JP5563167B2 - 光通信モジュール - Google Patents

光通信モジュール Download PDF

Info

Publication number
JP5563167B2
JP5563167B2 JP2013534833A JP2013534833A JP5563167B2 JP 5563167 B2 JP5563167 B2 JP 5563167B2 JP 2013534833 A JP2013534833 A JP 2013534833A JP 2013534833 A JP2013534833 A JP 2013534833A JP 5563167 B2 JP5563167 B2 JP 5563167B2
Authority
JP
Japan
Prior art keywords
wavelength band
light receiving
lens
light emitting
bidirectional multiplexer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013534833A
Other languages
English (en)
Other versions
JP2013544374A (ja
Inventor
シン,ヒュニー
Original Assignee
オプティシス カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オプティシス カンパニー リミテッド filed Critical オプティシス カンパニー リミテッド
Publication of JP2013544374A publication Critical patent/JP2013544374A/ja
Application granted granted Critical
Publication of JP5563167B2 publication Critical patent/JP5563167B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0261Optical medium access at the optical multiplex section layer
    • H04J14/0265Multiplex arrangements in bidirectional systems, e.g. interleaved allocation of wavelengths or allocation of wavelength groups

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、光通信モジュールに係り、さらに詳細には、互いに異なる波長帯域の光信号を1つの光ファイバで送受信する光通信モジュールに関する。
波長が互いに異なるさまざまな光信号を1つの光ファイバを介して伝送するのに、波長分割多重方式(WDM:wavelength division multiplexing)が光通信モジュールに使用される。
本発明が解決しようとする一技術的課題は、受光素子と発光素子とのクロストークを減少させた光通信モジュールを提供することである。
本発明の一実施形態による光通信モジュールは、第1双方向性多重化器、第2双方向性多重化器、前記第1双方向性多重化器と前記第2双方向性多重化器とを連結する光ファイバ、前記第1双方向性多重化器に連結され、第1発光波長帯域で動作する少なくとも1つの第1発光素子、前記第2双方向性多重化器に連結され、第1受光波長帯域で動作する少なくとも1つの第1受光素子、前記第2双方向性多重化器に連結され、前記第1発光波長帯域と異なる第2発光波長帯域で動作する少なくとも1つの第2発光素子、及び前記第1双方向性多重化器に連結され、第2受光波長帯域で動作する少なくとも1つの第2受光素子を含む。前記第1発光波長帯域は、前記第1受光波長帯域に含まれ、前記第2発光波長帯域は、前記第2受光波長帯域に含まれる。
本発明の一実施形態による光通信モジュールは、互いに異なる受光波長帯域を有する少なくとも2グループの受光素子を含む。また、互いに異なる発光波長帯域を有する少なくとも2グループの発光素子を含む。第1発光素子は、第1発光波長帯域で動作し、第2発光素子は、第2発光波長帯域で動作する。
第1発光波長帯域は、前記第1受光波長帯域に含まれ、前記第2発光波長帯域は、第2受光波長帯域に含まれる。これによって、前記第1発光素子と前記第2受光素子とのクロストーク(cross-talk)が低減し、前記第2発光素子と前記第1受光素子とのクロストークが低減する。
本発明の一実施形態による光通信モジュールについて説明する図面である。 図1の光通信モジュールの波長帯域について説明する図面である。 本発明の他の実施形態による光通信モジュールについて説明する図面である。 図3の光通信モジュールの波長帯域について説明する図面である。 本発明のさらに他の実施形態による光通信モジュールについて説明する図面である。 図5の光通信モジュールの波長帯域について説明する図面である。 本発明の他の実施形態による光通信モジュールを構成する双方向多重化器について説明する斜視図である。 本発明の他の実施形態による光通信モジュールを構成する双方向多重化器について説明する断面図である。 本発明のさらに他の実施形態による光通信モジュールを構成する双方向多重化器について説明する断面図である。
以下、添付した図面を参照しつつ、本発明の望ましい実施形態について詳細に説明する。しかし、本発明は、ここで説明する実施形態に限定されるものではなく、他の形態で具体化されもする。むしろ、ここで紹介される実施形態は、開示された内容が徹底したものであり、完全になることができるように、そして当業者に、本発明の思想が十分に伝達されるように提供されるものである。図面において、構成要素は、明確性を期するために誇張されている。明細書全体にわたって同一の参照番号で表示された部分は、同一の構成要素を示す。
図1は、本発明の一実施形態による光通信モジュールについて説明する図面である。
図2は、図1の光通信モジュールの波長帯域について説明する図面である。
図1及び図2を参照すれば、前記光通信モジュールは、第1双方向性多重化器16、第2双方向性多重化器17、前記第1双方向性多重化器16と前記第2双方向性多重化器17とを連結する光ファイバ、前記第1双方向性多重化器16に連結され、第1発光波長帯域で動作する少なくとも1つの第1発光素子11、前記第2双方向性多重化器17に連結され、第1受光波長帯域で動作する少なくとも1つの第1受光素子13、前記第2双方向性多重化器17に連結され、前記第1発光波長帯域と異なる第2発光波長帯域で動作する少なくとも1つの第2発光素子14、及び前記第1双方向性多重化器16に連結され、第2受光波長帯域で動作する少なくとも1つの第2受光素子12を含む。
波長分割多重化方式の光通信は、さまざまなチャネルの信号をさまざまな波長の光信号に変え、1つの光ファイバを介して伝送する。従って、いくつかの光信号を1つの光ファイバに連結する多重化器と、1つの光ファイバで、いくつかの光信号を波長別に分離する逆多重化器とが必要である。多重化と逆多重化は、さまざまな方式があるが、波長選択フィルタを含む方式が簡単な構造を有する。双方向は、構造によって、多重化と逆多重化とが区別されないこともあり、受光素子の前に波長選択フィルタで逆多重化機能を得ることができる。
前記第1発光波長帯域は、前記第1受光波長帯域に含まれ、前記第2発光波長帯域は、前記第2受光波長帯域に含まれる。前記第1受光波長帯域と前記第2受光波長帯域は、互いに重畳されずに分離される。
前記第1双方向性多重化器16及び前記第2双方向性多重化器17は、波長分割多重化器(wavelength divisional multiplexer)である。双方向性多重化器16,17は、光フィルタ形態(optical filter type)である。前記双方向性多重化器16,17は、16個以下のチャネルを有し、そのチャネルの波長間隔が10nm以上である低密度波長分割多重化器(CWDM:coarse wavelength divisional multiplexer)である。
前記第1発光素子11は、前記第1双方向性多重化器16のチャネルに連結される。前記第1発光素子11それぞれは、特定の波長で動作するレーザダイオードである。前記第1発光素子11の発光波長は、互いに異なり、互いに隣接した波長を有するようにし、第1発光波長帯域(emitting wavelength band)を形成することができる。
前記第2発光素子14は、前記第2双方向性多重化器17のチャネルに連結される。前記第2発光素子14それぞれは、特定の波長で動作するレーザダイオードである。前記第2発光素子14の発光波長は、互いに異なり、互いに隣接した波長を有するようにし、第2発光波長帯域を形成することができる。
前記第1受光素子13及び前記第2受光素子12は、半導体ダイオード、PIN光ダイオード(PIN photo diode)、またはアバランシ光ダイオード(avalanche photo diode)でもある。前記第1受光素子13は、同一の構造を有することができる。前記第2受光素子12は、同一の構造を有することができる。前記第1受光素子13は、第1受光波長帯域の光に対して、分光応答度(R:spectral responsibility)を有することができる。分光応答度は、受光素子に入力された光出力に対して、いかほど多量の電流に変えるかということを示す。前記第2受光素子12は、第2受光波長帯域の光に対して、分光応答度(R)を有することができる。前記第1受光波長帯域は、使用される発光波長に係わる前記分光応答度の最大値に対して、30パーセント以上の領域である。前記第2受光波長帯域は、使用される発光波長の前記分光応答度の最大値に対して、30パーセント以上の領域である。
前記受光素子は、InGaAsのPIN構造を使う場合、900nmないし1,680nmで、分光応答度を有することができる。前記受光素子は、GaAs PIN構造を使用する場合、620nmないし870nmで、分光応答度を有することができる。
発光素子11,14は、光信号を、双方向多重化器16,17及び光ファイバ18を介して伝送する。しかし、前記双方向多重化器16,17は、一定の損失を有する。また、前記第1発光素子11の出力光λ1は、前記第1双方向性多重化器16と、前記光ファイバ18の一端が接触する地点で反射されて戻ることができる。また、光ファイバ18の他端、及び第2双方向性多重化器17、第1受光素子13、第2発光素子14の面でも反射することができる。その場合、前記第2受光素子12が反射した出力光λ1を感知して誤動作することがある。かような誤動作を減らそうとするならば、前記第1双方向性多重化器16は、高い波長選択性を提供しなければならない。
具体的には、前記第1双方向性多重化器16が光フィルタ形態である場合、波長選択性は、フィルタの性能に依存し、前記フィルタの性能向上は、製造コストを引き上げる。従って、前記第1発光波長帯域で、前記第2受光素子12が動作しないように設計されれば、前記第1双方向性多重化器16の波長選択性は、低下する。これによって、前記光モジュールは、低フィルタ性能を有した前記第1双方向性多重化器16として動作する。
前記第1発光波長帯域は、620nmないし870nmでもある。前記第2受光波長帯域は、900nmないし1,680nmでもある。その場合、前記第2受光波長帯域で動作する第2受光素子12は、前記第1双方向性多重化器16の内部反射、または前記光ファイバ18の一端での反射による第1発光波長帯域の反射光に影響をほとんど受けない。
前記第1発光素子11は、活性層として、AlGaAsまたはGaAsを含む垂直共振型表面発光レーザ(VCSEL)でもある。また、前記第2受光素子12は、InP基板に成長されたInGaAs吸収層を含むPIN光ダイオードである。
前記第2発光素子14の出力光λ2,…,λnは、前記第2双方向性多重化器17と、前記光ファイバ18の他端とが接触する地点で反射されて戻ることがある。その場合、前記第1受光素子13が反射した出力光λ2,…,λnを感知して誤動作を引き起こす。かような誤動作を減らそうとするならば、前記第2双方向性多重化器17は、高い波長選択性を提供しなければならない。
前記第2双方向性多重化器17が光フィルタ形態である場合、波長選択性は、フィルタの性能に依存し、前記フィルタの性能向上は、製造コストを引き上げる。従って、前記第2発光波長帯域で、前記第1受光素子13が動作しないように設計されれば、前記第2双方向性多重化器17の波長選択性は低下する。従って、前記光モジュールは、低フィルタ性能を有した前記第2双方向性多重化器17を有して動作することができる。
前記第2発光波長帯域は、900nmないし1,680nmであり、前記第1受光波長帯域は、620nmないし870nmでもある。その場合、前記第1受光波長帯域で動作する第1受光素子13は、前記第2双方向性多重化器17の内部反射、または前記光ファイバ18の他端での反射による第2発光波長帯域の反射光に影響を受けないこともある。具体的には、前記第2発光素子14は、活性層としてInGaAsを含む垂直共振型表面発光レーザ(VCSEL)でもある。前記第1受光素子13は、GaAs基板に成長されたGaAs吸収層を含むPIN光ダイオードでもある。
発光素子11,14の出力OUTは、互いに異なる波長の光を放出するように形成される。例えば、光を放出する物質として、GaAs量子ウェル(quantum well)を使用すれば、850ないし870nmの波長を有する半導体レーザを得ることができる。また、GaAsにAlを混合すれば、Alの混合比率によって、850nmより短い波長を有する半導体レーザを作ることができ、GaAsにInを混合すれば、900nmより長い波長を有する半導体レーザを得ることができる。
前記受光素子12,13は、波長に依存する分光応答度(R)、及び受光波長帯域を有することができる。例えば、前記受光素子12,13は、GaAs、InGaAsまたはAlGaAsを利用して波長選択性を有することができる。具体的には、lnP基板に成長されたInGaAs吸収層を利用すれば、前記受光素子12,13は、900nmないし1,680nmの受光波長帯域を有することができる。GaAs基板に成長されたGaAs吸収層を利用すれば、前記受光素子12は、620nmないし870nmの受光波長帯域を有することができる。前記受光波長帯域は、使用される発光波長の最大値の30パーセント以上の分光応答度を有する領域である。
例えば、前記第1発光素子11は、GaAs系またはAlGaAs系を使用し、620nmないし870nmの第1発光波長帯域で動作することができる。前記第2受光素子12は、InGaAs系を使用し、900nmないし1,680nmの第2受光波長帯域を有することができる。前記第2発光素子14は、InGaAs系を使用し、900nmないし1,680nmの第2発光波長帯域で動作し、前記第1受光素子13は、GaAsを利用し、620nmないし870nmの第1受光波長帯域を有することができる。前記第1受光波長帯域と前記第2受光波長帯域は、互いに重畳されずに分離される。その場合、前記第1発光素子11と前記第2受光素子12とのクロストーク(cross-talk)が低減する。また、前記第2発光素子14と前記第1受光素子13とのクロストークが低減する。これによって、前記フィルタは、性能が低下しても動作することができる。
図3は、本発明の他の実施形態による光通信モジュールについて説明する図面である。
図4は、図3の光通信モジュールの波長帯域について説明する図面である。
図3及び図4を参照すれば、前記光通信モジュールは、第1双方向性多重化器16、第2双方向性多重化器17、前記第1双方向性多重化器16と前記第2双方向性多重化器17とを連結する光ファイバ、前記第1双方向性多重化器16に連結され、第1発光波長帯域で動作する少なくとも1つの第1発光素子11、前記第2双方向性多重化器17に連結され、第1受光波長帯域で動作する少なくとも1つの第1受光素子13、前記第2双方向性多重化器17に連結され、前記第1発光波長帯域と異なる第2発光波長帯域で動作する少なくとも1つの第2発光素子14、及び前記第1双方向性多重化器16に連結され、第2受光波長帯域で動作する少なくとも1つの第2受光素子12を含む。
前記第1発光波長帯域は、前記第1受光波長帯域に含まれ、前記第2発光波長帯域は、前記第2受光波長帯域に含まれる。前記第1受光波長帯域と前記第2受光波長帯域は、互いに重畳されずに分離される。
一般的には、1つの光ファイバ及び多重化器を介して、複数の波長の光信号を伝送する場合、受光素子は、同一の構造を使用する。その場合、本来の光信号を復元することは、波長を選択するフィルタに全面的に依存する。従って、前記フィルタの性能を低下させ、前記フィルタの価格を低減させることができる方法が必要である。
前記第1発光素子11に連結される前記第1双方向性多重化器16のチャネルは、光フィルタ19aを含まない。前記第2発光素子14に連結される前記第2双方向性多重化器17のチャネルは、光フィルタ19bを含まない。
具体的には、前記第1発光素子11は、一つであり、前記第1発光素子11の出力OUTの波長は、850nmである。また、第2受光素子12は、5個であり、第2受光波長帯域は、900nmないし1,680nmでもある。前記第2受光素子12aないし12eは、同一の構造を採用する。前記第2受光素子12の分光応答度(R)は、900nm以下で急激な低下を示す。従って、前記第2受光素子12は、900nm以下で使用し難い。
前記第2発光素子14aないし14eは、5個であり、前記第2発光素子14aないし14eの出力OUTの中心波長は、それぞれ930nm、960nm、990nm、1,020nm、1,050nmである。前記第1受光素子13は、一つであり、前記第1受光波長帯域は、620nmないし870nmでもある。前記第1受光素子13の分光応答度(R)は、870nm以上で急激な低下を示す。従って、870nm以上の波長で、前記第1受光素子13は、使用し難い。また、930nmを有した前記第2発光素子14aの反射光が、前記第1受光素子13に入射されても、前記第1受光素子13の分光応答度は小さい。従って、波長選択フィルタ19bは、波長選択性能が低いものを使用するか、あるいは使用しなくともよい。
本発明の変形された実施形態によれば、前記第2発光素子14aないし14eは、5個であり、前記第2発光素子14aないし14eの出力OUTの中心波長は、それぞれ1,000nm、1,030nm、1,060nm、1,090nm、1,120nmなどと多様に変形される。
本発明の変形された実施形態によれば、前記双方向性多重化器に含まれたフィルタは、前記受光素子の前に位置した光学系に含まれるように変形される。
本発明の変形された実施形態によれば、前記第1発光波長帯域で、1個ないし5個のチャネルを有することができ、前記第2発光波長帯域でも、5個ないし1個のチャネルを有することができる。
図5は、本発明のさらに他の実施形態による光通信モジュールについて説明する図面である。
図6は、図5の光通信モジュールの波長帯域について説明する図面である。
図5及び図6を参照すれば、前記光通信モジュールは、多重化器317、逆多重化器316、前記多重化器317と前記逆多重化器316とを連結する光ファイバ318、前記多重化器317に連結され、第1発光波長帯域で動作する少なくとも1つの第1発光素子314x、前記多重化器317に連結され、第2発光波長帯域で動作する少なくとも1つの第2発光素子314y、前記逆多重化器316に連結され、第1受光波長帯域で動作する少なくとも1つの第1受光素子312x、及び前記逆多重化器316に連結され、第2受光波長帯域で動作する少なくとも1つの第2受光素子312yを含む。
前記第1発光波長帯域は、前記第1受光波長帯域に含まれ、前記第2発光波長帯域は、前記第2受光波長帯域に含まれ、前記第1受光波長帯域は、前記第2受光波長帯域と互いに異なる。
前記第1発光素子314xに連結される前記多重化器317のチャネルは、光フィルタを含まない。前記第2発光素子314yに連結される前記多重化器316のチャネルは、光フィルタを含まない。
具体的には、前記第1発光素子314a,314b,314c,314dは、4個であり、前記第1発光素子314xの出力OUTの波長は、990nm、1,020nm、1,050nm、1,080nmである。第1発光波長帯域は、990nmないし1,080nmでもある。
具体的には、前記第2発光素子314e,314fは、2個であり、前記第2発光素子314yの出力OUTの波長は、820nm、850nmである。第2発光波長帯域は、820nmないし850nmでもある。
第1受光素子312xは、4個であり、第1受光波長帯域は、900nmないし1,680nmでもある。前記第1受光素子312aないし312dは、同一の構造を採用する。
第2受光素子312yは、2個であり、第2受光波長帯域は、620nmないし870nmでもある。前記第2受光素子312e,312fは、同一の構造を採用する。
従って、820nmを有した前記第2発光素子314fは、前記第1受光素子312xに入射されても、前記第1受光素子312xの分光応答度は小さい。従って、逆多重化器316のチャネルに連結されたフィルタ319aの性能が低下しても、前記光通信モジュールは、動作することができる。
本発明の変形された実施形態によれば、第1発光素子が5個であり、前記第2発光素子が1個である。第1発光素子の出力波長は、それぞれ990nm、1,020nm、1,050nm、1,080nm、1,110nmであり、前記第2発光素子の出力波長が800nmでもある。第1受光素子の第1受光波長帯域は、900nmないし1,680nmでもある。また、第2受光波長帯域は、620nmないし870nmでもある。その場合、第2受光素子に連結されたチャネルの逆多重化器は、フィルタなしに動作することができる。
図7A及び図7Bは、本発明の他の実施形態による光通信モジュールを構成する多重化器について説明する斜視図及び断面図である。
図7A及び図7Bを参照すれば、多重化器100は、一側にレンズアレイ149を含む第1レンズブロック140、前記レンズアレイ149に対応するレンズ面を含み、前記第1レンズブロック140の他側に結合する第2レンズブロック160、中心に光ファイバフェルール(ferrule)を固定し、前記第2レンズブロック160に積層されるレセプタクル170、及び前記第1レンズブロック140の一側に結合するベース130を含む。前記第1レンズブロック140は、前記ベース130上に積層される。前記ベース130と前記第1レンズブロック140は、嵌めこみ挟み結合される。
前記第1レンズブロック140は、ディスクと類似した形状を有することができる。前記第1レンズブロック140の第1面に、レンズアレイ149が配置される。前記第1レンズブロック140の一側に、所定深みのレンズを保護するホロウ(hollow)148が配置される。前記ホロウ148は、第1レンズブロック140の中心軸を基準にシリンダ状に形成される。前記ホロウ148の底面は、前記第1面を形成し、前記第1面に、前記レンズアレイ149が形成される。第1レンズブロック140は、一体型であり、透明なプラスチックまたはアクリル材質である。
前記レンズアレイ149は、前記第1レンズブロック140の中心軸の周囲に対称的に配置される。例えば、前記レンズアレイ149は、第1補助レンズないし第4補助レンズを含む。前記第1補助レンズないし第4補助レンズは、それぞれ基準点を有することができる。前記第1補助レンズないし第4補助レンズは、それぞれ焦点から出発した光を平行光として提供することができ、前記第1補助レンズないし第4補助レンズは、前記第1補助レンズないし第4補助レンズに一直線に入射した光を焦点に提供することができる。
前記第1補助レンズないし第4補助レンズが互いに隣接した部分は、レンズと異なる曲率を有するか、あるいは光信号が透過することができないように、不透明な分離領域142を形成することができる。前記分離領域142を通過した光は、前記第1補助レンズないし第4補助レンズの焦点に集束されない。前記分離領域142は、前記レンズアレイ149の形状によって多様に変形される。また、前記分離領域142を通過した光が、レンズアレイ149の焦点に集束されない限り、前記分離領域は、多様に変形される。例えば、分離領域は、前記第1レンズブロック140の他側に形成されるように変形される。
前記レンズアレイ149の外部形態について説明する。前記第1補助レンズないし第4補助レンズは、前記第1レンズブロック140の中心軸に対して対称的に配置され、互いに重畳される領域で、一定の幅を有する直線状で分離領域が形成される。波長を選択するフィルタ間の領域は、空スペースに入射された全ての波長の光信号が透過する。さまざまな波長の信号が光ダイオード(PD)に入射することを防ぐために、フィルタ間の空スペースより大きく分離領域を設けなければならない。前記分離領域は、不透明にして光信号が透過することができないようにするか、あるいはレンズと異なる曲率を有するようにし、前記光ダイオード(PD)に入射することができないようにすることができる。前記分離領域が存在しない場合、前記補助レンズの境界に入射した光信号は、複数の焦点に集束される。従って、各補助レンズは、1つの光信号だけを焦点に提供するために、前記補助レンズが接触する領域上に分離領域が配置される。前記分離領域は、第1補助レンズないし第4補助レンズを互いに空間的に分離する領域と一致する。前記分離領域が配置される平面は、前記第1面と一致しないこともある。前記分離領域は、位置によって、前記第1面で、異なる高さを有することができる。前記分離領域を通過した光は、前記レンズアレイの焦点に集束されない限り多様に変形される。
前記第1補助レンズないし第4補助レンズは、それぞれの基準点を中心として一定の曲率を有した球面レンズまたは非球面レンズである。前記第1補助レンズないし第4補助レンズは、同一の焦点距離(focal length)を有することが望ましい。一方、光信号の波長差が大きい場合、前記焦点距離は、波長に合うように調節される。前記第1補助レンズないし第4補助レンズの表面は、無反射コーティングになる。
前記第1レンズブロック140は、第2面145bに形成された第1溝144、及び前記第1溝144の内部に配置された第2溝146を含む。前記第1溝144に、薄膜フィルタ150が配置される。前記第1溝144は、前記第1レンズブロック140の中心軸を基準に形成された四角形の溝である。前記第2溝146の中心軸は、前記第1溝144の中心軸と一致する。前記第1溝144の深さは、薄膜フィルタ150の厚さより大きくなる。すなわち、前記第1溝144の底面で、前記第2面145b間の垂直距離は、前記薄膜フィルタ150の厚さより大きくなる。前記第2溝146は、円形であり、前記第2溝146の深さは、数ないし数十μm以上である。前記第2溝146の深さは、前記薄膜フィルタ150と、前記第2溝146の底面との間にファブリペロー干渉計(Fabry-Perot interferometer)効果が小くなるように、十分に大きくなる。
前記第1溝144の一辺の長さは、前記第2溝146の直径以上である。前記第1溝144のコーナー部に合うように、底面上に薄膜フィルタ150が装着される。前記薄膜フィルタ150は、前記第1溝144のコーナー部に接着剤で接合される。前記第2溝146の直径は、第2レンズの直径より大きいことが望ましい。
前記薄膜フィルタ150の一面は、波長選択フィルタを形成するようにコーティングされる。前記薄膜フィルタ150の他面は、無反射コーティングされる。前記薄膜フィルタ150は、バンド通過フィルタまたはエッジフィルタである。前記バンド通過フィルタの場合、半値幅(FWHM:full width half maximum)は、4nmないし30nmほどである。前記薄膜フィルタ150は、ガラス基板上、またはプラスチック基板上に多重積層された誘電体薄膜を含む。前記薄膜フィルタ150の中心波長は、互いに異なる。例えば、4チャネルの場合、前記薄膜フィルタ150の中心波長は、900nm、930nm及び960nmでもある。第1チャネルないし第3チャネルは、受光素子124bに連結される。最後の4番目のチャネルには、前記薄膜フィルタ150が配置されない。前記4番目のチャネルは、発光素子124aに連結される。
前記薄膜フィルタ150は、四角形である。前記薄膜フィルタ150は、前記第1溝に挿入されて接着剤で固定される。
前記第1レンズブロック140は、突出部141を含む。前記突出部141は、前記第1レンズブロック140が配置される平面で、第1方向に延長される。前記突出部141は、前記ベース130の凹部135に挿入されて整列される。前記第1レンズブロック140は、一体型に製作され、透明な材質である。具体的には、前記第1レンズブロックは、透明なプラスチックまたはアクリル系の樹脂である。
前記第1レンズブロック140は、第1整列部246を含む。前記第1整列部246は、前記第2面145bで陥没されて形成される。具体的には、前記第1整列部246は、前記第1レンズブロック140の中心軸に対して、縁部分が陥没されて厚さが低減する。前記第1整列部246に、前記第2レンズブロック160が嵌め込まれて結合される。
前記第1レンズブロック140は、第1側面147を含む。前記第1側面147は、前記突出部141の対角線方向に形成される。前記第1側面は、前記第1レンズブロック140の一側が直線状に切断して形成される。前記第1側面147は、2個の波長分割多重化及び波長分割逆多重化の装置を近く実装するために使用される。すなわち、2個の波長分割多重化及び波長分割逆多重化の装置は、前記第1側面147に互いに対面するように結合される。
前記第1レンズブロック140は、第1補助整列部143を含む。前記第1補助整列部143は、前記第1レンズブロック140の外側面で、対称的に溝を形成して提供される。前記溝は、円筒状であり、前記円筒状は、前記第1レンズブロック140の中心軸方向に整列される。
前記第2レンズブロック160は、第2レンズ本体部162、連結部164及びレンズ部166を含む。前記第2レンズ本体部162は、前記レンズ部166の周りに配置される。前記第2レンズ本体部162は、円筒シェル(cylindrical shell)形態である。前記連結部164は、ワッシャ状であり、前記第2レンズ本体部162の内部に挿入され、前記レンズ本体部162と前記レンズ部166とを互いに連結させる。前記第2レンズ本体部162は、前記レンズ部166を支持し、摩擦などによる前記レンズ部166の損傷を防止することができる。前記第2レンズブロック160は、一体型に製作される。前記第2レンズブロック160は、透明なプラスチックまたはアクリル樹脂材質によって形成される。前記第2レンズ本体部162は、前記第1整列部246に挿入されて嵌めこみ挟み結合される。また、前記第2レンズ本体部162は、前記第1整列部246に挿入されて接合剤によって固定される。
前記レンズ部166の一面は、球面または非球面であり、他面は、平面である。または、前記レンズ部166の両面がいずれも球面、非球面である。これによって、前記レンズ部166は、平行光を前記レンズアレイ149に提供するか、あるいは前記レンズアレイ149が提供する平行光を集束し、前記光ファイバフェルールに提供することができる。前記レンズ部166の外径は、前記第2溝146の外径と同じであるか、あるいはそれより小さい。前記第2レンズブロック160は、焦点から出発した光を平行光にする限り、多様に変形される。
前記第2レンズ本体部162の内径は、公差範囲内で、前記第1整列部246の内径と同一である。また、前記第2レンズ本体部162の外径は、前記第1レンズブロック140の外径と同一である。これによって、前記第1レンズブロック140及び前記第2レンズブロック160は、前記ベース130に挿入される。
前記第2レンズブロック160は、第2側面167を含む。前記第2側面167は、前記第2レンズブロック160の一側が直線状に切断されて形成される。前記第2側面167は、複数の多重化器を実装するために使用される。すなわち、2個の多重化器は、前記第2側面167に互いに対面するように結合される。
前記第2レンズブロック160は、第2補助整列部163を含む。前記第2補助整列部163は、前記第2レンズブロック160の外側面で、対称的に溝を形成して提供される。前記溝は、円筒状であり、前記円筒状は、前記第2レンズブロック160の中心軸方向に整列される。
レセプタクル170は、円筒状である。前記レセプタクル170の中心軸上に、光ファイバフェルールが挿入される。前記光ファイバフェルールの一端は、前記第2レンズブロック160の焦点距離に配置される。前記レセプタクル170の一端は、一端方向に進むにつれて、直径が増大するホール171を含む。前記ホールは、前記光ファイバフェルールから出発した光が、前記レンズ部166に照射される光の進行空間を提供することができる。また、前記レンズ部166から出発した光が、前記光ファイバフェルールに照射される光の進行空間を提供することができる。
前記レセプタクル170の他端は、一定径のホール173を含む。前記光ファイバフェルールは、前記レセプタクル170の他端側に挿入される。前記レセプタクル170の一端は、前記第2レンズ本体部162の内側に挿入されて嵌め込み結合される。また、前記レセプタクル170と前記第2レンズブロック160は、接着剤によって固定結合される。前記レセプタクル170の外形は、外部実装装置が前記レセプタクル170を固定するために多様な形状に変形される。
例えば、前記レセプタクル170は、円筒状本体で側面に配置された第1ワッシャ部174と第2ワッシャ部176とを含む。これによって、前記第1ワッシャ部174と前記第2ワッシャ部176との間に固定部(図示せず)が挿入され、前記レセプタクル170を固定することができる。
光ファイバフェルールは、中心に配置された光ファイバ184と、前記光ファイバ184を支持する連結部182とを含む。前記光ファイバは、単一モード光ファイバまたは多重モード光ファイバである。
ベース130は、中心に、貫通ホール131を有する中心板132、円筒状を有して前記貫通ホール131の直径より大きい直径を有し、前記中心板132の一面に配置された第1ガード部133、及び円筒状を有し、前記貫通ホール131の直径より大きい直径を有し、前記中心板132の他側に配置された第2ガード部134を含む。前記第1レンズブロック140及び前記第2レンズブロック140は、前記第1ガード部133に順に積層されて嵌め込まれる。
前記ベース130は、一体型に製作される。前記ベース130は、ガラスを含む高強度プラスチック材質である。特に、前記ベース130は、ガラスが30パーセント含まれたウルテム(ultem)であるか、あるいはポリカーボネート(polycarbonate)でもある。前記ベース130の熱膨脹係数は、補強板110の熱膨脹係数とほぼ同一である。これによって、前記ベースと前記補強板との熱膨脹による変形を抑制する手段が省略される。前記補強板110は、ステンレススチール材質である。これによって、前記補強板110は、熱伝導率及び強度にすぐれ、安定性及び信頼性を提供することができる。
前記中心板132の貫通ホール131は、光が進む空間を提供することができる。前記貫通ホール131の直径は、前記レンズアレイ149の最外郭を定義する領域の外径以上である。前記中心板132上に、前記第1レンズブロック140が装着される。前記第1レンズブロック140の外径は、前記第1ガード部133の内径と実質的に同一である。
前記第1ガード部133は、円筒状である。前記第1ガード部133の高さは、前記第1レンズブロック140の厚さ以上である。これによって、前記第1ガード部133の内側に、前記第1レンズブロック140及び前記第2レンズブロック160が順に積層される。
前記第1ガード部133は、一側に凹部135を含み、他側に補助溝139を含む。前記凹部135は、前記第1ガード部133の一部が陥没されて形成される。前記凹部135の下部面は、前記中心板131の上部面と一致する。前記補助溝139の下部面は、前記中心板132の上部面と一致する。前記突出部141は、前記凹部135に挿入され、前記第1レンズブロック140を整列させる。前記補助溝139は、前記第1ガード部の他側面を垂直に切断して形成される。前記切断面は、第3側面137を提供することができる。前記第3側面137は、前記第1側面147及び第2側面167と整列される。前記第3側面137は、複数の多重化器を、互いに隣接して実装するために使用される。すなわち、2個の多重化器は、前記第3側面137に互いに対面するように結合される。
補助本体部138は、前記第2ガード部134及び前記中心板132と結合される。前記補助本体部138は、底面と一側面とが開放されたボックス状である。前記補助本体部138は、印刷回路基板120上に配置された回路が入る空間を提供することができる。また、前記補助本体部138は、他の側面に貫通ホール233を含む。前記貫通ホール233は、前記補助本体部138の空気循環を提供することができる。前記補助本体部138と前記第2ガード部134は、結合領域で、前記第2ガード部134の一部が除去される。これによって、前記補助本体部138と前記第2ガード部134は、素子配置空間136を提供することができる。すなわち、第2ガード部134は、前記補助本体部138と結合し、光電素子124a,124b、及び光電素子を駆動する駆動回路126が装着される素子配置空間136を提供することができる。
基板123は、光電素子124を整列するための第1しきい125を含む。前記第1しきい125は、光電素子124を整列することができる限り、四角形またはストリップ形状などと多様に変形される。前記第1しきい125は、前記基板123を製作する過程で、フォトリソグラフィ及びエッチング工程によって形成される。前記基板123は、熱伝導率にすぐれるセラミックス基板またはGaAs基板などでもある。例えば、第1光電素子ないし第4光電素子124は、四角形に突き出た第1しきい125のコーナー部に整列される。また、前記基板123は、導電パッド(図示せず)を含み、前記導電パッドと前記光電素子124は、ワイヤリングされる。第1しきい125の形状は、光電素子124を整列する限り、多様に変形される。
前記光電素子124a,124bは、前記基板123に装着され、接着剤によって固定される。前記光電素子124は、受光素子124b及び発光素子124aを含む。前記受光素子124bは、光ダイオードである。前記発光素子124aは、レーザダイオードである。具体的には、前記レーザダイオードは、垂直共振型表面発光レーザ(VCSEL:vertical cavity surface emitting laser)でもある。
前記発光素子124aは、GaAs系またはAlGaAs系を使用し、700ないし850nmで動作し、前記受光素子124bは、InGaAs系を使用し、900nmないし1,600nmの受光波長帯域で動作することができる。具体的には、前記薄膜フィルタ150の中心波長が900nm、930nm及び960nmである場合、前記受光素子124bの受光波長帯域は、InGaAs系を使用し、900nmないし1,600nm帯域で動作することができる。また、前記発光素子124aの中心波長は、GaAs系を利用し、850nmでもある。その場合、前記発光素子124aと前記受光素子124bとのクロストークが低減する。これによって、前記薄膜フィルタ150は、性能が低下しても動作することができる。
前記基板123は、印刷回路基板120に装着される。前記印刷回路基板120の導電パッドは、前記基板123の導電パッドとワイヤリングによって電気的に連結される。前記印刷回路基板120は、フレキシブル基板である。前記印刷回路基板120上に整列線121がパターニングされる。前記整列線121は、前記印刷回路基板120と前記ベース130とを整列するために使用される。
前記印刷回路基板120の一側には、外部連結電極パッド122が形成されており、前記外部連結電極パッド122は、外部回路と電気的接触によって連結される。前記印刷回路基板120の一面上に、基板123、光電素子124及び光電素子駆動回路127が装着される。
前記印刷回路基板120の他面は、補強板110と接触する。前記補強板110は、熱伝導度及び強度の高い物質である。具体的には、前記補強板110は、ステンレススチールである。前記補強板110の大きさは、前記印刷回路基板120の大きさと実質的に同一である。前記補強板110と前記印刷回路基板120の他面は、熱伝導度にすぐれる接着剤で接着される。前記接着剤は、エポキシ樹脂(epoxy resin)でもある。
前記補強板110の熱膨脹係数は、前記ベース130の熱膨脹係数に類似した値を有する物質によって選択される。これによって、前記補強板110が加熱されて膨脹しても、前記光電素子124と前記レンズアレイ149との整列が維持される。具体的には、前記補強板110がステンレススチール材質である場合、前記ベース130は、ガラスを含む高強度プラスチックでもある。これによって、前記補強板110と前記ベース140との間で、熱膨脹や熱収縮を抑制する熱変形抑制手段を除去することができる。
図8は、本発明のさらに他の実施形態による光通信モジュールを構成する多重化器について説明する断面図である。
図8を参照すれば、前記多重化器400は、平坦な下部面及び平坦な上部面を有する光学ブロック440、前記光学ブロック440の前記下部面に装着される反射コーティング450、波長によって互いに分離して配置され、前記光学ブロック440の前記上部面に装着される複数の光学フィルタ460、前記光学ブロック440の前記上部面に対応して配置される下部面を有し、前記下部面の反対面に配置される上部面に形成された複数個の非球面レンズ432を含み、前記非球面レンズ432を取り囲む本体部437を含む光結合ブロック480、光ファイバ492の一端を収容するレセプタクル490、前記レセプタクル490と整列する集束レンズ482、及び前記集束レンズ482と、前記光結合ブロック480の下部面との間に配置され、前記集束レンズ482と、前記光学ブロック440の上部面との間に光路を提供するビーム反射部433を含む。
前記多重化器は、前記補強板510と前記光電素子524との間に介在されたフレキシブル印刷回路基板520、及び前記印刷回路基板520と、前記光電素子524a,524bとの間に介在された基板522を含む。前記補強板510と前記フレキシブル印刷回路基板520は、接着剤で固定され、前記フレキシブル印刷回路基板520と前記基板522は、接着剤で固定される。前記接着剤は、エポキシ系樹脂である。
前記基板522は、セラミックスまたはGaAsによって形成される。前記基板522の表面には、整列マーク525がパターニングされる。これによって、前記光電素子524a,524bは、容易に整列される。
前記光電素子524a,524bは、発光素子524a及び受光素子524bを含む。前記光電素子524a,524bは、前記基板522に装着され、接着剤によって固定される。前記受光素子524bは、光ダイオードである。前記発光素子524aは、レーザダイオードである。具体的には、前記レーザダイオードは、垂直共振型表面発光レーザ(VCSEL)でもある。
前記発光素子524aは、GaAs系またはAlGaAs系を使用し、700ないし850nmで動作し、前記受光素子524bは、InGaAs系を使用し、900nmないし1,600nm帯域で動作することができる。その場合、前記発光素子524aと前記受光素子524bとのクロストークが低下する。これによって、前記光学フィルタ460は、性能が低下しても動作することができる。
本発明の実施形態による多重化器は、1つの光ファイバを介して、さまざまな波長の光信号(複数チャネルの光信号)を送信及び受信することができる。本発明の実施形態による光通信モジュールは、さまざまなチャネルの使用を要するDVI(digital video interactive)、HDMI(high definition multimedia interface)及びdisplay portなどの信号伝送に応用されるとき、システム構成を大きく簡略化することができる。また発光素子と受光素子とを混在させて配置すれば、双方向伝送が可能になり、DDC(direct digital control)、RS232、audio、USB、display portなどの信号を伝送するように拡張される。かようなさまざまな方式の信号を伝送するために、例えば、2,3,4,5,6個のチャネルが可能であり、それぞれ光電素子の組み合わせによって、送受信するチャネルの数を調整することができる。
さまざまなチャネルの信号を1つの光ファイバを介して伝送するためには、それぞれ異なる波長の光を放出するいくつかの発光素子が必要である。従って、本発明の実施形態による光学的波長分割多重方式の光通信モジュールに、複数の発光素子が適用されるとき、複数の発光素子は、互いに異なる波長の光を放出するように形成される。
DVI/HDMI分野では、普通4チャネル方式が広く試みられており、DDC(direct digital control)、RS232、オーディオ(audio)、USBなど各種付加的な信号を処理するために、双方向チャネルを入れて6チャネルも試みられる。基板に搭載される光電素子の数を、要求されるチャネル数に適するように設計すれば、本発明の実施形態による光通信モジュールは、DVI/HDMI分野、DDC(directdigital control)、RS232、オーディオ(audio)、USB、display portなどの多チャネルを要求する多様な分野に適用される。

Claims (4)

  1. 第1双方向性多重化器と、
    第2双方向性多重化器と、
    前記第1双方向性多重化器と前記第2双方向性多重化器とを連結する光ファイバと、
    前記第1双方向性多重化器に連結され、第1発光波長帯域で動作する少なくとも1つの第1発光素子と、
    前記第2双方向性多重化器に連結され、第1受光波長帯域で動作する少なくとも1つの第1受光素子と、
    前記第2双方向性多重化器に連結され、前記第1発光波長帯域と異なる第2発光波長帯域で動作する少なくとも1つの第2発光素子と、
    前記第1双方向性多重化器に連結され、第2受光波長帯域で動作する少なくとも1つの第2受光素子と、
    光電素子が設けられた基板と、
    前記基板が設けられた印刷回路基板と、
    前記印刷回路基板が設けられた補強板とを含み、
    前記第1発光波長帯域は、前記第1受光波長帯域に含まれ、
    前記第2発光波長帯域は、前記第2受光波長帯域に含まれており、
    前記第1発光波長帯域と第1受光波長帯域は、620nmないし870nmであり、
    前記第2発光波長帯域と第2受光波長帯域は、900nmないし1,680nmであり、
    前記第1双方向性多重化器及び前記第2双方向性多重化器は、
    一側にレンズアレイを含む第1レンズブロックと、
    前記レンズアレイに対応するレンズ面を含み、前記第1レンズブロックの他側に結合する第2レンズブロックと、
    中心に光ファイバフェルールを固定し、前記第2レンズブロックに積層されるレセプタクルと、
    前記第1レンズブロックの一側に結合するベースと、を含んでおり、
    前記第1レンズブロックは、前記ベース上に積層されており、
    前記印刷回路基板の前記ベースに対しての反対側には、補強板が配置されていることを特徴とする光通信モジュール。
  2. 前記第1発光素子は、活性層として、AlGaAsまたはGaAsを含む垂直共振型表面発光レーザ(VCSEL)であり、
    前記第2発光素子は、活性層として、InGaAsを含む垂直共振型表面発光レーザ(VCSEL)であり、
    前記第2受光素子は、InP基板に成長されたInGaAs吸収層を含み、
    前記第1受光素子は、GaAs基板に成長されたGaAs吸収層を含むことを特徴とする請求項1に記載の光通信モジュール。
  3. 前記第1双方向性多重化器及び前記第2双方向性多重化器のうち少なくとも一つは、光フィルタを含むことを特徴とする請求項1に記載の光通信モジュール。
  4. 前記第1発光素子に連結される前記第1双方向性多重化器のチャネルは、光フィルタを含まず、
    前記第2発光素子に連結される前記第2双方向性多重化器のチャネルは、光フィルタを含まないことを特徴とする請求項1に記載の光通信モジュール。
JP2013534833A 2010-11-18 2011-11-03 光通信モジュール Active JP5563167B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020100114765A KR101191323B1 (ko) 2010-11-18 2010-11-18 광통신 모듈
KR10-2010-0114765 2010-11-18
PCT/KR2011/008325 WO2012067366A1 (ko) 2010-11-18 2011-11-03 광통신 모듈

Publications (2)

Publication Number Publication Date
JP2013544374A JP2013544374A (ja) 2013-12-12
JP5563167B2 true JP5563167B2 (ja) 2014-07-30

Family

ID=46084235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013534833A Active JP5563167B2 (ja) 2010-11-18 2011-11-03 光通信モジュール

Country Status (5)

Country Link
US (1) US9020352B2 (ja)
EP (1) EP2642671B1 (ja)
JP (1) JP5563167B2 (ja)
KR (1) KR101191323B1 (ja)
WO (1) WO2012067366A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140110736A (ko) * 2013-03-08 2014-09-17 에릭슨 엘지 주식회사 신호 처리 방법 및 그를 위한 양방향 cwdm 환형 네트워크 시스템
WO2015112169A1 (en) * 2014-01-25 2015-07-30 Hewlett-Packard Development Company, L.P. Bidirectional optical multiplexing employing a high contrast grating
US9261660B2 (en) * 2014-07-09 2016-02-16 Hon Hai Precision Industry Co., Ltd. Optical coupling lens, optical communiction device, and method for assembling same
JP6485002B2 (ja) * 2014-11-06 2019-03-20 三菱電機株式会社 光源装置
KR20160095684A (ko) 2015-02-03 2016-08-12 한국전자통신연구원 파장/대역폭 가변형 광필터 및 그의 구동방법
US9692522B2 (en) * 2015-04-15 2017-06-27 Cisco Technology, Inc. Multi-channel optical receiver or transmitter with a ball lens
JP6649158B2 (ja) * 2016-03-30 2020-02-19 株式会社エンプラス 光レセプタクル、光モジュールおよび光モジュールの製造方法
KR101825188B1 (ko) * 2016-04-19 2018-02-02 옵티시스 주식회사 센서 패키지를 포함하는 센서 복합 모듈
US10057672B2 (en) * 2016-10-04 2018-08-21 Nxp B.V. Optical communication interface
KR102140659B1 (ko) 2017-07-31 2020-08-03 주식회사 하우앳 광통신용 송수신 장치
JP2019061121A (ja) * 2017-09-27 2019-04-18 富士通株式会社 光素子及び光装置
JP2020140105A (ja) * 2019-02-28 2020-09-03 株式会社東芝 光結合モジュール
CN110389414A (zh) * 2019-07-19 2019-10-29 杭州耀芯科技有限公司 一种单纤双向多模波分复用光电转换装置及制备方法
CN110855369B (zh) * 2019-12-12 2024-08-13 长春光客科技有限公司 用于小型移动电子设备的外接便携无线光通信组件及方法
JP2021189252A (ja) * 2020-05-27 2021-12-13 国立大学法人東京工業大学 光トランシーバ
KR102563411B1 (ko) 2021-12-01 2023-08-04 주식회사 하우앳 대용량 데이터를 송수신하기 위한 무선 송수신 장치
KR20230111923A (ko) 2022-01-19 2023-07-26 주식회사 하우앳 외부진동을 감지하여 광축을 재정렬하는 무선송수신장치

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61244138A (ja) 1985-04-22 1986-10-30 Fujitsu Ltd 光通信方式
KR920009898B1 (ko) * 1989-12-30 1992-11-05 재단법인 한국전자통신연구소 수신용 광전집적회로 및 그 제조방법
GB9127057D0 (en) * 1991-12-20 1992-02-19 Secr Defence Improved digital sampling of individual pulses
US6424669B1 (en) * 1999-10-29 2002-07-23 E20 Communications, Inc. Integrated optically pumped vertical cavity surface emitting laser
KR100357255B1 (ko) 2000-03-11 2002-10-18 옵티시스 주식회사 다중 채널 광전송장치 및 이에 채용되는 광통신모듈
US6563976B1 (en) * 2000-05-09 2003-05-13 Blaze Network Products, Inc. Cost-effective wavelength division multiplexer and demultiplexer
KR100357627B1 (ko) 2001-01-09 2002-10-25 삼성전자 주식회사 양방향 파장 분할 다중 광전송 시스템
JP2003185876A (ja) 2001-10-12 2003-07-03 Photonixnet Corp 波長多重化器及び波長多重化装置
JP2004206057A (ja) * 2002-11-01 2004-07-22 Omron Corp 光合分波器及び光合分波器の製造方法
US7415210B2 (en) * 2003-07-28 2008-08-19 Allied Telesis, Inc. Bidirectional optical signal multiplexer/demultiplexer
KR100575983B1 (ko) 2003-08-23 2006-05-02 삼성전자주식회사 다파장 광송신기와 이를 이용한 양방향 파장 분할 다중시스템
WO2005033745A2 (en) * 2003-09-29 2005-04-14 Photodigm, Inc. Method and apparatus for wavelength division multiplexing
JP4597578B2 (ja) * 2004-05-18 2010-12-15 Nttエレクトロニクス株式会社 1芯双方向光波長多重伝送システム及び送受信装置
US7840138B2 (en) * 2005-11-01 2010-11-23 Technology Advancement Group, Inc. Method and system for bi-directional communication over a single optical fiber
JP2008112149A (ja) 2006-10-02 2008-05-15 Sumitomo Rubber Ind Ltd 画像形成装置用クリーニングブレード
JP2008112148A (ja) * 2006-10-04 2008-05-15 Victor Co Of Japan Ltd 発光装置及び受光装置
US7501294B1 (en) * 2008-02-18 2009-03-10 International Business Machines Corporation VCSEL for high speed lower power optical link
KR101076603B1 (ko) * 2008-07-16 2011-10-26 옵티시스 주식회사 광학적 파장분할다중 방식 광통신모듈

Also Published As

Publication number Publication date
KR20120053582A (ko) 2012-05-29
JP2013544374A (ja) 2013-12-12
EP2642671A4 (en) 2016-11-23
US9020352B2 (en) 2015-04-28
EP2642671B1 (en) 2018-06-06
WO2012067366A1 (ko) 2012-05-24
KR101191323B1 (ko) 2012-10-16
US20130230327A1 (en) 2013-09-05
EP2642671A1 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5563167B2 (ja) 光通信モジュール
JP5528632B2 (ja) 波長分割多重化又は波長分割逆多重化の装置
US20160349470A1 (en) Hybrid integrated optical sub-assembly
US11624879B2 (en) Multi-channel optical coupler
US10739518B2 (en) Optical components for wavelength division multiplexing with high-density optical interconnect modules
KR101925476B1 (ko) 광학 모듈 및 이를 포함하는 광학 엔진
JP2008286962A (ja) 光モジュール及びその製造方法
JP2002261300A (ja) 光受信器
JP2017194565A (ja) 光通信モジュール及びその製造方法
JPWO2006077961A1 (ja) 光通信モジュールおよび光信号伝送方法
US20050084217A1 (en) Optical module capable of transmitting optical signal in bi-directional with single fiber
JP2010002579A (ja) 光学ブロック及びそれを用いた光伝送モジュール
JP2008096490A (ja) 光受信アセンブリ
US11474311B1 (en) Parabolic lens device for use in optical subassembly modules
JP2008020721A (ja) 並列光送受信装置
JP2018194648A (ja) 光送信器及び光受信器
JP2021009413A (ja) 光通信モジュール及びその製造方法
JP2009134157A (ja) 光伝送アセンブリ
JP4905252B2 (ja) 光通信モジュール
KR101769034B1 (ko) 광학 엔진
JP2004109313A (ja) 光送受信装置および情報伝送装置
KR102702422B1 (ko) 광 신호 검출 장치 및 광 신호 검출 방법
JP2005196150A (ja) 光通信装置およびその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5563167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250