JP5637300B2 - Sample solution concentration measuring method and sample solution concentration measuring apparatus - Google Patents

Sample solution concentration measuring method and sample solution concentration measuring apparatus Download PDF

Info

Publication number
JP5637300B2
JP5637300B2 JP2013507602A JP2013507602A JP5637300B2 JP 5637300 B2 JP5637300 B2 JP 5637300B2 JP 2013507602 A JP2013507602 A JP 2013507602A JP 2013507602 A JP2013507602 A JP 2013507602A JP 5637300 B2 JP5637300 B2 JP 5637300B2
Authority
JP
Japan
Prior art keywords
reaction tank
reaction
sample solution
solution
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013507602A
Other languages
Japanese (ja)
Other versions
JPWO2012133394A1 (en
Inventor
益生 中川
益生 中川
敬祐 櫻武
敬祐 櫻武
哲平 石丸
哲平 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOWA FINE TECH CO., LTD.
Kake Educational Institution
Original Assignee
KYOWA FINE TECH CO., LTD.
Kake Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOWA FINE TECH CO., LTD., Kake Educational Institution filed Critical KYOWA FINE TECH CO., LTD.
Priority to JP2013507602A priority Critical patent/JP5637300B2/en
Publication of JPWO2012133394A1 publication Critical patent/JPWO2012133394A1/en
Application granted granted Critical
Publication of JP5637300B2 publication Critical patent/JP5637300B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/62Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving urea

Description

本発明は、試料溶液と反応剤溶液とを混合させることにより生じた化学発光を計測することにより試料溶液の濃度を定量する試料溶液濃度測定方法、及びそれに用いられる試料溶液濃度測定装置に関する。   The present invention relates to a sample solution concentration measuring method for quantifying the concentration of a sample solution by measuring chemiluminescence generated by mixing the sample solution and the reactant solution, and a sample solution concentration measuring apparatus used therefor.

人工透析医療においては、ダイアライザと呼ばれる、内径100μm程度の半透膜でできた管状の中空糸集合体を用いている。血中に存在する尿素等の溶質は、ダイアライザを通過する過程で透析液側に浸透することにより体外に除去される。従来、血中の尿素量は、採血することにより分析され、血中尿素窒素(Blood Urea Nitrogen、以下「BUN」と略記することがある。)値として評価されていた。   In the artificial dialysis medical treatment, a tubular hollow fiber assembly called a dialyzer made of a semipermeable membrane having an inner diameter of about 100 μm is used. Solutes such as urea present in the blood are removed from the body by permeating into the dialysate side while passing through the dialyzer. Conventionally, the amount of urea in blood has been analyzed by collecting blood, and has been evaluated as a value of blood urea nitrogen (hereinafter sometimes abbreviated as “BUN”).

尿素を含む試料溶液中の尿素濃度を測定する方法として、尿素と反応して発色する試薬を用い、その試薬の標準色と比較することにより尿素濃度を測定する比色法、尿素に特異的に働く酵素であるウレアーゼをガラスビーズの周囲に固定化し、尿素の加水分解反応に伴う反応熱を測定することにより尿素濃度を測定する酵素サーミスタ法、尿素と反応して化学発光を生じる酸化剤、例えば、次亜ハロゲン酸塩を用い、その化学発光(Chemiluminescence、以下「CL」と略記することがある。)の強度から尿素濃度を測定する化学発光法等が知られている。   As a method for measuring the urea concentration in a sample solution containing urea, a colorimetric method that measures the urea concentration by using a reagent that develops color by reacting with urea and comparing it with the standard color of the reagent, specific to urea An enzyme thermistor method that measures urea concentration by immobilizing urease, which is a working enzyme, around glass beads and measuring the heat of reaction accompanying the hydrolysis reaction of urea, an oxidizing agent that reacts with urea to produce chemiluminescence, for example A chemiluminescence method for measuring urea concentration based on the intensity of chemiluminescence (hereinafter sometimes abbreviated as “CL”) using hypohalite is known.

比色法では、尿素と反応して変色する試薬の調製に手間がかかり、測定誤差の原因の一つにもなるとともに、測定が終わるまでに時間がかかってしまう問題があった。また、経時的に濃度変化をモニタリングするには不向きであった。   In the colorimetric method, there is a problem in that it takes time to prepare a reagent that changes color by reacting with urea, which is one of the causes of measurement errors and that it takes time to complete the measurement. Moreover, it was not suitable for monitoring the change in concentration over time.

酵素サーミスタ法では、測定を繰り返すごとに酵素が劣化し、酵素の経時変化が大きく、長期間安定して測定することが困難であった。尿素濃度のモニタリングに用いることはできるが、複数回の測定に用いるには精度的に問題があった。   In the enzyme thermistor method, the enzyme deteriorates each time the measurement is repeated, the change with time of the enzyme is large, and it is difficult to measure stably for a long period of time. Although it can be used for monitoring the urea concentration, there is a problem in accuracy when used for multiple measurements.

化学発光は、尿素と次亜ハロゲン酸イオンが反応する過程で生成される励起窒素が基底状態に戻る際に生じるとされている(非特許文献1)。化学発光法は、尿素濃度をリアルタイムで測定することが可能であるため、試料溶液が尿素を含む試料溶液である場合には、人工透析医療において透析治療の終了すべきタイミングを知る手段として用いることができる。例えば、非特許文献2では、BUN値を知る目安として、透析廃液中の尿素濃度を測定することが記載されている。具体的には、透析廃液中の尿素と、次亜臭素酸ナトリウムとが反応することにより生じた化学発光を測定することで、尿素濃度の測定を行う方法について記載されている。しかしながら、化学発光効率や再現性が必ずしも良好ではなく改善が求められていた。   Chemiluminescence is said to occur when excited nitrogen generated in the process of urea and hypohalite ion reaction returns to the ground state (Non-patent Document 1). Since the chemiluminescence method can measure the urea concentration in real time, if the sample solution is a sample solution containing urea, it should be used as a means of knowing when to end dialysis treatment in artificial dialysis medicine. Can do. For example, Non-Patent Document 2 describes measuring the urea concentration in the dialysis waste liquid as a guide for knowing the BUN value. Specifically, it describes a method for measuring urea concentration by measuring chemiluminescence generated by the reaction of urea in dialysis waste liquid with sodium hypobromite. However, chemiluminescence efficiency and reproducibility are not always good, and improvements have been demanded.

また、ガラス管を渦巻き状に加工した反応容器を用いた化学発光測定方法(フローインジェクション法)が知られている。これは、ポンプ等により試料溶液及び反応剤溶液を反応容器の導入口に送り、該導入口で試料溶液と反応剤溶液とが混合されるとともに渦巻き管内に導入され、生じた化学発光を計測する方法である。しかしながら、試料溶液と反応剤溶液とを短時間に均一に混合できない場合があり、特に、試料溶液と反応剤溶液とを混合した際に、化学発光寿命が短い反応が生じる場合あるいは気泡が発生するような反応が生じる場合には、化学発光強度の測定の再現性が良好ではなく改善が求められていた。   In addition, a chemiluminescence measuring method (flow injection method) using a reaction vessel obtained by processing a glass tube into a spiral shape is known. This is because the sample solution and the reactant solution are sent to the inlet of the reaction vessel by a pump or the like, and the sample solution and the reactant solution are mixed and introduced into the spiral tube at the inlet, and the generated chemiluminescence is measured. Is the method. However, there are cases where the sample solution and the reactant solution cannot be mixed uniformly in a short time. Especially when the sample solution and the reactant solution are mixed, a reaction with a short chemiluminescence lifetime occurs or bubbles are generated. When such a reaction occurs, the reproducibility of the measurement of the chemiluminescence intensity is not good and an improvement has been demanded.

特許文献1には、シリンダー内で生じた化学発光を計測する化学発光測定方法であって、シリンダー内でピストンを移動させることにより試料溶液又は反応剤溶液の一方をシリンダー内に吸入し、続いて他方の溶液を吸入し、他方の溶液による噴流によってシリンダー内に乱流を発生させて試料溶液と反応剤溶液とを均一に混合させることにより生じた化学発光を計測することを特徴とする化学発光測定方法が記載されている。この方法によれば、発光効率が高く再現性の良い化学発光測定を行うことができるとされている。しかしながら、上記方法では、多数回の繰り返し使用によりピストン摺動部から液漏れが生じるためしばしばピストンの交換が必要なこと、反応剤溶液の使用量が多くなるため多量の反応剤溶液を備蓄する必要があること、精密なピストン摺動機構が必要なためコスト高となることがあり、改善が求められていた。   Patent Document 1 discloses a chemiluminescence measurement method for measuring chemiluminescence generated in a cylinder, in which one of a sample solution and a reactant solution is sucked into the cylinder by moving a piston in the cylinder, and then Chemiluminescence characterized by inhaling the other solution and generating a turbulent flow in the cylinder by the jet of the other solution to uniformly mix the sample solution and the reactant solution. The measurement method is described. According to this method, chemiluminescence measurement with high luminous efficiency and good reproducibility can be performed. However, in the above-described method, liquid leakage occurs from the piston sliding part due to repeated use many times, so that it is often necessary to replace the piston, and a large amount of the reagent solution is used, so a large amount of the reagent solution needs to be stocked. In addition, since a precise piston sliding mechanism is required, the cost may be increased, and improvement has been demanded.

また、特許文献2には、シリコン基板の表面に異方性エッチングにより形成された複数の独立した反応チャンバと、該シリコン基板の表面に陽極接合され前記反応チャンバを密閉する平板とからなる、ことを特徴とする生化学反応用マイクロリアクタについて記載されている。これによれば、例えば1000以上の多数の生化学反応を同時に並列的に行うことができ、かつ、単なる分析だけではなく、蛋白質合成などの物質合成反応をもセル上で行うことができるとされている。また、生化学反応を光学的に観察することができ、発光強度をモニタすることができるとされている。しかしながら、最終的に反応生成物を得ることを目的とする上記マイクロリアクタでは、各々の独立した反応チャンバ内において短時間で均一に混合できない場合があった。特に、試料溶液と反応剤溶液とを混合した際に、化学発光寿命が短い反応が生じる場合あるいは気泡が発生するような反応が生じる場合には、各々の独立した反応チャンバ内における化学発光反応の再現性が必ずしも良好ではなく改善が求められていた。   Patent Document 2 includes a plurality of independent reaction chambers formed by anisotropic etching on the surface of a silicon substrate, and a flat plate that is anodically bonded to the surface of the silicon substrate and seals the reaction chamber. The bioreactor microreactor is characterized by the following: According to this, for example, a large number of biochemical reactions of 1000 or more can be performed simultaneously in parallel, and not only simple analysis but also substance synthesis reactions such as protein synthesis can be performed on the cell. ing. In addition, it is said that biochemical reactions can be optically observed and the emission intensity can be monitored. However, in the above microreactor aiming at finally obtaining a reaction product, there are cases where uniform mixing cannot be performed in a short time in each independent reaction chamber. In particular, if a reaction with a short chemiluminescence lifetime occurs or a reaction that generates bubbles occurs when the sample solution and the reagent solution are mixed, the chemiluminescence reaction in each independent reaction chamber occurs. The reproducibility was not always good, and improvement was demanded.

国際公開第2009/035008号International Publication No. 2009/035008 特開平10−337173号公報JP 10-337173 A

Xincheng Hu他,「Bull. Chem. Soc. Jpn.」,1996年,第69巻,第5号,p.1179-1185Xincheng Hu et al., “Bull. Chem. Soc. Jpn.”, 1996, Vol.69, No.5, p.1179-1185 岡林徹他,「臨牀透析」,2006年,第22巻,第8号,p.1199-1204Toru Okabayashi et al., “Imperial Dialysis”, 2006, Vol. 22, No. 8, p.1199-1204

本発明は上記課題を解決するためになされたものであり、試料溶液と反応剤溶液との混合により生じた化学発光強度を再現性良く測定することにより試料溶液の濃度を精度良く定量することのできる測定方法を提供することを目的とするものである。また、そのような測定方法の好適な用途を提供することを目的とするものである。   The present invention has been made to solve the above-mentioned problems, and it is possible to accurately determine the concentration of a sample solution by measuring the chemiluminescence intensity generated by mixing the sample solution and the reagent solution with good reproducibility. It aims at providing the measuring method which can be performed. Moreover, it aims at providing the suitable use of such a measuring method.

上記課題は、反応容器内で生じた化学発光強度を計測することにより試料溶液の濃度を定量する試料溶液濃度測定方法であって、前記反応容器が、噴出孔及び排出孔を有する反応槽が2つ以上直列に接続されてなるものであり、それぞれの前記反応槽の断面積(S1)と前記噴出孔の断面積(S2)との断面積比(S1/S2)が3以上であり、試料溶液及び反応剤溶液を第1の反応槽の噴出孔から第1の反応槽に導入し、導入された溶液による噴流によって第1の反応槽内に乱流を発生させて該試料溶液と該反応剤溶液とを混合し、得られた第1の混合溶液を第1の反応槽の排出孔を通じて第2の反応槽の噴出孔から第2の反応槽内に導入し、前記第1の混合溶液による噴流によって第2の反応槽内に乱流を発生させて該第1の混合溶液を更に混合し、前記反応容器が、第2の反応槽の下流に更に1つ又は複数の追加の反応槽が繰返し配置された構成を任意的に有していて、第2の反応槽内における上記混合と同様に混合溶液を更に混合してもよく、前記反応容器内で生じた化学発光強度を計測することを特徴とする試料溶液濃度測定方法を提供することによって解決される。   An object of the present invention is to provide a sample solution concentration measurement method for quantifying the concentration of a sample solution by measuring the chemiluminescence intensity generated in the reaction vessel, wherein the reaction vessel has 2 reaction tanks each having an ejection hole and a discharge hole. Two or more are connected in series, and the cross-sectional area ratio (S1 / S2) between the cross-sectional area (S1) of each of the reaction vessels and the cross-sectional area (S2) of the ejection hole is 3 or more, The solution and the reactant solution are introduced into the first reaction tank from the ejection hole of the first reaction tank, and a turbulent flow is generated in the first reaction tank by the jet of the introduced solution to react the sample solution with the sample solution. The first mixed solution obtained is mixed into the second reaction tank through the discharge hole of the second reaction tank through the discharge hole of the first reaction tank, and the first mixed solution is mixed with the agent solution. The turbulent flow is generated in the second reaction tank by the jet flow of And the reaction vessel optionally has a configuration in which one or more additional reaction vessels are repeatedly arranged downstream of the second reaction vessel, and the above in the second reaction vessel. The mixed solution may be further mixed in the same manner as the mixing, and this is solved by providing a sample solution concentration measuring method characterized by measuring the chemiluminescence intensity generated in the reaction vessel.

このとき、前記試料溶液が尿素を含む試料溶液であることが好適であり、前記試料溶液が透析廃液であることが好適である。前記反応剤溶液が次亜ハロゲン酸イオンを含む反応剤溶液であることも好適である。   At this time, it is preferable that the sample solution is a sample solution containing urea, and it is preferable that the sample solution is a dialysis waste liquid. It is also preferable that the reactant solution is a reactant solution containing hypohalite ions.

更に上記課題は、反応容器内で生じた化学発光強度を計測することにより試料溶液の濃度を定量する試料溶液濃度測定装置であって、噴出孔及び排出孔を有する反応槽が2つ以上直列に接続されてなる反応容器を備え、それぞれの前記反応槽の断面積(S1)と該噴出孔の断面積(S2)との断面積比(S1/S2)が3以上であり、かつその反応槽の少なくとも一部が透明部を有して該透明部の外側に光検出器が配置され、試料溶液及び反応剤溶液を第1の反応槽の噴出孔から第1の反応槽に導入する手段を備え、導入された溶液による噴流によってそれぞれの前記反応槽内に乱流を発生させて、該試料溶液と該反応剤溶液とを混合することにより前記反応容器内で生じた化学発光強度を計測することを特徴とする試料溶液濃度測定装置を提供することによっても解決される。   Furthermore, the above-described problem is a sample solution concentration measuring apparatus for quantifying the concentration of a sample solution by measuring the intensity of chemiluminescence generated in a reaction vessel, wherein two or more reaction tanks having ejection holes and discharge holes are connected in series. A reaction vessel connected to each other, the cross-sectional area ratio (S1 / S2) between the cross-sectional area (S1) of each of the reaction vessels and the cross-sectional area (S2) of the ejection holes is 3 or more, and the reaction vessel A means for introducing a sample solution and a reagent solution into the first reaction tank from the ejection holes of the first reaction tank, wherein at least a part of the transparent part has a transparent part, and a photodetector is disposed outside the transparent part. A turbulent flow is generated in each of the reaction tanks by a jet of the introduced solution, and the chemiluminescence intensity generated in the reaction vessel is measured by mixing the sample solution and the reactant solution. A sample solution concentration measuring device characterized by Also solved by subjecting.

このとき、前記噴出孔の軸と前記排出孔の軸との交わる角度αが15度以上165度以下となる反応槽を少なくとも1つ有することが好適であり、尿素濃度を定量することが本発明の好適な実施態様である。また、上記試料溶液濃度測定装置により透析廃液中の尿素濃度を定量する人工透析装置が本発明の好適な実施態様である。   At this time, it is preferable to have at least one reaction tank in which an angle α between the axis of the ejection hole and the axis of the discharge hole is 15 degrees or more and 165 degrees or less, and quantifying the urea concentration is the present invention. This is a preferred embodiment. An artificial dialysis apparatus that quantifies the urea concentration in the dialysis waste liquid by the sample solution concentration measuring apparatus is a preferred embodiment of the present invention.

本発明の試料溶液濃度測定方法では、各反応槽内に導入された溶液による噴流によって試料溶液と反応剤溶液との混合が繰り返される。これにより、該混合により生じた化学発光強度を再現性良く測定できるため、試料溶液の濃度を精度良く定量することができる。化学発光の反応速度が速い場合でも化学発光強度を再現性良く測定することができる。特に、試料溶液と反応剤溶液とを混合した際に、化学発光反応に伴って気泡が発生する場合であっても、化学発光強度を再現性良く測定することができる。また、試料溶液が尿素を含む試料溶液である場合、リアルタイムで尿素濃度を測定することができるため、透析時間の終了を知ることのできる人工透析装置として好適に用いることができる。   In the sample solution concentration measuring method of the present invention, the mixing of the sample solution and the reactant solution is repeated by the jet of the solution introduced into each reaction tank. Thereby, since the chemiluminescence intensity generated by the mixing can be measured with high reproducibility, the concentration of the sample solution can be accurately quantified. Even when the reaction rate of chemiluminescence is fast, the chemiluminescence intensity can be measured with good reproducibility. In particular, the chemiluminescence intensity can be measured with good reproducibility even when bubbles are generated along with the chemiluminescence reaction when the sample solution and the reactant solution are mixed. Further, when the sample solution is a sample solution containing urea, the urea concentration can be measured in real time, so that it can be suitably used as an artificial dialysis apparatus that can know the end of the dialysis time.

本発明の試料溶液濃度測定装置の一例を示した概略平面図である。It is the schematic plan view which showed an example of the sample solution concentration measuring apparatus of this invention. 本発明の試料溶液濃度測定装置の一例を示した概略側面図である。It is the schematic side view which showed an example of the sample solution concentration measuring apparatus of this invention. 実施例1で得られた化学発光応答波形図である。2 is a chemiluminescence response waveform diagram obtained in Example 1. FIG. 実施例1において尿素水溶液の濃度を変更した際に得られた化学発光応答波形図である。FIG. 3 is a chemiluminescence response waveform diagram obtained when the concentration of an aqueous urea solution was changed in Example 1. 実施例1において化学発光寿命τの算出に用いた化学発光応答波形図である。FIG. 2 is a chemiluminescence response waveform diagram used for calculation of chemiluminescence lifetime τ in Example 1. 実施例1で得られた尿素濃度と化学発光強度との相関図である。FIG. 3 is a correlation diagram between the urea concentration obtained in Example 1 and the chemiluminescence intensity. 実施例2で得られた化学発光応答波形図である。6 is a chemiluminescence response waveform diagram obtained in Example 2. FIG. 比較例1で得られた化学発光応答波形図である。6 is a chemiluminescence response waveform diagram obtained in Comparative Example 1. FIG. 各反応槽A〜Gで生じた化学発光強度を測定する装置の概略平面図である。It is a schematic plan view of the apparatus which measures the chemiluminescence intensity which arose in each reaction tank AG. 各反応槽A〜Gで生じた化学発光強度を測定して得られた化学発光応答波形図である。It is a chemiluminescence response waveform diagram obtained by measuring the chemiluminescence intensity generated in each reaction vessel A-G.

以下、図面を参照しながら本発明をより具体的に説明する。図1は、本発明で用いられる試料溶液濃度測定装置1の一例を示した概略平面図であり、図2は、前記装置1の一例を示した概略側面図である。図1では、第1の反応槽Aから第7の反応槽Gまでの噴出孔及び排出孔を有する反応槽が直列に接続されてなる反応容器2を備えている。前記各反応槽は反応容器2の上面側に透明部を有しており、図2に示されるように、反応容器2の上面と対向する位置に光検出器24が配置されている。試料溶液導入口3と第1の反応槽Aは配管7で接続されている。試料溶液は、ポンプ5を作動させることにより試料溶液導入口3から配管7を通って第1の反応槽Aの噴出孔9から第1の反応槽A内に導入される。一方、反応剤溶液導入口4と第1の反応槽Aは配管8で接続されている。反応剤溶液は、ポンプ6を作動させることにより反応剤溶液導入口4から配管8を通って第1の反応槽Aの噴出孔9から第1の反応槽A内に導入される。そして、第1の反応槽A内に導入された溶液による噴流によって第1の反応槽A内で乱流が発生し、試料溶液と反応剤溶液とが均一に混合されて第1の混合溶液が得られる。得られた第1の混合溶液は、第1の反応槽Aの排出孔10を通じて第2の反応槽Bの噴出孔11から第2の反応槽B内に導入される。前記導入された第1の混合溶液による噴流によって、第2の反応槽B内で乱流が発生し、第1の混合溶液が更に混合されて、第2の混合溶液が得られる。次いで、得られた第2の混合溶液は、第2の反応槽Bの排出孔12の下流に設けられた第3の反応槽Cから第7の反応槽Gまでのそれぞれの反応槽内において、更に混合される。このようにして、反応容器2内で試料溶液と反応剤溶液との混合により生じた化学発光強度が光検出器24により測定され、試料溶液の濃度を定量することができる。   Hereinafter, the present invention will be described more specifically with reference to the drawings. FIG. 1 is a schematic plan view showing an example of a sample solution concentration measuring apparatus 1 used in the present invention, and FIG. 2 is a schematic side view showing an example of the apparatus 1. In FIG. 1, a reaction vessel 2 is provided in which reaction vessels having ejection holes and discharge holes from the first reaction vessel A to the seventh reaction vessel G are connected in series. Each reaction vessel has a transparent portion on the upper surface side of the reaction vessel 2, and a photodetector 24 is arranged at a position facing the upper surface of the reaction vessel 2 as shown in FIG. 2. The sample solution inlet 3 and the first reaction tank A are connected by a pipe 7. The sample solution is introduced into the first reaction tank A from the ejection hole 9 of the first reaction tank A through the pipe 7 from the sample solution introduction port 3 by operating the pump 5. On the other hand, the reactant solution inlet 4 and the first reaction tank A are connected by a pipe 8. The reactant solution is introduced into the first reaction tank A from the ejection hole 9 of the first reaction tank A through the pipe 8 from the reactant solution inlet 4 by operating the pump 6. Then, a turbulent flow is generated in the first reaction tank A by the jet of the solution introduced into the first reaction tank A, and the sample solution and the reactant solution are uniformly mixed, so that the first mixed solution becomes can get. The obtained first mixed solution is introduced into the second reaction tank B from the ejection hole 11 of the second reaction tank B through the discharge hole 10 of the first reaction tank A. A turbulent flow is generated in the second reaction tank B by the jet flow of the introduced first mixed solution, and the first mixed solution is further mixed to obtain a second mixed solution. Next, the obtained second mixed solution is contained in each reaction tank from the third reaction tank C to the seventh reaction tank G provided downstream of the discharge hole 12 of the second reaction tank B. Further mixed. In this way, the chemiluminescence intensity generated by mixing the sample solution and the reagent solution in the reaction vessel 2 is measured by the photodetector 24, and the concentration of the sample solution can be quantified.

本発明の試料溶液濃度測定装置1は、噴出孔及び排出孔を有する反応槽が2つ以上直列に接続されてなる反応容器2を備えている。このような構成とすることで、反応容器2内で生じた化学発光強度の測定の再現性が良好となる。後述する比較例1の結果からも分かるように、反応槽を1つのみ有する反応容器を用いた場合、試料溶液と反応剤溶液との混合により生じた化学発光強度の安定性が良好ではなかった。したがって、噴出孔及び排出孔を有する反応槽が2つ以上直列に接続されてなる反応容器2を採用する意義が大きい。本発明では、前記反応容器2が、第2の反応槽Bの下流に更に1つ又は複数の追加の反応槽が繰返し配置された構成を任意的に有していてもよい。このように、複数の反応槽が繰返し配置されることで、化学発光強度の測定の再現性が良好となる。かかる観点から、本発明で用いられる反応容器2としては、前記反応槽が3つ以上直列に接続されていることが好ましく、4つ以上直列に接続されていることがより好ましく、5つ以上直列に接続されていることが更に好ましい。特に、試料溶液の濃度が低い場合には、接続される反応槽の数が多い方が化学発光強度の測定の再現性が良好となる。   The sample solution concentration measuring apparatus 1 of the present invention includes a reaction vessel 2 in which two or more reaction vessels having ejection holes and discharge holes are connected in series. By setting it as such a structure, the reproducibility of the measurement of the chemiluminescence intensity generated in the reaction vessel 2 becomes good. As can be seen from the results of Comparative Example 1 described later, when a reaction vessel having only one reaction vessel was used, the stability of the chemiluminescence intensity generated by mixing the sample solution and the reactant solution was not good. . Therefore, it is significant to employ the reaction vessel 2 in which two or more reaction vessels having ejection holes and discharge holes are connected in series. In the present invention, the reaction vessel 2 may optionally have a configuration in which one or more additional reaction vessels are repeatedly arranged downstream of the second reaction vessel B. Thus, the reproducibility of the measurement of the chemiluminescence intensity is improved by repeatedly arranging the plurality of reaction vessels. From this point of view, as the reaction vessel 2 used in the present invention, it is preferable that three or more of the reaction vessels are connected in series, more preferably four or more are connected in series, and more than five are connected in series. More preferably, it is connected to. In particular, when the concentration of the sample solution is low, the reproducibility of the measurement of chemiluminescence intensity is better when the number of connected reaction vessels is larger.

本発明で用いられる反応槽の形状は特に限定されない。反応槽の形状は、円筒型であってもよいし、球型であってもよいし、角型であってもよい。攪拌効率が良好である観点から、円筒型又は球型の反応槽が好適に用いられる。本発明で用いられる反応槽の大きさは特に限定されないが、溶液による噴流によって効率良く乱流を発生させるとともに、反応剤溶液の使用量を少なくすることができる観点から、1つの反応槽の容量が300mm以下であることが好ましく、200mm以下であることがより好ましく、100mm以下であることが更に好ましい。The shape of the reaction vessel used in the present invention is not particularly limited. The shape of the reaction vessel may be a cylindrical shape, a spherical shape, or a square shape. From the viewpoint of good stirring efficiency, a cylindrical or spherical reaction vessel is preferably used. The size of the reaction vessel used in the present invention is not particularly limited, but from the viewpoint of efficiently generating turbulent flow by the jet of the solution and reducing the amount of the reactant solution used, the capacity of one reaction vessel Is preferably 300 mm 3 or less, more preferably 200 mm 3 or less, and even more preferably 100 mm 3 or less.

本発明の試料溶液濃度測定装置1は、前記噴出孔の軸と前記排出孔の軸との交わる角度αが15度以上165度以下となる反応槽を少なくとも1つ有することが好ましい。このような構成とすることで、反応容器2内で生じた化学発光強度の測定の安定性が良好となる。この理由について本発明者らは、上流側の反応槽の排出孔から下流側の反応槽の噴出孔に溶液による噴流が導入される際に、該噴流が下流側の反応槽の内壁に衝突することにより、より均一な混合がされるためと推察している。   The sample solution concentration measuring apparatus 1 of the present invention preferably has at least one reaction tank in which an angle α between the axis of the ejection hole and the axis of the discharge hole is 15 degrees or more and 165 degrees or less. By adopting such a configuration, the stability of measurement of the chemiluminescence intensity generated in the reaction vessel 2 becomes good. For this reason, the inventors collide with the inner wall of the downstream reaction tank when the jet of the solution is introduced from the discharge hole of the upstream reaction tank to the ejection hole of the downstream reaction tank. This is presumed to result in more uniform mixing.

本発明の試料溶液濃度測定装置1において、それぞれの前記反応槽の断面積(S1)と前記噴出孔の断面積(S2)との断面積比(S1/S2)が3以上である。ここで、反応槽の断面積(S1)とは、噴出孔から反応槽内に流れ込む水流に対して垂直な面における最大断面積を意味する。断面積比(S1/S2)が3以上であることにより、試料溶液及び反応剤溶液を噴出孔から反応槽内に導入する際に、溶液による噴流が生じて、該噴流によって乱流が発生することとなる。その結果、試料溶液と反応剤溶液とが急激に混合されて均一化するため、生じた化学発光強度を測定する際の化学発光強度の揺らぎが減少してS/N比が向上し、化学発光強度の測定の再現性が良好となる。断面積比(S1/S2)が3未満の場合、試料溶液及び反応剤溶液を噴出孔から反応槽内に導入する際に、乱流と層流が混在してしまい、化学発光強度の測定の再現性が低下するおそれがあり、断面積比(S1/S2)は、4以上であることが好ましく、5以上であることがより好ましい。一方、断面積比(S1/S2)は、通常1000以下である。   In the sample solution concentration measuring apparatus 1 of the present invention, the cross-sectional area ratio (S1 / S2) between the cross-sectional area (S1) of each reaction vessel and the cross-sectional area (S2) of the ejection hole is 3 or more. Here, the cross-sectional area (S1) of the reaction tank means the maximum cross-sectional area in a plane perpendicular to the water flow flowing into the reaction tank from the ejection holes. When the cross-sectional area ratio (S1 / S2) is 3 or more, when the sample solution and the reactant solution are introduced into the reaction tank from the ejection holes, a jet flow is generated by the solution, and a turbulent flow is generated by the jet flow. It will be. As a result, the sample solution and the reactant solution are rapidly mixed and homogenized, so that fluctuations in the chemiluminescence intensity when measuring the generated chemiluminescence intensity are reduced, the S / N ratio is improved, and the chemiluminescence is increased. The reproducibility of strength measurement is good. When the cross-sectional area ratio (S1 / S2) is less than 3, turbulent flow and laminar flow are mixed when the sample solution and the reactant solution are introduced into the reaction vessel from the ejection holes, and the chemiluminescence intensity is measured. The reproducibility may be reduced, and the cross-sectional area ratio (S1 / S2) is preferably 4 or more, and more preferably 5 or more. On the other hand, the cross-sectional area ratio (S1 / S2) is usually 1000 or less.

本発明の試料溶液濃度測定装置1は、各反応槽の少なくとも一部が透明部を有して該透明部の外側に光検出器24が配置されている。この光検出器24により、試料溶液と反応剤溶液とを混合することにより反応容器2内で生じた化学発光が計測される。このように、光検出器24を用いて化学発光強度を測定することにより、試料溶液の濃度を定量することができる。光検出器24の配置としては、各反応槽が有する透明部の外側であれば特に限定されないが、図2に示されるように、反応容器の上面と対向する位置に該上面に接するように配置することが好ましい。   In the sample solution concentration measuring apparatus 1 of the present invention, at least a part of each reaction tank has a transparent portion, and a photodetector 24 is disposed outside the transparent portion. The light detector 24 measures the chemiluminescence generated in the reaction vessel 2 by mixing the sample solution and the reactant solution. Thus, the concentration of the sample solution can be quantified by measuring the chemiluminescence intensity using the photodetector 24. The arrangement of the light detector 24 is not particularly limited as long as it is outside the transparent portion of each reaction tank. However, as shown in FIG. 2, the light detector 24 is arranged so as to be in contact with the upper surface of the reaction vessel. It is preferable to do.

本発明で用いられる反応槽を構成する材料としては特に限定されない。上述のように各反応槽の少なくとも一部が透明部を有する観点から、反応槽を構成する材料は、ガラスであってもよいし、アクリル樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリカーボネート樹脂、ポリエステル樹脂等の透明樹脂であってもよいし、これらを組み合わせたものであってもよい。本発明者らは、反応槽内に導入される試料溶液及び反応剤溶液の流量が低い場合には、反応槽の少なくとも一部がガラスで構成されていた方が得られる化学発光強度の再現性が良好であったことを確認している。一方、成形加工が容易であるとともに安価である観点から、熱可塑性樹脂が好適に用いられる。また、本発明の試料溶液濃度測定装置1を長期間使用することにより、反応槽の内部に仮に汚染物が蓄積した場合であっても、安価で製造することができるため使い捨て使用が可能となる。また、本発明者らは、反応槽を構成する材料がアクリル樹脂等の熱可塑性樹脂である場合には、強アルカリ性である反応剤溶液を反応槽内に一度流通した後に、試料溶液と反応剤溶液との混合により生じた化学発光強度を測定すると、得られる化学発光強度の再現性がより良好になったことを確認している。この理由については必ずしも明らかではないが、強アルカリ性である反応剤溶液により反応槽内の表面が親水化された可能性があることを本発明者らは推察している。   It does not specifically limit as a material which comprises the reaction tank used by this invention. As mentioned above, from the viewpoint that at least a part of each reaction vessel has a transparent part, the material constituting the reaction vessel may be glass, acrylic resin, polystyrene resin, polyvinyl chloride resin, polycarbonate resin, polyester. It may be a transparent resin such as a resin, or a combination of these. When the flow rates of the sample solution and the reactant solution introduced into the reaction vessel are low, the inventors have reproducibility of the chemiluminescence intensity obtained when at least a part of the reaction vessel is made of glass. It was confirmed that was good. On the other hand, a thermoplastic resin is preferably used from the viewpoint of easy molding and low cost. In addition, by using the sample solution concentration measuring apparatus 1 of the present invention for a long period of time, even if contaminants accumulate inside the reaction tank, it can be manufactured at low cost and can be used disposable. . In addition, when the material constituting the reaction vessel is a thermoplastic resin such as an acrylic resin, the present inventors once distribute the strongly alkaline reactant solution into the reaction vessel, and then the sample solution and the reactant. When the chemiluminescence intensity generated by mixing with the solution was measured, it was confirmed that the reproducibility of the obtained chemiluminescence intensity was improved. The reason for this is not necessarily clear, but the present inventors speculate that there is a possibility that the surface in the reaction vessel may be hydrophilized by the reaction solution having strong alkalinity.

本発明の試料溶液濃度測定装置1は、試料溶液及び反応剤溶液を噴出孔9から第1の反応槽Aに導入する手段を備えている。前記導入手段としては、試料溶液及び反応剤溶液を第1の反応槽A内に一定流量で導入できるのであれば特に限定されない。例えば、ダイヤフラムポンプ、ピストンポンプ、プランジャーポンプ、ギヤポンプなどが挙げられる。中でも応答性及び定量性が良好である観点から、ダイヤフラムポンプが好適に用いられる。本発明の試料溶液濃度測定装置1は、前記導入手段以外には機械的な動作手段を特に必要としないため、装置構成が複雑とならず、メンテナンスフリーで試料溶液の濃度を定量することができる。また、故障しにくく安価で本発明の試料溶液濃度測定装置1を製造できる。   The sample solution concentration measuring apparatus 1 of the present invention includes means for introducing the sample solution and the reactant solution into the first reaction tank A from the ejection holes 9. The introduction means is not particularly limited as long as the sample solution and the reactant solution can be introduced into the first reaction tank A at a constant flow rate. For example, a diaphragm pump, a piston pump, a plunger pump, a gear pump, etc. are mentioned. Among these, a diaphragm pump is preferably used from the viewpoint of good responsiveness and quantitativeness. Since the sample solution concentration measuring apparatus 1 of the present invention does not require any mechanical operation means other than the introduction means, the apparatus configuration is not complicated and the concentration of the sample solution can be determined without maintenance. . In addition, the sample solution concentration measuring apparatus 1 of the present invention can be manufactured at a low cost and hardly break down.

本発明の試料溶液濃度測定装置1は、試料溶液の供給が可能な試料溶液供給部を備えていてもよく、例えば、試料溶液が収容されたタンク等が挙げられる。試料溶液の濃度をリアルタイムで定量する観点からは、試料溶液供給部が随時新たな試料溶液を供給できる手段を備えていることが好ましい。後述するように、試料溶液が尿素を含む試料溶液、特に透析廃液である場合は、随時新たな透析廃液を供給できるため、リアルタイムで透析廃液中の尿素濃度を定量することができる。これにより、透析治療の終了すべきタイミングを知ることが可能となる。また、本発明の試料溶液濃度測定装置1は、反応剤溶液の供給が可能な反応剤溶液供給部を備えていてもよく、例えば、反応剤溶液が収容されたタンク等が挙げられる。   The sample solution concentration measuring apparatus 1 of the present invention may include a sample solution supply unit capable of supplying a sample solution, for example, a tank in which the sample solution is stored. From the viewpoint of quantifying the concentration of the sample solution in real time, it is preferable that the sample solution supply unit includes means capable of supplying a new sample solution as needed. As will be described later, when the sample solution is a sample solution containing urea, particularly a dialysis waste liquid, a new dialysis waste liquid can be supplied at any time, so that the urea concentration in the dialysis waste liquid can be quantified in real time. This makes it possible to know the timing at which dialysis treatment should be terminated. Moreover, the sample solution concentration measuring apparatus 1 of the present invention may include a reactant solution supply unit capable of supplying a reactant solution, and includes, for example, a tank in which the reactant solution is accommodated.

本発明の試料溶液濃度測定方法は、噴出孔及び排出孔を有する反応槽が2つ以上直列に接続されてなる反応容器2内で生じた化学発光強度を計測することにより試料溶液の濃度を定量することを特徴とする。本発明のように、反応槽内に導入された溶液による噴流によってそれぞれの反応槽内に乱流を発生させることにより、試料溶液と反応剤溶液とが急激に混合されて均一化するため、生じた化学発光強度を測定する際の化学発光強度の揺らぎが減少してS/N比が向上し、化学発光強度の測定の再現性が良好となる。これにより、試料溶液濃度の定量が可能となる。   In the sample solution concentration measuring method of the present invention, the concentration of the sample solution is quantified by measuring the intensity of chemiluminescence generated in a reaction vessel 2 in which two or more reaction vessels having ejection holes and discharge holes are connected in series. It is characterized by doing. As in the present invention, the turbulent flow is generated in each reaction vessel by the jet of the solution introduced into the reaction vessel, so that the sample solution and the reactant solution are rapidly mixed and uniformed. The fluctuation of the chemiluminescence intensity when measuring the chemiluminescence intensity is reduced, the S / N ratio is improved, and the reproducibility of the chemiluminescence intensity measurement is improved. Thereby, the sample solution concentration can be quantified.

本発明の試料溶液濃度測定方法では、図1に示されるように、試料溶液と反応剤溶液とが第1の反応槽A内に導入され、前記導入された溶液による噴流によって第1の反応槽A内で乱流が発生し、試料溶液と反応剤溶液とが均一に混合されて第1の混合溶液が得られる。得られた第1の混合溶液は、排出孔10を通じて噴出孔11から第2の反応槽B内に導入される。前記導入された第1の混合溶液による噴流によって第2の反応槽B内で乱流が発生し、第1の混合溶液が更に混合されて第2の混合溶液が得られる。得られた第2の混合溶液は、排出孔12の下流に設けられた第3の反応槽Cから第7の反応槽Gまでのそれぞれの反応槽内において、更に混合される。そして、前記混合された溶液は、排出口23から排出される。このようにして、反応容器2内で試料溶液と反応剤溶液との混合により生じた化学発光強度を光検出器24により計測することにより、試料溶液の濃度を定量することができる。   In the sample solution concentration measuring method of the present invention, as shown in FIG. 1, the sample solution and the reactant solution are introduced into the first reaction tank A, and the first reaction tank is jetted by the introduced solution. A turbulent flow is generated in A, and the sample solution and the reactant solution are uniformly mixed to obtain a first mixed solution. The obtained first mixed solution is introduced into the second reaction tank B from the ejection hole 11 through the discharge hole 10. A turbulent flow is generated in the second reaction tank B by the jet flow of the introduced first mixed solution, and the first mixed solution is further mixed to obtain a second mixed solution. The obtained second mixed solution is further mixed in each reaction tank from the third reaction tank C to the seventh reaction tank G provided downstream of the discharge hole 12. Then, the mixed solution is discharged from the discharge port 23. In this way, the concentration of the sample solution can be quantified by measuring the chemiluminescence intensity generated by mixing the sample solution and the reactant solution in the reaction vessel 2 with the photodetector 24.

本発明は、上記説明したように、各反応槽内での混合が繰り返されることで、該混合より生じた化学発光強度を再現性良く測定することができる。特に、試料溶液と反応剤溶液との混合により化学発光を生じる反応に伴って気泡が発生した場合であっても、化学発光強度の測定の再現性が良好となる。本発明者らは、試料溶液と反応剤溶液とを混合した際に気泡が発生すると、化学発光強度の安定性が良好ではなかったことを確認しており、発生した気泡により反応が阻害されたこと、あるいは化学発光が散乱されたことによると推察している。後述する実施例においても、第1の反応槽A内で試料溶液と反応剤溶液とが混合されて第1の混合溶液を得た際に、気泡が発生しているのを本発明者らは目視にて確認している。そして、第1の混合溶液とともに発生した気泡が第2の反応槽Bから第7の反応槽Gまでのそれぞれの反応槽を通過すると、前記発生した気泡を目視にて確認することが困難であった。このことは、各反応槽内において、溶液による噴流によって混合が繰り返されることで、第1の混合溶液とともに発生した気泡が微細化されていったためであると考えられる。一方、後述する比較例1の結果からも分かるように、反応槽を1つのみ有する反応容器を用いた場合、試料溶液と反応剤溶液との混合により生じた化学発光強度の安定性が良好ではなかった。したがって、気泡を発生する反応が伴って生じる際に反応容器2内で生じた化学発光強度を計測することにより試料溶液の濃度を定量することが本発明の好適な実施態様である。   In the present invention, as described above, the mixing in each reaction tank is repeated, whereby the chemiluminescence intensity generated by the mixing can be measured with good reproducibility. In particular, the reproducibility of the measurement of the chemiluminescence intensity is good even when bubbles are generated along with the reaction that generates chemiluminescence by mixing the sample solution and the reactant solution. The present inventors have confirmed that when bubbles are generated when the sample solution and the reactant solution are mixed, the stability of chemiluminescence intensity was not good, and the reaction was inhibited by the generated bubbles. It is presumed that the chemiluminescence is scattered. In the examples described later, the present inventors have shown that bubbles are generated when the sample solution and the reagent solution are mixed in the first reaction tank A to obtain the first mixed solution. It is confirmed visually. When the bubbles generated together with the first mixed solution pass through the respective reaction tanks from the second reaction tank B to the seventh reaction tank G, it is difficult to visually confirm the generated bubbles. It was. This is considered to be because the bubbles generated with the first mixed solution were refined by repeating the mixing by the jet of the solution in each reaction tank. On the other hand, as can be seen from the results of Comparative Example 1 described later, when a reaction vessel having only one reaction vessel is used, the stability of the chemiluminescence intensity generated by mixing the sample solution and the reactant solution is not good. There wasn't. Therefore, it is a preferred embodiment of the present invention to quantify the concentration of the sample solution by measuring the chemiluminescence intensity generated in the reaction vessel 2 when the reaction that generates bubbles occurs.

本発明の試料溶液濃度測定方法は、試料溶液と反応剤溶液との混合により生じる化学発光の反応速度が速い場合でも化学発光強度の測定の再現性が良好である。したがって、そのような試料溶液の濃度を精度良く定量することが可能である。ここで、化学発光の反応速度が速いとは、化学発光寿命τが小さいことを示しており、本発明において化学発光寿命τとは、化学発光強度の減衰が生じているときに、その化学発光強度が1/eの値に減少するまでの時間で定義される。図5の化学発光応答波形図から分かるように、試料溶液と反応剤溶液との混合により生じる化学発光強度は、試料溶液及び反応剤溶液の供給を止めると指数関数的に減衰している。このとき、化学発光寿命τは、片対数グラフにおける縦軸を化学発光強度、横軸を時間とした化学発光応答波形図において、減衰曲線上における化学発光強度が1/eの値に減少するまでの時間により求められる。このように、化学発光の反応速度が速い場合でも化学発光強度の測定の再現性が良好となる理由としては、反応槽内に導入された溶液による噴流によってそれぞれの反応槽内に乱流を発生させることにより、試料溶液と反応剤溶液とが急激に混合されて均一化するため、生じた化学発光強度を測定する際の化学発光強度の揺らぎが減少してS/N比が向上するためと考えられる。したがって、化学発光寿命τが3秒以下である化学発光反応において反応容器2内で生じた化学発光強度を計測することにより試料溶液の濃度を定量する試料溶液濃度測定方法が本発明の好適な実施態様である。   The sample solution concentration measurement method of the present invention has good reproducibility of chemiluminescence intensity measurement even when the reaction rate of chemiluminescence generated by mixing the sample solution and the reagent solution is high. Therefore, the concentration of such a sample solution can be quantified with high accuracy. Here, a fast reaction rate of chemiluminescence indicates that the chemiluminescence lifetime τ is small. In the present invention, the chemiluminescence lifetime τ is the chemiluminescence when the decay of the chemiluminescence intensity occurs. It is defined as the time until the intensity decreases to a value of 1 / e. As can be seen from the chemiluminescence response waveform diagram of FIG. 5, the chemiluminescence intensity generated by mixing the sample solution and the reactant solution attenuates exponentially when the supply of the sample solution and the reactant solution is stopped. At this time, the chemiluminescence lifetime τ is obtained until the chemiluminescence intensity on the decay curve decreases to a value of 1 / e in the chemiluminescence response waveform diagram in which the vertical axis in the semilogarithmic graph is chemiluminescence intensity and the horizontal axis is time. It is calculated by the time. Thus, even when the reaction rate of chemiluminescence is fast, the reason why the reproducibility of the measurement of chemiluminescence intensity is good is that turbulent flow is generated in each reaction tank by a jet of solution introduced into the reaction tank. By doing so, the sample solution and the reactant solution are rapidly mixed and homogenized, so that fluctuations in chemiluminescence intensity when measuring the generated chemiluminescence intensity are reduced and the S / N ratio is improved. Conceivable. Therefore, a preferred embodiment of the present invention is a sample solution concentration measurement method in which the concentration of a sample solution is quantified by measuring the intensity of chemiluminescence generated in the reaction vessel 2 in a chemiluminescence reaction having a chemiluminescence lifetime τ of 3 seconds or less. It is an aspect.

本発明で用いられる試料溶液としては、反応剤溶液と混合することにより化学発光するものであれば特に限定されないが、尿素、アミノ酸、タンパク質等の生体由来含窒素化合物を含む試料溶液であることが好ましく、尿素を含む試料溶液であることがより好ましい。試料溶液が尿素を含む試料溶液である場合、本発明の試料溶液濃度測定装置1は、尿素濃度測定装置として種々の用途に好適に用いることができる。また、本発明で用いられる反応剤溶液としては、試料溶液と混合することにより化学発光するものであれば特に限定されないが、尿素、アミノ酸、タンパク質等の生体由来含窒素化合物を含む試料溶液と反応して化学発光するという観点から、反応剤溶液が次亜ハロゲン酸イオンを含む反応剤溶液であることが好ましい。次亜ハロゲン酸イオンとしては特に限定されず、FO、ClO、BrO、IO等の次亜ハロゲン酸イオンが挙げられるが、次亜臭素酸イオン又は次亜塩素酸イオンから選択される少なくとも1種であることが好ましい。また、次亜ハロゲン酸イオンを含む反応剤溶液は、次亜ハロゲン酸イオンを含む水溶液として予め調製されたものを装置に供給してもよいし、装置内でハロゲンイオンを含む水溶液を電気分解することにより供給してもよい。The sample solution used in the present invention is not particularly limited as long as it is chemiluminescent by mixing with a reactant solution, but it may be a sample solution containing a biologically derived nitrogen-containing compound such as urea, amino acid, protein, etc. A sample solution containing urea is more preferable. When the sample solution is a sample solution containing urea, the sample solution concentration measuring device 1 of the present invention can be suitably used for various applications as a urea concentration measuring device. In addition, the reagent solution used in the present invention is not particularly limited as long as it is chemiluminescent by mixing with the sample solution, but it reacts with the sample solution containing a biologically derived nitrogen-containing compound such as urea, amino acid, protein and the like. From the viewpoint of chemiluminescence, the reactant solution is preferably a reactant solution containing hypohalite ions. The hypohalite ion is not particularly limited, and examples thereof include hypohalite ions such as FO , ClO , BrO and IO −, and are selected from hypobromite ions or hypochlorite ions. It is preferable that there is at least one. The reactant solution containing hypohalite ions may be supplied to the apparatus in advance as an aqueous solution containing hypohalite ions, or the aqueous solution containing halogen ions is electrolyzed in the apparatus. You may supply by.

本発明で用いられる試料溶液が透析廃液である場合、透析廃液中の尿素濃度を測定することを特徴とする人工透析装置として好適に用いることができる。特に、リアルタイムで尿素濃度を測定することができるため、透析治療の終了すべきタイミングを知ることのできる人工透析装置として好適に用いることができる。また、ダイアライザの品質・性能評価に用いることもできるため、本発明の試料溶液濃度測定装置1を用いたダイアライザの性能評価方法も本発明の好適な実施態様である。   When the sample solution used in the present invention is a dialysis waste liquid, it can be suitably used as an artificial dialysis apparatus characterized by measuring the urea concentration in the dialysis waste liquid. In particular, since the urea concentration can be measured in real time, it can be suitably used as an artificial dialysis apparatus that can know the timing at which dialysis treatment should be terminated. Moreover, since it can also be used for quality and performance evaluation of a dialyzer, the method for evaluating the performance of a dialyzer using the sample solution concentration measuring apparatus 1 of the present invention is also a preferred embodiment of the present invention.

以下、実施例を用いて本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1
図1及び図2に示される試料溶液濃度測定装置1(縦:74mm、横:100mm、高さ:74mm)を用いて、試料溶液の濃度測定を行った。図1は試料溶液濃度測定装置1の一例を示した概略平面図であり、図2は前記装置1の概略側面図である。図1に示されるように、反応容器2(縦:40mm、横:40mm、高さ:5mm)は、第1の反応槽Aから第7の反応槽Gまでのそれぞれの円筒型反応槽(直径:3mm、高さ:3mm)が直列に接続された構成を有している。第1の反応槽Aから第7の反応槽Gまでの各反応槽が形成されたアクリル樹脂板の上面と下面にガラス板を配置した。これにより、前記各反応槽の上面と下面はガラスからなり、前記各反応槽の側面はアクリル樹脂からなる構成となった。第1の反応槽Aから第7の反応槽Gまでのそれぞれの反応槽には、噴出孔(内径:1mm)及び排出孔(内径:1mm)が設けられている。前記各反応槽の断面積(S1)と該噴出孔の断面積(S2)との断面積比(S1/S2)は9であった。第1の反応槽Aの排出孔10と第2の反応槽Bの噴出孔11とが細い通路を介して接続され、第2の反応槽Bの排出孔12の下流には更に第3の反応槽Cから第7の反応槽Gまでのそれぞれの反応槽が直列に接続されている。このとき、各反応槽における角度αは、反応槽Aは90度、反応槽Bは120度、反応槽Cは60度、反応槽Dは180度、反応槽Eは60度、反応槽Fは120度、反応槽Gは180度であった。図2に示されるように、反応容器2の上面と対向する位置に光検出器24である光センサモジュールを該上面と接するように取り付けた。
Example 1
Using the sample solution concentration measuring apparatus 1 (vertical: 74 mm, horizontal: 100 mm, height: 74 mm) shown in FIGS. 1 and 2, the concentration of the sample solution was measured. FIG. 1 is a schematic plan view showing an example of a sample solution concentration measuring apparatus 1, and FIG. 2 is a schematic side view of the apparatus 1. As shown in FIG. 1, the reaction vessel 2 (vertical: 40 mm, horizontal: 40 mm, height: 5 mm) has a cylindrical reaction vessel (diameter) from the first reaction vessel A to the seventh reaction vessel G. : 3 mm, height: 3 mm) are connected in series. Glass plates were placed on the upper and lower surfaces of the acrylic resin plate on which the reaction vessels from the first reaction vessel A to the seventh reaction vessel G were formed. Thereby, the upper surface and the lower surface of each reaction tank were made of glass, and the side surfaces of each reaction tank were made of acrylic resin. Each reaction tank from the first reaction tank A to the seventh reaction tank G is provided with an ejection hole (inner diameter: 1 mm) and a discharge hole (inner diameter: 1 mm). The cross-sectional area ratio (S1 / S2) between the cross-sectional area (S1) of each reaction tank and the cross-sectional area (S2) of the ejection hole was 9. The discharge hole 10 of the first reaction tank A and the ejection hole 11 of the second reaction tank B are connected via a narrow passage, and a third reaction is further provided downstream of the discharge hole 12 of the second reaction tank B. Respective reaction tanks from the tank C to the seventh reaction tank G are connected in series. At this time, the angle α in each reaction tank is 90 degrees in the reaction tank A, 120 degrees in the reaction tank B, 60 degrees in the reaction tank C, 180 degrees in the reaction tank D, 60 degrees in the reaction tank E, and 60 degrees in the reaction tank F. The reaction tank G was 120 degrees and 120 degrees. As shown in FIG. 2, a photosensor module, which is a photodetector 24, was attached at a position facing the upper surface of the reaction vessel 2 so as to be in contact with the upper surface.

試料溶液導入口3は配管7(内径:1mm)を介して第1の反応槽Aと接続され、反応剤溶液導入口4は配管8(内径:1mm)を介して第1の反応槽Aと接続されている。試料溶液は、ポンプ5を作動させることにより試料溶液導入口3から配管7を通って第1の反応槽A内に導入される。一方、反応剤溶液は、ポンプ6を作動させることにより反応剤溶液導入口4から配管8を通って第1の反応槽A内に導入される。図1に示されるように、試料溶液と反応剤溶液とが第1の反応槽Aの噴出孔9から第1の反応槽A内に導入される直前で配管7と配管8とが合流する構成を有している。試料溶液として9mMの尿素水溶液を用い、反応剤溶液として0.5Mの次亜臭素酸と0.2Mの水酸化ナトリウムを含む混合溶液を用いた。ポンプ5及びポンプ6を作動させると試料溶液及び反応剤溶液とが第1の反応槽Aの噴出孔9から第1の反応槽A内に導入される。前記導入された溶液による噴流によって第1の反応槽A内で乱流が発生し、試料溶液と反応剤溶液とが均一に混合されて第1の混合溶液が得られるとともに窒素ガスが発生した。   The sample solution inlet 3 is connected to the first reaction tank A via a pipe 7 (inner diameter: 1 mm), and the reactant solution inlet 4 is connected to the first reaction tank A via a pipe 8 (inner diameter: 1 mm). It is connected. The sample solution is introduced into the first reaction tank A from the sample solution introduction port 3 through the pipe 7 by operating the pump 5. On the other hand, the reactant solution is introduced into the first reaction tank A from the reactant solution inlet 4 through the pipe 8 by operating the pump 6. As shown in FIG. 1, the configuration in which the pipe 7 and the pipe 8 merge immediately before the sample solution and the reactant solution are introduced into the first reaction tank A from the ejection holes 9 of the first reaction tank A. have. A 9 mM urea aqueous solution was used as a sample solution, and a mixed solution containing 0.5 M hypobromite and 0.2 M sodium hydroxide was used as a reactant solution. When the pump 5 and the pump 6 are operated, the sample solution and the reactant solution are introduced into the first reaction tank A from the ejection holes 9 of the first reaction tank A. A turbulent flow was generated in the first reaction tank A by the jet of the introduced solution, and the sample solution and the reactant solution were uniformly mixed to obtain a first mixed solution and nitrogen gas was generated.

得られた第1の混合溶液は、排出孔10を通じて噴出孔11から第2の反応槽B内に導入される。前記導入された第1の混合溶液による噴流によって、第2の反応槽B内で乱流が発生し、第1の混合溶液が更に混合されて、第2の混合溶液が得られる。このとき、第2の反応槽Bの噴出孔11から第1の混合溶液とともに導入された窒素ガスは、第1の混合溶液による噴流によって微細な気泡となって、第2の混合溶液中に分散された。得られた第2の混合溶液は、第2の反応槽Bの排出孔12の下流に設けられた第3の反応槽Cから第7の反応槽Gまでのそれぞれの反応槽内において、更に混合される。このとき、各反応槽内における混合とともに、窒素ガスが更に微細な気泡となった。このようにして、反応容器2内で試料溶液と反応剤溶液との混合により生じた化学発光強度を光検出器24により測定し、試料溶液の濃度を定量した。試料溶液と反応剤溶液の両方をそれぞれ同じ流量のまま変化させて反応容器2内に導入した際に得られた化学発光応答波形図を図3に示す。尿素水溶液の濃度を変更した際に得られた化学発光応答波形図を図4に示す。化学発光寿命τの算出に用いた化学発光応答波形図を図5に示す。このときの化学発光寿命τは0.9秒であった。また、尿度濃度と化学発光強度との相関図を図6に示す。   The obtained first mixed solution is introduced into the second reaction tank B from the ejection hole 11 through the discharge hole 10. A turbulent flow is generated in the second reaction tank B by the jet flow of the introduced first mixed solution, and the first mixed solution is further mixed to obtain a second mixed solution. At this time, the nitrogen gas introduced together with the first mixed solution from the ejection hole 11 of the second reaction tank B becomes fine bubbles by the jet flow of the first mixed solution and is dispersed in the second mixed solution. It was done. The obtained second mixed solution is further mixed in each reaction tank from the third reaction tank C to the seventh reaction tank G provided downstream of the discharge hole 12 of the second reaction tank B. Is done. At this time, nitrogen gas became finer bubbles with mixing in each reaction tank. In this way, the chemiluminescence intensity generated by mixing the sample solution and the reactant solution in the reaction vessel 2 was measured by the photodetector 24, and the concentration of the sample solution was quantified. FIG. 3 shows a chemiluminescence response waveform diagram obtained when both the sample solution and the reactant solution are introduced into the reaction vessel 2 while changing the sample solution and the reactant solution at the same flow rate. FIG. 4 shows a chemiluminescence response waveform diagram obtained when the concentration of the urea aqueous solution is changed. A chemiluminescence response waveform diagram used for calculation of the chemiluminescence lifetime τ is shown in FIG. At this time, the chemiluminescence lifetime τ was 0.9 seconds. FIG. 6 shows a correlation diagram between the urinary concentration and the chemiluminescence intensity.

ここで、反応器内の試料と試薬の合計流量Qが40ml/min(0.667×10−6/s)の場合、噴出孔の内半径は0.5×10−3mより断面積Sは(0.5×10−3×3.14=7.85×10−7であるから、この部分における平均流速vは、v=Q/S=0.667×10−6/7.85×10−7=0.85m/sとなる。試料溶液を20℃の水としたときの動粘性係数は1.0×10−6/sであるから、レイノルズ数Re=Ud/ν=0.85×1×10−3/1.0×10−6=850<2320(配管内の流水の臨界レイノルズ数)となり、内径1mmの配管内では乱流とならない。しかしながら、一般に水流中に流れに対して垂直に円柱を置いた場合にはRe=23程度から流れが円柱から剥離して渦ができることが知られている。したがって、本実施例のように、内径1mmの噴出孔から直径3mm、高さ3mmの円筒型反応槽内に溶液が導入される場合も、噴出孔で溶液による流れが剥離して渦が生じ、該渦によって乱流が発生したと推察される。その結果、試料溶液と反応剤溶液とが均一に混合されたと考えられる。また、本実施例で用いられた反応槽の容積は1.5×3×3.14=21.2mmであり、第1の反応槽Aから第7の反応槽Gまでの7個の反応槽が直列に接続されているため、反応容器2の全容積は約150mm(1.5×10−7)となる。したがって、流量0.667×10−6/sの溶液が反応容器2内に滞留している時間は約0.22秒であり、尿素と次亜臭素酸イオンとの化学発光反応に要する時間が数100ms程度であることから、反応容器2内でほとんど全ての尿素が消費されて化学発光が生じたと考えられる。Here, when the total flow rate Q of the sample and the reagent in the reactor is 40 ml / min (0.667 × 10 −6 m 3 / s), the inner radius of the ejection hole is cut off from 0.5 × 10 −3 m. Since the area S is (0.5 × 10 −3 ) 2 × 3.14 = 7.85 × 10 −7 m 2 , the average flow velocity v in this part is v = Q / S = 0.667 × 10. −6 / 7.85 × 10 −7 = 0.85 m / s. Since the kinematic viscosity coefficient when the sample solution is 20 ° C. water is 1.0 × 10 −6 m 2 / s, the Reynolds number Re = Ud / ν = 0.85 × 1 × 10 −3 / 1. 0 × 10 −6 = 850 <2320 (critical Reynolds number of flowing water in the pipe), and no turbulent flow occurs in the pipe having an inner diameter of 1 mm. However, it is generally known that when a cylinder is placed perpendicular to the flow in the water flow, the flow separates from the cylinder and a vortex is generated from about Re = 23. Therefore, even when the solution is introduced into the cylindrical reaction tank having a diameter of 3 mm and a height of 3 mm from the injection hole having an inner diameter of 1 mm as in this example, the flow due to the solution is separated from the injection hole to generate a vortex, It is inferred that turbulence was generated by the vortex. As a result, it is considered that the sample solution and the reactant solution were uniformly mixed. In addition, the volume of the reaction tank used in this example is 1.5 2 × 3 × 3.14 = 21.2 mm 3 , and seven reactors from the first reaction tank A to the seventh reaction tank G are used. Since the reaction vessels are connected in series, the total volume of the reaction vessel 2 is about 150 mm 3 (1.5 × 10 −7 m 3 ). Therefore, the time in which the solution having a flow rate of 0.667 × 10 −6 m 3 / s stays in the reaction vessel 2 is about 0.22 seconds, which is necessary for the chemiluminescence reaction between urea and hypobromite ions. Since the time is about several hundreds of milliseconds, it is considered that almost all urea is consumed in the reaction vessel 2 and chemiluminescence occurs.

実施例2
実施例1において、第1の反応槽Aから第7の反応槽Gまでの各反応槽の上面と下面を含め、全てアクリル樹脂製の反応槽とした以外は実施例1と同様にして、反応容器2内で試料溶液と反応剤溶液との混合により生じた化学発光強度を光検出器24により測定し、試料溶液の濃度を定量した。試料溶液と反応剤溶液の両方をそれぞれ同じ流量で反応容器2内に導入した際に得られた化学発光応答波形図を図7に示す。図7において、流量が10ml/minと小さい場合には、それ以上の流量(20ml/min、30ml/min、40ml/min)の場合に比べて光センサ出力の変動が激しく、化学発光の計測値が比較的不安定であった。このとき、反応槽内を目視により確認すると各反応槽内に残存する気泡が認められた。試料溶液と反応剤溶液との混合により発生した気泡の微細化が不十分であったと考えられる。したがって、前記発生した気泡によって化学発光反応が阻害されないようにするため、あるいは化学発光が散乱されないようにするためには、前記発生した気泡が微細化されるような墳流の速度、すなわち流量であることが望ましい。
Example 2
In Example 1, the reaction was carried out in the same manner as in Example 1 except that all the reaction tanks including the upper and lower surfaces of each reaction tank from the first reaction tank A to the seventh reaction tank G were made of acrylic resin. The chemiluminescence intensity generated by mixing the sample solution and the reactant solution in the container 2 was measured by the photodetector 24 to quantify the concentration of the sample solution. FIG. 7 shows a chemiluminescence response waveform diagram obtained when both the sample solution and the reactant solution are introduced into the reaction vessel 2 at the same flow rate. In FIG. 7, when the flow rate is as small as 10 ml / min, the fluctuation of the optical sensor output is more severe than the case of higher flow rates (20 ml / min, 30 ml / min, 40 ml / min), and the measured value of chemiluminescence Was relatively unstable. At this time, when the inside of the reaction tank was visually confirmed, bubbles remaining in each reaction tank were observed. It is considered that the bubbles generated by mixing the sample solution and the reactant solution were not sufficiently refined. Therefore, in order to prevent the chemiluminescence reaction from being inhibited by the generated bubbles, or to prevent the chemiluminescence from being scattered, the flow rate at which the generated bubbles are refined, that is, the flow rate, is reduced. It is desirable to be.

比較例1
実施例1において、第1の反応槽Aから第7の反応槽Gまでのそれぞれの反応槽が直列に接続された反応容器2を用いる代わりに、反応槽(直径:10mm、高さ:3mm、ポリ塩化ビニル製)を1つのみ有する反応容器を用いた。また、反応剤溶液として0.5Mの次亜塩素酸ナトリウム、2Mの臭素ナトリウム、及び0.2Mの水酸化ナトリウムの混合溶液を用いた以外は実施例1と同様にして、反応容器内で試料溶液と反応剤溶液との混合により生じた化学発光強度を光検出器24により測定し、試料溶液の濃度を定量した。試料溶液と反応剤溶液の両方をそれぞれ20ml/minの流量で反応容器内に導入した際に得られた化学発光応答波形図を図8に示す。
Comparative Example 1
In Example 1, instead of using the reaction vessel 2 in which the respective reaction vessels from the first reaction vessel A to the seventh reaction vessel G were connected in series, a reaction vessel (diameter: 10 mm, height: 3 mm, A reaction vessel having only one (made of polyvinyl chloride) was used. A sample was prepared in the reaction vessel in the same manner as in Example 1 except that a mixed solution of 0.5 M sodium hypochlorite, 2 M sodium bromine, and 0.2 M sodium hydroxide was used as the reactant solution. The chemiluminescence intensity generated by mixing the solution and the reactant solution was measured by the photodetector 24, and the concentration of the sample solution was quantified. FIG. 8 shows a chemiluminescence response waveform diagram obtained when both the sample solution and the reactant solution were introduced into the reaction vessel at a flow rate of 20 ml / min.

実施例3
実施例1において、反応容器2を用いる代わりに、第1の反応槽Aから第7の反応槽Gまでのそれぞれの円筒型反応槽(直径:3mm、高さ3mm、ポリ塩化ビニル製(黒色))が細い通路(オリフィス、直径1mm、長さ3mm)を介して直線状に接続された反応容器25を用いた。各反応槽A〜Gの上面と下面に厚さ1mmの透明板26(ガラス製)を配置した。図9に示されるように、反応容器25の上面と対向する位置に、各反応槽の直径と等しいピンホール27が設けられた光検出器24(光電子増倍管)を該上面と接するように配置した。実施例1と同様に、試料溶液として9mMの尿素を含む透析液を用い、反応剤溶液として0.5Mの次亜臭素酸と0.2Mの水酸化ナトリウムを含む混合溶液を用いた。リニアスライダー28により光検出器24を第1の反応槽Aから第7の反応槽Gまで移動させ、各反応槽A〜Gにおける化学発光強度を測定した。試料溶液と反応剤溶液の各々の流量を20ml/min(合計流量40ml/min)とした場合に得られた化学発光応答波形図を図10に示す。図10の化学発光応答波形図から分かるように、化学発光強度は第2の反応槽Bにおいて最大値を示し、その後は下流の反応槽になるにつれて減少した。この結果から、強い化学発光強度を得るためには、細い通路(オリフィス)を介して反応槽が2つ以上直列に接続されていることが有効であることが分かる。
Example 3
In Example 1, instead of using the reaction vessel 2, each cylindrical reaction vessel from the first reaction vessel A to the seventh reaction vessel G (diameter: 3 mm, height 3 mm, made of polyvinyl chloride (black) ) Was used in a straight line connected through a narrow passage (orifice, diameter 1 mm, length 3 mm). A transparent plate 26 (made of glass) having a thickness of 1 mm was disposed on the upper and lower surfaces of each of the reaction vessels A to G. As shown in FIG. 9, a photodetector 24 (photomultiplier tube) provided with a pinhole 27 equal to the diameter of each reaction vessel at a position facing the upper surface of the reaction vessel 25 is in contact with the upper surface. Arranged. As in Example 1, a dialysate containing 9 mM urea was used as the sample solution, and a mixed solution containing 0.5 M hypobromite and 0.2 M sodium hydroxide was used as the reactant solution. The photodetector 24 was moved from the first reaction tank A to the seventh reaction tank G by the linear slider 28, and the chemiluminescence intensity in each of the reaction tanks A to G was measured. FIG. 10 shows a chemiluminescence response waveform diagram obtained when the flow rates of the sample solution and the reactant solution are 20 ml / min (total flow rate 40 ml / min). As can be seen from the chemiluminescence response waveform diagram of FIG. 10, the chemiluminescence intensity showed the maximum value in the second reaction tank B, and then decreased as the reaction tank became downstream. From this result, it can be seen that it is effective to connect two or more reaction vessels in series via a narrow passage (orifice) in order to obtain a strong chemiluminescence intensity.

1 試料溶液濃度測定装置
2 反応容器
3 試料溶液導入口
4 反応剤溶液導入口
5、6 ポンプ
7、8 配管
A 第1の反応槽
B 第2の反応槽
C 第3の反応槽
D 第4の反応槽
E 第5の反応槽
F 第6の反応槽
G 第7の反応槽
9 第1の反応槽の噴出孔
10 第1の反応槽の排出孔
11 第2の反応槽の噴出孔
12 第2の反応槽の排出孔
13 第3の反応槽の噴出孔
14 第3の反応槽の排出孔
15 第4の反応槽の噴出孔
16 第4の反応槽の排出孔
17 第5の反応槽の噴出孔
18 第5の反応槽の排出孔
19 第6の反応槽の噴出孔
20 第6の反応槽の排出孔
21 第7の反応槽の噴出孔
22 第7の反応槽の排出孔
23 排出口
24 光検出器
25 反応容器
26 透明板
27 ピンホール
28 リニアスライダー
DESCRIPTION OF SYMBOLS 1 Sample solution density | concentration measuring apparatus 2 Reaction container 3 Sample solution inlet 4 Reactant solution inlet 5, 6 Pump 7, 8 Pipe A 1st reaction tank B 2nd reaction tank C 3rd reaction tank D 4th Reaction tank E 5th reaction tank F 6th reaction tank G 7th reaction tank 9 Ejection hole of 1st reaction tank 10 Ejection hole of 1st reaction tank 11 Ejection hole of 2nd reaction tank 12 2nd 13 reaction tank discharge hole 14 third reaction tank discharge hole 15 fourth reaction tank discharge hole 16 fourth reaction tank discharge hole 17 fifth reaction tank discharge Hole 18 Fifth reaction tank discharge hole 19 Sixth reaction tank discharge hole 20 Sixth reaction tank discharge hole 21 Seventh reaction tank discharge hole 22 Seventh reaction tank discharge hole 23 Discharge port 24 Photodetector 25 Reaction vessel 26 Transparent plate 27 Pinhole 28 Linear slider

Claims (4)

反応容器内で生じた化学発光強度を計測することにより尿素を含む試料溶液の尿素濃度を定量する尿素濃度測定方法であって、
前記反応容器が、噴出孔及び排出孔を有する反応槽が直線状通路を介して3つ以上直列に接続されてなるものであり、前記噴出孔の軸と前記排出孔の軸との交わる角度αが15度以上165度以下となる反応槽を少なくとも1つ有し、
それぞれの前記反応槽の断面積(S1)と前記噴出孔の断面積(S2)との断面積比(S1/S2)が3以上であり、
尿素を含む試料溶液及び次亜ハロゲン酸イオンを含む反応剤溶液を第1の反応槽の噴出孔から第1の反応槽に導入し、導入された溶液による噴流によって第1の反応槽内に乱流を発生させて該試料溶液と該反応剤溶液とを混合し、
得られた第1の混合溶液を第1の反応槽の排出孔を通じて第2の反応槽の噴出孔から第2の反応槽内に導入し、
前記第1の混合溶液による噴流によって第2の反応槽内に乱流を発生させて該第1の混合溶液を更に混合し、
得られた第2の混合溶液を、第2の反応槽の排出孔の下流に設けられたそれぞれの反応槽内において更に混合し、
前記反応容器内で生じた化学発光強度を計測することを特徴とする尿素濃度測定方法。
A urea concentration measurement method for quantifying the urea concentration of a sample solution containing urea by measuring the chemiluminescence intensity generated in a reaction vessel,
The reaction vessel is composed of three or more reaction tanks having ejection holes and discharge holes connected in series via a linear passage, and an angle α between the axis of the ejection hole and the axis of the discharge hole Having at least one reaction vessel having a temperature of 15 degrees or more and 165 degrees or less,
The cross-sectional area ratio (S1 / S2) between the cross-sectional area (S1) of each reaction vessel and the cross-sectional area (S2) of the ejection hole is 3 or more,
A sample solution containing urea and a reagent solution containing hypohalite ions are introduced into the first reaction tank through the ejection holes of the first reaction tank, and are turbulent in the first reaction tank by the jet of the introduced solution. Generating a flow to mix the sample solution and the reactant solution;
The obtained first mixed solution was introduced into the second reaction tank from the ejection hole of the second reaction tank through the discharge hole of the first reaction tank,
A turbulent flow is generated in the second reaction tank by the jet of the first mixed solution, and the first mixed solution is further mixed;
The obtained second mixed solution is further mixed in each reaction tank provided downstream of the discharge hole of the second reaction tank,
A method for measuring urea concentration, comprising measuring chemiluminescence intensity generated in the reaction vessel.
前記尿素を含む試料溶液が透析廃液である請求項1記載の尿素濃度測定方法。  The urea concentration measuring method according to claim 1, wherein the sample solution containing urea is a dialysis waste liquid. 反応容器内で生じた化学発光強度を計測することにより尿素を含む試料溶液の尿素濃度を定量する尿素濃度測定装置であって、
噴出孔及び排出孔を有する反応槽が直線状通路を介して3つ以上直列に接続されてなり、前記噴出孔の軸と前記排出孔の軸との交わる角度αが15度以上165度以下となる反応槽を少なくとも1つ有する反応容器を備え、
それぞれの前記反応槽の断面積(S1)と該噴出孔の断面積(S2)との断面積比(S1/S2)が3以上であり、かつその反応槽の少なくとも一部が透明部を有して該透明部の外側に光検出器が配置され、
尿素を含む試料溶液及び次亜ハロゲン酸イオンを含む反応剤溶液を第1の反応槽の噴出孔から第1の反応槽に導入する手段を備え、導入された溶液による噴流によってそれぞれの前記反応槽内に乱流を発生させて、該試料溶液と該反応剤溶液とを混合することにより前記反応容器内で生じた化学発光強度を計測することを特徴とする尿素濃度測定装置。
A urea concentration measurement device that quantifies the urea concentration of a sample solution containing urea by measuring the chemiluminescence intensity generated in a reaction vessel,
Three or more reaction tanks having ejection holes and discharge holes are connected in series via a linear passage, and an angle α between the axis of the ejection hole and the axis of the discharge hole is 15 degrees or more and 165 degrees or less. A reaction vessel having at least one reaction vessel,
The cross-sectional area ratio (S1 / S2) between the cross-sectional area (S1) of each reaction tank and the cross-sectional area (S2) of the ejection hole is 3 or more, and at least a part of the reaction tank has a transparent portion. And a photodetector is disposed outside the transparent portion,
Means for introducing a sample solution containing urea and a reactant solution containing hypohalite ions into the first reaction tank from the ejection holes of the first reaction tank, and each of the reaction tanks by a jet of the introduced solution An apparatus for measuring urea concentration, characterized in that a chemiluminescence intensity generated in the reaction vessel is measured by generating a turbulent flow and mixing the sample solution and the reactant solution.
請求項5記載の尿素濃度測定装置により透析廃液中の尿素濃度を定量する人工透析装置。  An artificial dialysis apparatus for quantitatively determining a urea concentration in a dialysis waste liquid by the urea concentration measuring apparatus according to claim 5.
JP2013507602A 2011-03-28 2012-03-27 Sample solution concentration measuring method and sample solution concentration measuring apparatus Expired - Fee Related JP5637300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507602A JP5637300B2 (en) 2011-03-28 2012-03-27 Sample solution concentration measuring method and sample solution concentration measuring apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011069194 2011-03-28
JP2011069194 2011-03-28
PCT/JP2012/057913 WO2012133394A1 (en) 2011-03-28 2012-03-27 Sample solution concentration determination method and sample solution concentration determination device
JP2013507602A JP5637300B2 (en) 2011-03-28 2012-03-27 Sample solution concentration measuring method and sample solution concentration measuring apparatus

Publications (2)

Publication Number Publication Date
JPWO2012133394A1 JPWO2012133394A1 (en) 2014-07-28
JP5637300B2 true JP5637300B2 (en) 2014-12-10

Family

ID=46931111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013507602A Expired - Fee Related JP5637300B2 (en) 2011-03-28 2012-03-27 Sample solution concentration measuring method and sample solution concentration measuring apparatus

Country Status (3)

Country Link
JP (1) JP5637300B2 (en)
DE (1) DE112012001473B4 (en)
WO (1) WO2012133394A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017077B2 (en) * 2017-03-17 2022-02-08 株式会社リコー Chemiluminescence analyzer, blood purification device, and blood purification system
EP3376212B1 (en) 2017-03-17 2020-01-29 Ricoh Company Ltd. Chemiluminescence analyzer, blood purification apparatus, and blood purification system
DE102020112570A1 (en) 2020-05-08 2021-11-11 Analytik Jena Gmbh Device for chemiluminescence analysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107254A (en) * 1991-03-18 1993-04-27 Brenda L Skerratt Analyzer
JP2008014910A (en) * 2006-07-10 2008-01-24 Kawasumi Lab Inc Chemiluminescent urea sensor for hemodialysis, and urea measuring method in hemodialysis
WO2010130808A2 (en) * 2009-05-12 2010-11-18 Lonza Ag Continuous reaction micro-reactor
JP2011504221A (en) * 2007-05-15 2011-02-03 コーニング インコーポレイテッド Microfluidic self-excited oscillation mixer and apparatus and method of use thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3029092C2 (en) * 1980-07-31 1984-09-06 Siemens AG, 1000 Berlin und 8000 München Detector for chemiluminescence gas analysis
US5501981A (en) * 1988-11-25 1996-03-26 Sievers Instruments, Inc. Method and apparatus for chemiluminescent detection of sulfur
EP0907412B1 (en) * 1996-06-28 2008-08-27 Caliper Life Sciences, Inc. High-throughput screening assay systems in microscale fluidic devices
JP3654481B2 (en) * 1997-06-05 2005-06-02 独立行政法人理化学研究所 Microreactor for biochemical reaction
US6440725B1 (en) * 1997-12-24 2002-08-27 Cepheid Integrated fluid manipulation cartridge
SE526185C2 (en) * 2001-11-07 2005-07-19 Prolight Diagnostics Ab Method and apparatus for immunoassay
US20060211055A1 (en) * 2002-11-12 2006-09-21 Caliper Life Sciences, Inc. Capture and release assay system and method
JP4894004B2 (en) * 2007-03-23 2012-03-07 財団法人岡山県産業振興財団 Urea concentration measuring method and urea concentration measuring device
EP1990638A1 (en) * 2007-05-11 2008-11-12 Koninklijke Philips Electronics N.V. Flow-through biosensor
JP5234449B2 (en) * 2007-09-13 2013-07-10 学校法人加計学園 Urea concentration measuring method and urea concentration measuring device
JPWO2010024224A1 (en) * 2008-08-26 2012-01-26 財団法人岡山県産業振興財団 Urea concentration measuring method and urea concentration measuring device
DE102009040151B4 (en) * 2009-05-26 2013-09-12 Analytik Jena Ag Arrangement for the detection of chemiluminescence on gases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107254A (en) * 1991-03-18 1993-04-27 Brenda L Skerratt Analyzer
JP2008014910A (en) * 2006-07-10 2008-01-24 Kawasumi Lab Inc Chemiluminescent urea sensor for hemodialysis, and urea measuring method in hemodialysis
JP2011504221A (en) * 2007-05-15 2011-02-03 コーニング インコーポレイテッド Microfluidic self-excited oscillation mixer and apparatus and method of use thereof
WO2010130808A2 (en) * 2009-05-12 2010-11-18 Lonza Ag Continuous reaction micro-reactor

Also Published As

Publication number Publication date
DE112012001473T5 (en) 2013-12-24
DE112012001473B4 (en) 2016-08-25
JPWO2012133394A1 (en) 2014-07-28
WO2012133394A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
US8008065B2 (en) Disposable bioreactor vessel port
JP5234449B2 (en) Urea concentration measuring method and urea concentration measuring device
US9446366B2 (en) Modular flow reactor
JP5637300B2 (en) Sample solution concentration measuring method and sample solution concentration measuring apparatus
CN101983327A (en) Iterative staining of biological samples
JPH09512905A (en) Analytical method and analytical equipment
CN102788781B (en) Microfluidic chip for biological chemiluminescence detection and detection method thereof
RU2010104250A (en) DEVICE FOR BATTERY WATER CONTROL
JP2008221095A (en) Microreactor system
US20070292310A1 (en) Microanalysis Apparatus with Constant Pressure Pump System
CN101788522A (en) Chemical oxygen demand (COD) on-line monitoring device and method based on boron-doped diamond membrane electrode
EP1918719A2 (en) System for analysis of gene sequence
CN111433584B (en) Diluent preparation module and unit
CN109142764B (en) Residual chlorine sensing chip and residual chlorine detection method
WO2010024224A1 (en) Urea concentration measurement method and urea concentration measurement apparatus
JP4894004B2 (en) Urea concentration measuring method and urea concentration measuring device
KR101365939B1 (en) Cartridge for measuring biological sample component and apparatus for measuring biological sample component
JP2010216984A (en) Biological sample reaction container, biological sample charging device, biological sample quantifying device, and biological sample reaction method
TW200912278A (en) Method for measuring the concentration of a liquid using the distribution of refraction rate in a flowing condition, and system thereof
JP2009115755A (en) Liquid supply drive mechanism using osmotic pump and microchip having liquid supply drive mechanism
JP4033589B2 (en) Reaction method and apparatus using molecular diffusion
JP4594788B2 (en) Disinfection water production equipment
JP2006263695A (en) Minute amount of liquid balancing structure and method
JP7199658B2 (en) Water quality meters, analysis units and flow cells
Hayashi et al. Compact Urea Sensor System Based on Chemiluminescence for Dialysis Machine.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140724

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140724

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5637300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees