JP5577687B2 - Polysubstituted phosphine compound and catalyst containing the phosphine compound - Google Patents

Polysubstituted phosphine compound and catalyst containing the phosphine compound Download PDF

Info

Publication number
JP5577687B2
JP5577687B2 JP2009285462A JP2009285462A JP5577687B2 JP 5577687 B2 JP5577687 B2 JP 5577687B2 JP 2009285462 A JP2009285462 A JP 2009285462A JP 2009285462 A JP2009285462 A JP 2009285462A JP 5577687 B2 JP5577687 B2 JP 5577687B2
Authority
JP
Japan
Prior art keywords
group
phosphine compound
palladium
mmol
phosphine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009285462A
Other languages
Japanese (ja)
Other versions
JP2011126804A (en
Inventor
貴弘 井上
正一 西山
靖 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2009285462A priority Critical patent/JP5577687B2/en
Publication of JP2011126804A publication Critical patent/JP2011126804A/en
Application granted granted Critical
Publication of JP5577687B2 publication Critical patent/JP5577687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Description

本発明は、ホスフィン化合物および該ホスフィン化合物にパラジウム化合物を作用させることにより得られるパラジウム−ホスフィン錯体に関するものである。また、本発明による該パラジウム−ホスフィン錯体は、電子材料やその中間体などに用いられるアリールアミン類またはビアリール類の合成用触媒として有用である。   The present invention relates to a phosphine compound and a palladium-phosphine complex obtained by allowing a palladium compound to act on the phosphine compound. The palladium-phosphine complex according to the present invention is useful as a catalyst for the synthesis of arylamines or biaryls used in electronic materials and intermediates thereof.

現在、パラジウム等の数多くの遷移金属錯体が、有機合成反応用の触媒として使用されている(例えば、辻二郎著 Palladium Reagents and Catalysts,1995年)。それら触媒の性能あるいは活性を発現させる因子として、中心金属である遷移金属種以外に配位子が重要な役割を果たしていることがよく知られている。例えば、多数のホスフィン化合物が配位子として開発されており、そのような重要な役割を担っている。   Currently, many transition metal complexes such as palladium are used as catalysts for organic synthesis reactions (eg, Shinjiro, Palladium Reagents and Catalysts, 1995). It is well known that a ligand plays an important role in addition to the transition metal species as the central metal as a factor for expressing the performance or activity of these catalysts. For example, many phosphine compounds have been developed as ligands and play such an important role.

これまでに炭素−炭素(またはヘテロ元素)結合反応で報告されている配位子としては、トリ(tert−ブチル)ホスフィン(例えば、特許文献1、非特許文献1参照)、ジアルキルホスフィンが置換したフェロセン誘導体(例えば、特許文献2参照)、2−ジシクロヘキシルホスフィノ−1,1’−ビフェニル誘導体(例えば、特許文献3参照)、1,3−ビス(2,6−ジイソプロピルフェニル)イミダゾリニウム塩等(例えば、非特許文献2参照)のカルベン配位子が知られている。   As ligands reported so far in carbon-carbon (or heteroelement) bonding reactions, tri (tert-butyl) phosphine (see, for example, Patent Document 1 and Non-Patent Document 1) and dialkylphosphine substituted. Ferrocene derivatives (for example, see Patent Document 2), 2-dicyclohexylphosphino-1,1′-biphenyl derivatives (for example, see Patent Document 3), 1,3-bis (2,6-diisopropylphenyl) imidazolinium salt (For example, see Non-Patent Document 2) carbene ligands are known.

一方で、炭素−炭素(またはヘテロ元素)結合反応以外の反応で、2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフチル(通称、BINAP)、6,6’−位がある連結基を介して結合した1,1’−ビフェニル構造の二座配位子が、不斉合成反応(特に不斉水素化)の配位子として報告されている(例えば、特許文献4,5参照)。   On the other hand, there are 2,2′-bis (diphenylphosphino) -1,1′-binaphthyl (commonly known as BINAP) and 6,6′-positions in reactions other than carbon-carbon (or heteroelement) bonding reactions. A bidentate ligand having a 1,1′-biphenyl structure bonded through a linking group has been reported as a ligand for asymmetric synthesis reaction (particularly asymmetric hydrogenation) (for example, Patent Documents 4 and 5). reference).

特開平10−139742号公報JP 10-139742 A 特開2000−247990公報JP 2000-247990 A 米国公開特許2002/156295号公報US Published Patent No. 2002/156295 特許第4167899号公報Japanese Patent No. 4167899 特開2000−154156公報JP 2000-154156 A

Journal of American Chemical Society,122(17),4020−4028(2000)Journal of American Chemical Society, 122 (17), 4020-4028 (2000) Angew.Chem.Int.Ed.,46,2768−2813(2007)Angew. Chem. Int. Ed. , 46, 2768-2813 (2007)

トリ(tert−ブチル)ホスフィンを配位子とする遷移金属錯体は、極めて高活性であることが知られているものの、トリ(tert−ブチル)ホスフィン自身が酸素で容易に酸化される特徴を有していることから、扱いづらい欠点をもっている。一方、その他の配位子は、比較的酸素に安定ではあるものの、トリ(tert−ブチル)ホスフィンを配位子とする遷移金属触媒に比べ低活性である欠点を有している。特に、トリアリールアミン類およびビアリール類の合成には、酸素に安定で、且つ高活性な触媒の開発が望まれていた。   Although transition metal complexes having tri (tert-butyl) phosphine as a ligand are known to be extremely highly active, tri (tert-butyl) phosphine itself has a feature that it is easily oxidized with oxygen. It has a drawback that is difficult to handle. On the other hand, although other ligands are relatively stable to oxygen, they have a defect that they are less active than a transition metal catalyst having tri (tert-butyl) phosphine as a ligand. In particular, for the synthesis of triarylamines and biaryls, development of oxygen-stable and highly active catalysts has been desired.

また、電子材料やその中間体、医薬品などの分野では、生成物への有害金属の混入を抑制した製造方法が強く求められており、金属触媒の除去に関する解決策が望まれていた。   In addition, in the fields of electronic materials, intermediates thereof, pharmaceuticals, and the like, there is a strong demand for a production method that suppresses the incorporation of harmful metals into products, and a solution for removing metal catalysts has been desired.

上記目的を達成するため、本発明者らは鋭意検討した結果、下記一般式(1)で表されるホスフィン化合物   In order to achieve the above object, the present inventors have intensively studied, and as a result, phosphine compounds represented by the following general formula (1):

Figure 0005577687
[式中、RおよびRは各々独立して、炭素数1〜10のアルキル基、または炭素数6〜12のアリール基を示し、Xは水素または下記一般式(2)
Figure 0005577687
[Wherein, R 1 and R 2 each independently represent an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and X represents hydrogen or the following general formula (2)

Figure 0005577687
(式中、Yは水素、炭素数1〜3のアルキル基、またはPR基を示す。)
で表される置換フェニル基を示す。]
を配位子として有する金属錯体が、芳香族アミン誘導体やビアリール誘導体の合成に有用な触媒となることを見出した。
Figure 0005577687
(In the formula, Y represents hydrogen, an alkyl group having 1 to 3 carbon atoms, or a PR 1 R 2 group.)
The substituted phenyl group represented by these is shown. ]
It has been found that a metal complex having a ligand as a useful catalyst for the synthesis of aromatic amine derivatives and biaryl derivatives.

以下、本発明に関し、さらに詳しく説明する。   Hereinafter, the present invention will be described in more detail.

一般式(1)で表されるホスフィン化合物におけるRおよびRは各々独立して、炭素数1〜10のアルキル基、または炭素数6〜12のアリール基を示し、Xは水素または一般式(2)で表される置換フェニル基を示す。ここで、RおよびRの炭素数1〜10のアルキル基としては特に制限はないが、例えば、シクロヘキシル基、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基、2−エチルヘキシル基、アダマンチル基等を挙げることができる。また、RおよびRの炭素数6〜12のアリール基としては、フェニル基、o−トリル基、2,6−ジメチルフェニル基、2,4,6−トリメチルフェニル基を挙げることができる。中でも、嵩高く、電子供与性の置換基であるtert−ブチル基、シクロヘキシル基、アダマンチル基が高い触媒活性の点で好ましく、さらに、シクロヘキシル基は耐酸化性の点でより好ましい。 R 1 and R 2 in the phosphine compound represented by the general formula (1) each independently represent an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and X represents hydrogen or the general formula The substituted phenyl group represented by (2) is shown. Here, the alkyl group having 1 to 10 carbon atoms of R 1 and R 2 is not particularly limited. For example, cyclohexyl group, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec -Butyl group, tert-butyl group, n-pentyl group, n-hexyl group, 2-ethylhexyl group, adamantyl group and the like can be mentioned. Examples of the aryl group having 6 to 12 carbon atoms of R 1 and R 2 include a phenyl group, an o-tolyl group, a 2,6-dimethylphenyl group, and a 2,4,6-trimethylphenyl group. Among them, bulky and electron-donating substituents such as a tert-butyl group, a cyclohexyl group, and an adamantyl group are preferable from the viewpoint of high catalytic activity, and a cyclohexyl group is more preferable from the viewpoint of oxidation resistance.

