JP5617659B2 - Method of manufacturing a solar cell - Google Patents

Method of manufacturing a solar cell

Info

Publication number
JP5617659B2
JP5617659B2 JP2011012838A JP2011012838A JP5617659B2 JP 5617659 B2 JP5617659 B2 JP 5617659B2 JP 2011012838 A JP2011012838 A JP 2011012838A JP 2011012838 A JP2011012838 A JP 2011012838A JP 5617659 B2 JP5617659 B2 JP 5617659B2
Authority
JP
Grant status
Grant
Patent type
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011012838A
Other languages
Japanese (ja)
Other versions
JP2012156234A (en )
Inventor
洋 橋上
洋 橋上
渡部 武紀
武紀 渡部
大塚 寛之
寛之 大塚
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、特に薄い厚さの太陽電池基板を加工、処理する場合に有効な太陽電池の製造方法に関する。 The present invention is particularly thin thickness of the solar cell substrate processing relates to the production how effective solar cell when processing.

現在の太陽電池による電力は、在来の商用電力に比べて発電コストが依然高いという問題があり、そのため製造コストの大幅な低減が求められている。 Power by the current of the solar cell, there is a problem that is still high generation cost as compared to conventional commercial power, there is a demand a significant reduction in the order manufacturing cost. 特に主流である結晶シリコン太陽電池では、基板薄型化によるコスト低減が進んでおり、現状では150〜250μmであるが、将来的には50〜100μmを実現する必要があるといわれている。 The crystalline silicon solar cell is particularly the mainstream, and they have become cost reduction due to the substrate thickness, but at present is 150 to 250 [mu] m, in the future it is said that it is necessary to realize a 50 to 100 [mu] m.
しかし、このように基板が薄型化してくると、基板自体の機械的強度が低下するため、生産工程での扱いが難しくなる。 However, in this manner the substrate comes thinned, the mechanical strength of the substrate itself is reduced, the handling of the production process becomes difficult.

そこで従来、薄厚基板の強度を補うために、基板を保持する板状の保持台に接合させた接合体を形成し、基板の搬送や加工を施す手法がとられてきた。 Therefore, conventionally, in order to compensate for the strength of the thin substrate, to form a conjugate which is joined to the plate-shaped holder for holding a substrate, a method of applying a conveying and processing of the substrate have been taken.
前記接合体の形成に関しては、保持台と基板を粘着剤により剥離自在に密着させる方法(特開2006−156679号公報:特許文献1)が提案されている。 For the formation of the conjugate, a method of the holder and the substrate is releasably adhered by pressure sensitive adhesive (JP 2006-156679 JP: Patent Document 1) has been proposed. しかし、粘着剤の除去工程は煩雑であり、しばしば基板表面に粘着剤の残渣が生じ、デバイスの品質を損なうことがあった。 However, the step of removing the adhesive is complicated, often a residue of adhesive on the substrate surface occurs, there may impair the quality of the device. 更に剥離工程中に基板を破損してしまうことがあった。 It was sometimes resulting in damage to the substrate during further separation step. また、粘着剤は有機物を使用するため、処理温度が数百度を越える工程には使用できないという制約があった。 Also, adhesive for use organics in step the process temperature exceeds several hundred degrees there is a restriction that it can not be used.

これに対し、基板と保持台の接着をせず、基板を保持台ごと搬送する方法が提案されている(特開2008−10448号公報:特許文献2)。 In contrast, without the holder of the adhesive to the substrate, a method for transporting each holder a substrate has been proposed (JP-2008-10448 Patent Publication: Patent Document 2). この方法では、図1に示すように、真空吸引を行う吸着治具103上に基板101と保持板102を配置し、基板101と保持板102の真空吸引を同時に行うとしている。 In this method, as shown in FIG. 1, and with the holding plate 102 and the substrate 101 is disposed on the suction jig 103 for vacuum suction, and vacuum suction holding plate 102 and the substrate 101 at the same time. 真空吸引は吸着治具103に設けられた吸引口103cから行い、吸引口103bにより保持板102が吸着治具に吸着される。 Vacuum suction is conducted from a suction opening 103c provided in the suction jig 103, the holding plate 102 is attracted to the suction jig by sucking port 103b. また基板101は、保持板102に設けられた貫通口102aを介して、吸着治具103に設けられた吸引口103cから吸着固定される。 The substrate 101 via a through hole 102a provided in holding plate 102 is sucked and fixed through the suction port 103c provided in the suction jig 103. 基板101は、所定の操作を施された後、保持板102と共に吸着治具から開放され、保持板に載せられたまま搬送される。 Substrate 101 is subjected to a predetermined operation, is released from the suction jig together with the holding plate 102 is conveyed while mounted on the holding plate.

