JP5646258B2 - Terminal connection structure of wire end and method for forming the same - Google Patents

Terminal connection structure of wire end and method for forming the same Download PDF

Info

Publication number
JP5646258B2
JP5646258B2 JP2010200802A JP2010200802A JP5646258B2 JP 5646258 B2 JP5646258 B2 JP 5646258B2 JP 2010200802 A JP2010200802 A JP 2010200802A JP 2010200802 A JP2010200802 A JP 2010200802A JP 5646258 B2 JP5646258 B2 JP 5646258B2
Authority
JP
Japan
Prior art keywords
heat transfer
terminal
wire
main
terminal main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010200802A
Other languages
Japanese (ja)
Other versions
JP2011216459A (en
Inventor
武伯 国見
武伯 国見
明正 田村
明正 田村
Original Assignee
田淵電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010060284 priority Critical
Priority to JP2010060284 priority
Application filed by 田淵電機株式会社 filed Critical 田淵電機株式会社
Priority to JP2010200802A priority patent/JP5646258B2/en
Publication of JP2011216459A publication Critical patent/JP2011216459A/en
Application granted granted Critical
Publication of JP5646258B2 publication Critical patent/JP5646258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、端子内側に電線端部を装着して半田付けした電線端部の端子接続構造、およびその形成方法に関するものである。   The present invention relates to a terminal connection structure for an end portion of an electric wire in which the end portion of the electric wire is mounted and soldered on the inner side of the terminal, and a method for forming the terminal connection structure.
近年、自動車の製造分野においては、車体軽量化の一環として、電源ケーブル等にアルミニウム等の軽量電線を使用することが求められている。上記電源ケーブルに使用されるアルミニウム電線は、多くの場合、多数本のアルミニウム細線を撚り合わせた撚り線からなり、ハーネス化する場合は、電線端部が端子内側に取り付けられる。この端子は電線端部外周に装着された状態で当該電線に半田付けされる。   In recent years, in the automobile manufacturing field, as a part of reducing the weight of a vehicle body, it has been required to use a light wire such as aluminum for a power cable or the like. In many cases, the aluminum electric wire used for the power cable is a stranded wire obtained by twisting a large number of thin aluminum wires, and when forming a harness, the end of the electric wire is attached to the inside of the terminal. This terminal is soldered to the electric wire in a state of being mounted on the outer periphery of the end portion of the electric wire.
特開2010−20980号公報JP 2010-20980 A
しかしながら、上記半田付けにおいては、アルミニウム電線は、細線表面に酸化膜ができ、良好な電気的接続が図りにくい上に、銅製もしくは黄銅製の端子に対して、熱伝導率が低い。   However, in the above-described soldering, the aluminum electric wire has an oxide film on the surface of the thin wire, and it is difficult to achieve good electrical connection, and the thermal conductivity is low with respect to a copper or brass terminal.
そのため、半田付けの際、端子部分を加熱しても、端子内部の細線全体が所要の必要温度にならず、フラックスや、溶融半田が端子の内側全体に導入されず、半田中にボイドができたり、半田付けされない箇所ができたりしやすいという課題があった。   Therefore, even if the terminal part is heated during soldering, the entire thin wire inside the terminal does not reach the required temperature, and flux and molten solder are not introduced into the entire inside of the terminal, creating voids in the solder. There is a problem that it is easy to make a part that is not soldered.
このようなボイドは、放電、電食発生、電気抵抗の増大、通電時の発熱等の原因ともなり、好ましくない。   Such voids are not preferable because they cause discharge, galvanic corrosion, an increase in electrical resistance, and heat generation during energization.
また、ボイド内に空気やフラックスが介在する可能性が高く、このような介在があると、熱伝導しにくくなり、一層、半田付けの確実性が低くなる。   In addition, there is a high possibility that air or flux is present in the void. When such an intervention is present, heat conduction is difficult, and soldering reliability is further reduced.
そこで、上記ボイドを小さくして熱伝導をよくするには、大きい力で端子と電線端部とをかしめ圧縮することも考えられるのであるが、これでは電線に損傷を与えるおそれがあり、また断線の原因ともなりえる。   Therefore, in order to improve the heat conduction by reducing the void, it is conceivable to crimp the terminal and the end of the electric wire with a large force, but this may cause damage to the electric wire, and the wire breaks. It can also be a cause of
本発明は、ボイドを発生させることなく電線端部と端子とを半田付けできるようにして当該半田付けを良好にすると共に、上記かしめ圧縮強さを極力小さくして良好な半田付けを実現して信頼性が高い半田付け接続を可能とすることを課題とする。   The present invention makes it possible to solder the wire end and the terminal without generating a void so as to improve the soldering, and to achieve a good soldering by reducing the caulking compressive strength as much as possible. An object is to enable highly reliable soldering connection.
(1)本発明第1による電線端部の端子接続構造は、電線端部を端子内側に装着して半田付けする電線端部の端子接続構造であって、当該端子内側に装着された上記電線端部内には該電線より高い熱伝導率の金属からなる熱伝達部材が半田付け時の高熱経路を形成するよう線状に挿入されており、この挿入状態の端子内側の電線端部内に上記高熱経路を介して半田が導入されていることを特徴とする。   (1) The terminal connection structure of the wire end portion according to the first aspect of the present invention is a terminal connection structure of the wire end portion that is soldered by attaching the wire end portion to the inside of the terminal, and the wire attached to the inside of the terminal A heat transfer member made of a metal having a higher thermal conductivity than that of the electric wire is inserted into the end portion in a line shape so as to form a high heat path during soldering. Solder is introduced through a path.
上記線状は特にその形状を限定されず、例えばピン形状でも芯線形状を含むことは勿論のこと、多少の面状に伸びるものも含み、線状の用語を狭く解釈されるべきではない。   The shape of the linear shape is not particularly limited. For example, the shape of the linear shape should not be narrowly interpreted, including not only the pin shape but also the core wire shape, as well as those extending in some planes.
電線の素材はアルミニウムや銅やその他になんら限定されるものではない。   The material of the electric wire is not limited to aluminum, copper or the like.
好ましくは、上記熱伝達部材が上記端子に部分接触した状態で少なくとも上記電線内の概略中央を半田付け時の高熱経路を形成するように線状に挿入されている。   Preferably, the heat transfer member is linearly inserted so as to form a high heat path at the time of soldering at least the approximate center in the electric wire in a state where the heat transfer member is in partial contact with the terminal.
好ましくは、上記熱伝達部材はその表面に所要高温で溶融する金属メッキ層が形成されている。   Preferably, the heat transfer member has a metal plating layer formed on the surface thereof that melts at a required high temperature.
好ましくは、上記熱伝達部材における電線内挿入部分はピン形状である。   Preferably, the insertion portion in the electric wire in the heat transfer member has a pin shape.
好ましくは、上記熱伝達部材は上記電線内挿入部分の端部に半田やフラックスの流動を規制する形状ないし構造を設けてもよい。   Preferably, the heat transfer member may be provided with a shape or structure for restricting the flow of solder or flux at an end of the insertion portion in the electric wire.
熱伝達部材の熱伝達本体の数は任意であり、1本でも複数本でもよい。
熱伝達部材の形状は任意であり、半田流動規制構造を含めて全体が剣山のような形状でもよい。
The number of heat transfer main bodies of the heat transfer member is arbitrary, and may be one or more.
The shape of the heat transfer member is arbitrary, and the entire shape including the solder flow regulation structure may be a shape like a sword mountain.
好ましくは、上記熱伝達部材は、その一部が端子に接触し、他部が電線の概中央を電線通し方向に線状に延びている。   Preferably, a part of the heat transfer member is in contact with the terminal, and the other part is linearly extended in the wire passing direction through the approximate center of the wire.
本発明第1においては、電線端部と端子とを半田付けする場合、外部からの端子への加熱で、端子を高温にして、端子内側の電線端部からフラックスと溶融半田とを相次いで導入するに際して、上記熱伝達部材は電線内に線状に挿入されかつ端子と部分接触して高温状態になっているので、電線内には熱伝達部材の線状部分を介して熱経路が形成され、これにより、この高温化した熱伝達部材と電線との間の隙間の毛細管現象により、フラックスは電線内に吸い込まれやすくなる。その結果、溶融半田が端子の内側全体に導入され易くなって、半田中にボイドができにくく、半田付けを確実に行うことができるようになる。また、ボイドの発生が抑制されるので、ボイドに起因した上記不具合が解消される。また、ボイドを削減して熱伝導がよくなるため、それまで大きい力で端子と電線端部とをかしめ圧縮していたが、このようなかしめ圧縮の必要もなくなり、電線に損傷を与えず、断線のおそれもなく、半田付けを行うことができる。   In the first aspect of the present invention, when soldering the wire end and the terminal, the terminal is heated to a high temperature by heating the terminal from the outside, and flux and molten solder are successively introduced from the wire end inside the terminal. When the heat transfer member is inserted into the electric wire in a linear shape and is in a high temperature state due to partial contact with the terminal, a heat path is formed in the electric wire via the linear portion of the heat transfer member. This makes it easier for the flux to be sucked into the electric wire due to the capillary phenomenon in the gap between the heat transfer member and the electric wire heated to a high temperature. As a result, the molten solder is easily introduced into the entire inside of the terminal, and voids are hardly formed in the solder, so that soldering can be performed reliably. Moreover, since generation | occurrence | production of a void is suppressed, the said malfunction resulting from a void is eliminated. In addition, because the heat conduction is improved by reducing voids, the terminal and the end of the wire have been caulked and compressed with a large force until then, but there is no need for such caulking compression, and the wire is not damaged and disconnected. Soldering can be performed without fear of the above.
なお、熱伝達部材表面に金属メッキ層が形成されている場合においてはその金属メッキ層が解けて流れ出し、さらにフラックスは熱伝達部材表面に沿って電線中に導入されて、端子の内側全体に広がり、電線表面の酸化膜を取り除くと共に、溶融半田も、フラックスと同様に、熱伝達部材と溶解メッキに沿って電線中に導入されて、端子の内側全体に広がって固化するから、ボイドを生成することなく電線どうし、および電線と端子とを電気的に接続することができる。   In the case where a metal plating layer is formed on the surface of the heat transfer member, the metal plating layer is unwound and flows out, and further, the flux is introduced into the electric wire along the surface of the heat transfer member and spreads over the entire inside of the terminal. In addition to removing the oxide film on the surface of the electric wire, the molten solder is also introduced into the electric wire along the heat transfer member and the molten plating, and, like the flux, spreads and solidifies all over the inside of the terminal, thereby generating a void. The electric wires and the electric wires and the terminals can be electrically connected without any trouble.
なお、熱伝達部材の一端部を半田やフラックスの流動を規制する構造とした場合、半田やフラックスはこの流動規制構造により受け止められ、あるいは、フラックスや溶融半田自体の表面張力により流動が規制されるから、端子の外側にまで流出することがなく、半田は端子の内側の所要部位に留まって固化することになる。   When one end of the heat transfer member has a structure that restricts the flow of solder or flux, the solder or flux is received by this flow restricting structure, or the flow is restricted by the surface tension of the flux or molten solder itself. Therefore, the solder does not flow out to the outside of the terminal, and the solder stays at a required portion inside the terminal and is solidified.
(2)本発明第2による電線端部の端子接続構造の形成方法は、電線端部を端子内側に装着して半田付けを行う電線端部の端子接続構造の形成方法であって、上記電線端部内に熱伝達部材を配置する第1ステップと、上記端子内側に上記電線端部を装着する第2ステップと、上記端子内側に半田とフラックスとを導入する第3ステップと、を含み、上記熱伝達部材は、上記電線より熱伝導率が高い金属からなるもので、熱伝達本体と、熱伝達中継部とを含み、上記配置に際しては、上記熱伝達本体を電線端部内に線状に挿入すると共に、上記熱伝達中継部により上記端子に加わる熱を熱伝達本体に中継できるようにしたことを特徴とする。   (2) A method for forming a terminal connection structure for an end portion of an electric wire according to the second aspect of the present invention is a method for forming a terminal connection structure for an end portion of an electric wire that is soldered by attaching the end portion of the electric wire to the inside of the terminal. Including a first step of disposing a heat transfer member in the end, a second step of mounting the end of the wire inside the terminal, and a third step of introducing solder and flux into the terminal. The heat transfer member is made of a metal having a higher thermal conductivity than the electric wire, and includes a heat transfer main body and a heat transfer relay portion, and the heat transfer main body is linearly inserted into the end portion of the electric wire in the arrangement. In addition, the heat applied to the terminal by the heat transfer relay unit can be relayed to the heat transfer body.
上記端子接続構造の形成方法によれば、電線内部へ高熱経路を形成するよう熱伝達部材の熱伝達本体が線状に挿入され、この熱伝達本体には熱伝達中継部により上記端子に加わる熱が中継されるので、フラックスや溶融半田が電線内に円滑に導入され、電線どうし、および電線と端子とがボイドがない状態で電気的に接続することができる。また、熱伝達中継部をフラックスや溶融半田が端子の外側に流出しないよう、半田流れを規制してもよい。また、熱伝達部材にはその表面に金属メッキ層を形成しておくことで、半田付け時の高熱でその金属メッキ層を溶かして流れ出すようにしてもよい。こうすれば、さらにフラックスが熱伝達本体表面に沿って電線中に導入されて、端子の内側全体に広がり、電線表面の酸化膜を取り除くことができるようになる。   According to the method for forming the terminal connection structure, the heat transfer body of the heat transfer member is linearly inserted so as to form a high heat path inside the electric wire, and the heat applied to the terminal by the heat transfer relay portion is inserted into the heat transfer body. Therefore, flux and molten solder are smoothly introduced into the electric wires, and the electric wires and the electric wires and the terminals can be electrically connected without voids. In addition, the solder flow may be regulated so that flux and molten solder do not flow out of the terminal through the heat transfer relay portion. Further, by forming a metal plating layer on the surface of the heat transfer member, the metal plating layer may be melted and flowed out with high heat during soldering. If it carries out like this, a flux will be further introduce | transduced in an electric wire along the surface of a heat transfer main body, it will spread to the whole inner side of a terminal, and it will become possible to remove the oxide film on the surface of an electric wire.
(3)本発明第3による電線端部の端子接続構造の形成方法は、筒状の端子主部と、これに連成した平板状の接続片とを含む端子に対してその端子主部内側に複数の線を含む電線端部を挿入すると共に、当該端子主部内側に上記電線端部の半田付けを行う端子接続構造の形成方法であって、上記端子主部外周と上記端子主部外に露出する電線端部外周との各部に加熱手段をそれぞれ接触または非接触に配置する第1ステップと、上記加熱手段により上記各部を加熱する第2ステップと、上記端子主部内側に半田とフラックスとを導入する第3ステップと、を含む、ことを特徴とする。   (3) A method for forming a terminal connection structure for an end portion of an electric wire according to the third aspect of the present invention is a terminal main portion inner side with respect to a terminal including a cylindrical terminal main portion and a flat connecting piece coupled thereto. A terminal connection structure for inserting a wire end portion including a plurality of wires into the terminal main portion and soldering the wire end portion inside the terminal main portion, wherein the terminal main portion outer periphery and the terminal main portion outside A first step of placing the heating means in contact or non-contact with each part of the outer periphery of the wire end exposed to the wire, a second step of heating the parts with the heating means, and solder and flux inside the terminal main part. And a third step of introducing.
好ましくは、上記加熱手段が上記端子主部外周と上記端子主部外に露出する電線端部外周との各部に接触配置した少なくとも一対の電極で構成する。   Preferably, the heating means includes at least a pair of electrodes arranged in contact with each part of the outer periphery of the terminal main part and the outer periphery of the end of the electric wire exposed outside the terminal main part.
好ましくは、上記加熱手段が上記端子主部外周と上記端子主部外に露出する電線端部外周との各部に非接触配置して電磁誘導加熱するコイルで構成する。   Preferably, the heating means is constituted by a coil that is electromagnetically heated by being arranged in a non-contact manner on each part of the outer periphery of the terminal main part and the outer periphery of the end of the electric wire exposed outside the terminal main part.
好ましくは、上記第1ステップと第2ステップとの間に、上記端子主部内に電線端部よりも熱伝導率が高い線状熱伝達部材を挿入する第4ステップを含む。   Preferably, a fourth step of inserting a linear heat transfer member having a higher thermal conductivity than the end portion of the electric wire into the terminal main portion is included between the first step and the second step.
好ましくは、上記第4ステップの熱伝達部材は、上記端子主部の一方と他方それぞれの開口に対応する位置でかつ当該開口に対応した形状の第1、第2部材と、上記両第1、第2部材を連結する第3部材とを含む。   Preferably, the heat transfer member in the fourth step includes first and second members having positions corresponding to the openings of one and the other of the terminal main portion and shapes corresponding to the openings, and both the first, And a third member connecting the second member.
好ましくは、当該開口の形状は特に限定されないが例えば略円形形状であれば第1、第2部材は例えば略円形形状である。また、第1、第2部材はフラックスの保持に都合がよい形状が好ましいが、例えば複数の孔あるいはメッシュ形状等のフラックスの保持が可能な形状の部材からなり、その外周が円形形状でもよい。   Preferably, the shape of the opening is not particularly limited. For example, if the opening is substantially circular, the first and second members are, for example, substantially circular. In addition, the first and second members preferably have a shape that is convenient for holding the flux. For example, the first and second members may be formed of members having a shape that can hold the flux, such as a plurality of holes or mesh shapes, and the outer periphery thereof may be circular.
好ましくは、端子と電線端部とは異種金属である。   Preferably, the terminal and the wire end are made of different metals.
本発明によれば、電線端部と端子とが端子内部にボイドを発生させることなく半田接続される結果、該ボイドに起因する上記不具合が解消され、良好な半田接続状態の端子接続構造を得ることができる。   According to the present invention, as a result of solder connection between the end portion of the electric wire and the terminal without generating a void inside the terminal, the above-described problems caused by the void are eliminated, and a terminal connection structure in a good solder connection state is obtained. be able to.