Xは水素または下記一般式(2)   X is hydrogen or the following general formula (2)

Figure 0005577687
(式中、Yは水素、炭素数1〜3のアルキル基、またはPR基を示す。)
で表される置換フェニル基を示す。また、上記式中Yは、水素、メチル基、エチル基、n−プロピル基、イソプロピル基、PR基(RおよびRは、前記した置換基を例示することができる)を示し、合成の容易さの点から、水素またはPR基が好ましい。
Figure 0005577687
(In the formula, Y represents hydrogen, an alkyl group having 1 to 3 carbon atoms, or a PR 1 R 2 group.)
The substituted phenyl group represented by these is shown. In the above formula, Y represents hydrogen, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, or a PR 1 R 2 group (R 1 and R 2 can exemplify the above-described substituents). From the viewpoint of ease of synthesis, hydrogen or a PR 1 R 2 group is preferable.

特に限定するものではないが、次に示すホスフィン化合物が、特に好ましいホスフィン化合物の例として挙げられる(A−1〜A−20)。   Although it does not specifically limit, the following phosphine compound is mentioned as an example of a particularly preferable phosphine compound (A-1 to A-20).

Figure 0005577687
Figure 0005577687

Figure 0005577687
(式中、Cyはシクロヘキシル基を示す。)
一般式(1)で表されるホスフィン化合物は、配位子として遷移金属化合物と組み合わせることにより各種反応の触媒となる。特に限定されるものではないが、例えば、ハロゲン化アリールとアミンとの反応によるアリールアミンの合成、ハロゲン化アリールとアリールボロン酸試薬等とのカップリングによるビアリールの合成、およびハロゲン化アリールとオレフィン類との反応による置換スチレンの合成等の反応を挙げることができる。これらの反応において、ハロゲン化アリールの代わりにアリールスルホネートを用いることもできる。
Figure 0005577687
(In the formula, Cy represents a cyclohexyl group.)
The phosphine compound represented by the general formula (1) becomes a catalyst for various reactions by combining with a transition metal compound as a ligand. Although not particularly limited, for example, synthesis of arylamines by reaction of aryl halides with amines, synthesis of biaryls by coupling of aryl halides with arylboronic acid reagents, etc., and aryl halides and olefins Reactions such as synthesis of substituted styrene by reaction with In these reactions, an aryl sulfonate can be used in place of the aryl halide.

これらの触媒反応の条件は特に限定されるものではないが、例えば、遷移金属化合物の使用量は、ハロゲン化アリール等の基質に対して0.001〜10モル%の範囲であり、配位子の使用量は、遷移金属化合物に対してモル比で0.8〜5.0モル%の範囲が挙げられる。反応に用いられる溶媒は、基質に対して不活性なものがよく、例えば、トルエン、キシレン等の芳香族溶媒、テトラハイドロフラン、ジメトキシエタン、1,4−ジオキサン、シクロペンチルメチルエーテル等のエーテル溶媒、ジメチルスルホキシド、ジメチルホルムアミド等の非極性溶媒等が挙げられる。反応温度は20〜160℃、反応時間は0.5〜72時間が用いられ、窒素あるいはアルゴン等の不活性ガス雰囲気下といった条件で通常行われる。   The conditions for these catalytic reactions are not particularly limited. For example, the amount of the transition metal compound used is in the range of 0.001 to 10 mol% with respect to the substrate such as aryl halide, and the ligand. The use amount of is in the range of 0.8 to 5.0 mol% in terms of a molar ratio with respect to the transition metal compound. The solvent used for the reaction is preferably inert to the substrate, for example, an aromatic solvent such as toluene and xylene, an ether solvent such as tetrahydrofuran, dimethoxyethane, 1,4-dioxane, and cyclopentylmethyl ether, Nonpolar solvents such as dimethyl sulfoxide, dimethylformamide and the like can be mentioned. The reaction temperature is 20 to 160 ° C., the reaction time is 0.5 to 72 hours, and the reaction is usually carried out under an inert gas atmosphere such as nitrogen or argon.

本発明の金属錯体に関し、配位子はパラジウム化合物やニッケル化合物等の各種遷移金属化合物との錯体形成が可能であるが、例えば、特に限定されるものではないが、パラジウム化合物としてヘキサクロロパラジウム(IV)酸ナトリウム四水和物、ヘキサクロロパラジウム(IV)酸カリウム等の4価パラジウム化合物類、塩化パラジウム(II)、臭化パラジウム(II)、酢酸パラジウム(II)、パラジウム(II)アセチルアセトナート、ジクロロビス(ベンゾニトリル)パラジウム(II)、ジクロロビス(アセトニトリル)パラジウム(II)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、ジクロロテトラアンミンパラジウム(II)、ジクロロ(シクロオクタ−1,5−ジエン)パラジウム(II)、パラジウム(II)トリフルオロアセテート等の2価パラジウム化合物類、トリス(ジベンジリデンアセトン)二パラジウム(0)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体、テトラキス(トリフェニルホスフィン)パラジウム(0)等の0価パラジウム化合物類等が挙げられる。   Regarding the metal complex of the present invention, the ligand can form a complex with various transition metal compounds such as a palladium compound and a nickel compound. For example, although not particularly limited, hexachloropalladium (IV ) Sodium tetrahydrate, tetravalent palladium compounds such as potassium hexachloropalladium (IV), palladium (II) chloride, palladium (II) bromide, palladium (II) acetate, palladium (II) acetylacetonate, Dichlorobis (benzonitrile) palladium (II), dichlorobis (acetonitrile) palladium (II), dichlorobis (triphenylphosphine) palladium (II), dichlorotetraamminepalladium (II), dichloro (cycloocta-1,5-diene) palladium (II) ), Divalent palladium compounds such as radium (II) trifluoroacetate, tris (dibenzylideneacetone) dipalladium (0), tris (dibenzylideneacetone) dipalladium (0) chloroform complex, tetrakis (triphenylphosphine) palladium (0 ) And other zero-valent palladium compounds.

本発明の金属錯体は、常温において水、メタノール、エタノール、n−ヘキサンなどに不溶であるため、反応液とこれらの溶媒を混合し、濾過することで容易に回収することができる。多置換ホスフィン配位子が金属を介して、不溶性の高分子錯体を形成していると推定される。この操作により、反応液中の金属濃度を低減させることが可能である。   Since the metal complex of the present invention is insoluble in water, methanol, ethanol, n-hexane and the like at room temperature, it can be easily recovered by mixing the reaction liquid and these solvents and filtering. It is presumed that the polysubstituted phosphine ligand forms an insoluble polymer complex via the metal. By this operation, the metal concentration in the reaction solution can be reduced.

本発明によれば、高選択的にアリールアミン類を製造することができる。特に、製品に高い純度が要求される電子部品材料の製造に好適である。また、取り扱いの容易なホスフィン化合物と、当該ホスフィン化合物にパラジウム化合物を作用させることにより得られるパラジウム−ホスフィン錯体とは、アリールアミン類およびビアリール類製造用の触媒成分として有用である。   According to the present invention, arylamines can be produced with high selectivity. In particular, it is suitable for the production of electronic component materials that require high purity in products. A phosphine compound that is easy to handle and a palladium-phosphine complex obtained by allowing a palladium compound to act on the phosphine compound are useful as catalyst components for producing arylamines and biaryls.

以下、実施例により、本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。生成物の分析には次の機器を使用した。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples. The following equipment was used for product analysis.

核磁気共鳴分析装置:バリアン社製 Gemini200
質量分析装置:日立製作所製 M−80B(測定方法:FD−MS分析)
ガスクロマトグラフ:キャピラリーカラム(J&WScience社製 DB−5)を備えた島津製作所製 GC−17Aを用い、100℃から300℃まで10℃/分で昇温し、FIDで検出した。
Nuclear magnetic resonance analyzer: Gemini200 manufactured by Varian
Mass spectrometer: M-80B manufactured by Hitachi, Ltd. (measurement method: FD-MS analysis)
Gas chromatograph: Using a GC-17A manufactured by Shimadzu Corporation equipped with a capillary column (DB-5 manufactured by J & WS Science), the temperature was raised from 100 ° C. to 300 ° C. at 10 ° C./min and detected by FID.

液体クロマトグラフィー:東ソー製 カラム(ODS−80Ts、4.6mmID×250mm)を用い、メタノール/テトラヒドロフラン=9/1(v/v)を溶出溶媒として、流量1.0mL/分、カラム温度40℃で通液し、東ソー製 紫外可視検出器(UV−8020)にて検出した。   Liquid chromatography: Tosoh column (ODS-80Ts, 4.6 mm ID × 250 mm), methanol / tetrahydrofuran = 9/1 (v / v) as elution solvent, flow rate 1.0 mL / min, column temperature 40 ° C. The solution was passed through and detected with a UV-visible detector (UV-8020) manufactured by Tosoh Corporation.

