, and an air-conditioning fluid supply source used to adjust the temperature of the air in the air-conditioning duct,
The air conditioning duct has an air conditioning inlet having an air inlet and an outlet, and a duct main body connected to the outlet of the air conditioning inlet. The air is sucked from the air inlet of the air conditioning inlet, passed through the outlet of the air conditioning inlet, and returned from the duct body to the greenhouse.
The air conditioning inlet is provided with a cooling heat exchanger for cooling the air in the greenhouse passing through the air conditioning inlet, and at the outlet side of the cooling heat exchanger, A heating heat exchanger for heating the air in the greenhouse passing through the air conditioning inlet is provided,
The air conditioning fluid supply source supplies a cooling fluid to the cooling heat exchanger and supplies a heating fluid to the heating heat exchanger,
The duct body passes through a main duct connected to the outlet of the air conditioning inlet so as to extend in a direction perpendicular to the direction in which the cultivation shelf extends, and the cultivation duct passes through the lower side of the cultivation shelf. A plurality of exhaust ducts extending along the length direction and having a plurality of exhaust holes formed along the length direction, and
The air conditioning inlet portion is provided with a condensed water drainage structure. The condensed water drainage structure includes a drainage hole provided in the air conditioning inlet portion, and a drainage groove provided in the ground, which is connected to the drainage hole. A greenhouse air conditioner characterized by comprising:
前記結露水排水構造は、前記冷却部と前記加温部との境界位置に設けられている、ことを特徴とする請求項1記載の温室用空調装置。   The greenhouse air conditioner according to claim 1, wherein the condensed water drainage structure is provided at a boundary position between the cooling unit and the heating unit. 前記空調流体供給源は、前記冷却用熱交換器への冷却流体の供給及び前記加温用熱交換器への加温流体の供給を別々に行うことも同時に行うこともできるように構成されている、ことを特徴とする請求項1記載の温室用空調装置。   The air conditioning fluid supply source is configured to be able to separately or simultaneously supply a cooling fluid to the cooling heat exchanger and a heating fluid to the heating heat exchanger. The greenhouse air conditioner according to claim 1, wherein 植物栽培用の温室内を空調する温室用空調装置であって、
空気循環用ファンが設けられた空調用ダクトと、この空調用ダクト内の空気の温度を調整するために用いる空調流体供給源と、を備え、
前記空調用ダクトは、吸気口及び出口を有する空調用入口部と、この空調用入口部の前記出口に接続されたダクト本体と、を有し、前記空気循環用ファンの作動によって、前記温室内の空気を、前記空調用入口部の前記吸気口から吸い込み、前記空調用入口部の前記出口を通過させて前記ダクト本体から前記温室内に戻すように構成され、
前記空調用入口部には、この空調用入口部内を通過する前記温室内の空気を冷却するための冷却用熱交換器が設けられるとともに、この冷却用熱交換器よりも前記出口側で、前記空調用入口部内を通過する前記温室内の空気を暖めるための加温用熱交換器が設けられていて、
前記空調流体供給源は、前記冷却用熱交換器に冷却流体を供給し、かつ、前記加温用熱交換器に加温流体を供給するものであり、
前記ダクト本体は、栽培棚の延びる方向と直交する方向に延びるように前記空調用入口部の前記出口に接続されたメインダクトと、このメインダクトから前記栽培棚の下側を通り、この栽培棚の延びる方向に沿って延びる、多数の排気孔が長さ方向に沿って形成された分岐ダクトと、を備え、
前記空調流体供給源には、前記冷却用熱交換器に冷却流体を供給する第1の流路と、前記加温用熱交換器に加温流体を供給する第2の流路と、が接続されて設けられ、
前記第1の流路は、前記空調流体供給源から前記冷却用熱交換器の入口側に延びる冷却水供給路と、前記冷却用熱交換器の出口側から前記空調流体供給源に延びる熱回収水戻り路と、この熱回収水戻り路から分岐し、前記冷却水供給路に接続された循環路と、を含んでいて、前記空調流体供給源から、前記冷却水供給路、前記冷却用熱交換器及び前記熱回収水戻り路を通過して前記空調流体供給源に戻るように冷却流体を前記冷却用熱交換器に供給することも、前記循環路から前記冷却用熱交換器を通過して前記循環路に戻るように冷却流体を前記冷却用熱交換器に供給することもできるように構成されている、ことを特徴とする温室用空調装置。
A greenhouse air conditioner for air conditioning a greenhouse for plant cultivation,
An air-conditioning duct provided with an air circulation fan, and an air-conditioning fluid supply source used to adjust the temperature of the air in the air-conditioning duct,
The air conditioning duct has an air conditioning inlet having an air inlet and an outlet, and a duct main body connected to the outlet of the air conditioning inlet. The air is sucked from the air inlet of the air conditioning inlet, passed through the outlet of the air conditioning inlet, and returned from the duct body to the greenhouse.
The air conditioning inlet is provided with a cooling heat exchanger for cooling the air in the greenhouse passing through the air conditioning inlet, and at the outlet side of the cooling heat exchanger, A heating heat exchanger for heating the air in the greenhouse passing through the air conditioning inlet is provided,
