JP5564316B2 - Brightest color arithmetic device and program - Google Patents

Brightest color arithmetic device and program Download PDF

Info

Publication number
JP5564316B2
JP5564316B2 JP2010089860A JP2010089860A JP5564316B2 JP 5564316 B2 JP5564316 B2 JP 5564316B2 JP 2010089860 A JP2010089860 A JP 2010089860A JP 2010089860 A JP2010089860 A JP 2010089860A JP 5564316 B2 JP5564316 B2 JP 5564316B2
Authority
JP
Japan
Prior art keywords
color
calculation
light source
calculated
source spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010089860A
Other languages
Japanese (ja)
Other versions
JP2011223277A (en
Inventor
顕一郎 正岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2010089860A priority Critical patent/JP5564316B2/en
Publication of JP2011223277A publication Critical patent/JP2011223277A/en
Application granted granted Critical
Publication of JP5564316B2 publication Critical patent/JP5564316B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、与えられた照明下における物体色の理論上の最大色域を表す最明色を演算する技術に関し、特に、与えられた光源スペクトルによって得られる最明色を高速かつ正確に演算する最明色演算装置、及びプログラムに関する。   The present invention relates to a technique for calculating the brightest color that represents the theoretical maximum color gamut of an object color under a given illumination, and in particular, calculates the brightest color obtained by a given light source spectrum quickly and accurately. The present invention relates to a brightest color arithmetic device and a program.

XYZ表色系は、色を三刺激値で表す色空間として標準的に用いられている。物体色の三刺激値は、その物体を照明する光の光源スペクトル、物体の分光反射率又は分光透過率、及び等色関数から求めることができる(例えば、非特許文献1参照)。   The XYZ color system is used as a standard color space in which colors are represented by tristimulus values. The tristimulus value of the object color can be obtained from the light source spectrum of the light that illuminates the object, the spectral reflectance or spectral transmittance of the object, and the color matching function (for example, see Non-Patent Document 1).

また、物体色の理論上の最大色域を表す最明色は、物体の分光反射(透過)率が0%又は100%となるバンドパス特性或いはバンドストップ特性となることが証明されている。最明色の色域は、幾つか設定した輝度について等輝度になる軌跡をCIE xyYやCIELAB色空間に描いて表現される。   Further, it has been proved that the brightest color representing the theoretical maximum color gamut of the object color has a band-pass characteristic or a band-stop characteristic in which the spectral reflectance (transmittance) of the object is 0% or 100%. The brightest color gamut is expressed by drawing a locus of equal luminance for several set luminances in the CIE xyY or CIELAB color space.

与えられた照明下における最明色の色域は、例えばカラープリンタの顔料又は染料インクやイメージセンサのカラーフィルタの開発、ディスプレイの原色点の設計するときの目標とすることができる。   The color gamut of the brightest color under a given illumination can be targeted, for example, when developing pigments or dye inks for color printers, color filters for image sensors, and designing primary color points for displays.

従って、近年では、与えられた光源スペクトルにおける物体色の理論上の最大色域を表す最明色を演算する技術が注目されている。   Therefore, in recent years, a technique for calculating the brightest color representing the theoretical maximum color gamut of the object color in a given light source spectrum has attracted attention.

2007年にMartinez-Verduは380nmから780nmまで0.1nmのステップの波長で与えられた等色関数と光源スペクトルから、仮想物体の最明色を計算する方法が発表されている(例えば、非特許文献2参照)。この計算法は、図10に示すように、仮想物体(理論上の物体)の分光反射率又は分光透過率を表すバンドパス特性或いはバンドストップ特性をタイプ(Type)による場合分けによって、離散的なデータを補完せずに計算することによる誤差が生じるため、誤差の許容範囲として明度で±0.01を推奨し、この許容範囲内に入る複数の最明色が入る場合は一つの平均値を出力し、この許容範囲内に一つも入らない場合は近傍の最明色から内挿することによって、最終的な最明色を決定する。 In 2007, Martinez-Verdu published a method for calculating the brightest color of a virtual object from a color matching function and a light source spectrum given at a wavelength of 0.1 nm from 380 nm to 780 nm (for example, non-patented). Reference 2). As shown in FIG. 10, this calculation method is based on a case where a bandpass characteristic or a band stop characteristic indicating a spectral reflectance or a spectral transmittance of a virtual object (theoretical object) is classified according to type (Type). Because errors occur due to calculation without complementing the data, ± 0.01 is recommended as the tolerance of error, and if multiple lightest colors that fall within this tolerance are included, one average value is used. If no output falls within the allowable range, the final brightest color is determined by interpolation from the brightest color in the vicinity.