しかし、この方法では、搬送中の基板は保持板の上で開放されているため、基板が保持板から脱落してしまう。 However, in this method, the substrate being conveyed because it is open on the holding plate, the substrate fall off from the holding plate. そのため、基板脱落防止として例えば保持板の基板保持部外周に突起を設けるといった加工がなされる。 Therefore, processing is performed such provided a projection on the substrate holding portion outer periphery of the example retaining plate as preventing the substrate falling. ところがこのような保持板形状は複雑且つコスト高となりばかりでなく、基板脱落防止の突起や段差が障害となり、例えばスクリーン印刷などの工程が適用できないといった制限があった。 However such retaining plate shape not only becomes complicated and costly, protrusions or steps of preventing the substrate coming off an obstacle, there has been limited such not be applied for example processes such as screen printing.

また一方、1バッチで多量枚数を同時処理する多くのバッチ式加工処理装置では、基板を垂直に多数充填したカセットやボートで基板搬送及び処理を行うのが一般的であり、従って基板が独立して固定されないこの方法は太陽電池の量産工程に適用できなかった。 On the other hand, in many batch processing apparatus for simultaneously processing a large amount sheets in one batch it is generally performed a substrate transfer and processing in a cassette and a boat that is vertically many fill the substrate, thus the substrate is independently this method not fixed Te could not be applied to mass production of solar cells.

特開2006−156679号公報 JP 2006-156679 JP 特開2008−10448号公報 JP 2008-10448 JP

本発明は、上記問題に鑑みなされたものであり、粘着剤を使用せず、簡単な構成で薄厚太陽電池基板を保持し、搬送及び加工できる太陽電池の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, without the use of adhesives to hold the thin solar cell substrate with a simple structure, to provide a manufacturing how the Ru solar cell can transport and processing for the purpose.