The air conditioning fluid supply source supplies a cooling fluid to the cooling heat exchanger and supplies a heating fluid to the heating heat exchanger,
The duct body passes through a main duct connected to the outlet of the air conditioning inlet so as to extend in a direction perpendicular to the direction in which the cultivation shelf extends, and the cultivation duct passes through the lower side of the cultivation shelf. A plurality of exhaust ducts extending along the length direction and having a plurality of exhaust holes formed along the length direction, and
Connected to the air-conditioning fluid supply source are a first flow path for supplying a cooling fluid to the cooling heat exchanger and a second flow path for supplying a heating fluid to the heating heat exchanger. Provided,
The first flow path includes a cooling water supply path extending from the air-conditioning fluid supply source to the inlet side of the cooling heat exchanger, and heat recovery extending from the outlet side of the cooling heat exchanger to the air-conditioning fluid supply source A water return path and a circulation path branched from the heat recovery water return path and connected to the cooling water supply path, and from the air conditioning fluid supply source, the cooling water supply path, and the cooling heat The cooling fluid is supplied to the cooling heat exchanger so as to pass through the exchanger and the heat recovery water return path and return to the air conditioning fluid supply source, and also passes through the cooling heat exchanger from the circulation path. wherein the cooling fluid back into the circulation path is configured to be also supplied to the cooling heat exchanger, characterized and to that greenhouse air conditioner that Te.
植物栽培用の温室内を空調する温室用空調装置であって、A greenhouse air conditioner for air conditioning a greenhouse for plant cultivation,
空気循環用ファンが設けられた空調用ダクトと、この空調用ダクト内の空気の温度を調整するために用いる空調流体供給源と、を備え、An air-conditioning duct provided with an air circulation fan, and an air-conditioning fluid supply source used to adjust the temperature of the air in the air-conditioning duct,
前記空調用ダクトは、吸気口及び出口を有する空調用入口部と、この空調用入口部の前記出口に接続されたダクト本体と、を有し、前記空気循環用ファンの作動によって、前記温室内の空気を、前記空調用入口部の前記吸気口から吸い込み、前記空調用入口部の前記出口を通過させて前記ダクト本体から前記温室内に戻すように構成され、The air conditioning duct has an air conditioning inlet having an air inlet and an outlet, and a duct main body connected to the outlet of the air conditioning inlet. The air is sucked from the air inlet of the air conditioning inlet, passed through the outlet of the air conditioning inlet, and returned from the duct body to the greenhouse.
前記空調用入口部には、この空調用入口部内を通過する前記温室内の空気を冷却するための冷却用熱交換器が設けられるとともに、この冷却用熱交換器よりも前記出口側で、前記空調用入口部内を通過する前記温室内の空気を暖めるための加温用熱交換器が設けられていて、The air conditioning inlet is provided with a cooling heat exchanger for cooling the air in the greenhouse passing through the air conditioning inlet, and at the outlet side of the cooling heat exchanger, A heating heat exchanger for heating the air in the greenhouse passing through the air conditioning inlet is provided,
前記空調流体供給源は、前記冷却用熱交換器に冷却流体を供給し、かつ、前記加温用熱交換器に加温流体を供給するものであり、The air conditioning fluid supply source supplies a cooling fluid to the cooling heat exchanger and supplies a heating fluid to the heating heat exchanger,
前記ダクト本体は、栽培棚の延びる方向と直交する方向に延びるように前記空調用入口部の前記出口に接続されたメインダクトと、このメインダクトから前記栽培棚の下側を通り、この栽培棚の延びる方向に沿って延びる、多数の排気孔が長さ方向に沿って形成された分岐ダクトと、を備え、  The duct body passes through a main duct connected to the outlet of the air conditioning inlet so as to extend in a direction perpendicular to the direction in which the cultivation shelf extends, and the cultivation duct passes through the lower side of the cultivation shelf. A plurality of exhaust ducts extending along the length direction and having a plurality of exhaust holes formed along the length direction, and
前記空調流体供給源は、前記冷却用熱交換器への冷却流体の供給及び前記加温用熱交換器への加温流体の供給を別々に行うことも同時に行うこともできるように構成され、The air-conditioning fluid supply source is configured so that the cooling fluid supply to the cooling heat exchanger and the heating fluid supply to the heating heat exchanger can be performed separately or simultaneously,
前記空調流体供給源には、前記冷却用熱交換器に冷却流体を供給する第1の流路と、前記加温用熱交換器に加温流体を供給する第2の流路と、が接続されて設けられ、Connected to the air-conditioning fluid supply source are a first flow path for supplying a cooling fluid to the cooling heat exchanger and a second flow path for supplying a heating fluid to the heating heat exchanger. Provided,
前記第1の流路は、前記空調流体供給源から前記冷却用熱交換器の入口側に延びる冷却水供給路と、前記冷却用熱交換器の出口側から前記空調流体供給源に延びる熱回収水戻り路と、この熱回収水戻り路から分岐し、前記冷却水供給路に接続された循環路と、を含んでいて、前記空調流体供給源から、前記冷却水供給路、前記冷却用熱交換器及び前記熱回収水戻り路を通過して前記空調流体供給源に戻るように冷却流体を前記冷却用熱交換器に供給することも、前記循環路から前記冷却用熱交換器を通過して前記循環路に戻るように冷却流体を前記冷却用熱交換器に供給することもできるように構成されている、ことを特徴とする温室用空調装置。The first flow path includes a cooling water supply path extending from the air-conditioning fluid supply source to the inlet side of the cooling heat exchanger, and heat recovery extending from the outlet side of the cooling heat exchanger to the air-conditioning fluid supply source A water return path and a circulation path branched from the heat recovery water return path and connected to the cooling water supply path, and from the air conditioning fluid supply source, the cooling water supply path, and the cooling heat The cooling fluid is supplied to the cooling heat exchanger so as to pass through the exchanger and the heat recovery water return path and return to the air conditioning fluid supply source, and also passes through the cooling heat exchanger from the circulation path. The greenhouse air conditioner is configured so that a cooling fluid can be supplied to the cooling heat exchanger so as to return to the circulation path.
前記第2の流路は、前記空調流体供給源から前記加温用熱交換器の入口側に延びる加温水供給路と、前記加温用熱交換器の出口側から前記空調流体供給源に延びる熱放出水戻り路と、この熱放出水戻り路から分岐し、前記加温水供給路に接続された循環路と、を含んでいて、前記空調流体供給源から、前記加温水供給路、前記加温用熱交換器及び前記熱放出水戻り路を通過して前記空調流体供給源に戻るように加温流体を前記加温用熱交換器に供給することも、前記循環路から前記加温用熱交換器を通過して前記循環路に戻るように加温流体を前記加温用熱交換器に供給することもできるように構成されている、ことを特徴とする請求項4又は5記載の温室用空調装置。 The second flow path extends from the air conditioning fluid supply source to a heating water supply path extending to the inlet side of the heating heat exchanger, and extends from the outlet side of the heating heat exchanger to the air conditioning fluid supply source. A heat release water return path, and a circulation path branched from the heat release water return path and connected to the warming water supply path. The heating fluid may be supplied from the circulation path to the heating heat exchanger so as to pass through the heating heat exchanger and the heat release water return path and return to the air conditioning fluid supply source. is configured to the warming fluid back to the circulation path through the heat exchanger can be supplied to the heat exchanger for the heating, according to claim 4 or 5, wherein the Greenhouse air conditioner. 前記空調用入口部は、一端に前記吸気口を有する冷却部と、この冷却部の他端に一端が接続され、前記冷却部と角度を有して延びる加温部と、を有し、前記冷却用熱交換器は前記冷却部に設けられ、前記加温用熱交換器は前記加温部に設けられていて、前記ダクト本体は、前記加温部の他端の前記出口に接続されている、ことを特徴とする請求項1、2、3、4、5又は6記載の温室用空調装置。   The air conditioning inlet has a cooling part having the air inlet at one end, and a heating part having one end connected to the other end of the cooling part and extending at an angle with the cooling part, The cooling heat exchanger is provided in the cooling unit, the heating heat exchanger is provided in the heating unit, and the duct body is connected to the outlet at the other end of the heating unit. The greenhouse air conditioner according to claim 1, 2, 3, 4, 5 or 6. 前記冷却部は垂直下方又はほぼ垂直下方に延び、前記加温部は、前記冷却部の下端から水平方向又はほぼ水平方向に延びている、ことを特徴とする請求項7記載の温室用空調装置。   The greenhouse air conditioner according to claim 7, wherein the cooling unit extends vertically downward or substantially vertically downward, and the heating unit extends horizontally or substantially horizontally from a lower end of the cooling unit. .
JP2009047460A 2009-02-28 2009-02-28 Greenhouse air conditioner Active JP5647766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009047460A JP5647766B2 (en) 2009-02-28 2009-02-28 Greenhouse air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009047460A JP5647766B2 (en) 2009-02-28 2009-02-28 Greenhouse air conditioner

Publications (2)

Publication Number Publication Date
JP2010200634A JP2010200634A (en) 2010-09-16
JP5647766B2 true JP5647766B2 (en) 2015-01-07

Family

ID=42962794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009047460A Active JP5647766B2 (en) 2009-02-28 2009-02-28 Greenhouse air conditioner

Country Status (1)

Country Link
JP (1) JP5647766B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101227973B1 (en) 2010-10-19 2013-01-30 (주)유원 Air conditioning and heating apparatus for installation house
EP3106771A3 (en) * 2011-07-18 2017-04-05 Phaza Energy Ltd. Apparatus and method for controlling a greenhouse environment
CN102986483A (en) * 2012-12-26 2013-03-27 陈应保 High-efficiency temperature circulation control system of greenhouse
NL2011966C2 (en) * 2013-12-16 2015-06-17 Maurice Kassenbouw B V WAREHOUSE AND METHOD FOR CLIMATE CONTROL IN A WAREHOUSE.
NL2016574B1 (en) * 2016-04-08 2017-11-02 Hoeven J M Van Der Bv Process to reduce the temperature of a feed of air and greenhouse.
KR101966140B1 (en) * 2017-10-30 2019-08-14 한국에너지기술연구원 Fluid conditioner and greenhouse including the same
JP7082814B2 (en) * 2018-11-30 2022-06-09 国立研究開発法人農業・食品産業技術総合研究機構 Heat exchanger
KR102264424B1 (en) * 2019-01-17 2021-06-16 한국에너지기술연구원 Greenhouse ventilation system
KR102085542B1 (en) * 2019-10-17 2020-03-06 대영지에스 주식회사 Semi-hermetic smart farm glass greenhouse with multi-stage heat exchanger and triple duct
KR102458447B1 (en) * 2019-12-09 2022-10-26 대한민국 Desert climate applied greenhouse cooling system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230923Y2 (en) * 1980-10-15 1987-08-08
JPS62275624A (en) * 1986-05-23 1987-11-30 ヤンマーディーゼル株式会社 Cooling and heating system of greenhouse
JPS6356223A (en) * 1986-08-26 1988-03-10 ヤンマーディーゼル株式会社 Temperature control system for hydroponic greenhouse
JPS63313529A (en) * 1987-06-15 1988-12-21 Showa Sangyo Kk Dehumidifying heating apparatus for greenhouse
JPH0216923A (en) * 1988-07-01 1990-01-19 Ono Kiko Kk Air conditioner for greenhouse
JP2950227B2 (en) * 1996-01-31 1999-09-20 ダイキン工業株式会社 Air conditioner
JPH11127703A (en) * 1997-10-29 1999-05-18 Aguro Techno:Kk Horticultural greenhouse
JP2000069858A (en) * 1998-07-16 2000-03-07 Satoshi Takano Method for culturing plant in green house and apparatus therefor
JP2001016981A (en) * 1999-07-12 2001-01-23 Mitsubishi Agricult Mach Co Ltd Nursery system for grafted plant

Also Published As

Publication number Publication date
JP2010200634A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP5647766B2 (en) Greenhouse air conditioner
EP2971993B1 (en) Variable desiccant control energy exchange system
JP3545315B2 (en) Air conditioner and humidity control method
JP6079802B2 (en) Air conditioning system for cultivation room
US20120012285A1 (en) Dehumidification system
JP4651377B2 (en) Air conditioning system
JP7496489B2 (en) Dehumidifier
JP6825900B2 (en) Air conditioning system
KR200483298Y1 (en) Air guid chamber and air circulation system having the same
JP4409973B2 (en) Air conditioner
KR101777711B1 (en) cooling-heating system of swimming pool
KR101913720B1 (en) Hybrid Air Conditioning System
JP2014122740A (en) Air conditioner and air conditioning system in operation room
JP2011188785A (en) Heat pump type air conditioning machine for protected horticulture greenhouse
KR101750305B1 (en) Air house
JP4506265B2 (en) Air conditioner and temperature / humidity control method
KR101394373B1 (en) Air conditioner system for isothermal-isohumidity control
JP4045551B2 (en) Heat pump air conditioner
KR101522548B1 (en) Heat pump system for greenhouse heating and dehumidifying device swappable fan coil unit
KR20100034112A (en) Heating and cooling device for green house
JP6470991B2 (en) Indoor radiant air conditioning system
JP5177254B2 (en) Cooling system
JP2007333378A (en) Heat pump type air conditioner
JP4096890B2 (en) Heat pump air conditioner
JP2015210051A (en) Dehumidification and humidification apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R150 Certificate of patent or registration of utility model

Ref document number: 5647766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250