JP5603515B1 - 空気極材料及び固体酸化物型燃料電池 - Google Patents

空気極材料及び固体酸化物型燃料電池 Download PDF

Info

Publication number
JP5603515B1
JP5603515B1 JP2014076282A JP2014076282A JP5603515B1 JP 5603515 B1 JP5603515 B1 JP 5603515B1 JP 2014076282 A JP2014076282 A JP 2014076282A JP 2014076282 A JP2014076282 A JP 2014076282A JP 5603515 B1 JP5603515 B1 JP 5603515B1
Authority
JP
Japan
Prior art keywords
air electrode
crystal orientation
electrode material
equivalent circle
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014076282A
Other languages
English (en)
Other versions
JP2015062162A (ja
Inventor
誠 大森
綾乃 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51840438&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5603515(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2014076282A priority Critical patent/JP5603515B1/ja
Application granted granted Critical
Publication of JP5603515B1 publication Critical patent/JP5603515B1/ja
Publication of JP2015062162A publication Critical patent/JP2015062162A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0054Mixed oxides or hydroxides containing one rare earth metal, yttrium or scandium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/66Cobaltates containing alkaline earth metals, e.g. SrCoO3
    • C01G51/68Cobaltates containing alkaline earth metals, e.g. SrCoO3 containing rare earth, e.g. La0.3Sr0.7CoO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】固体酸化物型燃料電池の出力を向上可能な空気極材料、及び出力を向上可能な固体酸化物型燃料電池を提供する。
【解決手段】空気極材料は、一般式ABOで表され、AサイトにLa及びSrの少なくとも一方を含有するペロブスカイト構造を有する複合酸化物を主成分として含有する。空気極材料を電子線後方散乱法によって結晶方位解析した場合、結晶方位差が5度以上の境界によって規定される複数の同一結晶方位領域の平均円相当径が、0.03μm以上2.8μm以下である。
【選択図】図3

Description

本発明は、空気極材料及び空気極を備える固体酸化物型燃料電池に関する。
固体酸化物型燃料電池は、一般的に、燃料極と、固体電解質層と、空気極と、を備える。空気極材料としては、(La,Sr)(Co,Fe)Oなどのペロブスカイト構造を有する複合酸化物を用いることができる(特許文献1参照)。
特開2006−32132号公報
ここで、固体酸化物型燃料電池の出力を向上させるには、空気極の活性を高めることが好ましい。本発明者らは、鋭意検討した結果、空気極材料の粉体粒子及び空気極の構成粒子において同程度の結晶方位を有する領域のサイズが空気極の活性に関連していることを新たに見出した。
本発明は、上述の状況に鑑みてなされたものであり、固体酸化物型燃料電池の出力を向上可能な空気極材料、及び出力を向上可能な固体酸化物型燃料電池を提供することを目的とする。
本発明に係る空気極材料は、一般式ABOで表され、AサイトにLa及びSrの少なくとも一方を含有するペロブスカイト構造を有する複合酸化物を主成分として含有する。空気極材料を電子線後方散乱法によって結晶方位解析した場合、結晶方位差が5度以上の境界によって規定される複数の同一結晶方位領域の平均円相当径が、0.03μm以上2.8μm以下である。
本発明によれば、固体酸化物型燃料電池の出力を向上可能な空気極材料、及び出力を向上可能な固体酸化物型燃料電池を提供することができる。
固体酸化物型燃料電池の構成を示す断面図 空気極材料のSEM画像の一例 空気極材料のEBSD画像の一例 空気極材料における同一結晶方位領域の円相当径の分布を示すヒストグラムの一例 空気極のSEM画像の一例 空気極のEBSD画像の一例 空気極における同一結晶方位領域の円相当径の分布を示すヒストグラムの一例
次に、図面を参照しながら、本発明の実施形態について説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なっている場合がある。従って、具体的な寸法等は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
(固体酸化物型燃料電池10の構成)
固体酸化物型燃料電池(Solid Oxide Fuel Cell:SOFC)10の構成について、図面を参照しながら説明する。図1は、固体酸化物型燃料電池10の構成を示す断面図である。
固体酸化物型燃料電池10は、縦縞型、横縞型、燃料極支持型、電解質平板型、或いは円筒型の燃料電池である。固体酸化物型燃料電池10は、図1に示すように、燃料極20、固体電解質層30、バリア層40および空気極50を備える。
燃料極20は、固体酸化物型燃料電池10のアノードとして機能する。燃料極20は、図1に示すように、燃料極集電層21と燃料極活性層22を有する。
燃料極集電層21は、Niと酸素イオン伝導性物質を主成分として含んでいてもよい。燃料極集電層21は、NiをNiOとして含んでいてもよい。燃料極集電層21がNiOを含む場合、NiOは、発電時に水素ガスによってNiに還元されてもよい。酸素イオン伝導性物質としては、イットリア安定化ジルコニア(3YSZ、8YSZ、10YSZなど)やスカンジア安定化ジルコニア(ScSZ)などが挙げられる。燃料極集電層21において、Ni及び/又はNiOの体積比率はNi換算で35〜65体積%とすることができ、酸素イオン伝導性物質の体積比率は35〜65体積%とすることができる。燃料極集電層21は多孔質であり、還元時における燃料極集電層21の気孔率は15%以上50%以下であることが好ましい。燃料極集電層21の厚みは、0.2mm以上5.0mm以下とすることができる。
なお、本実施形態において、「組成物Aが物質Bを主成分として含む」とは、好ましくは、組成物Aにおける物質Bの含量が60重量%以上であることを意味し、より好ましくは、組成物Aにおける物質Bの含量が70重量%以上であることを意味する。
燃料極活性層22は、燃料極集電層21と固体電解質層30の間に配置される。燃料極活性層22は、Niと酸素イオン伝導性物質を主成分として含む。燃料極活性層22は、NiをNiOとして含んでいてもよい。燃料極活性層22がNiOを含む場合、NiOは、発電時に水素ガスによってNiに還元されてもよい。酸素イオン伝導性物質としては、イットリア安定化ジルコニア(3YSZ、8YSZ、10YSZなど)やスカンジア安定化ジルコニア(ScSZ)などが挙げられる。燃料極活性層22において、Ni及び/又はNiOの体積比率はNi換算で25〜50体積%とすることができ、酸素イオン伝導性物質の体積比率は50〜75体積%とすることができる。燃料極活性層22は多孔質であり、還元時における燃料極活性層22の気孔率は15%以上50%以下であることが好ましい。燃料極活性層22の厚みは5.0μm以上30μm以下とすることができる。
固体電解質層30は、燃料極20と空気極50の間に配置される。固体電解質層30は、空気極50で生成される酸素イオンを透過させる機能を有する。固体電解質層30の材料としては、例えば、3YSZ、8YSZ、10YSZ及びScSZなどを挙げることができる。固体電解質層30は緻密質であり、固体電解質層30の気孔率は10%以下であることが好ましい。固体電解質層30の厚みは、3μm以上30μm以下とすることができる。
バリア層40は、固体電解質層30と空気極50の間に配置される。バリア層40は、固体電解質層30と空気極50の間に高抵抗層が形成されることを抑制する。バリア層40の材料としては、セリア(CeO)及びCeOに固溶した希土類金属酸化物を含むセリア系材料が挙げられる。このようなセリア系材料としては、ガドリニウムドープセリア(GDC:(Ce,Gd)Oやサマリウムドープセリア(SDC:(Ce,Sm)O:)等が挙げられる。バリア層40は緻密質であり、バリア層40の気孔率は15%以下であることが好ましい。バリア層40の厚みは、3μm以上20μm以下とすることができる。
空気極50は、バリア層40上に配置される。空気極50は、固体酸化物型燃料電池10のカソードとして機能する。空気極50は多孔質であり、空気極50の気孔率は25%〜50%とすることができる。空気極50の厚みは、3μm以上600μm以下とすることができる。
空気極50は、一般式ABOで表されるペロブスカイト構造を有する複合酸化物を主成分として含有する。Aサイトには、La及びSrの少なくとも一方が含まれてもよい。このような複合酸化物としては、例えばランタンストロンチウムコバルトフェライト(LSCF)、ランタンストロンチウムフェライト(LSF)、ランタンストロンチウムコバルタイト(LSC)、ランタンストロンチウムマンガナイト(LSM)及びLSM-8YSZなどが挙げられる。
従って、空気極50の材料(以下、「空気極材料」という。)としては、一般式ABOで表されるペロブスカイト構造を有する複合酸化物を主成分として含有する材料を用いることができる。空気極材料は、粒子の集合体であればよく、粉体(例えば平均粒径0.1μm以上5μm以下程度)、解砕物(例えば平均粒径5μm以上500μm以下程度)、或いは解砕物よりも大きな塊であってもよい。このような空気極材料は、上記複合酸化物の原料粉末を粉砕することによって作製することができる。空気極材料の作製方法については後述する。
(空気極材料の結晶方位解析)
空気極材料の結晶方位解析結果について、図面を参照しながら説明する。図2は、走査型電子顕微鏡(SEM:Scanning Electron Microscope)によって倍率15000倍に拡大された空気極材料を示すSEM画像の一例である。図3は、空気極材料を電子線後方散乱回折(EBSD:Electron Backscatter Diffraction)法によって結晶方位解析した結果を示すEBSD画像の一例である。
EBSD法による結晶方位解析では、結晶方位の不連続性を観測することができ、結晶方位差が所定角度以上の境界によって規定される領域(以下、「同一結晶方位領域」という。)を描画することができる。図3では、結晶方位差が5度以上の境界によって同一結晶方位領域が規定されている。図4は、空気極材料における同一結晶方位領域の円相当径の分布を示すヒストグラムの一例である。
図2に示すように、空気極材料のSEM画像では、粒界によって規定される粒子一つ一つの外形を把握することができる。このSEM画像に基づいて、空気極材料の粒子の平均粒径や粒径の標準偏差などを求めることができる。
図3に示すように、空気極材料のEBSD画像では、結晶方位差が5度以上の境界によって規定される同一結晶方位領域の外形を把握することができる。
ここで、図2と図3を比較すると分かるように、EBSD画像上の境界は、SEM画像上の粒界とは必ずしも一致しない。すなわち、空気極材料において、同一結晶方位領域と粒子は異なる概念である。従って、1つの粒子内に複数の同一結晶方位領域が存在する場合や、1つの同一結晶方位領域内に複数の粒子が存在する場合がある。
同一結晶方位領域の平均円相当径は、0.03μm以上2.8μm以下であることが好ましい。円相当径とは、同一結晶方位領域と同じ面積を有する円の直径のことであり、平均円相当径とは、複数の同一結晶方位領域それぞれの円相当径の算術平均値である。
同一結晶方位領域の円相当径の標準偏差は、0.1以上3以下であることが好ましい。
後述するように、空気極材料における同一結晶方位領域の平均円相当径や標準偏差は、原料粉末の粉砕条件を調整することによって制御することができる。
(空気極50の結晶方位解析)
空気極50の結晶方位解析結果について、図面を参照しながら説明する。図5は、SEMによって倍率15000倍に拡大された空気極50の断面を示すSEM画像の一例である。図6は、空気極50の断面をEBSD法によって結晶方位解析した結果を示すEBSD画像の一例である。図7は、空気極における同一結晶方位領域の円相当径の分布を示すヒストグラムの一例である。
図5に示すように、空気極50のSEM画像では、粒界によって規定される粒子一つ一つの外形を把握することができる。このSEM画像に基づいて、空気極50を構成する粒子の平均粒径や粒径の標準偏差などを求めることができる。
図6に示すように、空気極50のEBSD画像では、結晶方位差が5度以上の境界によって規定される同一結晶方位領域の外形を把握することができる。上述の通り、空気極50において、同一結晶方位領域と粒子は異なる概念である。
同一結晶方位領域の平均円相当径は、0.03μm以上3.3μm以下であることが好ましい。なお、図6及び図7では、空気極50の同一結晶方位領域が比較的小さい例が示されている。一般的には、空気極50の成形体を作成する工程において空気極材料の粉砕は進むが、空気極材料の凝集状態によって、空気極50の同一結晶方位領域の方が大きくもなりうる。
同一結晶方位領域の円相当径の標準偏差は、0.1以上3.3以下であることが好ましい。
後述するように、空気極50における同一結晶方位領域の平均円相当径や標準偏差は、空気極50の焼成条件を調整することによって制御することができる。
(空気極材料の製造方法)
次に、空気極材料の製造方法の一例について説明する。
空気極材料は、固相法、液相法(クエン酸法、ペチニ法、共沈法等)等によってペロブスカイト構造を有する複合酸化物を作製することによって得られる。
「固相法」とは、構成元素を含む原料を所定比で混合した混合物を焼成し、その後に粉砕する工程を経て目的材料を得る手法である。
「液相法」とは、(i)構成元素を含む原料を溶液に溶かす工程、(ii)その溶液から目的材料の前駆体を沈殿等によって得る工程、(iii)乾燥、焼成、及び粉砕を行う工程、を順次経て目的材料を得る手法である。
この際、空気極材料の合成条件(混合方法、昇温速度、合成温度/時間)を制御することによって、空気極材料における同一結晶方位領域の平均円相当径を制御することができる。具体的には、合成温度を高くし、合成時間を長くすると平均円相当径は大きくなり、合成温度を低くし、合成時間を短くすると平均円相当径は小さくなる傾向がある。
また、原料の粉砕/混合条件を制御することによって、空気極材料における同一結晶方位領域の円相当径の標準偏差を制御することができる。具体的には、粉砕条件を弱く(加える機械エネルギーを小さくしたり、混合時間を短く)すると標準偏差は大きくなり、粉砕条件を強く(加える機械エネルギーを大きくしたり、混合時間を長く)すると標準偏差は小さくなる傾向がある。
(固体酸化物型燃料電池10の製造方法)
次に、固体酸化物型燃料電池10の製造方法の一例について説明する。
まず、金型プレス成形法で燃料極集電層用粉末を成形することによって、燃料極集電層21の成形体を形成する。
次に、燃料極活性層用粉末と造孔剤(例えばPMMA)との混合物にバインダーとしてPVA(ポリビニルブチラール)を添加してスラリーを作製する。続いて、印刷法などでスラリーを燃料極集電層21の成形体上に印刷して、燃料極活性層22の成形体を形成する。
次に、固体電解質層用粉末に水とバインダーを混合してスラリーを作製する。続いて、塗布法などでスラリーを燃料極活性層22の成形体上に塗布して、固体電解質層30の成形体を形成する。
次に、バリア層用粉末に水とバインダーを混合してスラリーを作製する。続いて、塗布法などでスラリーを固体電解質層30の成形体上に塗布して、バリア層40の成形体を形成する。
次に、成形体の積層体を1300〜1600℃で2〜20時間共焼結して、燃料極20、固体電解質層30およびバリア層40の共焼成体を形成する。
次に、空気極用材料粉末(例えば、LSCF、LSF、LSC及びLSM-8YSZなど)に水とバインダーを混合してスラリーを作製する。そして、塗布法などを用いてスラリーをバリア層40上に塗布して、空気極50の成形体を形成する。
次に、空気極50の成形体を焼成(焼成温度1000℃〜1200℃、焼成時間1時間〜10時間)する。この際、焼成条件を制御することによって、空気極50における同一結晶方位領域の平均円相当径を制御することができる。具体的には、焼成温度を高温化したり、焼成時間を長くすると平均円相当径は大きくなり、焼成温度を低温化したり、焼成時間を短くすると平均円相当径は小さくなる傾向がある。また、空気極成形体の粉体充填密度を制御することによって、空気極50における同一結晶方位領域の円相当径の標準偏差を制御することができる。具体的には、空気極成形体の粉体充填密度を低くすると標準偏差は大きくなり、空気極成形体の粉体充填密度を高くすると標準偏差は小さくなる傾向がある。
(他の実施形態)
本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で種々の変形又は変更が可能である。
(A)上記実施形態において、固体酸化物型燃料電池10は、燃料極20、固体電解質層30、バリア層40及び空気極50を備えることとしたが、これに限られるものではない。例えば、固体酸化物型燃料電池10は、バリア層40を備えていなくてもよい。また、固体酸化物型燃料電池10は、固体電解質層30とバリア層40の間に緻密質又は多孔質のバリア層を別途備えていてもよい。
(B)上記実施形態において、空気極材料や空気極50の粒子(粒界)の観察にはSEMを用いることとしたが、これに限られるものではない。粒子の観察には、電界放射型走査電子顕微鏡(FE−SEM:Field Emission Scanning Electron Microscope)、走査型透過電子顕微鏡(STEM:Scanning Transmission Electron Microscope)、或いは透過型電子顕微鏡(TEM:Transmission Electron Microscope)などの各種電子顕微鏡を用いることができる。
以下において本発明に係るセルの実施例について説明する。ただし、本発明は以下に説明する実施例に限定されるものではない。
[サンプルNo.1〜32の作製]
まず、NiOと8YSZの混合粉末を金型プレス成形法で成形して、燃料極集電層の成形体を形成した。
次に、NiOと8YSZとPMMAの混合物にPVAを添加してスラリーを作製した。続いて、このスラリーを燃料極集電層の成形体上に印刷して、燃料極活性層の成形体を形成した。
次に、8YSZに水とバインダーを混合してスラリーを作製した。続いて、このスラリーを燃料極活性層の成形体上に塗布して、固体電解質層の成形体を形成した。
次に、GDCに水とバインダーを混合してスラリーを作製した。続いて、このスラリーを固体電解質層の成形体上に塗布して、バリア層の成形体を形成した。
次に、燃料極、固体電解質層及びバリア層それぞれの成形体の積層体を共焼成(1400℃、5時間)して、燃料極、固体電解質層及びバリア層の共焼成体を作製した。
次に、表1及び表2に示す空気極材料を準備して、サンプルNo.1〜32それぞれの空気極材料に水とバインダーを混合してスラリーを作製した。この際、空気極材料の合成条件(合成時間及び合成温度)を調整することによって、後述するとおり空気極材料における同一結晶方位領域の平均円相当径をサンプルごとに変更した。また、空気極材料に用いた原料の粉砕条件(機械エネルギー)と混合時間を調整することによって、後述するとおり空気極材料における同一結晶方位領域の円相当径の標準偏差をサンプルごとに変更した。
次に、このスラリーをバリア層上に塗布して、空気極の成形体を形成した。この際、空気極材料の充填密度を調整することによって、後述するとおり空気極における同一結晶方位領域の円相当径の標準偏差をサンプルごとに変更した。
次に、空気極の成形体を1050℃で3時間焼成して、空気極を作製した。この際、空気極の焼成条件(焼成時間及び焼成温度)を調整することによって、後述するとおり空気極における同一結晶方位領域の平均円相当径をサンプルごとに変更した。
[空気極材料の結晶方位解析]
サンプルNo.1〜32それぞれの空気極材料をEBSD装置(TSL製 OIM)で測定することによって、EBSD法による解析画像を得た。EBSD画像では、結晶方位差が5度以上となる境界を外縁とする同一結晶方位領域を描画した(図3参照)。
そして、各サンプルの空気極材料について、同一結晶方位領域の平均円相当径と円相当径の標準偏差とを算出した。算出結果を表1にまとめて示す。
[空気極の結晶方位解析]
サンプルNo.1〜32それぞれの空気極断面をEBSD装置(TSL製 OIM)で測定することによって、EBSD法による解析画像を得た。EBSD画像では、結晶方位差が5度以上となる境界を外縁とする同一結晶方位領域を描画した(図6参照)。
そして、各サンプルの空気極断面について、同一結晶方位領域の平均円相当径と円相当径の標準偏差とを算出した。算出結果を表1にまとめて示す。
[出力密度の測定]
各サンプルにおいて、燃料極側に窒素ガス、空気極側に空気を供給しながら750℃まで昇温し、750℃に達した時点で燃料極に水素ガスを供給しながら還元処理を3時間行った。
その後、各サンプルについて、測定温度:750℃、電流密度:0.2A/cmにおける出力密度を測定した。測定結果を表1に示す。なお、表1では、出力密度が0.15W/cmより小さい場合を×と評価し、出力密度が0.15W/cm以上である場合を○と評価し、出力密度が0.25W/cm以上である場合を◎と評価した。

表1に示されるように、同一結晶方位領域の平均円相当径を0.03μm以上2.8μm以下とした空気極材料を用いたサンプルNo.1〜7,9〜19,21〜26,28〜32では、出力密度を0.15W/cm以上とすることができた。サンプルNo.1〜7,9〜19,21〜26,28〜32の空気極において、同一結晶方位領域の平均円相当径は、0.03μm以上3.3μm以下であった。このような結果が得られたのは、空気極の結晶方位が揃い、電気化学反応速度が上がることによって、空気極の活性を向上できたためである。なお、表1に示されるように、このような効果は、空気極材料の種類にかかわらず、同一結晶方位領域の平均円相当径を制御することによって得られることが確認された。
また、表1に示されるように、同一結晶方位領域の円相当径の標準偏差を3以下とした空気極材料を用いたサンプルNo.9〜14,21,22,28〜31では、空気極の出力密度をさらに高くすることができた。サンプルNo.9〜14,21,22,28〜31の空気極において、同一結晶方位領域の円相当径の標準偏差は、3.3以下であった。なお、表1に示されるように、このような効果は、空気極材料の種類にかかわらず、同一結晶方位領域の平均円相当径の標準偏差を制御することによって得られることが確認された。
10 燃料電池
20 燃料極
21 燃料極集電層
22 燃料極活性層
30 固体電解質層
40 バリア層
50 空気極

Claims (4)

  1. 一般式ABOで表され、AサイトにLa及びSrの少なくとも一方を含有するペロブスカイト構造を有する複合酸化物を主成分として含有し、
    電子線後方散乱法によって結晶方位解析した場合、結晶方位差が5度以上の境界によって規定される複数の同一結晶方位領域の平均円相当径が、0.03μm以上2.8μm以下である、
    空気極材料。
  2. 前記複数の同一結晶方位領域それぞれの円相当径の標準偏差値が、3以下である、
    請求項1に記載の空気極材料。
  3. 燃料極と、
    一般式ABOで表され、AサイトにLa及びSrの少なくとも一方を含有するペロブスカイト構造を有する複合酸化物を主成分として含有する空気極と、
    前記燃料極と前記空気極の間に配置される固体電解質層と、
    を備え、
    前記空気極の断面を電子線後方散乱法によって結晶方位解析した場合、結晶方位差が5度以上の境界によって規定される複数の同一結晶方位領域の平均円相当径は、0.03μm以上3.3μm以下である、
    固体酸化物型燃料電池。
  4. 前記複数の同一結晶方位領域それぞれの円相当径の標準偏差値は、3.3以下である、
    請求項3に記載の固体酸化物型燃料電池。
JP2014076282A 2013-08-23 2014-04-02 空気極材料及び固体酸化物型燃料電池 Active JP5603515B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076282A JP5603515B1 (ja) 2013-08-23 2014-04-02 空気極材料及び固体酸化物型燃料電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013173401 2013-08-23
JP2013173401 2013-08-23
JP2014076282A JP5603515B1 (ja) 2013-08-23 2014-04-02 空気極材料及び固体酸化物型燃料電池

Publications (2)

Publication Number Publication Date
JP5603515B1 true JP5603515B1 (ja) 2014-10-08
JP2015062162A JP2015062162A (ja) 2015-04-02

Family

ID=51840438

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014076282A Active JP5603515B1 (ja) 2013-08-23 2014-04-02 空気極材料及び固体酸化物型燃料電池
JP2014164700A Active JP5663694B1 (ja) 2013-08-23 2014-08-13 空気極材料及び固体酸化物型燃料電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014164700A Active JP5663694B1 (ja) 2013-08-23 2014-08-13 空気極材料及び固体酸化物型燃料電池

Country Status (2)

Country Link
US (1) US20150079496A1 (ja)
JP (2) JP5603515B1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474721A (ja) * 1990-07-13 1992-03-10 Nitsukatoo:Kk ランタンマンガネート系粉末の製造方法
JPH07138082A (ja) * 1993-11-12 1995-05-30 Kyocera Corp 多孔質セラミック焼結体
JP2005339986A (ja) * 2004-05-27 2005-12-08 Fuji Photo Film Co Ltd 固体酸化物形燃料電池及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677070B2 (en) * 2001-04-19 2004-01-13 Hewlett-Packard Development Company, L.P. Hybrid thin film/thick film solid oxide fuel cell and method of manufacturing the same
GB0217794D0 (en) * 2002-08-01 2002-09-11 Univ St Andrews Fuel cell electrodes
US20040214070A1 (en) * 2003-04-28 2004-10-28 Simner Steven P. Low sintering lanthanum ferrite materials for use as solid oxide fuel cell cathodes and oxygen reduction electrodes and other electrochemical devices
UA83400C2 (uk) * 2003-12-02 2008-07-10 Нанодайнемікс, Інк. Твердооксидні паливні елементи з керметним електролітом та спосіб їх одержання
US7767358B2 (en) * 2005-05-31 2010-08-03 Nextech Materials, Ltd. Supported ceramic membranes and electrochemical cells and cell stacks including the same
US20070009784A1 (en) * 2005-06-29 2007-01-11 Pal Uday B Materials system for intermediate-temperature SOFC based on doped lanthanum-gallate electrolyte
US9203094B2 (en) * 2006-09-13 2015-12-01 The University Of Akron Catalysts compositions for use in fuel cells
US9276267B2 (en) * 2008-09-23 2016-03-01 Delphi Technologies, Inc. Low-temperature bonding of refractory ceramic layers
US8124037B2 (en) * 2009-12-11 2012-02-28 Delphi Technologies, Inc. Perovskite materials for solid oxide fuel cell cathodes
US8968956B2 (en) * 2010-09-20 2015-03-03 Nextech Materials, Ltd Fuel cell repeat unit and fuel cell stack
EP2750227B1 (en) * 2011-12-19 2016-11-30 NGK Insulators, Ltd. Air electrode material and solid oxide fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474721A (ja) * 1990-07-13 1992-03-10 Nitsukatoo:Kk ランタンマンガネート系粉末の製造方法
JPH07138082A (ja) * 1993-11-12 1995-05-30 Kyocera Corp 多孔質セラミック焼結体
JP2005339986A (ja) * 2004-05-27 2005-12-08 Fuji Photo Film Co Ltd 固体酸化物形燃料電池及びその製造方法

Also Published As

Publication number Publication date
US20150079496A1 (en) 2015-03-19
JP5663694B1 (ja) 2015-02-04
JP2015062162A (ja) 2015-04-02
JP2015062172A (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5596875B1 (ja) 燃料電池セル及び空気極材料
US9520597B2 (en) Cathode material, interconnector material and solid oxide fuel cell
JP5522870B1 (ja) 燃料電池セル
JP5270804B1 (ja) 燃料電池セル
JP6121954B2 (ja) 固体酸化物型燃料電池
JP2017017009A (ja) 燃料電池
JP5841210B1 (ja) 燃料電池セル
JP5805232B2 (ja) 固体酸化物型燃料電池
JP5636520B1 (ja) 燃料電池セル
JP5638687B1 (ja) 空気極材料
JP5605890B1 (ja) 固体酸化物型燃料電池
JP5603515B1 (ja) 空気極材料及び固体酸化物型燃料電池
JP5605889B1 (ja) 固体酸化物型燃料電池
JP5395295B1 (ja) 燃料電池セル
JP5957057B2 (ja) 空気極材料
JP6808010B2 (ja) 電気化学セル
JP6779745B2 (ja) 固体酸化物形燃料電池および該燃料電池のカソード形成用材料
JP5603516B1 (ja) 固体酸化物型燃料電池
JP5596882B1 (ja) 燃料電池セル

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140821

R150 Certificate of patent or registration of utility model

Ref document number: 5603515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157