元素分析計:パーキンエルマー全自動元素分析装置 2400II:酸素フラスコ燃焼−IC測定法:東ソー製 イオンクロマトグラフ IC−2001
実施例1
4,4”−ビス(ジシクロヘキシルホスフィノ)−m−ターフェニルの合成
中間体合成1
4,4”−ジブロモ−m−ターフェニルの合成
Element analyzer: Perkin Elmer fully automatic element analyzer 2400II: Oxygen flask combustion-IC measurement method: Tosoh ion chromatograph IC-2001
Example 1
Synthesis of 4,4 "-bis (dicyclohexylphosphino) -m-terphenyl
Intermediate synthesis 1
Synthesis of 4,4 "-dibromo-m-terphenyl

Figure 0005577687
m−ジヨードベンゼン 1.00g(3.03mmol)、4−ブロモフェニルボロン酸 1.46g(7.27mmol)、トルエン 30mL、2.0M炭酸ナトリウム水溶液 15mL、テトラキストリフェニルフォスフィンパラジウム 0.14g(0.13mmol)を窒素雰囲気下、還流下で16時間攪拌した。水50 mLを加え、トルエン 100mLで抽出し、飽和塩化ナトリウム水溶液で洗浄した。無水硫酸マグネシウムで乾燥し、有機溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにより分離精製し、さらにクーゲルロールにて蒸留して表題化合物0.67g(2.42mmol、収率80%)を得た。
Figure 0005577687
m-diiodobenzene 1.00 g (3.03 mmol), 4-bromophenylboronic acid 1.46 g (7.27 mmol), toluene 30 mL, 2.0 M aqueous sodium carbonate solution 15 mL, tetrakistriphenylphosphine palladium 0.14 g ( 0.13 mmol) was stirred at reflux under a nitrogen atmosphere for 16 hours. 50 mL of water was added, extracted with 100 mL of toluene, and washed with a saturated aqueous sodium chloride solution. It dried with anhydrous magnesium sulfate and the organic solvent was distilled off. The obtained residue was separated and purified by silica gel column chromatography, and further distilled by Kugelrohr to obtain 0.67 g (2.42 mmol, yield 80%) of the title compound.

H−NMR(CDCl):7.46−7.69(12H)
13C−NMR(CDCl):121.66、125.47、126.08、128.64、129.32、131.77、139.66、140.56
4,4”−ビス(ジシクロヘキシルホスフィノ)−m−ターフェニルの合成
1 H-NMR (CDCl 3 ): 7.46-7.69 (12H)
13 C-NMR (CDCl 3 ): 121.66, 125.47, 126.08, 128.64, 129.32, 131.77, 139.66, 140.56
Synthesis of 4,4 "-bis (dicyclohexylphosphino) -m-terphenyl

Figure 0005577687
4,4”−ジブロモ−m−ターフェニル 0.86g(2.22mmol)、N,N,N’,N’−テトラメチルエチレンジアミン 0.54g(4.64mmol)をTHF 100mLに加え、窒素雰囲気下、−80℃に冷却した。これにn−ブチルリチウム(1.6M−ヘキサン溶液) 2.93mL(4.87mmol)を滴下し、−80℃で1時間攪拌した。次いで、この反応液にジシクロヘキシルクロロホスフィン 1.19g(5.10mmol)をTHF 5mLに溶解させた溶液を滴下し、−80℃で1時間攪拌した後、室温まで昇温させ、さらに16時間攪拌した。
Figure 0005577687
0.84 g (2.22 mmol) of 4,4 ″ -dibromo-m-terphenyl and 0.54 g (4.64 mmol) of N, N, N ′, N′-tetramethylethylenediamine were added to 100 mL of THF, and a nitrogen atmosphere was added. The solution was cooled to −80 ° C. 2.93 mL (4.87 mmol) of n-butyllithium (1.6M hexane solution) was added dropwise thereto and stirred for 1 hour at −80 ° C. Then, dicyclohexyl was added to the reaction solution. A solution prepared by dissolving 1.19 g (5.10 mmol) of chlorophosphine in 5 mL of THF was added dropwise, stirred at −80 ° C. for 1 hour, then warmed to room temperature, and further stirred for 16 hours.

飽和塩化アンモニウム水溶液 100mLを加え、CHCl 100mLで抽出した。飽和塩化ナトリウム水溶液 50mLで洗浄した後、無水硫酸マグネシウムで乾燥した。有機溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィーにより分離精製して、表題化合物0.39g(0.60mmol、収率27%)を得た。 100 mL of saturated aqueous ammonium chloride solution was added, and extracted with 100 mL of CH 2 Cl 2 . The extract was washed with 50 mL of a saturated aqueous sodium chloride solution and then dried over anhydrous magnesium sulfate. The organic solvent was distilled off under reduced pressure, and the resulting residue was separated and purified by silica gel column chromatography to obtain 0.39 g (0.60 mmol, yield 27%) of the title compound.

H−NMR(CDCl):1.23−2.09(44H)、7.57−7.88(12H)
FD−MS:623(M+1
実施例2
1,3,5−トリス(4−ジシクロヘキシルホスフィノフェニル)ベンゼンの合成
1 H-NMR (CDCl 3 ): 1.23-2.09 (44H), 7.57-7.88 (12H)
FD-MS: 623 (M + 1 )
Example 2
Synthesis of 1,3,5-tris (4-dicyclohexylphosphinophenyl) benzene

Figure 0005577687
1,3,5−トリス(4−ブロモフェニル)ベンゼン 1.00g(1.79mmol)、N,N,N’,N’−テトラメチルエチレンジアミン 0.66g(5.64mmol)をTHF 100mLに加え、窒素雰囲気下、−80℃に冷却した。これにn−ブチルリチウム(1.6M−ヘキサン溶液) 3.40mL(5.64mmol)を滴下し、−80℃で1時間攪拌した。次いで、この反応液にジシクロヘキシルクロロホスフィン 1.37g(5.91mmol)をTHF 5mLに溶解させた溶液を滴下し、−80℃で1時間攪拌した後、室温まで昇温させ、さらに16時間攪拌した。
Figure 0005577687
1.00 g (1.79 mmol) of 1,3,5-tris (4-bromophenyl) benzene and 0.66 g (5.64 mmol) of N, N, N ′, N′-tetramethylethylenediamine were added to 100 mL of THF, It cooled to -80 degreeC under nitrogen atmosphere. To this was added dropwise 3.40 mL (5.64 mmol) of n-butyllithium (1.6 M hexane solution), and the mixture was stirred at −80 ° C. for 1 hour. Next, a solution of 1.37 g (5.91 mmol) of dicyclohexylchlorophosphine dissolved in 5 mL of THF was added dropwise to the reaction solution, stirred at −80 ° C. for 1 hour, then warmed to room temperature, and further stirred for 16 hours. .

飽和塩化アンモニウム水溶液 100mLを加え、CHCl 100mLで抽出した。飽和塩化ナトリウム水溶液 50mLで洗浄した後、無水硫酸マグネシウムで乾燥した。有機溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィーにより分離精製して、表題化合物0.10g(0.11mmol、収率6%)を得た。 100 mL of saturated aqueous ammonium chloride solution was added, and extracted with 100 mL of CH 2 Cl 2 . The extract was washed with 50 mL of a saturated aqueous sodium chloride solution and then dried over anhydrous magnesium sulfate. The organic solvent was distilled off under reduced pressure, and the resulting residue was separated and purified by silica gel column chromatography to obtain 0.10 g (0.11 mmol, yield 6%) of the title compound.

H−NMR(CDCl):0.85−2.02(66H)、7.53−7.83(15H)
FD−MS:895(M+1
実施例3
4,4”−ビス(ジシクロヘキシルホスフィノ)−m−ターフェニルのアリールアミノ化反応触媒への適用
窒素ガスで置換された300mLの四つ口フラスコに、ブロモベンゼン 6.24g(40mmol)、3−メチルジフェニルアミン 7.32g(40mmol)、ナトリウムターシャリーブトキシド 4.99g(52mmol)、酢酸パラジウム 9.0mg(0.040mmol)、4、4”−ビス(ジシクロヘキシルホスフィノ)−m−ターフェニル 24.9mg(0.040mmol)、トルエン 90mLを加えて、100℃にて3時間攪拌した。反応終了後、純水 70gを加えて、分液操作にて得られた有機層をさらに飽和塩化ナトリウム水溶液で洗浄した。得られた有機層中の3−メチルトリフェニルアミンについて、n−エイコサンを内部標準物質とするガスクロマトグラフィー定量分析にて分析した結果、3−メチルトリフェニルアミンが、収率34%(3−メチルジフェニルアミン基準)の割合で生成していた。結果を表1に示す。
1 H-NMR (CDCl 3 ): 0.85-2.02 (66H), 7.53-7.83 (15H)
FD-MS: 895 (M + 1 )
Example 3
Application of 4,4 ″ -bis (dicyclohexylphosphino) -m-terphenyl to an arylamination reaction catalyst In a 300 mL four-necked flask purged with nitrogen gas, 6.24 g (40 mmol) of bromobenzene, 3- Methyldiphenylamine 7.32 g (40 mmol), sodium tertiary butoxide 4.99 g (52 mmol), palladium acetate 9.0 mg (0.040 mmol), 4,4 ″ -bis (dicyclohexylphosphino) -m-terphenyl 24.9 mg (0.040 mmol) and 90 mL of toluene were added, and the mixture was stirred at 100 ° C. for 3 hours. After completion of the reaction, 70 g of pure water was added, and the organic layer obtained by the liquid separation operation was further washed with a saturated aqueous sodium chloride solution. As a result of analyzing the 3-methyltriphenylamine in the obtained organic layer by gas chromatography quantitative analysis using n-eicosane as an internal standard substance, the yield of 3-methyltriphenylamine was 34% (3- (Based on methyldiphenylamine). The results are shown in Table 1.