大田登「色彩光学」、東京電機大学出版局Noboru Ota "Color Optics", Tokyo Denki University Press Martinez Verdu et al, “Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source”, Vol. 24, No. 6, June 2007, Optical Society of America, pp. 1501-1515Martinez Verdu et al, “Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source”, Vol. 24, No. 6, June 2007, Optical Society of America, pp. 1501-1515

しかしながら、上記非特許文献1による最明色の演算方法では、バンドパス特性或いはバンドストップ特性をタイプ(Type)による場合分けを行うことによる計算コストの増大を伴い、さらに、誤差の許容範囲を設定して最終的な最明色を決定するために、最明色として得られる値の確度が高いとはいえず、設定した許容範囲があらゆる照明光に対して有効とはいえない。   However, the calculation method of the brightest color according to Non-Patent Document 1 involves an increase in calculation cost due to the case classification of the bandpass characteristics or the band stop characteristics according to the type (Type), and further sets an allowable error range. In order to determine the final brightest color, it cannot be said that the accuracy of the value obtained as the brightest color is high, and the set allowable range is not effective for all illumination light.

本発明の目的は、上述の問題に鑑みて為されたものであり、与えられた光源スペクトルによって得られる最明色を高速かつ正確に演算する最明色演算装置、及びプログラムを提供することにある。   The object of the present invention has been made in view of the above-described problems, and provides a brightest color computing device and a program for computing the brightest color obtained by a given light source spectrum at high speed and accurately. is there.

即ち、本発明の最明色演算装置は、
所定の光源スペクトルによって得られる最明色を演算する最明色演算装置であって、
演算対象の光源スペクトル、等色関数及び演算対象の輝度を入力して、演算に用いる波長ステップが同一のステップ値となるように前記等色関数と前記光源スペクトルの双方を内挿し、前記光源スペクトルに各等色関数を適用して正規化し、正規化した分光分布を連結する連結分光分布算出部と、
前記連結した分光分布に対して、1つのバンド特性を適用し、積分処理を実行して中心波長での三刺激値が前記演算対象の輝度となるバンド幅を決定するバンド幅算出部と、
前記決定したバンド幅と、前記3つの等色関数とを用いて中心波長における三刺激値を算出する三刺激値算出部と、
前記バンド幅算出部及び前記三刺激値算出部の処理について、可視域全体にわたって繰返し演算を実行して各中心波長における三刺激値を算出し、算出した三刺激値を、演算対象の前記光源スペクトルに対する当該演算対象の輝度の最明色として決定する全波長繰返し演算部と、を備えることを特徴とする。
That is, the brightest color arithmetic device of the present invention is
A brightest color computing device for computing the brightest color obtained by a predetermined light source spectrum,
The light source spectrum, the color matching function and the luminance to be calculated are input, and both the color matching function and the light source spectrum are interpolated so that the wavelength steps used for the calculation have the same step value. A connected spectral distribution calculator that normalizes each color matching function and connects the normalized spectral distributions;
A bandwidth calculation unit that applies a single band characteristic to the connected spectral distribution, executes an integration process, and determines a bandwidth in which a tristimulus value at a central wavelength is the luminance of the calculation target;
A tristimulus value calculator for calculating a tristimulus value at a central wavelength using the determined bandwidth and the three color matching functions;
About the processing of the bandwidth calculation unit and the tristimulus value calculation unit, iterative calculation is performed over the entire visible range to calculate tristimulus values at each central wavelength, and the calculated tristimulus values are calculated as the light source spectrum to be calculated. And an all-wavelength repetitive calculation unit that determines the brightest color of the luminance to be calculated with respect to.