図1Aは本発明の一実施形態に係る電線端部の端子接続構造の断面図である。FIG. 1A is a cross-sectional view of a terminal connection structure of an end portion of an electric wire according to an embodiment of the present invention. 図1Bは本発明の一実施形態に係る電線端部の端子接続構造の斜視図である。FIG. 1B is a perspective view of a terminal connection structure of an end portion of an electric wire according to an embodiment of the present invention. 図2は図1A、図1Bの端子接続構造の分解斜視図である。FIG. 2 is an exploded perspective view of the terminal connection structure of FIGS. 1A and 1B. 図3Aは上記実施の形態において電線端部に熱伝達部材を挿入する前の状態を示す図である。FIG. 3A is a diagram showing a state before the heat transfer member is inserted into the end portion of the electric wire in the embodiment. 図3Bは図3Aの状態から電線端部に熱伝達部材を挿入した状態を示す図である。FIG. 3B is a diagram showing a state in which a heat transfer member is inserted into the end portion of the electric wire from the state of FIG. 3A. 図3Cは図3Bの状態でフラックスと半田とを導入する状態を示す図である。FIG. 3C is a diagram showing a state in which flux and solder are introduced in the state of FIG. 3B. 図4Aは、本発明の他の実施形態に係る電線端部の端子接続構造の形成方法において電線端部に熱伝達部材を挿入する前の状態を示す図である。FIG. 4: A is a figure which shows the state before inserting a heat-transfer member in an electric wire edge part in the formation method of the terminal connection structure of the electric wire edge part which concerns on other embodiment of this invention. 図4Bは図4Aの状態から電線端部に熱伝達部材を挿入した状態を示す図である。FIG. 4B is a diagram showing a state in which a heat transfer member is inserted into the end portion of the electric wire from the state of FIG. 4A. 図4Cは図4Bの状態でフラックスと半田とを導入する状態を示す図である。FIG. 4C is a diagram showing a state in which flux and solder are introduced in the state of FIG. 4B. 図5Aは本発明のさらに他の実施形態に係る電線端部の端子接続構造を示す図である。FIG. 5: A is a figure which shows the terminal connection structure of the electric wire edge part which concerns on other embodiment of this invention. 図5B1は図5Aの熱伝達部材を含む上記構造の要部を示す図である。FIG. 5B1 is a diagram showing a main part of the above structure including the heat transfer member of FIG. 5A. 図5B2は図5Aの他の熱伝達部材を含む上記構造の要部を示す図である。FIG. 5B2 is a view showing a main part of the above structure including another heat transfer member of FIG. 5A. 図5Cは本発明のさらに他の実施形態に係る電線端部の端子接続構造を示す図である。FIG. 5C is a diagram illustrating a terminal connection structure of an end portion of an electric wire according to still another embodiment of the present invention. 図6Aは本発明のさらに他の実施形態に係る電線端部の端子接続構造において熱伝達部材を含む上記構造の要部を示す図である。FIG. 6A is a view showing a main part of the above structure including a heat transfer member in a terminal connection structure of an end portion of an electric wire according to still another embodiment of the present invention. 図6Bは本発明のさらに他の実施形態に係る電線端部の端子接続構造において他の熱伝達部材を含む上記構造の要部を示す図である。FIG. 6B is a view showing a main part of the above structure including another heat transfer member in the terminal connection structure of the end portion of the electric wire according to still another embodiment of the present invention. 図6Cは本発明のさらに他の実施形態に係る電線端部の端子接続構造において他の熱伝達部材を含む上記構造の要部を示す図である。FIG. 6C is a view showing a main part of the above structure including another heat transfer member in the terminal connection structure of the end portion of the electric wire according to still another embodiment of the present invention. 図6Dは本発明のさらに他の実施形態に係る電線端部の端子接続構造において他の熱伝達部材を含む上記構造の要部を示す図である。FIG. 6D is a view showing a main part of the above structure including another heat transfer member in the terminal connection structure of the end portion of the electric wire according to still another embodiment of the present invention. 図7Aは本発明のさらに他の実施形態に係る電線端部の端子接続構造の形成方法において電線端部に熱伝達部材を挿入する前の状態を示す図である。FIG. 7A is a diagram showing a state before a heat transfer member is inserted into an end portion of an electric wire in a method for forming a terminal connection structure at an end portion of an electric wire according to still another embodiment of the present invention. 図7Bは図7Aの状態から電線端部に熱伝達部材を挿入した状態を示す図である。FIG. 7B is a diagram showing a state in which a heat transfer member is inserted into the end portion of the electric wire from the state of FIG. 7A. 図8Aは、本発明のさらに他の実施形態に係る電線端部の端子接続構造の形成方法において、端子主部と撚り線端部それぞれにプラスとマイナスの電極を接触させる前で端子主部内に電線端部を挿入する状態を示す図である。FIG. 8A is a diagram illustrating a method for forming a terminal connection structure for an end of a wire according to still another embodiment of the present invention, in which the plus and minus electrodes are brought into contact with the terminal main portion and the stranded wire end, respectively, in the terminal main portion. It is a figure which shows the state which inserts an electric wire edge part. 図8Bは図8Aの状態から端子主部と撚り線端部に上記両電極を接触させて両電極間に電流を流して端子主部と撚り線端部とを加熱する状態を示す図である。FIG. 8B is a diagram showing a state where the terminal main part and the stranded wire end are heated by bringing the electrodes into contact with the terminal main part and the stranded wire end from the state of FIG. . 図9Aは図8Aにおいて両電極接触前に端子主部内の撚り線中に熱伝達部材を挿入した状態を示す図である。FIG. 9A is a diagram showing a state in which the heat transfer member is inserted into the stranded wire in the terminal main part before contacting both electrodes in FIG. 8A. 図9Bは図9Aにおいて端子主部内の撚り線中に熱伝達部材を挿入した状態で両電極を接触させて電流を流して端子主部と撚り線端部とを加熱する状態を示す図である。FIG. 9B is a diagram showing a state in which both the electrodes are brought into contact with each other in the state where the heat transfer member is inserted into the stranded wire in the terminal main portion in FIG. 9A to flow the current to heat the terminal main portion and the stranded wire end portion. . 図10は図8Bの状態から端子主部と撚り線端部に上記両電極を接触させて両電極間に電流を流して加熱した後、半田付けの状態を示す図である。FIG. 10 is a diagram showing a state of soldering after the electrodes are brought into contact with the terminal main portion and the stranded wire end from the state of FIG. 図11Aは本発明のさらに他の実施形態に係る電線端部の端子接続構造の形成方法において、端子主部と撚り線端部にそれぞれプラスとマイナスの電極を接触させる前で端子主部内に撚り線を挿入している状態を示す図である。FIG. 11A shows a method for forming a terminal connection structure for an end portion of an electric wire according to still another embodiment of the present invention, in which the positive and negative electrodes are twisted in the main terminal portion before contacting the main terminal portion and the twisted wire end portion, respectively. It is a figure which shows the state which has inserted the line. 図11Bは熱伝達部材を示す図である。FIG. 11B is a diagram showing a heat transfer member. 図11Cは端子主部内の撚り線中に図11Bの熱伝達部材を挿入した状態を示す図である。FIG. 11C is a diagram illustrating a state in which the heat transfer member of FIG. 11B is inserted into the stranded wire in the terminal main portion. 図12Aは図11Cの状態から端子主部と撚り線端部とに電極をそれぞれ配置した状態を示す図である。FIG. 12A is a diagram showing a state in which electrodes are respectively arranged on the terminal main portion and the stranded wire end portion from the state of FIG. 11C. 図12Bは図12Aの状態から端子主部と撚り線端部に上記両電極を接触させて両電極間に電流を流して端子主部と撚り線端部とを加熱する状態を示す図である。FIG. 12B is a diagram showing a state in which the terminal main portion and the stranded wire end are heated by bringing the electrodes into contact with the terminal main portion and the stranded wire end from the state of FIG. . 図12Cは熱伝達部材の熱経路を示す図である。FIG. 12C is a diagram illustrating a heat path of the heat transfer member. 図12Dは図12Bの状態から半田付けした後の状態を示す図である。12D is a diagram showing a state after soldering from the state of FIG. 12B.
本発明の一実施形態に係る電線端部の端子接続構造を、図1A,図1Bおよび図2を参照して説明すると、上記端子接続構造は、アルミニウムや銅等からなる電線1の端部に端子2が装着され半田付けされているものである。   When the terminal connection structure of the electric wire end part which concerns on one Embodiment of this invention is demonstrated with reference to FIG. 1A, FIG. 1B, and FIG. 2, the said terminal connection structure will be in the edge part of the electric wire 1 which consists of aluminum, copper, etc. The terminal 2 is mounted and soldered.
電線1は、多数本の細線1bを互いに撚り合わされた撚り線11からなる。なお撚り線11端部はエナメル絶縁被覆が除去されている。以降の説明で撚り線11はエナメル絶縁被覆の除去が必要な箇所では該被覆は除去される。ただし、本発明は撚り線11に限定されず、複数の線が単に集合した集合線を含む。端子2は、筒状の端子主部2aと、これに連成した平板状の接続片2bとを含み、銅、黄銅、その他の銅合金、もしくは銅系複合材料の板材からなる。幅広の端子主部2a内側に撚り線11が装着されている。接続片2bは、端子孔2cを有する。端子2は少なくとも端子主部2aの内側表面に錫や半田等の図示略の金属メッキ層が形成されている。端子主部2a内側には半田Hが導入されて、該半田Hにより撚り線11が接続固定される。   The electric wire 1 includes a stranded wire 11 in which a large number of fine wires 1b are twisted together. The end portion of the stranded wire 11 has the enamel insulation coating removed. In the following description, the stranded wire 11 is removed at places where it is necessary to remove the enamel insulation coating. However, the present invention is not limited to the stranded wire 11 and includes a collective line in which a plurality of wires are simply assembled. The terminal 2 includes a cylindrical terminal main portion 2a and a flat plate-like connection piece 2b coupled thereto, and is made of copper, brass, other copper alloy, or a copper-based composite material. A stranded wire 11 is mounted inside the wide terminal main portion 2a. The connection piece 2b has a terminal hole 2c. The terminal 2 has a metal plating layer (not shown) such as tin or solder formed on at least the inner surface of the terminal main portion 2a. Solder H is introduced inside the terminal main portion 2a, and the stranded wire 11 is connected and fixed by the solder H.
本発明は、端子主部2a内側にある撚り線11中に熱伝達部材3Aを備え、この熱伝達部材3Aが半田付け時に撚り線11中に高熱経路を形成するよう線状に挿入され、この挿入状態の端子主部2a内側に上記高熱経路を介して半田Hが導入されていることを特徴とする。   The present invention is provided with a heat transfer member 3A in the stranded wire 11 inside the terminal main portion 2a, and this heat transfer member 3A is inserted linearly so as to form a high heat path in the stranded wire 11 during soldering. Solder H is introduced into the inserted terminal main portion 2a through the high heat path.
熱伝達部材3Aは、線状の形状例としてピン形状をなし撚り線11内に半田に際しての熱を伝達する複数の熱伝達本体31と、半田付けに際して端子主部2a内側から伝達されてくる熱を熱伝達本体31に中継する熱伝達中継部32とを備える。熱伝達中継部32はまた、フラックスや溶融半田の流動を規制する機能を有するので流動規制部と称することもできる。   The heat transfer member 3A has a pin shape as a linear shape example, a plurality of heat transfer main bodies 31 that transmit heat during soldering into the stranded wire 11, and heat that is transmitted from the inside of the terminal main portion 2a during soldering. And a heat transfer relay part 32 that relays the heat to the heat transfer body 31. The heat transfer relay part 32 can also be called a flow restriction part because it has a function of restricting the flow of flux and molten solder.
熱伝達部材3Aにおいて、複数の熱伝達本体31は撚り線11内に挿入されることで、上記したように、半田付けに際してはその半田付け時の高温を該撚り線11内に導入する高熱経路を形成して撚り線11内に半田やフラックスの流動を促進する機能を有する。この場合、撚り線11内には熱伝達本体31を複数本挿入してもよいし1本を挿入するだけでもよい。   In the heat transfer member 3 </ b> A, the plurality of heat transfer main bodies 31 are inserted into the stranded wire 11, and as described above, a high heat path for introducing a high temperature during soldering into the stranded wire 11 during soldering. And has a function of promoting the flow of solder and flux in the stranded wire 11. In this case, a plurality of heat transfer main bodies 31 may be inserted into the stranded wire 11 or only one may be inserted.
熱伝達本体31の少なくとも半径方向外側の一部311は端子主部2a内側に接触し、少なくとも半径方向中央の一部312は撚り線11中央に位置することで、端子2に半田付け時に加えられた高熱は端子主部2a内側の熱伝達本体31から熱伝達中継部32を介して他の熱伝達本体31に熱伝導される。また、他の熱伝達本体31のうち、少なくとも撚り線11中央を挿通する熱伝達本体312からその周囲に高熱経路が効率的に形成されるようになっている。   At least a part 311 on the outer side in the radial direction of the heat transfer body 31 is in contact with the inner side of the terminal main part 2a, and at least a part 312 in the center in the radial direction is located at the center of the stranded wire 11 and is applied to the terminal 2 during soldering. The high heat is conducted from the heat transfer body 31 inside the terminal main portion 2a to the other heat transfer body 31 through the heat transfer relay portion 32. Further, among the other heat transfer main bodies 31, a high heat path is efficiently formed around the heat transfer main body 312 inserted through at least the center of the stranded wire 11.
以上から熱伝達部材3Aにおいて、その熱伝達本体31は、撚り線11内にフラックスおよび溶融半田が流入しやすくする高熱経路を形成するための線状部材であり、撚り線11よりも熱伝導率が高い金属である例えば銅からなり、その素材31a表面に6〜10μ程度の厚い例えば錫や半田等の金属メッキ層31bが形成されている。端子2に半田付け時に加えられた高熱により端子2表面の図示略の金属メッキ層が溶融すると共に、熱伝達本体31表面の金属メッキ層31bも溶融することで、より容易に高熱経路が形成されるようになっている。   From the above, in the heat transfer member 3A, the heat transfer main body 31 is a linear member for forming a high heat path for facilitating the flow of flux and molten solder into the stranded wire 11, and has a thermal conductivity higher than that of the stranded wire 11. For example, it is made of copper, which is a high metal, and a metal plating layer 31b such as tin or solder having a thickness of about 6 to 10 μm is formed on the surface of the material 31a. The high heat applied to the terminal 2 at the time of soldering melts the metal plating layer (not shown) on the surface of the terminal 2, and also melts the metal plating layer 31 b on the surface of the heat transfer body 31, thereby forming a high heat path more easily. It has become so.
上記熱伝達中継部32は、熱伝達本体31の一端部(図1,2では左端部)に一体に設けられている。熱伝達中継部32は、フラックスおよび溶融半田の流動を規制することができるように、撚り線11と同径もしくは小径もしくは大径の円形金網体からなり、この金網体の広がり面とほぼ直角の角度で、複数の熱伝達本体31が突出している。   The heat transfer relay portion 32 is integrally provided at one end portion (left end portion in FIGS. 1 and 2) of the heat transfer main body 31. The heat transfer relay portion 32 is formed of a circular wire mesh body having the same diameter, a small diameter, or a large diameter as the stranded wire 11 so that the flow of the flux and the molten solder can be regulated, and is substantially perpendicular to the spreading surface of the wire mesh body. A plurality of heat transfer bodies 31 protrude at an angle.
熱伝達部材3Aは、熱伝達本体31の先端が撚り線11の端を向く向きで、撚り線11内に挿入されている。熱伝達本体31は撚り線11内では該撚り線11とほぼ平行となっている。   The heat transfer member 3 </ b> A is inserted into the stranded wire 11 such that the tip of the heat transfer main body 31 faces the end of the stranded wire 11. The heat transfer body 31 is substantially parallel to the stranded wire 11 in the stranded wire 11.
図3A〜図3Cを参照して、熱伝達部材3Aを用いた端子接続構造の形成方法を説明する。第1工程では、図3Aで示すように撚り線11の端部に熱伝達部材3Aの熱伝達本体31が挿入される。挿入する向きは、仮想線で示すように、熱伝達本体31先端が撚り線11の先端に向く向きである。これら熱伝達本体31の少なくとも1つ(符号で311)は端子2内側に接触し、熱伝達本体31の少なくとも1つ(符号で312)は撚り線11中央に位置する。また、熱伝達部材3Aの熱伝達中継部32が金網体である場合は、金網体の各隙間から撚り線11を挿通させる。   With reference to FIG. 3A-FIG. 3C, the formation method of the terminal connection structure using 3 A of heat transfer members is demonstrated. In the first step, the heat transfer body 31 of the heat transfer member 3A is inserted into the end of the stranded wire 11 as shown in FIG. 3A. The insertion direction is a direction in which the tip of the heat transfer body 31 faces the tip of the stranded wire 11 as indicated by a virtual line. At least one of these heat transfer bodies 31 (reference numeral 311) contacts the inside of the terminal 2, and at least one of the heat transfer bodies 31 (reference numeral 312) is located at the center of the stranded wire 11. Moreover, when the heat transfer relay part 32 of the heat transfer member 3A is a wire mesh body, the stranded wire 11 is inserted through each gap of the wire mesh body.
第2工程では、図3Bで示すように、熱伝達本体31を挿入した撚り線11を内部に包み込むように、撚り線11を端子主部2aに装着する。これで、熱伝達本体31は、撚り線11とほぼ平行の向きで端子主部2a内側に固定され、また、熱伝達中継部32は、端子主部2a内側に、撚り線11の長さ方向をほぼ直角に横切る形で固定される。   In a 2nd process, as shown in FIG. 3B, the strand wire 11 is mounted | worn with the terminal main part 2a so that the strand wire 11 which inserted the heat transfer main body 31 may be wrapped inside. Thus, the heat transfer main body 31 is fixed to the inner side of the terminal main portion 2a in a direction substantially parallel to the stranded wire 11, and the heat transfer relay portion 32 is arranged on the inner side of the terminal main portion 2a in the length direction of the stranded wire 11. Is fixed so that it crosses at a right angle.
第3工程では、図3Cで示すように、端子2の熱伝達中継部32がある側(図では左側)を、熱伝達本体31の先端側より下位に位置させた状態で、端子主部2aを外部から加熱させて端子主部2a内側に設けた金属メッキ層を溶融させることで熱伝達中継部32を中継して熱伝達本体31に高熱が伝達され、これにより熱伝達本体31表面の金属メッキ層が溶融し、熱伝達本体31周囲に高熱経路が形成される。   In the third step, as shown in FIG. 3C, the terminal main portion 2 a is located with the side (the left side in the figure) on which the heat transfer relay portion 32 of the terminal 2 is located lower than the front end side of the heat transfer body 31. Is heated from the outside and the metal plating layer provided inside the terminal main portion 2a is melted to relay the heat transfer relay portion 32 and high heat is transmitted to the heat transfer body 31, whereby the metal on the surface of the heat transfer body 31 is transferred. The plating layer is melted and a high heat path is formed around the heat transfer body 31.
こうした状態で、端子主部2a内側に上方からフラックスFと、アルミニウム半田等の溶融半田Hとを矢印で示すように導入する。そして、端子主部2a内側に導入されたフラックスFは、高温となった熱伝達本体31に沿って撚り線11内に流入し、端子主部2a内側に広がる。また、熱伝達本体31周りの隙間による毛細管現象によって、フラックスFは撚り線11内に吸い込まれる。これにより、フラックスFが撚り線11表面に作用し、撚り線11表面に形成されている酸化膜を除去する。次いで、導入された溶融半田Hも、フラックスFと同様、熱伝達本体31に案内されて、撚り線11内に流入する。これにより、半田Hは端子主部2a内側に広がり、撚り線11どうし、撚り線11と端子主部2aとを接続する。   In this state, the flux F and the molten solder H such as aluminum solder are introduced into the terminal main portion 2a from above as indicated by arrows. And the flux F introduced into the terminal main part 2a inner side flows in the strand 11 along the heat transfer main body 31 which became high temperature, and spreads inside the terminal main part 2a. Further, the flux F is sucked into the stranded wire 11 by a capillary phenomenon due to a gap around the heat transfer body 31. Thereby, the flux F acts on the surface of the stranded wire 11, and the oxide film formed on the surface of the stranded wire 11 is removed. Next, similarly to the flux F, the introduced molten solder H is guided to the heat transfer main body 31 and flows into the stranded wire 11. Thereby, the solder H spreads inside the terminal main part 2a, and connects the stranded wire 11 and the stranded wire 11 and the terminal main part 2a.
また、フラックスFや溶融半田Hが端子主部2a内側に導入された場合、フラックスFや溶融半田Hは、上記したように、熱伝達本体31に沿って端子主部2a下方に流動するが、熱伝達中継部32がある個所で、それらフラックスFや溶融半田Hは、受け止められ、あるいは、熱伝達中継部32の各部分間で働くフラックスFや溶融半田Hの表面張力により流れが阻止されるから、熱伝達中継部32より下方に流動することが規制され、熱伝達中継部32より上位の端子主部2a内側位置に留まり、端子主部2a外側に流出することがない。   Further, when the flux F or the molten solder H is introduced inside the terminal main portion 2a, the flux F or the molten solder H flows along the heat transfer body 31 below the terminal main portion 2a as described above. The flux F and the molten solder H are received at the place where the heat transfer relay portion 32 is present, or the flow is blocked by the surface tension of the flux F and the molten solder H acting between the respective portions of the heat transfer relay portion 32. Therefore, it is restricted from flowing downward from the heat transfer relay part 32, stays at the inner position of the terminal main part 2a higher than the heat transfer relay part 32, and does not flow out of the terminal main part 2a.
要するに、端子主部2a内側では、熱伝達中継部32によりフラックスFの流動が規制されることで、熱伝達中継部32より上位にある撚り線11表面にことごとくフラックスFが作用し、フラックスFにより酸化膜が除去された撚り線11に溶融半田Hが接することになり、端子主部2a内側では、ボイドのない良好な半田付け部が形成される。   In short, inside the terminal main portion 2a, the flow of the flux F is restricted by the heat transfer relay portion 32, so that the flux F acts on the surface of the stranded wire 11 above the heat transfer relay portion 32, and the flux F The molten solder H comes into contact with the stranded wire 11 from which the oxide film has been removed, and a good soldered portion without voids is formed inside the terminal main portion 2a.
次に図4A,図4B,図4Cを参照して本発明の他の実施形態に係る電線端部の端子接続構造の形成方法を説明する。この方法では熱伝達部材3Bを用いて行う。   Next, with reference to FIG. 4A, FIG. 4B, and FIG. 4C, the formation method of the terminal connection structure of the electric wire edge part which concerns on other embodiment of this invention is demonstrated. In this method, the heat transfer member 3B is used.
すなわち、第1工程では、図4Aに示すように撚り線11内に熱伝達部材3Bの熱伝達本体31を挿入するが、このときの熱伝達本体31の挿入向きは、熱伝達本体31の先端が撚り線11の内部に深く入り込み、熱伝達中継部32が撚り線11の先端側に存在する向きである。   That is, in the first step, the heat transfer body 31 of the heat transfer member 3B is inserted into the stranded wire 11 as shown in FIG. 4A. The insertion direction of the heat transfer body 31 at this time is the tip of the heat transfer body 31. Enters the inside of the stranded wire 11, and the heat transfer relay portion 32 is in the direction existing on the tip side of the stranded wire 11.
第2工程では、図4Bで示すように、熱伝達部材3Bの熱伝達本体31を挿入した撚り線11を内部に包み込むように、端子主部2a内側に撚り線11を装着する。これで、熱伝達本体31は、撚り線11とほぼ平行の向きで、また、熱伝達中継部32は、撚り線11の端部に近い位置で、端子主部2a内側に固定される。   In a 2nd process, as shown in FIG. 4B, the strand wire 11 is mounted | worn inside the terminal main part 2a so that the strand wire 11 which inserted the heat transfer main body 31 of the heat transfer member 3B may be wrapped inside. Thus, the heat transfer main body 31 is fixed in the terminal main portion 2a inside at a position near the end of the stranded wire 11 in a direction substantially parallel to the stranded wire 11 and the heat transfer relay portion 32.
第3工程では、図4Cで示すように、端子主部2aの熱伝達中継部32がある側(図では右側)を、熱伝達本体31の先端側より下位に位置させた状態で、外部からの加熱により端子主部2aおよびその内側の撚り線11を高温にし、その状態で端子主部2a内側に上方から、フラックスFを導入する。   In the third step, as shown in FIG. 4C, the side where the heat transfer relay portion 32 of the terminal main portion 2a is located (the right side in the figure) is positioned lower than the front end side of the heat transfer body 31, and from the outside. The terminal main portion 2a and the stranded wire 11 inside the terminal main portion 2a are heated to a high temperature, and the flux F is introduced into the terminal main portion 2a from the upper side in this state.
この場合、端子主部2aにおいて熱伝達中継部32とは反対側2dの直径を漸次拡径してフラックス導入開口2eを形成し、このフラックス導入開口2eからフラックスFを導入する。そして、端子主部2a内側に導入されたフラックスFは、一旦、フラックス導入開口2eからその奥方に導入されるが、フラックス導入開口2eの方向に浮き上がってくる。そのため、熱伝達中継部32側の網目状開口から溶融半田Hを導入すると、その溶融半田Hは負圧により端子主部2a内側に容易に導入されてくる。そして、この場合、溶融半田Hは、熱伝達本体31により形成された高熱経路を介して良好に導入される。一方、熱伝達中継部32は、フラックスFや溶融半田Hの流動を規制するので、熱伝達中継部32より上位にある撚り線11表面にフラックスFが作用して酸化膜が除去され、このように酸化膜が除去された撚り線11に溶融半田Hが接することになり、端子主部2a内側では、ボイドのない良好な半田付け部が形成される。   In this case, in the terminal main portion 2a, the diameter of the opposite side 2d of the heat transfer relay portion 32 is gradually increased to form the flux introduction opening 2e, and the flux F is introduced from the flux introduction opening 2e. Then, the flux F introduced into the terminal main portion 2a is once introduced from the flux introduction opening 2e to the back thereof, but rises in the direction of the flux introduction opening 2e. Therefore, when the molten solder H is introduced from the mesh opening on the heat transfer relay portion 32 side, the molten solder H is easily introduced inside the terminal main portion 2a by the negative pressure. In this case, the molten solder H is satisfactorily introduced through the high heat path formed by the heat transfer main body 31. On the other hand, since the heat transfer relay part 32 regulates the flow of the flux F and the molten solder H, the flux F acts on the surface of the stranded wire 11 above the heat transfer relay part 32 to remove the oxide film. Then, the molten solder H comes into contact with the stranded wire 11 from which the oxide film has been removed, and a good soldered portion without voids is formed inside the terminal main portion 2a.
なお、符号311は、熱伝達本体31のうち、端子主部2a内側に接触する1ないし複数の熱伝達本体31であり、312は撚り線11中央に位置する1ないし複数の熱伝達本体31である。   Reference numeral 311 denotes one or more heat transfer bodies 31 in contact with the inside of the terminal main portion 2a of the heat transfer body 31, and 312 denotes one or more heat transfer bodies 31 located in the center of the stranded wire 11. is there.
次に図5A、図5B1、図5B2を参照して本発明の他の実施形態に係る電線端部の端子接続構造の形成方法を説明する。この方法の実施に用いる熱伝達部材3Cを芯線を用いて構成し、熱伝達部材3Cを熱伝達本体31と、熱伝達本体31両端の熱伝達中継部32a,32bとで構成する。芯線は、高硬度金属例えば銅を素材としかつその表面に金属メッキ層、例えば錫または半田等のメッキ層を形成して構成したものである。熱伝達部材3Cは熱伝達本体31両端と各熱伝達中継部32とでそれぞれの端部でL形状に構成している。熱伝達本体31は、撚り線11の概略中央を線状に各端が撚り線11先端まで延びて配置し、熱伝達本体31両端それぞれの熱伝達中継部32a,32bそれぞれの一部を端子外側に折り返して係止部32a1,32b1とする。両端の端子2a,2bにおける端子主部2a1,2a2はその端部に切欠2f1,2f2を形成されており、熱伝達中継部32a,32bの折り返し係止部32a1,32b1をこの切欠2f1,2f2に係止して熱伝達部材3Cを両端端子主部2a1,2a2に固定できるようにすることができる。こうした熱伝達部材3Cは半田付けに際しては各端子主部2a1,2a2側から熱伝達中継部32a,32bを介して熱伝達本体31に熱が伝達され、撚り線11中央に高熱経路を構成することとなって当該撚り線11中への半田の導入が容易となり、また、端子2a,2bは1本の芯線である熱伝達部材3Cにより強固に支持され、はずれにくく信頼性が高い構造となる。結果、製造歩留まりが向上しコストダウンが可能となる。   Next, with reference to FIG. 5A, FIG. 5B1, FIG. 5B2, the formation method of the terminal connection structure of the electric wire edge part which concerns on other embodiment of this invention is demonstrated. The heat transfer member 3C used for carrying out this method is configured by using a core wire, and the heat transfer member 3C is configured by the heat transfer main body 31 and the heat transfer relay portions 32a and 32b at both ends of the heat transfer main body 31. The core wire is formed by using a high-hardness metal such as copper as a material and forming a metal plating layer such as tin or solder on the surface thereof. The heat transfer member 3 </ b> C is formed in an L shape at both ends of the heat transfer main body 31 and the heat transfer relay portions 32. The heat transfer body 31 is arranged in such a manner that the approximate center of the stranded wire 11 is linear and each end extends to the tip of the stranded wire 11, and a part of each of the heat transfer relay portions 32 a and 32 b at both ends of the heat transfer body 31 is outside the terminal. Are turned into locking portions 32a1 and 32b1. The terminal main portions 2a1 and 2a2 of the terminals 2a and 2b at both ends are formed with notches 2f1 and 2f2 at their ends, and the turn-back locking portions 32a1 and 32b1 of the heat transfer relay portions 32a and 32b are formed into the notches 2f1 and 2f2. The heat transfer member 3C can be fixed to the both-end terminal main portions 2a1, 2a2 by being locked. When such a heat transfer member 3C is soldered, heat is transmitted from the terminal main portions 2a1, 2a2 side to the heat transfer body 31 via the heat transfer relay portions 32a, 32b, and a high heat path is formed at the center of the stranded wire 11. Thus, the solder can be easily introduced into the stranded wire 11, and the terminals 2a and 2b are firmly supported by the heat transfer member 3C, which is a single core wire, so that the structure is hard to come off and has high reliability. As a result, the manufacturing yield is improved and the cost can be reduced.
なお、図5A、図5B1、図5B2では熱伝達部材3Cは図面上は撚り線11両端に装着した端子2a,2b間において撚り線11中央に渡された芯線1本のみで構成したが、図5Cで示すように、端子2a,2bそれぞれごとに短い芯線で互いに分離して構成してもよい。   In FIG. 5A, FIG. 5B1, and FIG. 5B2, the heat transfer member 3C is composed of only one core wire passed to the center of the stranded wire 11 between the terminals 2a and 2b attached to both ends of the stranded wire 11 in the drawing. As indicated by 5C, the terminals 2a and 2b may be separated from each other by a short core wire.
図6A〜図6Dは他の形状の熱伝達部材3D−3Gを示す。   6A to 6D show heat transfer members 3D-3G having other shapes.
図6Aの熱伝達部材3Dは、熱伝達本体31とその一端の熱伝達中継部32とがL字形に形成されている。この場合、熱伝達中継部32の端部32a半径方向外形は、端子主部2a内側の曲面形状に沿う形状となって、端子主部2aから効率的に熱が伝達されるようになっている。   In the heat transfer member 3D of FIG. 6A, a heat transfer main body 31 and a heat transfer relay part 32 at one end thereof are formed in an L shape. In this case, the radial direction outer shape of the end portion 32a of the heat transfer relay portion 32 is a shape that follows the curved shape inside the terminal main portion 2a, so that heat is efficiently transferred from the terminal main portion 2a. .
図6Bの熱伝達部材3Eは、熱伝達本体31と熱伝達中継部32とがT字形に連成されている。上記形状では、熱伝達本体31を容易に撚り線11内に挿入しうる。この場合、熱伝達中継部32の半径方向両端の外形は、端子主部2a内側の曲面形状に沿う形状となって、端子主部2aから効率的に熱が伝達されるようになっている。   In the heat transfer member 3E of FIG. 6B, the heat transfer main body 31 and the heat transfer relay portion 32 are coupled in a T shape. With the above shape, the heat transfer body 31 can be easily inserted into the stranded wire 11. In this case, the outer shape of both ends in the radial direction of the heat transfer relay portion 32 is a shape along the curved shape inside the terminal main portion 2a, so that heat is efficiently transmitted from the terminal main portion 2a.
図6Cの熱伝達部材3Fは、互いに平行に延びる3本の熱伝達本体311と、これら熱伝達本体311を連結する熱伝達中継部32とがE字形に連成されている。上記形状では、熱伝達本体311を容易に撚り線11内に挿入しうる。そして、熱伝達本体311は、中央側熱伝達本体312とその両側熱伝達本体311とを含み、両側熱伝達本体311の半径方向外形は、端子主部2a内側の曲面形状に沿う形状となって、端子主部2aから効率的に熱が伝達されるようになっている。これら両側熱伝達本体311の半径方向外形は円周方向に伸びた形状にして、より効率的に熱伝達を可能としてもよい。   In the heat transfer member 3F in FIG. 6C, three heat transfer main bodies 311 extending in parallel with each other and a heat transfer relay portion 32 connecting the heat transfer main bodies 311 are connected in an E shape. With the above shape, the heat transfer body 311 can be easily inserted into the stranded wire 11. The heat transfer main body 311 includes a central heat transfer main body 312 and both side heat transfer main bodies 311. The radial outer shape of the both side heat transfer main bodies 311 is a shape along the curved shape inside the terminal main portion 2a. The heat is efficiently transferred from the terminal main portion 2a. These two heat transfer main bodies 311 may have a radially outer shape that extends in the circumferential direction to enable more efficient heat transfer.
図6Dの熱伝達部材3Gは、互いに平行に延びる2本の熱伝達本体311,312と、これら熱伝達本体311,312を連結する熱伝達中継部32とが片仮名のコ字形に連成されている。熱伝達本体312は、撚り線11中央に位置する中央側熱伝達本体であり、熱伝達本体311は、端子主部2a内側側に接触する一方側熱伝達本体である。一方側熱伝達本体311の半径方向外形は、端子主部2a内側の曲面形状に沿う形状となって、端子主部2aから効率的に熱が伝達されるようになっている。一方側熱伝達本体311の半径方向外形は円周方向に伸びた形状にして、より効率的に熱伝達を可能としてもよい。   In the heat transfer member 3G of FIG. 6D, two heat transfer bodies 311 and 312 extending in parallel with each other and a heat transfer relay portion 32 connecting the heat transfer bodies 311 and 312 are coupled in a U-shape of Katakana. Yes. The heat transfer main body 312 is a central heat transfer main body located at the center of the stranded wire 11, and the heat transfer main body 311 is a one-side heat transfer main body that contacts the inner side of the terminal main portion 2a. The outer shape in the radial direction of the one-side heat transfer body 311 is a shape that follows the curved surface inside the terminal main portion 2a, so that heat is efficiently transferred from the terminal main portion 2a. The outer side in the radial direction of the one-side heat transfer body 311 may have a shape extending in the circumferential direction to enable more efficient heat transfer.
なお、上記各実施の形態においては端子主部2aと熱伝達部材3Aないし3Fとは別体であるが、これら両者は一体に形成して強度をより向上できるようにしてもよい。   In addition, in each said embodiment, although the terminal main part 2a and the heat transfer members 3A thru | or 3F are separate bodies, these both may be formed integrally and it can be made to improve a strength further.
以上説明したように本実施の形態では、端子主部2a内側に装着された電線端部内に熱伝達部材が半田付け時の高熱経路を形成するよう線状に挿入されており、端子主部2aに撚り線11を半田付けする場合、高熱経路を介して半田が導入されるので、その半田付け部内部にボイドがない良好な電気半田接続状態とすることができる。   As described above, in the present embodiment, the heat transfer member is linearly inserted into the end portion of the electric wire attached inside the terminal main portion 2a so as to form a high heat path during soldering, and the terminal main portion 2a. When the stranded wire 11 is soldered to the solder, the solder is introduced through the high heat path, so that a good electrical solder connection state in which no void is present in the soldered portion can be achieved.
次に図7A、図7Bを参照して本発明のさらに他の実施形態に係る電線端部の端子接続構造の形成方法を説明する。この方法では熱伝達部材3Hを用いて行う。この熱伝達部材3Hは、互いに平行に延びる2本の熱伝達本体31と、これら熱伝達本体31を連結する熱伝達中継部32とにより構成されている。   Next, with reference to FIG. 7A and FIG. 7B, the formation method of the terminal connection structure of the electric wire end part which concerns on further another embodiment of this invention is demonstrated. In this method, the heat transfer member 3H is used. The heat transfer member 3 </ b> H includes two heat transfer main bodies 31 extending in parallel with each other and a heat transfer relay portion 32 that connects the heat transfer main bodies 31.
第1工程では、図7Aで示すように、撚り線11内に熱伝達部材3Hの熱伝達本体31を挿入する。挿入深さは一点鎖線で示すように、熱伝達中継部32が撚り線11内に入り込む深さである。第2工程では、図7Bで示すように、熱伝達部材3Hの熱伝達本体31を挿入した撚り線11を内部に包み込むように、端子主部2a内側に撚り線11を装着する。これで、熱伝達本体31は、撚り線11とほぼ平行の向きで、また、熱伝達中継部32は、撚り線11の端部内で、端子主部2a内側に固定される。   In the first step, as shown in FIG. 7A, the heat transfer body 31 of the heat transfer member 3H is inserted into the stranded wire 11. The insertion depth is a depth at which the heat transfer relay portion 32 enters the stranded wire 11 as indicated by a one-dot chain line. In the second step, as shown in FIG. 7B, the stranded wire 11 is mounted inside the terminal main portion 2a so as to wrap the stranded wire 11 into which the heat transfer main body 31 of the heat transfer member 3H is inserted. Thus, the heat transfer body 31 is fixed in a direction substantially parallel to the stranded wire 11, and the heat transfer relay portion 32 is fixed inside the terminal main portion 2 a inside the end portion of the stranded wire 11.
この実施の形態においても、端子主部2a内側に装着された電線端部内に熱伝達部材3Hが半田付け時の高熱経路を形成するよう線状に挿入されており、端子主部2aに撚り線11を半田付けする場合、高熱経路を介して半田が導入されるので、その半田付け部内部にボイドがない良好な電気半田接続状態とすることができる。   Also in this embodiment, the heat transfer member 3H is linearly inserted into the end portion of the electric wire mounted inside the terminal main portion 2a so as to form a high heat path during soldering, and a stranded wire is formed in the terminal main portion 2a. When soldering 11, since solder is introduced through a high heat path, it is possible to achieve a good electrical solder connection state in which no void is present inside the soldered portion.
次に、図8A、図8B、図9A、図9Bを参照して本発明のさらに他の実施形態に係る電線端部の端子接続構造の形成方法を説明する。図8Aは、端子主部と撚り線端部それぞれプラスとマイナスの電極を接触させる前で端子主部内に電線端部を挿入する状態を示し、図8Bは図8Aの状態から端子主部と撚り線端部に上記両電極を接触させて両電極間に電流を流して端子主部と撚り線端部とを加熱する方法を示す。図9Aは図8Aにおいて両電極接触前に端子主部内の撚り線中に熱伝達部材を挿入した状態を示し、図9Bは図9Aにおいて端子主部内の撚り線中に熱伝達部材を挿入した状態で両電極を接触させて電流を流して端子主部と撚り線端部とを加熱する方法を示す。   Next, with reference to FIG. 8A, FIG. 8B, FIG. 9A, and FIG. 9B, the formation method of the terminal connection structure of the electric wire end part which concerns on further another embodiment of this invention is demonstrated. FIG. 8A shows a state in which the end of the electric wire is inserted into the terminal main part before the positive and negative electrodes are brought into contact with the main part of the terminal and the end of the stranded wire, respectively. FIG. A method of heating the terminal main portion and the stranded wire end portion by bringing the two electrodes into contact with the wire end portion and causing a current to flow between the electrodes. FIG. 9A shows a state in which the heat transfer member is inserted into the stranded wire in the terminal main portion before contacting both electrodes in FIG. 8A, and FIG. 9B shows a state in which the heat transfer member is inserted into the stranded wire in the terminal main portion in FIG. The method of heating both the terminal main part and the stranded wire end part by bringing both electrodes into contact with each other and causing a current to flow.
まず、図8A、図8Bを参照して、撚り線11の端部11aを端子主部2a内に挿入する。次に、端子主部2a外周面にプラスとマイナス一対の電極41A,41Bと、端子主部2aの外側の撚り線11の端部11aにもう一対の電極42A,42Bをそれぞれ矢印で示すように図8Aの状態から図8Bの状態に接触させる。そして、一対の電極41A,41B間と、もう一対の電極42A,42B間それぞれに電流を流すことで、端子主部2a内の撚り線11、端子主部2a外側の撚り線11の端部11aを加熱する。後者の撚り線11の端部11aの加熱は、端子主部2a内の撚り線11に伝熱される結果、端子主部2a内の撚り線11は均等に加熱されるようになり、この端子主部2a内の撚り線11へフラックスや半田を効率的に導入し、より確実な半田付けが可能となる。   First, with reference to FIG. 8A and FIG. 8B, the edge part 11a of the strand wire 11 is inserted in the terminal main part 2a. Next, as shown by arrows, a pair of plus and minus electrodes 41A and 41B on the outer peripheral surface of the terminal main portion 2a and another pair of electrodes 42A and 42B on the end portion 11a of the stranded wire 11 outside the terminal main portion 2a, respectively. The state shown in FIG. 8A is brought into contact with the state shown in FIG. 8B. Then, by passing a current between the pair of electrodes 41A and 41B and between the other pair of electrodes 42A and 42B, the stranded wire 11 in the terminal main portion 2a and the end portion 11a of the stranded wire 11 outside the terminal main portion 2a. Heat. The heating of the end portion 11a of the latter stranded wire 11 is conducted to the stranded wire 11 in the terminal main portion 2a. As a result, the stranded wire 11 in the terminal main portion 2a is heated evenly. Flux and solder can be efficiently introduced into the stranded wire 11 in the portion 2a, and more reliable soldering can be achieved.
一方、図8Bで示すように、電極42A,42B間の撚り線11の端部11aを端子主部2a近傍の端部11a1と端子主部2aから遠い端部11a2とに分けた場合に、端部11a1は、電極42Aで接続片2b内側に押し付けられず、端部11a2は電極42Aで接続片2b内側に押し付けられている。これにより端部11a1と端部a2とで高さにシャープな段差が生じているうえに、撚り線11はアルミニウム線であるために加熱しにくく、そのため、電極42A,42B間に流す電流が過大となり、また、これにより端部11a2の加熱温度も過大となってしまい、これにより撚り線11の端部11a1,11a2間に応力が作用し撚り線11が損傷する可能性が高くなるという不具合がある。なお、エリアAAについては後述する。   On the other hand, as shown in FIG. 8B, when the end portion 11a of the stranded wire 11 between the electrodes 42A and 42B is divided into an end portion 11a1 near the terminal main portion 2a and an end portion 11a2 far from the terminal main portion 2a, The portion 11a1 is not pressed inside the connection piece 2b by the electrode 42A, and the end portion 11a2 is pressed inside the connection piece 2b by the electrode 42A. As a result, there is a sharp step in the height between the end portion 11a1 and the end portion a2, and the stranded wire 11 is an aluminum wire, so it is difficult to heat, so that the current flowing between the electrodes 42A and 42B is excessive. In addition, due to this, the heating temperature of the end portion 11a2 becomes excessive, which causes a problem that stress is applied between the end portions 11a1 and 11a2 of the stranded wire 11 and the stranded wire 11 is likely to be damaged. is there. The area AA will be described later.
そこで、図9Aで示すように、電極41A,41Bを端子主部2aに接触させる前および電極42A,42Bを撚り線11の端部11aに接触させる前に、錫メッキ銅等の熱伝導率が高くてフラックスと半田の導入を良くするための複数の線状熱伝達部材43を端子主部2a内の撚り線11に挿入する。その後、図9Bで示すように、電極41A,41Bを端子主部2aに押圧接触させ、また、電極42A,42Bを撚り線11の端部11aに押圧接触させた状態で、それぞれの電極41A,41B;42A,42B間に電流を流して加熱すると、端子主部2a内の撚り線11全体は均等に加熱される。   Therefore, as shown in FIG. 9A, before the electrodes 41A and 41B are brought into contact with the terminal main portion 2a and before the electrodes 42A and 42B are brought into contact with the end portion 11a of the stranded wire 11, the thermal conductivity of tin-plated copper or the like is increased. A plurality of linear heat transfer members 43 that are high and improve the introduction of flux and solder are inserted into the stranded wire 11 in the terminal main portion 2a. Thereafter, as shown in FIG. 9B, the electrodes 41A and 41B are pressed and contacted with the terminal main portion 2a, and the electrodes 41A and 42B are pressed and contacted with the end portion 11a of the stranded wire 11, respectively. 41B; When the current is passed between 42A and 42B and heated, the entire stranded wire 11 in the terminal main portion 2a is heated evenly.
そして、電極42A,42Bによる撚り線11の端部11aの押し付けで端部11a1,11a2間に段差が生じても、線状熱伝達部材43の存在により、撚り線11を効率的に加熱できるようになる結果、電極42A,42B間に印加する電流も過大にならずに済み、結果、端部11a2の加熱温度も過大とならずに済み、上記した撚り線11の端部11a1,11a2間に応力が作用し撚り線11が損傷する可能性が高くなるという不具合もなくなる。   And even if a step occurs between the end portions 11a1 and 11a2 due to the pressing of the end portion 11a of the stranded wire 11 by the electrodes 42A and 42B, the stranded wire 11 can be efficiently heated by the presence of the linear heat transfer member 43. As a result, the current applied between the electrodes 42A and 42B does not have to be excessive, and as a result, the heating temperature of the end 11a2 does not have to be excessive, and between the ends 11a1 and 11a2 of the stranded wire 11 described above. The problem that the possibility that the stress 11 acts and the stranded wire 11 is damaged is eliminated.
また、撚り線11は上記したように素材がアルミニウムであり、線状熱伝達部材43は素材がアルミニウムよりも融点が高い錫メッキ銅であるので、電極42A,42Bによる撚り線11の端部11aの押し付けで端部11a1,11a2間に段差が生じた状態で撚り線11の端部11aに電流を流して加熱しても、線状熱伝達部材43は溶解せず、その高さを維持することができ、上記段差が大きくならずに済む。   Further, since the strand 11 is made of aluminum as described above and the linear heat transfer member 43 is tin-plated copper having a melting point higher than that of aluminum, the end 11a of the strand 11 by the electrodes 42A and 42B is used. Even when a current is applied to the end portion 11a of the stranded wire 11 in a state where a step is generated between the end portions 11a1 and 11a2 by pressing, the linear heat transfer member 43 does not melt and maintains its height. And the step is not enlarged.
これにより撚り線11が潰されて断線するなどの損傷を受けなくて済む。   As a result, the stranded wire 11 is not damaged by being crushed and disconnected.
同時に、線状熱伝達部材43が撚り線11中に挿入されているので熱が端子主部2a内の撚り線11に導入されやすい。   At the same time, since the linear heat transfer member 43 is inserted into the stranded wire 11, heat is easily introduced into the stranded wire 11 in the terminal main portion 2a.
特に、点線で囲むエリアAAは端子主部2aの右側開口付近であり、この近傍に半田が蓋状に導入されて当該開口が密閉される。また、端子主部2aの左側開口付近のエリアABも半田が蓋状に導入されて当該開口が半田で密閉される。以上から端子主部2a内への水分の浸入は上記半田による密閉作用により効果的に防止することができるようになる。   In particular, an area AA surrounded by a dotted line is the vicinity of the right opening of the terminal main portion 2a, and solder is introduced into the vicinity in the vicinity of the opening to seal the opening. Also, in the area AB near the left opening of the terminal main portion 2a, solder is introduced in a lid shape and the opening is sealed with solder. From the above, the intrusion of moisture into the terminal main portion 2a can be effectively prevented by the sealing action by the solder.
なお、図8Bの場合、点線で囲むエリアAAには半田は導入されにくく、したがって、端子主部2aの右側開口は半田によっては容易に密閉することはできない。この状態に関して図10を参照して後述する。   In the case of FIG. 8B, solder is not easily introduced into the area AA surrounded by the dotted line, and therefore the right opening of the terminal main portion 2a cannot be easily sealed with solder. This state will be described later with reference to FIG.
以上によりこの実施形態では、撚り線11を端子主部2aに半田付けする場合、端子主部2aと撚り線11の端部11aとの2箇所で電極41A,41B;42A,42Bから電流を流して加熱するに際して、複数の線状熱伝達部材43を端子主部2a内の撚り線11中に均等間隔で挿入するようにしたので、端子主部2a内の撚り線11全体を均等加熱させることができるようになり、これにより、フラックスは端子主部2a内の撚り線11に均等に吸い込まれ、溶融半田も端子主部2a内の撚り線11の全体に導入され易くなって、半田中にボイドができにくく、半田付けを確実に行うことができるようになる。   As described above, in this embodiment, when the stranded wire 11 is soldered to the terminal main portion 2a, current is passed from the electrodes 41A and 41B; 42A and 42B at two locations, the terminal main portion 2a and the end portion 11a of the stranded wire 11. When heating, the plurality of linear heat transfer members 43 are inserted into the stranded wire 11 in the terminal main portion 2a at equal intervals, so that the entire stranded wire 11 in the terminal main portion 2a is uniformly heated. As a result, the flux is uniformly sucked into the stranded wire 11 in the terminal main portion 2a, and the molten solder is easily introduced into the entire stranded wire 11 in the terminal main portion 2a. It is difficult to form voids and soldering can be performed reliably.
図10、図11A〜図11C、図12A〜図12Dを参照して、本発明のさらに他の実施形態に係る電線端部の端子接続構造の形成方法を説明する。図8Bのように端子主部と撚り線端部に上記両電極を接触させて両電極間に電流を流して加熱した後、半田付けすると、図10で示すように端子主部2aの一方開口の外側で半田44が撚り線端部11a上に生成される。この状態では、筒状の端子主部2aの図で右側開口のエリアAAには半田44が蓋状には導入されないため、当該開口は半田で密閉されていない状態となっている。このような状態ではこの右側開口から水分が浸入しやすくなり、半田付けの信頼性が低くなる。   With reference to FIG. 10, FIG. 11A-FIG. 11C, and FIG. 12A-FIG. 12D, the formation method of the terminal connection structure of the electric wire edge part which concerns on other embodiment of this invention is demonstrated. As shown in FIG. 8B, when both the electrodes are brought into contact with the terminal main portion and the end portion of the stranded wire and a current is passed between the electrodes and heated and then soldered, one opening of the terminal main portion 2a is formed as shown in FIG. The solder 44 is generated on the stranded end portion 11a on the outer side. In this state, since the solder 44 is not introduced into the lid shape in the area AA of the right opening in the figure of the cylindrical terminal main portion 2a, the opening is not sealed with solder. In such a state, moisture easily enters from the right opening, and the reliability of soldering is lowered.
そこで、図11Aで示すように、熱伝達部材45として、いずれも錫メッキされた銅線を用いる。熱伝達部材45は、図11Bで示すように端子主部2aの左側開口に対応したフラックスの保持と熱経路のための略円形部材45a、端子主部2aの右側開口に対応したフラックスの保持と熱経路のための略円形部材45b、線状の熱経路のための線状部材45c、および両部材45a,45bの連結部材45dを備える。そして、図11Cで示すように、円形部材45aは線状の錫メッキ銅線を1回ないし数回巻回してなり、端子主部2aの左側開口に配置される。円形部材45bは、同様に線状の錫メッキ銅線を1回ないし数回巻回してなり、端子主部2aの右側開口に配置される。線状部材45cは撚り線11中に挿入される。連結部材45dは、上記2つの略円形部材45a,45bを連結する。   Therefore, as shown in FIG. 11A, a tin-plated copper wire is used as the heat transfer member 45. As shown in FIG. 11B, the heat transfer member 45 holds the flux corresponding to the left opening of the terminal main portion 2a and the substantially circular member 45a for the heat path, and holds the flux corresponding to the right opening of the terminal main portion 2a. A substantially circular member 45b for a heat path, a linear member 45c for a linear heat path, and a connecting member 45d of both members 45a and 45b are provided. As shown in FIG. 11C, the circular member 45a is formed by winding a linear tin-plated copper wire once or several times, and is disposed in the left opening of the terminal main portion 2a. Similarly, the circular member 45b is formed by winding a linear tin-plated copper wire once or several times, and is arranged in the right opening of the terminal main portion 2a. The linear member 45 c is inserted into the stranded wire 11. The connecting member 45d connects the two substantially circular members 45a and 45b.
この状態で、図12Aで示すように、端子主部2aと撚り線11の端部11aとに加熱手段41A,41B;42A,42Bを配置し、次いで、これら加熱手段41A,41B;42A,42Bにより図12Bで示すように端子主部2aとその内側の撚り線11、および撚り線11の端部11aを加熱する。なお、この加熱手段としては電極を配置し、この電極に電流を流すことで加熱する手段とか、端子主部2a等をコイルで囲み、このコイルに電流を流すことで電磁誘導加熱する手段で構成することができる。   In this state, as shown in FIG. 12A, heating means 41A, 41B; 42A, 42B are arranged on the terminal main portion 2a and the end portion 11a of the stranded wire 11, and then these heating means 41A, 41B; 42A, 42B. Thus, as shown in FIG. 12B, the terminal main portion 2a, the stranded wire 11 inside thereof, and the end portion 11a of the stranded wire 11 are heated. In addition, as this heating means, an electrode is arranged, and a means for heating by passing an electric current through this electrode, or a means for surrounding the terminal main part 2a etc. with a coil and a means for electromagnetic induction heating by passing an electric current through this coil can do.
上記加熱による熱伝達部材45の熱伝達経路を、図12Cを参照して説明すると、撚り線11に挿入した線状部材45cは当該線状部材45cに沿う点線B1の経路で熱を伝達する。また、線状部材45dの熱は点線B2の経路で示すように一方の略円形部材45bに伝達され、次いで、もう一方の略円形部材45aに伝達される。   The heat transfer path of the heat transfer member 45 by the heating will be described with reference to FIG. 12C. The linear member 45c inserted into the stranded wire 11 transfers heat along the dotted line B1 along the linear member 45c. Further, the heat of the linear member 45d is transmitted to one substantially circular member 45b as shown by the path of the dotted line B2, and then transmitted to the other substantially circular member 45a.
このような熱伝達により、フラックスと半田とを導入すると、図12Dで示すように端子主部2aの左側開口は半田46Aで、また、端子主部2aの右側開口は半田46Bでそれぞれ密閉されたようにして半田付けされる。   When flux and solder are introduced by such heat transfer, the left side opening of the terminal main portion 2a is sealed with solder 46A and the right side opening of the terminal main portion 2a is sealed with solder 46B as shown in FIG. 12D. In this way, it is soldered.
以上からこの実施形態では端子主部2a内に水分が浸入しなくなり、端子主部2a内での撚り線11の半田付けの信頼性が向上する。   As described above, in this embodiment, moisture does not enter the terminal main portion 2a, and the soldering reliability of the stranded wire 11 in the terminal main portion 2a is improved.
1 電線
1b 細線
11 撚り線
2 端子
3 熱伝達部材
31 熱伝達本体
32 熱伝達中継部
DESCRIPTION OF SYMBOLS 1 Electric wire 1b Fine wire 11 Stranded wire 2 Terminal 3 Heat transfer member 31 Heat transfer main body 32 Heat transfer relay part

Claims (2)

  1. 電線端部を端子内側に装着して半田付けする電線端部の端子接続構造であって、当該端子内側に装着された上記電線端部内には該電線より高い熱伝導率の金属からなる熱伝達部材が半田付け時の高熱経路を形成するよう線状に挿入されており、この挿入状態の端子内側の電線端部内に上記高熱経路を介して半田が導入されており、
    上記熱伝達部材として、その表面に所要高温で溶融する金属メッキ層が形成されているピンを用いた、ことを特徴とする電線端部の端子接続構造。
    It is a terminal connection structure of the end of the wire that is soldered by attaching the end of the wire to the inside of the terminal, and heat transfer made of a metal having a higher thermal conductivity than the wire in the end of the wire attached to the inside of the terminal The member is inserted linearly so as to form a high heat path at the time of soldering, and solder is introduced through the high heat path into the wire end inside the terminal in this inserted state ,
    A terminal connection structure for an end portion of an electric wire , wherein a pin having a metal plating layer that melts at a required high temperature is formed on the surface of the heat transfer member .
  2. 筒状の端子主部と、これに連成した平板状の接続片とを含む端子に対してその端子主部内側に複数の線を含む電線端部を挿入すると共に、当該端子主部内側に上記電線端部の半田付けを行う端子接続構造の形成方法であって、
    上記端子主部外周と上記端子主部外に露出する電線端部外周との各部に加熱手段をそれぞれ接触または非接触に配置する第1ステップと、
    上記加熱手段により上記各部を加熱する第2ステップと、
    上記端子主部内側に半田とフラックスとを導入する第3ステップと、を含み、さらに、
    上記第1ステップと第2ステップとの間に、上記端子主部内に電線端部よりも熱伝導率が高い線状熱伝達部材を挿入する第4ステップを含み、
    上記第4ステップの熱伝達部材は、上記端子主部の一方と他方それぞれの開口に対応する位置でかつ当該開口に対応した形状の第1、第2部材と、上記両第1、第2部材を連結する第3部材とを含む、ことを特徴とする電線端部の端子接続構造の形成方法。


    Insert a wire end including a plurality of wires inside the terminal main part with respect to a terminal including a cylindrical terminal main part and a flat connecting piece coupled to the cylindrical terminal main part, and inside the terminal main part. A method for forming a terminal connection structure for soldering the end of the wire,
    A first step of placing heating means in contact or non-contact with each part of the outer periphery of the terminal main part and the outer periphery of the end of the electric wire exposed outside the terminal main part,
    A second step of heating each part by the heating means;
    A third step of introducing the solder and flux inside the terminal main unit, only contains further
    Between the first step and the second step, including a fourth step of inserting a linear heat transfer member having a higher thermal conductivity than the end of the electric wire into the terminal main part,
    The heat transfer member in the fourth step includes first and second members having positions corresponding to the openings of one and the other of the terminal main portion and shapes corresponding to the openings, and both the first and second members. A method for forming a terminal connection structure for an end portion of an electric wire , comprising: a third member that connects the two .


JP2010200802A 2010-03-17 2010-09-08 Terminal connection structure of wire end and method for forming the same Active JP5646258B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010060284 2010-03-17
JP2010060284 2010-03-17
JP2010200802A JP5646258B2 (en) 2010-03-17 2010-09-08 Terminal connection structure of wire end and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010200802A JP5646258B2 (en) 2010-03-17 2010-09-08 Terminal connection structure of wire end and method for forming the same

Publications (2)

Publication Number Publication Date
JP2011216459A JP2011216459A (en) 2011-10-27
JP5646258B2 true JP5646258B2 (en) 2014-12-24

Family

ID=44945965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010200802A Active JP5646258B2 (en) 2010-03-17 2010-09-08 Terminal connection structure of wire end and method for forming the same

Country Status (1)

Country Link
JP (1) JP5646258B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552006B2 (en) * 2010-05-31 2014-07-16 田淵電機株式会社 Terminal connection structure at the end of the wire
JP5906543B2 (en) * 2012-04-05 2016-04-20 矢崎総業株式会社 Electric wire with crimp terminal
JP6181934B2 (en) * 2013-02-12 2017-08-16 田淵電機株式会社 Terminal connection structure and manufacturing method thereof
CN106537691B (en) 2014-07-31 2020-07-24 田渊电机株式会社 Terminal connection structure and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131487Y2 (en) * 1981-05-29 1986-09-12
JPS62147669A (en) * 1985-12-20 1987-07-01 Hideyo Fujii Method of connecting insulated wire to solderless terminal and the solderless terminal
JPH0696830A (en) * 1991-03-20 1994-04-08 Rohm Co Ltd Reflow heater for electric parts
JP5190306B2 (en) * 2008-06-24 2013-04-24 田淵電機株式会社 Method of joining terminal and electric wire and electrode used therefor
JP2010020980A (en) * 2008-07-09 2010-01-28 Autonetworks Technologies Ltd Electric wire with terminal metal fitting, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011216459A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
US2759161A (en) Electrical connector and method
JP2010020980A (en) Electric wire with terminal metal fitting, and manufacturing method thereof
JP5646258B2 (en) Terminal connection structure of wire end and method for forming the same
WO2006106971A1 (en) Conductor and wire harness
JP5369637B2 (en) Electric wire with terminal fitting and method for manufacturing the same
JP2014099407A (en) Crimp terminal, connection structure and connector
US9899748B2 (en) Terminal connection structure and method for producing same
JP2010522421A (en) Thermal fuse
JP2010009794A (en) Joining method of terminal and electric wire and electrode used for this
JP5116734B2 (en) Terminal, motor and electrical equipment
WO2013005548A1 (en) Electrical cable having terminal and method for manufacturing electrical cable having terminal
CN110021828B (en) Terminal-equipped electric wire and method for manufacturing terminal-equipped electric wire
JP5237143B2 (en) Terminals for electric wire connection, electric wire connection structure, and connection method of electric wires and terminals
JP2010225529A (en) Electric wire with terminal metal fitting
US10515739B2 (en) Conductive member and method for producing conductive member
KR20150120846A (en) Electric wire connecting structure, a method of manufacturing the electric wire connecting structure, a connector comprising the electric wire connecting structure and a crimp die
JP2010176880A (en) Electric wire with terminal fitting
JP4961444B2 (en) Al wire soldering method and terminal
JP6023410B2 (en) Fusible link
JP2006331765A (en) Winding-terminal connection method
JP5552006B2 (en) Terminal connection structure at the end of the wire
JP2011124178A (en) Electric wire with terminal fitting, and its manufacturing method
JP6585884B2 (en) Manufacturing method of electric wire with terminal
JP2017152094A (en) Terminal member
WO2011007825A1 (en) Electrical wire and manufacturing method therefor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5646258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250