本発明は上記目的を達成するため、下記の太陽電池の製造方法を提供する。 The present invention for achieving the above object, provides a method for fabricating a solar cell below.
請求項1: According to claim 1:
太陽電池基板を、この基板と当接する面の少なくとも一部に凹構造が施された保持板に大気圧より低い圧力P1の雰囲気中において保持する工程と、この保持を維持した状態において前記圧力P1より高い雰囲気圧力P2に曝して、前記基板を前記保持板に固定した接合体を形成する工程とを含み、それ以降の太陽電池の製造工程において前記圧力P2以上の圧力雰囲気中で前記接合体を保持板と太陽電池基板とを一体化した疑似基板として接合体の太陽電池基板を加工又は処理し、又は該接合体を搬送する太陽電池の製造方法であって、前記圧力P2以上の圧力雰囲気中で前記接合体を保持板と太陽電池基板とを一体化した疑似基板として第1の処理を行う工程と、前記第1の処理工程後に前記太陽電池基板を保持板から離脱し、更に該太 Wherein the solar cell substrate, and a step of holding the substrate and an atmosphere of a pressure P1 less than the atmospheric pressure to the holding plate concave structure is applied to at least a portion of the surface abutting, in a state of maintaining the holding pressure P1 exposed to higher ambient pressure P2, and a step of forming a fixed assembly of the substrate to the holding plate, said conjugate in a pressure atmosphere above the pressure P2 in the manufacturing process of the subsequent solar cell the solar cell substrate of the bonded body was processed or processed holding plate and the solar cell substrate as a pseudo substrate integrated, or the conjugate method of manufacturing a solar cell that carry the pressure P2 in the pressure above the atmosphere in the step of performing a first process as a pseudo substrate integrating the holding plate and the solar cell substrate the conjugate, the solar cell substrate separated from the holding plate after the first processing step, further the thick 電池基板を、この基板と当接する面の少なくとも一部に凹構造が施された前記第1の処理工程で用いたものとは別の材質の第2の処理用の保持板に大気圧より低い圧力P1の雰囲気中において保持する工程と、この保持を維持した状態において前記圧力P1より高い雰囲気圧力P2に曝して、前記基板を前記第2の処理用の保持板に固定した接合体を形成する工程と、前記圧力P2以上の圧力雰囲気中で前記接合体を第2の処理用の保持板と太陽電池基板とを一体化した疑似基板として第2の処理を行う工程とを有することを特徴とする太陽電池の製造方法。 The cell substrate, less than atmospheric pressure to the second holding plate for processing of another material as those used in the substrate and the first process step of the concave structure is applied to at least a portion of the surface abutting a step of holding in an atmosphere of pressure P1, exposed to the pressure P1 higher than atmospheric pressure P2 in a state of maintaining the holding, to form a conjugate that fixing the substrate to the holding plate for the second process a step, and characterized by a step of performing a second processing as a pseudo substrate integrating the holding plate and the solar cell substrate for the second process the conjugate in a pressure atmosphere above the pressure P2 method of manufacturing a solar cell.
請求項2: According to claim 2:
前記第1の処理工程又は第2の処理工程として、前記圧力P2以上の圧力雰囲気中で前記接合体を保持板と太陽電池基板とを一体化した疑似基板としてウェット洗浄する工程を有することを特徴とする請求項1記載の太陽電池の製造方法。 Characterized by comprising the step of wet cleaning, as the first process step or the second step, as a pseudo-substrate that integrates the holding plate and the solar cell substrate the conjugate in the pressure P2 or more pressure atmosphere method for manufacturing a solar cell according to claim 1,.
請求項3: According to claim 3:
前記第1の処理工程又は第2の処理工程として、前記圧力P2以上の圧力雰囲気中で前記接合体を保持板と太陽電池基板とを一体化した疑似基板として熱処理する工程を有することを特徴とする請求項1記載の太陽電池の製造方法。 And wherein a step of heat treating the as first process step or the second step, as a pseudo-substrate integrating the holding plate and the solar cell substrate the conjugate in a pressure atmosphere above the pressure P2 method for manufacturing a solar cell according to claim 1.
請求項4: According to claim 4:
前記熱処理用の保持板は、少なくともその表面が酸化シリコン、炭化シリコン、窒化シリコンから選ばれる材料により形成されている請求項3記載の太陽電池の製造方法。 The holding plate for the heat treatment is at least the surface of silicon oxide, silicon carbide, a method for manufacturing a solar cell according to claim 3, wherein is formed of a material selected from silicon nitride.
請求項 Claim 5:
前記第1の処理工程又は第2の処理工程として、前記圧力P2以上の圧力雰囲気中で前記接合体を保持板と太陽電池基板とを一体化した疑似基板としてカセット又はボートに各々垂直に複数充填して搬送し、前記充填した複数枚の接合体を同時処理することを特徴とする請求項1〜 のいずれか1項記載の太陽電池の製造方法。 As the first process step or the second step, a plurality fill each perpendicular to a cassette or boat as a pseudo substrate with an integrated holding plate and the solar cell substrate of the bonded body in a pressure atmosphere above the pressure P2 and then transported, for producing a solar cell according to any one of claims 1-4, characterized in that simultaneously process a plurality of conjugates that the filling.
請求項 According to claim 6:
更に、前記接合体を前記圧力P1以下の雰囲気において前記固定を解除し、太陽電池基板を保持板から離脱する工程を有する請求項1〜 のいずれか1項記載の太陽電池の製造方法。 Furthermore, the conjugate releasing the fixing in the pressure P1 following the atmosphere, producing a solar cell according to any one of claims 1-5 comprising the step of releasing the solar cell substrate from the holding plate.
請求項 According to claim 7:
保持板の凹構造が、その開口部の幅を凹構造の深さ方向における最大幅より狭く形成した構成を有する請求項1〜 のいずれか1項記載の太陽電池の製造方法。 Concave structure of the holding plate, photovoltaic cell manufacturing method according to any one of claims 1-6 having the configuration formed narrower than the maximum width the width of the opening of the concave structure in the depth direction.
請求項 According to claim 8:
太陽電池基板の厚さが50〜100μmである請求項1〜 のいずれか1項記載の太陽電池の製造方法。 Process for producing a solar cell according to any one of claims 1 to 7 the thickness of the solar cell substrate is 50 to 100 [mu] m.

太陽電池を安価に製造するには、太陽電池の基板を薄くして原材料費を削減する必要がある。 To inexpensively manufacturing a solar cell, it is necessary to reduce raw material costs by reducing the substrate of the solar cell. しかしながら、基板の機械的強度は薄型化に伴って低下するため、基板自体を搬送したり加工したりすると破損しやすくなり、また、更に薄型化を進めると基板自体で形状を保持できなくなるため、既存の太陽電池製造工程を適用することが難しいという課題があるが、本発明によれば、太陽電池の基板を、保持板に吸着させて固定すると共に前記基板の強度を補い、吸着を維持したまま前記基板の搬送及び加工処理を行うことができ、厚さ50μm程度の薄厚基板でも搬送、加工や処理を安定して行うことが可能になり、太陽電池の低コスト化が可能になる。 However, the mechanical strength of the substrate decreases with thinner, easier to damage to or processed or transporting the substrate itself, also, to further not to hold the shape by the substrate itself Proceeding thinning, Although there is a problem that it is difficult to apply an existing solar cell manufacturing process, according to the present invention, the substrate of the solar cell, adsorbed onto the holding plate supplement the strength of the substrate is fixed by, maintaining the adsorption the transport and processing of the substrate can be performed while the conveyance even thin substrates having a thickness of about 50 [mu] m, it becomes possible to perform the machining or processing stably, it is possible to lower the cost of solar cells.

従来技術の太陽電池基板の保持方法を示す断面図である。 Method of holding the solar cell substrate of the prior art is a sectional view showing a. 本発明の太陽電池基板用保持板の一実施例を示す断面図である。 One embodiment of the solar cell substrate holding plate of the present invention is a cross-sectional view illustrating. 本発明による太陽電池基板の保持方法の一例を説明する概略図であり、(a)は大気圧下に基板と保持板を配置した状態、(b)はチャンバー内を圧力P1に減圧した状態、(c)は圧力P1下で保持板上に基板を保持した状態、(d)はこの状態で圧力P2に昇圧し、接合体を形成した状態を示す。 Is a schematic view illustrating an example of a method of holding the solar cell substrate according to the present invention, (a) is a state of arranging the substrate and the holding plate at atmospheric pressure, (b) the state where the pressure inside the chamber to a pressure P1, (c) the state of holding the substrate on the holding plate under pressure P1, by boosting the pressure P2 in the (d) are the state, indicating the state of forming a bonded body. (a)〜(c)はそれぞれ太陽電池基板用保持板の異なる態様を示す一部省略断面図である。 (A) ~ (c) is a fragmentary cross-sectional view showing a different embodiment of a holding plate for a solar cell substrate, respectively. (a)〜(c)はそれぞれ太陽電池基板用保持板の異なる別の態様を示す平面図である。 (A) ~ (c) is a plan view showing another embodiment having different holding plate for a solar cell substrate, respectively.

以下、図2〜5を参照して本発明の実施例を説明する。 Hereinafter, with reference to FIGS. 2-5 illustrate the practice of the present invention.
図2は、本発明の一実施例に係る太陽電池基板用保持板1で、この保持板1は、保持板本体2の太陽電池基板10との当接面3に多数の凹構造(凹部)4が形成されたものである。 Figure 2 is a solar cell substrate holding plate 1 according to an embodiment of the present invention, the holding plate 1, the contact surface 3 of the solar cell substrate 10 of the holding plate body 2 a number of concave structure (recess) 4 in which is formed.
この保持板1を用いて太陽電池基板10を保持し、また搬送、加工又は処理を行う場合は、まず図3(a)に示すように、大気圧のチャンバー20内において太陽電池基板101と凹構造4が施された保持板1を離して配置する。 Holding the solar cell substrate 10 by using the holding plate 1, also transport, when performing the machining or processing, first, as shown in FIG. 3 (a), concave and the solar cell substrate 101 in chamber 20 at atmospheric pressure placing away holding plate 1 which structure 4 is applied.
次に、図3(b)に示すように、チャンバー20の内部を真空ポンプにより大気圧より低い圧力P1に減圧する。 Next, as shown in FIG. 3 (b), under reduced pressure to a pressure P1 less than the atmospheric pressure by a vacuum pump the inside of the chamber 20.
圧力がP1に達したら、図3(c)に示すように、基板10と保持板1の所定の位置に配置する。 When the pressure reaches P1, as shown in FIG. 3 (c), in place of the holding plate 1 and the substrate 10.

次に、図3(d)に示すように、基板10と保持板1の接触を保ったまま雰囲気圧力をP1より高い圧力P2に昇圧する。 Next, as shown in FIG. 3 (d), to boost the ambient pressure while maintaining the contact of the holding plate 1 and the substrate 10 at a higher pressure P2 than P1. しかし、このとき凹構造4内の圧力は基板10と保持板1に密閉されてP1に保たれているので、差圧P2−P1により基板10は保持板1に吸着され固定される。 However, the pressure at this time within the recessed structures 4 so are kept P1 is sealed to the holding plate 1 and the substrate 10, the substrate 10 by the pressure difference P2-P1 is fixed is attracted to the holding plate 1. これにより、基板10が保持板1と一体化された接合体30が形成され、上記圧力P2以上の圧力雰囲気において、接合体30を搬送し、また保持板1に固定、一体化された基板10は、保持板1から脱落することなく加工、処理することができる。 Accordingly, the substrate 10 is formed joined body 30 integrated with the holding plate 1, at a pressure atmosphere above the pressure P2, conveying the assembly 30, also fixed to the holding plate 1, the integrated substrate 10 is processed without falling from the holding plate 1, it can be processed.

なお、昇圧には大気を導入してもよいし、続けて何らかの処理を基板に行う場合には工程所望のプロセスガスを用いてもよい。 Incidentally, it may be introduced atmosphere to boost, may be used process desired process gas in the case to perform some processing on a substrate followed.

本発明によれば、保持板と保持板に固定された太陽電池基板を一体化した擬似基板として様々な処理を行うことが可能である。 According to the present invention, it is possible to perform various processing a solar cell substrate which is fixed to the holding plate and the holding plate as a carrier substrate for integrated. 従って、圧力P1の値は、太陽電池工程によって最適化されるべきものであるが、目安としては工程における雰囲気圧力(つまり圧力P2)の1/10以下にするのがよい。 Therefore, the value of the pressure P1, which is to be optimized by the solar cell process, it is preferable to 1/10 or less of the ambient pressure (i.e. the pressure P2) in steps as a guide.
保持板の材質はある程度の剛性を有すると同時に、太陽電池の各製造工程によって使い分けるのが望ましい。 At the same time the material of the holding plate has a certain rigidity, that selectively used by the manufacturing process of the solar cell desired.

例えば化学薬品を使ったウェット洗浄では耐薬品性の高い樹脂や石英を使用するのがよく、また焼結性金属ペーストの焼成熱処理等では、耐熱性の高いセラミックスが使用できる。 For example, in the wet cleaning using chemical good to use a high resin or quartz having chemical resistance, also at sintering heat treatment of the sintered metal paste may be used high heat resistance ceramics.
しかし、高い太陽電池特性を得るには、特に高温工程での不純物汚染を抑制する必要があるので、好ましくは石英(酸化シリコン)、炭化シリコン、窒化シリコン又はこれらの組合せを用いるのがよい。 However, in order to obtain a high solar battery characteristic, especially since it is necessary to suppress impurity contamination at high temperature process, preferably quartz (silicon oxide), silicon carbide, it is preferable to use silicon or a combination thereof nitride. これらはバルク材を加工して保持板としてもよいが、コストや適用する工程によっては、例えば比較的安価なセラミック基板や金属基板にコーティング材として適用してもよい。 They may also, but the holding plate by processing a bulk material, the process of the cost and application, for example may be applied to a relatively inexpensive ceramic substrate or a metal substrate as a coating material.

凹構造の形成は、保持板の母材に適した加工法により形成されればよく、特に限定するものではない。 Forming recessed structures may be made of a processing method suitable for the base material of the holding plate, not particularly limited. 例えば金属であれば、その表面を機械的に研削加工する方法が適用できる。 For example, if the metal can be applied a method of mechanically grinding the surface. 但し、基板との接触面は平坦である必要があり、加工時の変形や異物は取り除く必要がある。 However, the contact surface between the substrate must be flat, deformation or foreign substances during processing must be removed. このほか母材にセラミックス等を用いる場合には、鋳型による成型加工法や、プレス加工法等が適用できる。 If this used ceramics, etc. In addition to the base material, and molding method using the mold, it can be applied pressing method.

凹構造の断面は、図4(a)に示すように、開口幅4aが最大溝幅4bと同じか又はより広くなっていても基板を吸着できるが、望ましくは図4(b)に示すように、開口幅4aが最大溝幅4bより狭くなっている方がよい。 The cross section of the concave structure, as shown in FIG. 4 (a), but the opening width 4a is capable of adsorbing the substrate be made wider than the same or the maximum groove width 4b, as preferably shown in FIG. 4 (b) , the better opening width 4a is narrower than the maximum groove width 4b. このような構造にすることで、凹構造の容量を増やし、基板吸着のための差圧をより安定的に保つことが可能になる。 With such a structure, increasing the capacity of the concave structure, it is possible to keep the pressure difference for the substrate attracting more stably.

図4(b)のような凹構造は、例えば保持板にパターンマスクを形成し、凹構造形成部分を露出させた上でエッチングを行うことで形成できる。 Concave structure as shown in FIG. 4 (b), for example, a pattern mask is formed on the holding plate, can be formed by performing etching on the exposed concave structure formation portion.

または、図4(c)のように、保持板本体2に切削等で凹構造4を形成し、その上に溝幅4bよりも狭い開口幅4aを持つ板5をはり合わせてもよい。 Or, as in FIG. 4 (c), the holding plate main body 2 of the concave structure 4 is formed by cutting or the like, may be Hariawa plate 5 with a narrow opening width 4a than the groove width 4b thereon.
保持板の形状は、基板の大きさと形に応じて適した形状にすればよい。 The shape of the holding plate may be in the form suitable depending on the size and shape of the substrate.

また、凹構造のパターンは様々なものが適用可能である。 The pattern of the concave structure is applicable are various. 図5は例として正方形の保持板を基板支持面側から見た図である。 Figure 5 is a view of the square of the holding plate from the substrate support surface as an example. 凹構造のパターンは図5(a)に示すような同心状パターンでもよいし、図5(b)のような格子パターンでもよいし、図5(c)のような点パターンでもよい。 It pattern of concave structure may be a concentric pattern as shown in FIG. 5 (a), may be a grid pattern as shown in FIG. 5 (b), the may be a pattern points as shown in FIG. 5 (c).

基板を保持板から取り外すには、基板及び保持板を再度チャンバーに入れ、圧力をP1以下にする。 To remove the substrate from the holding plate, placed in the chamber of the substrate and the holding plate again, the pressure in the P1 below. これにより凹構造による吸引力がなくなり、基板を保持板から取り外すことができる。 This eliminates the attraction force by the concave structure, it is possible to remove the substrate from the holding plate. 基板の取り外しは、例えば吸盤や、弱粘性の粘着パッド等で行うのがよい。 Removing the substrate, for example suction cups or, it may be carried out with an adhesive pad or the like weak viscous.

ここで、基板を別の保持板に載せ替えて次工程の処理を行う場合は、基板を保持板から離した状態を保ちつつ、チャンバー内を次工程に適した圧力にし、以降は図2の手順で基板を次工程用保持板に固定する。 Here, if instead placing the substrate in a separate retaining plate to process the next step, while maintaining the state of releasing the substrate from the holding plate, and a pressure suitable for the chamber to the next step, subsequent in FIG fixing the substrate to the holding plate for the next step in the procedure.

1 太陽電池基板用保持板2 保持板本体3 保持板の太陽電池基板との当接面4 凹構造4a 凹構造の開口幅4b 凹構造の深さ方向のおける最大幅5 板10 太陽電池基板20 チャンバー30 接合体 Maximum width 5 plate 10 solar cell substrate 20 where definitive 1 depth direction of the opening width 4b concave structure of the contact surface 4 concave structure 4a concave structure of the solar cell solar cell substrate of the substrate holding plate 2 holding plate body 3 holding plate chamber 30 conjugate

Claims (8)

  1. 太陽電池基板を、この基板と当接する面の少なくとも一部に凹構造が施された保持板に大気圧より低い圧力P1の雰囲気中において保持する工程と、この保持を維持した状態において前記圧力P1より高い雰囲気圧力P2に曝して、前記基板を前記保持板に固定した接合体を形成する工程とを含み、それ以降の太陽電池の製造工程において前記圧力P2以上の圧力雰囲気中で前記接合体を保持板と太陽電池基板とを一体化した疑似基板として接合体の太陽電池基板を加工又は処理し、又は該接合体を搬送する太陽電池の製造方法であって、前記圧力P2以上の圧力雰囲気中で前記接合体を保持板と太陽電池基板とを一体化した疑似基板として第1の処理を行う工程と、前記第1の処理工程後に前記太陽電池基板を保持板から離脱し、更に該太 Wherein the solar cell substrate, and a step of holding the substrate and an atmosphere of a pressure P1 less than the atmospheric pressure to the holding plate concave structure is applied to at least a portion of the surface abutting, in a state of maintaining the holding pressure P1 exposed to higher ambient pressure P2, and a step of forming a fixed assembly of the substrate to the holding plate, said conjugate in a pressure atmosphere above the pressure P2 in the manufacturing process of the subsequent solar cell the solar cell substrate of the bonded body was processed or processed holding plate and the solar cell substrate as a pseudo substrate integrated, or the conjugate method of manufacturing a solar cell that carry the pressure P2 in the pressure above the atmosphere in the step of performing a first process as a pseudo substrate integrating the holding plate and the solar cell substrate the conjugate, the solar cell substrate separated from the holding plate after the first processing step, further the thick 電池基板を、この基板と当接する面の少なくとも一部に凹構造が施された前記第1の処理工程で用いたものとは別の材質の第2の処理用の保持板に大気圧より低い圧力P1の雰囲気中において保持する工程と、この保持を維持した状態において前記圧力P1より高い雰囲気圧力P2に曝して、前記基板を前記第2の処理用の保持板に固定した接合体を形成する工程と、前記圧力P2以上の圧力雰囲気中で前記接合体を第2の処理用の保持板と太陽電池基板とを一体化した疑似基板として第2の処理を行う工程とを有することを特徴とする太陽電池の製造方法。 The cell substrate, less than atmospheric pressure to the second holding plate for processing of another material as those used in the substrate and the first process step of the concave structure is applied to at least a portion of the surface abutting a step of holding in an atmosphere of pressure P1, exposed to the pressure P1 higher than atmospheric pressure P2 in a state of maintaining the holding, to form a conjugate that fixing the substrate to the holding plate for the second process a step, and characterized by a step of performing a second processing as a pseudo substrate integrating the holding plate and the solar cell substrate for the second process the conjugate in a pressure atmosphere above the pressure P2 method of manufacturing a solar cell.
  2. 前記第1の処理工程又は第2の処理工程として、前記圧力P2以上の圧力雰囲気中で前記接合体を保持板と太陽電池基板とを一体化した疑似基板としてウェット洗浄する工程を有することを特徴とする請求項1記載の太陽電池の製造方法。 Characterized by comprising the step of wet cleaning, as the first process step or the second step, as a pseudo-substrate that integrates the holding plate and the solar cell substrate the conjugate in the pressure P2 or more pressure atmosphere method for manufacturing a solar cell according to claim 1,.
  3. 前記第1の処理工程又は第2の処理工程として、前記圧力P2以上の圧力雰囲気中で前記接合体を保持板と太陽電池基板とを一体化した疑似基板として熱処理する工程を有することを特徴とする請求項1記載の太陽電池の製造方法。 And wherein a step of heat treating the as first process step or the second step, as a pseudo-substrate integrating the holding plate and the solar cell substrate the conjugate in a pressure atmosphere above the pressure P2 method for manufacturing a solar cell according to claim 1.
  4. 前記熱処理用の保持板は、少なくともその表面が酸化シリコン、炭化シリコン、窒化シリコンから選ばれる材料により形成されている請求項3記載の太陽電池の製造方法。 The holding plate for the heat treatment is at least the surface of silicon oxide, silicon carbide, a method for manufacturing a solar cell according to claim 3, wherein is formed of a material selected from silicon nitride.
  5. 前記第1の処理工程又は第2の処理工程として、前記圧力P2以上の圧力雰囲気中で前記接合体を保持板と太陽電池基板とを一体化した疑似基板としてカセット又はボートに各々垂直に複数充填して搬送し、前記充填した複数枚の接合体を同時処理することを特徴とする請求項1〜 のいずれか1項記載の太陽電池の製造方法。 As the first process step or the second step, a plurality fill each perpendicular to a cassette or boat as a pseudo substrate with an integrated holding plate and the solar cell substrate of the bonded body in a pressure atmosphere above the pressure P2 and then transported, for producing a solar cell according to any one of claims 1-4, characterized in that simultaneously process a plurality of conjugates that the filling.
  6. 更に、前記接合体を前記圧力P1以下の雰囲気において前記固定を解除し、太陽電池基板を保持板から離脱する工程を有する請求項1〜 のいずれか1項記載の太陽電池の製造方法。 Furthermore, the conjugate releasing the fixing in the pressure P1 following the atmosphere, producing a solar cell according to any one of claims 1-5 comprising the step of releasing the solar cell substrate from the holding plate.
  7. 保持板の凹構造が、その開口部の幅を凹構造の深さ方向における最大幅より狭く形成した構成を有する請求項1〜 のいずれか1項記載の太陽電池の製造方法。 Concave structure of the holding plate, photovoltaic cell manufacturing method according to any one of claims 1-6 having the configuration formed narrower than the maximum width the width of the opening of the concave structure in the depth direction.
  8. 太陽電池基板の厚さが50〜100μmである請求項1〜 のいずれか1項記載の太陽電池の製造方法。 Process for producing a solar cell according to any one of claims 1 to 7 the thickness of the solar cell substrate is 50 to 100 [mu] m.
JP2011012838A 2011-01-25 2011-01-25 Method of manufacturing a solar cell Active JP5617659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011012838A JP5617659B2 (en) 2011-01-25 2011-01-25 Method of manufacturing a solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011012838A JP5617659B2 (en) 2011-01-25 2011-01-25 Method of manufacturing a solar cell

Publications (2)

Publication Number Publication Date
JP2012156234A true JP2012156234A (en) 2012-08-16
JP5617659B2 true JP5617659B2 (en) 2014-11-05

Family

ID=46837688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011012838A Active JP5617659B2 (en) 2011-01-25 2011-01-25 Method of manufacturing a solar cell

Country Status (1)

Country Link
JP (1) JP5617659B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624132U (en) * 1985-06-24 1987-01-12
JP2005064139A (en) * 2003-08-08 2005-03-10 Canon Inc Substrate holding device and exposure device
JP3817733B2 (en) * 2003-09-30 2006-09-06 セイコーエプソン株式会社 Surface treatment apparatus
US7055229B2 (en) * 2003-12-31 2006-06-06 Intel Corporation Support system for semiconductor wafers and methods thereof
JP2007281050A (en) * 2006-04-04 2007-10-25 Miraial Kk Wafer tray for semiconductor wafer
JP2008229767A (en) * 2007-03-20 2008-10-02 Misuzu Kogyo:Kk Vacuum suction device of flexible sheet-like member
JP4582820B1 (en) * 2010-06-08 2010-11-17 智雄 松下 Substrate transfer apparatus

Also Published As

Publication number Publication date Type
JP2012156234A (en) 2012-08-16 application

Similar Documents

Publication Publication Date Title
US8343851B2 (en) Wafer temporary bonding method using silicon direct bonding
US20030173017A1 (en) Device and method for connecting two wafers in a planar manner for grinding down and cutting up a product wafer
JP2005322815A (en) Manufacturing apparatus and manufacturing method of semiconductor apparatus
JP2007158122A (en) Bonding means, apparatus, and bonding method of support plate
JP2002059363A (en) Wafer base material
JP2004022571A (en) Wafer supporting tool and semiconductor device manufacturing method using the same
JP2001093864A (en) Semiconductor wafer fixing jig and method for manufacturing semiconductor device
JP2003179126A (en) Mechanism, apparatus, and method for peeling adhesive tape, device and method for picking up semiconductor chip, and method and apparatus for manufacturing semiconductor device
JP2004241568A (en) Substrate attachment/detachment device, substrate attachment/detachment method, and substrate treatment system
JP2007157847A (en) Chucking device
JP2004221187A (en) Manufacturing apparatus and method of semiconductor device
JP2008153337A (en) Method and device for separating laminated substrate, and computer readable recording medium with program recorded thereon
JP2005116678A (en) Semiconductor wafer separating method and separating device using same
JP2002313902A (en) Electrostatic chuck and method of dismounting substrate therefrom
US20080207094A1 (en) Method and apparatus for ultra thin wafer backside processing
JP2012524399A (en) Improved apparatus for temporary wafer bonding and debonding
US20100252205A1 (en) Device for thin die detachment and pick-up
JP2002237515A (en) Peeling device and peeling method for making semiconductor substrate into thin sheet
JP2002353082A (en) Method of manufacturing laminated wafer
US20050106840A1 (en) Method of manufacturing semiconductor wafer
JP2004311576A (en) Method of manufacturing semiconductor device
JP2008103493A (en) Method and apparatus for picking up chip
CN1209644A (en) Substrate treatment device, substrate supporting device, and method for treatingand mfg. of substrate therefor
JP2005175207A (en) Manufacturing method of semiconductor device, reinforcement member for grinding and bonding method thereof
JP2009141276A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5617659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150