実施例4、比較例1
表1に示したホスフィン化合物を配位子として用いた以外は、実施例3に準拠して反応を行った。結果を表1に示す。
Example 4, Comparative Example 1
The reaction was performed in accordance with Example 3 except that the phosphine compound shown in Table 1 was used as the ligand. The results are shown in Table 1.

Figure 0005577687
実施例5
4,4”−ビス(ジシクロヘキシルホスフィノ)−m−ターフェニルの鈴木−宮浦カップリング反応触媒への適用
窒素ガスで置換された100mLのフラスコに、酢酸パラジウム 6.7mg(0.030mmol)、4,4”−ビス(ジシクロヘキシルホスフィノ)−m−ターフェニル 18.7mg(0.030mmol)、フェニルボロン酸(PhB(OH)) 0.40g(3.3mmol)、p−クロロトルエン 0.38g(3.0mmol)、テトラヒドロフラン 11.0mL、炭酸カリウム 1.24g(9.0mmol)、水 9.0mLを加えて、溶媒還流温度にて12時間攪拌した。反応終了後、5%HCl水溶液を加えて後処理し、分液操作にて得られた有機層をさらに飽和塩化ナトリウム水溶液で洗浄した。得られた有機層を、n−ドデカンを内部標準物質とするガスクロマトグラフィー定量分析にて分析した結果、目的物である4−メチルビフェニルが、収率81%(p−クロロトルエン基準)の割合で生成していた。有機層にn−ヘキサンを60mL加え、析出する成分を濾過し、回収率55%で14mgの触媒を回収した。
Figure 0005577687
Example 5
Application of 4,4 ″ -bis (dicyclohexylphosphino) -m-terphenyl to Suzuki-Miyaura coupling reaction catalyst In a 100 mL flask purged with nitrogen gas, 6.7 mg (0.030 mmol) of palladium acetate, 4 , 4 ″ -bis (dicyclohexylphosphino) -m-terphenyl 18.7 mg (0.030 mmol), phenylboronic acid (PhB (OH) 2 ) 0.40 g (3.3 mmol), p-chlorotoluene 0.38 g (3.0 mmol), 11.0 mL of tetrahydrofuran, 1.24 g (9.0 mmol) of potassium carbonate, and 9.0 mL of water were added, and the mixture was stirred at a solvent reflux temperature for 12 hours. After completion of the reaction, 5% aqueous HCl solution was added for post-treatment, and the organic layer obtained by the liquid separation operation was further washed with saturated aqueous sodium chloride solution. As a result of analyzing the obtained organic layer by gas chromatography quantitative analysis using n-dodecane as an internal standard substance, the target product, 4-methylbiphenyl, had a yield of 81% (p-chlorotoluene standard). It was generated with. 60 mL of n-hexane was added to the organic layer, the precipitated component was filtered, and 14 mg of catalyst was recovered at a recovery rate of 55%.

Claims (4)

下記一般式(1)
Figure 0005577687
[式中、RおよびRいずれもシクロヘキシル基を示し、Xは水素または下記一般式(2)
Figure 0005577687
(式中、Yは水素、炭素数1〜3のアルキル基、またはPR基を示す。)
で表される置換フェニル基を示す。]
で表されるホスフィン化合物。
The following general formula (1)
Figure 0005577687
[Wherein, R 1 and R 2 both represent a cyclohexyl group , X is hydrogen or the following general formula (2)
Figure 0005577687
(In the formula, Y represents hydrogen, an alkyl group having 1 to 3 carbon atoms, or a PR 1 R 2 group.)
The substituted phenyl group represented by these is shown. ]
The phosphine compound represented by these.
請求項1に記載のホスフィン化合物を配位子として有する金属錯体。 A metal complex having the phosphine compound according to claim 1 as a ligand. 金属がパラジウムであることを特徴とする請求項に記載の金属錯体。 The metal complex according to claim 2 , wherein the metal is palladium. 請求項またはに記載の金属錯体を含んでなる芳香族アミン誘導体またはビアリール誘導体合成用触媒。 A catalyst for synthesizing an aromatic amine derivative or biaryl derivative comprising the metal complex according to claim 2 or 3 .
JP2009285462A 2009-12-16 2009-12-16 Polysubstituted phosphine compound and catalyst containing the phosphine compound Active JP5577687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009285462A JP5577687B2 (en) 2009-12-16 2009-12-16 Polysubstituted phosphine compound and catalyst containing the phosphine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009285462A JP5577687B2 (en) 2009-12-16 2009-12-16 Polysubstituted phosphine compound and catalyst containing the phosphine compound

Publications (2)

Publication Number Publication Date
JP2011126804A JP2011126804A (en) 2011-06-30
JP5577687B2 true JP5577687B2 (en) 2014-08-27

Family

ID=44289807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009285462A Active JP5577687B2 (en) 2009-12-16 2009-12-16 Polysubstituted phosphine compound and catalyst containing the phosphine compound

Country Status (1)

Country Link
JP (1) JP5577687B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119591A (en) * 2009-12-07 2011-06-16 Showa Denko Kk Organic electroluminescent element, and manufacturing method and use thereof

Also Published As

Publication number Publication date
JP2011126804A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
Vechorkin et al. functional group tolerant Kumada− Corriu− Tamao coupling of nonactivated alkyl halides with aryl and heteroaryl nucleophiles: catalysis by a nickel pincer complex permits the coupling of functionalized Grignard reagents
Shaikh et al. Secondary phosphine oxides: Versatile ligands in transition metal-catalyzed cross-coupling reactions
JP5376743B2 (en) Phosphan ligands with adamantyl groups, their preparation and their use in catalytic reactions
Jin et al. Highly Active, Well‐Defined (Cyclopentadiene)(N‐heterocyclic carbene) palladium Chloride Complexes for Room‐Temperature Suzuki–Miyaura and Buchwald–Hartwig Cross‐Coupling Reactions of Aryl Chlorides and Deboronation Homocoupling of Arylboronic Acids
CN103087105B (en) Chiral phosphine ligand and comprise the metal catalyst of this part and their application
CN102153592A (en) Suzuki-Miyaura coupling reaction of catalyzing aryl chloride by N-heterocyclic carbine-palladium-imidazole complex at room temperature under condition of water phase
Aydemir et al. trans-and cis-Ru (II) aminophosphine complexes: Syntheses, X-ray structures and catalytic activity in transfer hydrogenation of acetophenone derivatives
CN106513048A (en) Catalyst for nonterminal olefin hydroformylation reaction and preparation method and application of catalyst
KR101494149B1 (en) Catalyst composition and method for producing cross-coupling compound using the same
Oberholzer et al. Mizoroki–Heck reactions catalyzed by palladium dichloro-bis (aminophosphine) complexes under mild reaction conditions. The importance of ligand composition on the catalytic activity
Ju et al. Palladium-catalyzed cross-coupling of trimethoxysilylbenzene with aryl bromides and chlorides using phosphite ligands
JP4567450B2 (en) Novel nickel-, palladium- and platinum-carbene complexes, their preparation and use in catalysis
Li et al. Construction of Bulky Ligand Libraries by Ru (II)-Catalyzed P (III)-Assisted ortho-C–H Secondary Alkylation
CN104098607A (en) Complex and application of monophosphine monoazacyclo-carben nickel containing tricyclic hexyl phosphine
JP2007063275A (en) Allyl-type alkylation by iron catalyst action
Aydemir et al. Synthesis and characterization of transition metal complexes of thiophene‐2‐methylamine: X‐ray crystal structure of palladium (II) and platinum (II) complexes and use of palladium (II) complexes as pre‐catalyst in Heck and Suzuki cross‐coupling reactions
JP5568976B2 (en) Polysubstituted phosphine compound and catalyst containing the phosphine compound
JP5577687B2 (en) Polysubstituted phosphine compound and catalyst containing the phosphine compound
WO2007129664A1 (en) Chiral tetradentate ligand for asymmetric catalytic action and use thereof
EP3438115B1 (en) Ruthenium based complexes
CN111116285B (en) Efficient preparation method of 1-aryl-4-butene compound
JPWO2006085628A1 (en) Method for producing coupling compound
JP5493346B2 (en) Ferrocene derivatives and uses thereof
WO2017193288A1 (en) Synthesis of phosphine ligands bearing tunable linkage: methods of their use in catalysis
JP5544756B2 (en) Phosphine compound and catalyst comprising the phosphine compound and a transition metal compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R151 Written notification of patent or utility model registration

Ref document number: 5577687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151