また、本発明の最明色演算装置において、前記1つのバンド特性は、分光反射率が0%又は100%、あるいは分光透過率が0%又は100%となる所定のバンド幅を有することを特徴とする。 In the brightest color arithmetic device of the present invention, the one band characteristic has a predetermined band width in which the spectral reflectance is 0% or 100%, or the spectral transmittance is 0% or 100%. And

また、本発明の最明色演算装置において、前記積分処理は、台形積分処理からなることを特徴とする。   In the brightest color arithmetic apparatus according to the present invention, the integration process is a trapezoidal integration process.

さらに、本発明は、所定の光源スペクトルによって得られる最明色を演算する最明色演算装置として構成するコンピュータに、
(a)演算対象の光源スペクトル、等色関数及び演算対象の輝度を入力して、演算に用いる波長ステップが同一のステップ値となるように前記等色関数と前記光源スペクトルの双方を内挿し、前記光源スペクトルに各等色関数を適用して正規化し、正規化した各分光分布を連結するステップと、
(b)前記連結した分光分布に対して、1つのバンド特性を適用し、積分処理を実行して中心波長での三刺激値が前記演算対象の輝度となるバンド幅を決定するステップと、
(c)前記決定したバンド幅と、前記等色関数とを用いて中心波長における三刺激値を算出するステップと、
(d)前記ステップ(b)及び前記ステップ(c)の処理について、可視域全体にわたって繰返し演算を実行して各中心波長における三刺激値を算出し、算出した三刺激値を、演算対象の前記光源スペクトルに対する当該演算対象の輝度の最明色として決定するステップと、を実行させるためのプログラムとして構成される。
Furthermore, the present invention provides a computer configured as a brightest color computing device that computes the brightest color obtained by a predetermined light source spectrum.
(A) A light source spectrum to be calculated, a color matching function and a luminance to be calculated are input, and both the color matching function and the light source spectrum are interpolated so that wavelength steps used for the calculation have the same step value. Applying each color matching function to the light source spectrum to normalize and concatenating each normalized spectral distribution;
(B) applying one band characteristic to the connected spectral distribution, executing an integration process, and determining a bandwidth at which a tristimulus value at a central wavelength becomes the luminance of the calculation target;
(C) calculating a tristimulus value at a central wavelength using the determined bandwidth and the color matching function;
(D) About the process of the said step (b) and the said step (c), it calculates repeatedly the tristimulus value in each center wavelength by performing calculation over the whole visible region, and the calculated tristimulus value is the said calculation object. And a step of determining as the brightest color of the luminance to be calculated for the light source spectrum.

本発明によれば、計算コスト増大の原因となっていた、物体色の分光反射率又は分光透過率を表すバンドパス特性或いはバンドストップ特性についての場合分けを不要とし、離散的な分光分布を線形補完するため、ユーザによって所望される任意の値で確度を決定できるので、高速かつ高確度な最明色の値を得ることができる。 According to the present invention, there is no need to separate the bandpass characteristic or the band stop characteristic indicating the spectral reflectance or spectral transmittance of the object color, which has caused an increase in calculation cost, and the discrete spectral distribution is linear. Since the accuracy can be determined with an arbitrary value desired by the user for complementation, the fastest and most accurate value of the brightest color can be obtained.

本発明による一実施例の最明色演算装置を示す図である。It is a figure which shows the brightest color arithmetic unit of one Example by this invention. 本発明による一実施例の最明色演算装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the brightest color calculating apparatus of one Example by this invention. D65光源の光源スペクトルを例示する図である。It is a figure which illustrates the light source spectrum of D65 light source. 等色関数を例示する図である。It is a figure which illustrates a color matching function. 本発明による一実施例の最明色演算装置における分光分布及びバンド特性を示す図である。It is a figure which shows the spectral distribution and band characteristic in the brightest color arithmetic unit of one Example by this invention. 本発明による一実施例の最明色演算装置における台形積分処理の例を示す図である。It is a figure which shows the example of the trapezoid integration process in the brightest color arithmetic unit of one Example by this invention. 本発明による一実施例の最明色演算装置にて得られる三刺激値から算出した所定の輝度におけるCIExy色度図である。It is a CIExy chromaticity diagram in the predetermined | prescribed brightness | luminance calculated from the tristimulus value obtained with the brightest color calculating apparatus of one Example by this invention. 本発明による一実施例の最明色演算装置にて得られる三刺激値から算出したCIE LAB色空間を示す図である。It is a figure which shows the CIE LAB color space calculated from the tristimulus value obtained with the brightest color arithmetic unit of one Example by this invention. 明度L*とL*const(1, 5, 50, 95)との間の明度誤差を示す図である。It is a figure which shows the lightness error between the lightness L * and L * const (1, 5, 50, 95). 仮想物体(理論上の物体)の分光反射率又は分光透過率を表すバンドパス特性或いはバンドストップ特性をタイプ(Type)による場合分けを行う例を示す図である。It is a figure which shows the example which performs the case classification by the type (Type) about the band pass characteristic or the band stop characteristic showing the spectral reflectance or spectral transmittance of a virtual object (theoretical object).

以下、本発明による一実施例の最明色演算装置を説明する。   Hereinafter, a brightest color arithmetic apparatus according to an embodiment of the present invention will be described.

Figure 0005564316
Figure 0005564316

最明色演算装置1は、コンピュータとして構成することができ、パラメータ入力部11は、ユーザが設定する任意のマン−マシンインターフェースとすることができ、演算対象の照明光の光源スペクトル、等色関数、及び演算対象の輝度を入力して制御部12に送出し、制御部12は、各機能を実行する。また、制御部12の各機能を実現する処理内容を記述したプログラムを、当該コンピュータの記憶部13に格納しておき、当該コンピュータの中央演算処理装置(CPU)によってこのプログラムを読み出して実行させることで実現することができる。   The brightest color calculation device 1 can be configured as a computer, and the parameter input unit 11 can be an arbitrary man-machine interface set by a user. The light source spectrum of the calculation target illumination light, the color matching function And the luminance to be calculated are input and sent to the control unit 12, and the control unit 12 executes each function. In addition, a program describing processing contents for realizing each function of the control unit 12 is stored in the storage unit 13 of the computer, and this program is read and executed by a central processing unit (CPU) of the computer. Can be realized.

制御部12は、連結分光分布算出部121と、バンド幅算出部122と、三刺激値算出部123と、全波長繰返し演算部124とを備える。   The control unit 12 includes a connected spectral distribution calculation unit 121, a bandwidth calculation unit 122, a tristimulus value calculation unit 123, and an all-wavelength repetition calculation unit 124.

Figure 0005564316
Figure 0005564316

バンド幅算出部122は、連結した分光分布T(k)に対して、分光反射率が0%又は100%、あるいは分光透過率が0%又は100%となる所定のバンド幅2hnを有する1つのバンド特性を適用し、積分処理(例えば、台形積分処理)を実行して中心波長λnでの三刺激値Yが演算対象の輝度Yconstとなるバンド幅2hnを決定し、三刺激値算出部123に送出する。 The bandwidth calculation unit 122 has a predetermined bandwidth 2hn with a spectral reflectance of 0% or 100% or a spectral transmittance of 0% or 100% with respect to the connected spectral distribution T (k). A band characteristic is applied, an integration process (for example, a trapezoidal integration process) is executed to determine a bandwidth 2hn at which the tristimulus value Y at the center wavelength λn becomes the luminance Yconst to be calculated, and the tristimulus value calculation unit 123 Send it out.

Figure 0005564316
Figure 0005564316

全波長繰返し演算部124は、上記のバンド幅算出部122及び三刺激値算出部123の処理について、可視域全体にわたって繰返し演算を実行して各中心波長λnにおける三刺激値を算出し、算出した三刺激値を、演算対象の照明光の光源スペクトルSに対する当該演算対象の輝度Yconstの最明色として決定する。   The all-wavelength repetition calculation unit 124 calculates the tristimulus value at each central wavelength λn by performing repetition calculation over the entire visible range for the processing of the bandwidth calculation unit 122 and the tristimulus value calculation unit 123 described above. The tristimulus value is determined as the brightest color of the luminance Yconst of the calculation target with respect to the light source spectrum S of the calculation target illumination light.

ユーザは、輝度Yconstの値を随意、最明色演算装置1に入力することで、ユーザによって所望される任意の値で確度を決定することができるようになる。   The user can input the value of the brightness Yconst to the brightest color calculation device 1 arbitrarily, thereby determining the accuracy with an arbitrary value desired by the user.

以下、本発明による一実施例の最明色演算装置の動作をより詳細に説明する。   Hereinafter, the operation of the brightest color arithmetic device according to an embodiment of the present invention will be described in more detail.

Figure 0005564316
Figure 0005564316

Figure 0005564316
Figure 0005564316

最明色演算装置1は、バンド幅算出部122によって、連結した分光分布T(k)に対して、分光反射率が0%又は100%、あるいは分光透過率が0%又は100%となる所定のバンド幅2hnを有する1つのバンド特性を適用し、台形積分処理を実行して中心波長λnでの三刺激値Yが演算対象の輝度Yconstとなるバンド幅2hnを決定する(ステップS3)。
The brightest color computing device 1 has a predetermined spectral reflectance of 0% or 100% or a spectral transmittance of 0% or 100% with respect to the connected spectral distribution T (k) by the bandwidth calculation unit 122. One band characteristic having a bandwidth 2hn is applied and trapezoidal integration processing is executed to determine a bandwidth 2hn at which the tristimulus value Y at the center wavelength λn becomes the luminance Yconst to be calculated (step S3).

Figure 0005564316
Figure 0005564316

Figure 0005564316
Figure 0005564316

ここでNは波長のサンプル数である。波長の範囲が380−780nmの場合、N=4001となる。最明色の三刺激値Yは、分光反射率又は分光透過率R(k)を用いて式(2)のようになる。 Here, N is the number of samples of wavelength. When the wavelength range is 380-780 nm, N = 4001. The tristimulus value Y of the brightest color is expressed by Equation (2) using the spectral reflectance or the spectral transmittance R (k).

Figure 0005564316
Figure 0005564316

Figure 0005564316
Figure 0005564316

Figure 0005564316
Figure 0005564316

Figure 0005564316
Figure 0005564316

Figure 0005564316
Figure 0005564316

Figure 0005564316
Figure 0005564316

式(4)は式(5)のように台形積分で表される。   Equation (4) is represented by trapezoidal integration as in Equation (5).

Figure 0005564316
Figure 0005564316

Figure 0005564316
Figure 0005564316

最小値の探索は|Yn−Yconst|を最小化するhnを0≦hn≦N/2の範囲で探索する。式(5)のYnは単調増加関数なので安定して収束する。ここでのhnに対する許容範囲は適度に小さい値、例えば、10−10に設定する。非特許文献2における技術のような事前の許容範囲の設定は必要ないことに留意する。 In searching for the minimum value, hn that minimizes | Yn−Yconst | is searched in the range of 0 ≦ hn ≦ N / 2. Since Yn in equation (5) is a monotonically increasing function, it converges stably. The permissible range for hn here is set to a reasonably small value, for example, 10 −10 . Note that it is not necessary to set an allowable range in advance as in the technique in Non-Patent Document 2.

Figure 0005564316
Figure 0005564316

最明色演算装置1は、全波長繰返し演算部124によって、上記のバンド幅算出部122及び三刺激値算出部123の処理について、可視域全体にわたって繰返し演算を実行して各中心波長λnにおける三刺激値を算出し(ステップS5)、算出した三刺激値を、演算対象の照明光の光源スペクトルSに対する当該演算対象の輝度Yconstの最明色として決定する(ステップS5)。   The brightest color computing device 1 performs a repeated calculation over the entire visible range with respect to the processing of the bandwidth calculation unit 122 and the tristimulus value calculation unit 123 by the all-wavelength repetition calculation unit 124, and performs three operations at each central wavelength λn. A stimulus value is calculated (step S5), and the calculated tristimulus value is determined as the brightest color of the luminance Yconst of the calculation target with respect to the light source spectrum S of the calculation target illumination light (step S5).

Figure 0005564316
Figure 0005564316

本発明は、前述した実施例に限定されるものではなく、その主旨を逸脱しない範囲において種々変更可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本発明によれば、使用する光源スペクトルから高速かつ高確度な最明色の値を得ることができるので、例えばカラープリンタの顔料又は染料インクやイメージセンサのカラーフィルタの開発、ディスプレイの原色点の設計を行う分野に有用である。   According to the present invention, it is possible to obtain the fastest and most accurate value of the brightest color from the light source spectrum to be used. For example, development of color printer pigment or dye ink or image sensor color filter, display primary color point Useful in the field of design.

1 最明色演算装置
2 表示装置
3 データベース
11 パラメータ入力部
12 制御部
13 記憶部
121 連結分光分布算出部
122 バンド幅算出部
123 三刺激値算出部
124 全波長繰返し演算部
DESCRIPTION OF SYMBOLS 1 Brightest color calculating apparatus 2 Display apparatus 3 Database 11 Parameter input part 12 Control part 13 Storage part 121 Connection spectral distribution calculation part 122 Bandwidth calculation part 123 Tristimulus value calculation part 124 All wavelength repetition calculation part

Claims (4)

所定の光源スペクトルによって得られる最明色を演算する最明色演算装置であって、
演算対象の光源スペクトル、等色関数及び演算対象の輝度を入力して、演算に用いる波長ステップが同一のステップ値となるように前記等色関数と前記光源スペクトルの双方を内挿し、前記光源スペクトルに各等色関数を適用して正規化し、正規化した各分光分布を連結する連結分光分布算出部と、
前記連結した分光分布に対して、1つのバンド特性を適用し、積分処理を実行して中心波長での三刺激値が前記演算対象の輝度となるバンド幅を決定するバンド幅算出部と、
前記決定したバンド幅と、前記等色関数とを用いて中心波長における三刺激値を算出する三刺激値算出部と、
前記バンド幅算出部及び前記三刺激値算出部の処理について、可視域全体にわたって繰返し演算を実行して各中心波長における三刺激値を算出し、算出した三刺激値を、演算対象の前記光源スペクトルに対する当該演算対象の輝度の最明色として決定する全波長繰返し演算部と、
を備えることを特徴とする、最明色演算装置。
A brightest color computing device for computing the brightest color obtained by a predetermined light source spectrum,
The light source spectrum, the color matching function and the luminance to be calculated are input, and both the color matching function and the light source spectrum are interpolated so that the wavelength steps used for the calculation have the same step value. A connected spectral distribution calculation unit that applies normalization to each color matching function and connects the normalized spectral distributions;
A bandwidth calculation unit that applies a single band characteristic to the connected spectral distribution, executes an integration process, and determines a bandwidth in which a tristimulus value at a central wavelength is the luminance of the calculation target;
A tristimulus value calculation unit for calculating a tristimulus value at a center wavelength using the determined bandwidth and the color matching function;
About the processing of the bandwidth calculation unit and the tristimulus value calculation unit, iterative calculation is performed over the entire visible range to calculate tristimulus values at each central wavelength, and the calculated tristimulus values are calculated as the light source spectrum to be calculated. An all-wavelength repetitive calculation unit that determines the brightest color of the luminance to be calculated for
A brightest color arithmetic device, comprising:
前記1つのバンド特性は、分光反射率が0%又は100%、あるいは分光透過率が0%又は100%となる所定のバンド幅を有することを特徴とする、請求項1に記載の最明色演算装置。 2. The brightest color according to claim 1, wherein the one band characteristic has a predetermined bandwidth with a spectral reflectance of 0% or 100% or a spectral transmittance of 0% or 100%. Arithmetic unit. 前記積分処理は、台形積分処理からなることを特徴とする、請求項1に記載の最明色演算装置。   2. The brightest color arithmetic device according to claim 1, wherein the integration process comprises a trapezoidal integration process. 所定の光源スペクトルによって得られる最明色を演算する最明色演算装置として構成するコンピュータに、
(a)演算対象の光源スペクトル、等色関数及び演算対象の輝度を入力して、演算に用いる波長ステップが同一のステップ値となるように前記等色関数と前記光源スペクトルの双方を内挿し、前記光源スペクトルに各等色関数を適用して正規化し、正規化した各分光分布を連結するステップと、
(b)前記連結した分光分布に対して、1つのバンド特性を適用し、積分処理を実行して中心波長での三刺激値Yが前記演算対象の輝度となるバンド幅を決定するステップと、
(c)前記決定したバンド幅と、前記等色関数とを用いて中心波長における三刺激値を算出するステップと、
(d)前記ステップ(b)及び前記ステップ(c)の処理について、可視域全体にわたって繰返し演算を実行して各中心波長における三刺激値を算出し、算出した三刺激値を、演算対象の前記光源スペクトルに対する当該演算対象の輝度の最明色として決定するステップと、
を実行させるためのプログラム。
In a computer configured as a brightest color calculation device for calculating the brightest color obtained by a predetermined light source spectrum,
(A) A light source spectrum to be calculated, a color matching function and a luminance to be calculated are input, and both the color matching function and the light source spectrum are interpolated so that wavelength steps used for the calculation have the same step value. Applying each color matching function to the light source spectrum to normalize and concatenating each normalized spectral distribution;
(B) applying one band characteristic to the connected spectral distribution, executing an integration process, and determining a bandwidth at which the tristimulus value Y at the center wavelength becomes the luminance of the calculation target;
(C) calculating a tristimulus value at a central wavelength using the determined bandwidth and the color matching function;
(D) About the process of the said step (b) and the said step (c), it calculates repeatedly the tristimulus value in each center wavelength by performing calculation over the whole visible region, and the calculated tristimulus value is the said calculation object. Determining as the brightest color of the target luminance for the light source spectrum;
A program for running
JP2010089860A 2010-04-08 2010-04-08 Brightest color arithmetic device and program Expired - Fee Related JP5564316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089860A JP5564316B2 (en) 2010-04-08 2010-04-08 Brightest color arithmetic device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089860A JP5564316B2 (en) 2010-04-08 2010-04-08 Brightest color arithmetic device and program

Publications (2)

Publication Number Publication Date
JP2011223277A JP2011223277A (en) 2011-11-04
JP5564316B2 true JP5564316B2 (en) 2014-07-30

Family

ID=45039680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089860A Expired - Fee Related JP5564316B2 (en) 2010-04-08 2010-04-08 Brightest color arithmetic device and program

Country Status (1)

Country Link
JP (1) JP5564316B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6088826B2 (en) * 2013-01-10 2017-03-01 日本放送協会 Spectral parameter calculation apparatus, spectral parameter calculation method and program for optical metamer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086549A (en) * 2005-09-22 2007-04-05 Fuji Xerox Co Ltd Image display device and image display method
JP4400644B2 (en) * 2007-04-18 2010-01-20 セイコーエプソン株式会社 Image processing apparatus, color correction table generation apparatus, display apparatus, and image processing method

Also Published As

Publication number Publication date
JP2011223277A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
CN109903256B (en) Model training method, chromatic aberration correction device, medium, and electronic apparatus
CN108020519B (en) Virtual multi-light-source spectrum reconstruction method based on color constancy
CN103428404A (en) Color processing apparatus and color processing method
CN104885068B (en) The generation of white ink separation
US20080239348A1 (en) Method for creating color conversion definition for image output devices and image processing apparatus implementing the method
CN113316711A (en) Method and apparatus for estimating ambient light
US9122978B2 (en) Image processing device and method, and non-transitory computer readable medium
CN110738957B (en) Display system and color characteristic measurement method
US8330833B2 (en) Signal processing apparatus for determining color conversion processing for color-converting second color signal obtained by second image pickup device to color signal approximate to first color signal obtained by target first image pickup device and non-transitory computer-readable recording medium for recording signal processing program for the color conversion processing
CN106506902B (en) Color management for light and color management method
JP6088826B2 (en) Spectral parameter calculation apparatus, spectral parameter calculation method and program for optical metamer
JP5564316B2 (en) Brightest color arithmetic device and program
JP7243376B2 (en) Color inspection device and color inspection program
US8456701B2 (en) Reference color difference quantity guide for spot color applications
EP3993382A1 (en) Colour calibration of an imaging device
US10097731B2 (en) Change degree deriving device, change degree deriving system and known color body
US11405997B2 (en) Lighting control device, lighting control method, and program
JP2010157988A (en) Color evaluation method and color evaluation system
KR102596914B1 (en) Method, device, and computer-readable medium for colormetry considering external environment
US8482796B2 (en) Color processing apparatus and color processing method
TWI747039B (en) Multi-angle mobile electronic device spectrum shooting system and image display method
US11962949B2 (en) Method of air pollution estimation based on spectral image processing
KR101366163B1 (en) Hybrid color conversion method and system to optimize the performancein diverse color perception environment
JP5282356B2 (en) Spectral data classification method, spectral data classification device, and spectral data classification program
US20220303516A1 (en) Method of air pollution estimation based on spectral image processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5564316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees