JP5556058B2 - Battery temperature control device - Google Patents

Battery temperature control device Download PDF

Info

Publication number
JP5556058B2
JP5556058B2 JP2009121984A JP2009121984A JP5556058B2 JP 5556058 B2 JP5556058 B2 JP 5556058B2 JP 2009121984 A JP2009121984 A JP 2009121984A JP 2009121984 A JP2009121984 A JP 2009121984A JP 5556058 B2 JP5556058 B2 JP 5556058B2
Authority
JP
Japan
Prior art keywords
battery
refrigerant
flow path
temperature
refrigerant flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009121984A
Other languages
Japanese (ja)
Other versions
JP2010272289A (en
Inventor
真一朗 溝口
正章 徳田
智 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009121984A priority Critical patent/JP5556058B2/en
Publication of JP2010272289A publication Critical patent/JP2010272289A/en
Application granted granted Critical
Publication of JP5556058B2 publication Critical patent/JP5556058B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、ハイブリッド自動車や電気自動車等の電動車両に搭載されたバッテリの温度を制御するバッテリ温度制御装置に関する。   The present invention relates to a battery temperature control device that controls the temperature of a battery mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle.

従来より、充電時のバッテリの温度状態に応じて、車室内空調用の冷媒が循環する空調用冷媒流路と車両に搭載されたバッテリの温度を調整する冷媒が循環するバッテリ用冷媒流路とを接続することにより、バッテリの温度を充電に好適な温度に制御して効率のよいバッテリの充電を可能にした電気自動車のバッテリ温度制御装置が知られている。   Conventionally, according to the temperature state of the battery at the time of charging, an air conditioning refrigerant flow path through which a refrigerant for air conditioning in the vehicle circulates, and a battery refrigerant flow path through which a refrigerant that adjusts the temperature of the battery mounted on the vehicle circulates There is known a battery temperature control device for an electric vehicle that enables efficient battery charging by controlling the temperature of the battery to a temperature suitable for charging.

特開2002−352867号公報JP 2002-352867 A

従来のバッテリ温度制御装置によれば、バッテリを加温する際、空調用冷媒流路とバッテリ用冷媒流路とを接続し、空調用冷媒流路に設けられたヒータにより冷媒を加熱する構成になっているために、消費電力量が多くなり、電気自動車の動力性能や航続距離が減少してしまう。   According to the conventional battery temperature control device, when the battery is heated, the air conditioning refrigerant flow path and the battery refrigerant flow path are connected, and the refrigerant is heated by the heater provided in the air conditioning refrigerant flow path. Therefore, the amount of power consumption increases, and the power performance and cruising distance of the electric vehicle decrease.

本発明は上記課題を解決するためになされたものであり、その目的はバッテリ加温に要する電力量を低減可能なバッテリ温度制御装置を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a battery temperature control device capable of reducing the amount of electric power required for battery heating.

本発明に係るバッテリ温度制御装置では、バッテリ用冷媒流路は、強電系部品の排熱により流路内の冷媒を加熱する加熱手段と、バッテリを迂回して冷媒を循環させるバイパス流路を備える。   In the battery temperature control apparatus according to the present invention, the battery refrigerant flow path includes a heating unit that heats the refrigerant in the flow path by exhaust heat of the high-power components, and a bypass flow path that circulates the refrigerant around the battery. .

本発明に係るバッテリ温度制御装置によれば、強電系部品の排熱を利用してバッテリに加温するので、バッテリ加温に要する電力量を低減することができる。   According to the battery temperature control device of the present invention, since the battery is heated using the exhaust heat of the high-power components, the amount of power required for battery heating can be reduced.

本発明の実施形態となるバッテリ温度制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the battery temperature control apparatus used as embodiment of this invention. 極低温時における図1に示すバッテリ温度制御装置の動作を説明するためのブロック図である。It is a block diagram for demonstrating operation | movement of the battery temperature control apparatus shown in FIG. 1 at the time of extremely low temperature. 低温時における図1に示すバッテリ温度制御装置の動作を説明するためのブロック図である。It is a block diagram for demonstrating operation | movement of the battery temperature control apparatus shown in FIG. 1 at the time of low temperature. 通常時における図1に示すバッテリ温度制御装置の動作を説明するためのブロック図である。It is a block diagram for demonstrating operation | movement of the battery temperature control apparatus shown in FIG. 1 in normal time. 中温時における図1に示すバッテリ温度制御装置の動作を説明するためのブロック図である。It is a block diagram for demonstrating operation | movement of the battery temperature control apparatus shown in FIG. 1 at the time of middle temperature. 高温時(1)における図1に示すバッテリ温度制御装置の動作を説明するためのブロック図である。It is a block diagram for demonstrating operation | movement of the battery temperature control apparatus shown in FIG. 1 at the time of high temperature (1). 高温時(2)における図1に示すバッテリ温度制御装置の動作を説明するためのブロック図である。It is a block diagram for demonstrating operation | movement of the battery temperature control apparatus shown in FIG. 1 at the time of high temperature (2).

以下、図面を参照して、本発明の実施形態となるバッテリ温度制御装置の構成及びその動作を説明する。   Hereinafter, the configuration and operation of a battery temperature control apparatus according to an embodiment of the present invention will be described with reference to the drawings.

〔バッテリ温度制御装置の構成〕
本発明の実施形態となるバッテリ温度制御装置はハイブリッド自動車や電気自動車等の電動車両に搭載される。本発明の実施形態となるバッテリ温度制御装置1は、図1に示すように、車室内空調用の冷媒が循環する空調用冷媒流路2と、電動車両の駆動源としてのバッテリ(BATT)21の温度を調整するための冷媒が循環するバッテリ用冷媒流路3と、バッテリ21の温度を充電に好適な温度(例えば5〜20℃)に制御するコントローラ4を備える。空調用冷媒流路2とバッテリ用冷媒流路3は、バイパス流路5a,5bを介して連通され、空調用冷媒流路2とバッテリ用冷媒流路3との間で冷媒を循環可能なように構成されている。
[Configuration of battery temperature control device]
A battery temperature control device according to an embodiment of the present invention is mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle. As shown in FIG. 1, a battery temperature control apparatus 1 according to an embodiment of the present invention includes an air conditioning refrigerant flow path 2 through which a refrigerant for air conditioning in a vehicle circulates, and a battery (BATT) 21 as a drive source for an electric vehicle. The battery refrigerant flow path 3 in which the refrigerant for adjusting the temperature of the battery circulates and the controller 4 for controlling the temperature of the battery 21 to a temperature suitable for charging (for example, 5 to 20 ° C.). The air conditioning refrigerant flow path 2 and the battery refrigerant flow path 3 are communicated via the bypass flow paths 5a and 5b so that the refrigerant can be circulated between the air conditioning refrigerant flow path 2 and the battery refrigerant flow path 3. It is configured.

空調用冷媒流路2は、冷媒を加熱するためのPTC(Positive Temperature Coefficient)ヒータ11と、冷媒を冷却するためのヒータコア12と、空調用冷媒流路2内で冷媒を循環させる循環ポンプ13を備える。バッテリ用冷媒流路3は、冷媒を冷却するためのラジエータ(RAD)22と、冷媒を加熱する強電系部品としてのDC/DCコンバータ(DC/DC)23及び充電器(CHR)24と、バッテリ用冷媒流路3内で冷媒を循環させる循環ポンプ25を備える。   The air conditioning refrigerant flow path 2 includes a PTC (Positive Temperature Coefficient) heater 11 for heating the refrigerant, a heater core 12 for cooling the refrigerant, and a circulation pump 13 for circulating the refrigerant in the air conditioning refrigerant flow path 2. Prepare. The battery refrigerant flow path 3 includes a radiator (RAD) 22 for cooling the refrigerant, a DC / DC converter (DC / DC) 23 and a charger (CHR) 24 as high-power components for heating the refrigerant, a battery A circulation pump 25 for circulating the refrigerant in the refrigerant flow path 3 is provided.

バッテリ用冷媒流路3は、バッテリ21から放出された冷媒がラジエータ22を通過しないようにバイパスさせるバイパス流路26と、第1の設定温度(例えば55℃)を閾値としてバッテリ用冷媒流路3とバイパス流路27との間で冷媒流路を切り替えるサーモバルブ27と、第1の設定温度より低い第2の設定温度(例えば50℃)を閾値としてバッテリ用冷媒流路3とバイパス流路5aとの間で冷媒流路を切り替えるサーモバルブ28を備える。   The battery refrigerant flow path 3 includes a bypass flow path 26 that bypasses the refrigerant discharged from the battery 21 so as not to pass through the radiator 22, and the battery refrigerant flow path 3 with a first set temperature (for example, 55 ° C.) as a threshold value. And a bypass flow path 5a, and a battery coolant path 3 and a bypass flow path 5a with a second set temperature (for example, 50 ° C.) lower than the first set temperature as a threshold. And a thermo valve 28 for switching the refrigerant flow path between the two.

バッテリ用冷媒流路3は、バッテリ21を通過しないように冷媒をバイパスさせるバイパス流路29と、バッテリ用冷媒流路3とバイパス流路29との間で冷媒流路を切り替える三方弁30を備える。バッテリ用冷媒流路3は、バッテリ21に冷媒を通過させる冷媒流路と並列にバイパス流路31を備える。バイパス流路31は、冷媒を冷却するための水冷式エバポレータ(W/EVA)32と、バッテリ21と水冷式エバポレータ31からなる冷媒流路内で冷媒を循環させる循環ポンプ33を備える。   The battery refrigerant flow path 3 includes a bypass flow path 29 that bypasses the refrigerant so as not to pass through the battery 21, and a three-way valve 30 that switches the refrigerant flow path between the battery refrigerant flow path 3 and the bypass flow path 29. . The battery refrigerant flow path 3 includes a bypass flow path 31 in parallel with the refrigerant flow path for allowing the battery 21 to pass the refrigerant. The bypass flow path 31 includes a water-cooled evaporator (W / EVA) 32 for cooling the refrigerant, and a circulation pump 33 that circulates the refrigerant in the refrigerant flow path including the battery 21 and the water-cooled evaporator 31.

コントローラ4は、電動車両の外気温を検出する外気温センサ41と、バッテリ21の温度を検出するバッテリ温度センサ42と、バッテリ用冷媒流路3を流れる冷媒の温度を検出する強電水温センサ43を備える。コントローラ4は、各センサからの出力に従って三方弁30を制御して冷媒の流路を制御することにより、バッテリ21の温度を充電に好適な温度に制御する。   The controller 4 includes an outside air temperature sensor 41 for detecting the outside air temperature of the electric vehicle, a battery temperature sensor 42 for detecting the temperature of the battery 21, and a strong electric water temperature sensor 43 for detecting the temperature of the refrigerant flowing through the battery refrigerant flow path 3. Prepare. The controller 4 controls the temperature of the battery 21 to a temperature suitable for charging by controlling the three-way valve 30 according to the output from each sensor and controlling the flow path of the refrigerant.

このような構成を有するバッテリ温度制御装置1では、コントローラ4が以下に示すように動作することにより、バッテリ21の温度を充電に好適な温度に制御する。以下、(1)バッテリ加温時と(2)バッテリ冷却時の動作に分けてコントローラ4の動作を詳しく説明する。なお以下では、充電に好適なバッテリ21の温度を5〜20℃として制御動作を説明する。   In the battery temperature control device 1 having such a configuration, the controller 4 operates as follows to control the temperature of the battery 21 to a temperature suitable for charging. Hereinafter, the operation of the controller 4 will be described in detail by dividing it into (1) battery warming and (2) battery cooling operation. Hereinafter, the control operation will be described assuming that the temperature of the battery 21 suitable for charging is 5 to 20 ° C.

(1)バッテリ加温時
始めに、バッテリ21の温度が充電に好適な温度より低いためにバッテリ21を加熱する際のコントローラ4の動作を説明する。
(1) When the battery is warmed First, the operation of the controller 4 when heating the battery 21 because the temperature of the battery 21 is lower than the temperature suitable for charging will be described.

(1−1)極低温時
外気温センサ41及びバッテリ温度センサ42により外気温及びバッテリ温度が共に0℃以下であることが検出された場合、コントローラ4は、図2に実線で示すように、三方弁30を制御することにより空調用冷媒流路2とバッテリ用冷媒流路3との間で冷媒を循環させる。具体的には、バッテリ用冷媒流路3内の冷媒は、ラジエータ22を経由せずにDC/DCコンバータ23及び充電器24の排熱により加熱された後、バイパス流路5aを介して空調用冷媒流路2に送られる。空調用冷媒流路2に送られた冷媒は、ヒータ11により加熱された後、バイパス流路5bを介してバッテリ21に送られる。すなわち極低温時には、冷媒はヒータ11と強電系部品の排熱により加熱された後にバッテリ21に送られ、バッテリ21を加熱する。このような構成によれば、ヒータ11を用いて冷媒を加熱するための消費電力を削減することができる。なお本実施形態では、DC/DCコンバータ23及び充電器24の排熱により冷媒を加熱することとしたが、モータ等のその他の強電系部品の排熱により冷媒を加熱するようにしてもよい。
(1-1) Extremely Low Temperature When the outside air temperature sensor 41 and the battery temperature sensor 42 detect that the outside air temperature and the battery temperature are both 0 ° C. or less, the controller 4 is shown in FIG. By controlling the three-way valve 30, the refrigerant is circulated between the air conditioning refrigerant flow path 2 and the battery refrigerant flow path 3. Specifically, the refrigerant in the battery refrigerant flow path 3 is heated by the exhaust heat of the DC / DC converter 23 and the charger 24 without passing through the radiator 22, and is then used for air conditioning via the bypass flow path 5a. It is sent to the refrigerant flow path 2. The refrigerant sent to the air conditioning refrigerant flow path 2 is heated by the heater 11 and then sent to the battery 21 via the bypass flow path 5b. That is, at an extremely low temperature, the refrigerant is heated by exhaust heat from the heater 11 and the high-power components and then sent to the battery 21 to heat the battery 21. According to such a configuration, power consumption for heating the refrigerant using the heater 11 can be reduced. In the present embodiment, the refrigerant is heated by the exhaust heat of the DC / DC converter 23 and the charger 24. However, the refrigerant may be heated by the exhaust heat of other high-power components such as a motor.

(1−2)低温時
外気温センサ41及びバッテリ温度センサ42により外気温及びバッテリ温度がそれぞれ0℃以下及び0〜20℃又は共に5℃以下であることが検出された場合、コントローラ4は、図3に実線で示すように、三方弁30を制御することによりバッテリ用冷媒流路3内の冷媒のみがバッテリ21に循環されるようにする。具体的には、バッテリ用冷媒流路3内の冷媒は、ラジエータ22を経由せずにDC/DCコンバータ23及び充電器24の排熱により加熱された後、バッテリ21に送られる。すなわち低温時には、バッテリ用冷媒流路3内の冷媒は強電系部品の排熱のみにより加熱された後にバッテリ21に送られ、バッテリ21を加熱する。一方、空調用冷媒流路2内の冷媒は、ヒータ11及びヒータコア12を循環し、空調用に適した温度範囲に温度が制御される。このような構成によれば、バッテリ用冷媒流路3内の冷媒は強電系部品の排熱のみを利用して加熱されるので、冷媒を加熱するための消費電力を削減することができる。
(1-2) Low Temperature When the outside air temperature sensor 41 and the battery temperature sensor 42 detect that the outside air temperature and the battery temperature are 0 ° C. or less and 0 to 20 ° C. or both 5 ° C. or less, the controller 4 As shown by a solid line in FIG. 3, only the refrigerant in the battery refrigerant flow path 3 is circulated to the battery 21 by controlling the three-way valve 30. Specifically, the refrigerant in the battery refrigerant flow path 3 is sent to the battery 21 after being heated by the exhaust heat of the DC / DC converter 23 and the charger 24 without passing through the radiator 22. That is, at a low temperature, the refrigerant in the battery refrigerant flow path 3 is heated only by the exhaust heat of the high-power components and then sent to the battery 21 to heat the battery 21. On the other hand, the refrigerant in the air conditioning refrigerant flow path 2 circulates through the heater 11 and the heater core 12, and the temperature is controlled to a temperature range suitable for air conditioning. According to such a configuration, since the refrigerant in the battery refrigerant flow path 3 is heated only using the exhaust heat of the high-power components, power consumption for heating the refrigerant can be reduced.

(1−3)通常時
外気温センサ41及びバッテリ温度センサ42により外気温及びバッテリ温度がそれぞれ0℃以上及び5℃以上であることが検出された場合、コントローラ4は、図4に実線で示すように、三方弁30を制御することによりバッテリ21に冷媒が流れないようにする。具体的には、バッテリ用冷媒流路3内の冷媒は、ラジエータ22を経由せずにDC/DCコンバータ23及び充電器24を循環し、バッテリ21の温度調整用に適した温度範囲に温度が制御される。一方、空調用冷媒流路2内の冷媒は、ヒータ11及びヒータコア12を循環し、空調用に適した温度範囲に温度が制御される。
(1-3) Normal time When the outside air temperature sensor 41 and the battery temperature sensor 42 detect that the outside air temperature and the battery temperature are 0 ° C. or more and 5 ° C. or more, respectively, the controller 4 is indicated by a solid line in FIG. As described above, the refrigerant is prevented from flowing into the battery 21 by controlling the three-way valve 30. Specifically, the refrigerant in the battery refrigerant flow path 3 circulates through the DC / DC converter 23 and the charger 24 without passing through the radiator 22, and the temperature is in a temperature range suitable for temperature adjustment of the battery 21. Be controlled. On the other hand, the refrigerant in the air conditioning refrigerant flow path 2 circulates through the heater 11 and the heater core 12, and the temperature is controlled to a temperature range suitable for air conditioning.

(2)バッテリ冷却時
次に、バッテリ21の温度が充電に好適な温度より高いためにバッテリ21を冷却する際のコントローラ4の動作を説明する。
(2) During Battery Cooling Next, the operation of the controller 4 when the battery 21 is cooled because the temperature of the battery 21 is higher than the temperature suitable for charging will be described.

(2−1)通常時
外気温センサ41,バッテリ温度センサ42,及び強電水温センサ43により外気温,バッテリ温度,及びバッテリ用冷媒流路3内の冷媒の温度がそれぞれ5℃以下,5〜20℃,及び5〜20℃であることが検出された場合、コントローラ4は、(1−3)バッテリ加熱時の通常時と同様、三方弁30を制御することによりバッテリ21に冷媒が流れないようにする。
(2-1) Normal time The outside air temperature sensor 41, the battery temperature sensor 42, and the strong electric water temperature sensor 43 cause the outside air temperature, the battery temperature, and the temperature of the refrigerant in the battery refrigerant flow path 3 to be 5 ° C. or less, 5 to 20 respectively. When it is detected that the temperature is 5 ° C. and 5 ° C. to 20 ° C., the controller 4 controls the three-way valve 30 so that the refrigerant does not flow to the battery 21 as in (1-3) normal time during battery heating. To.

(2−2)中温時
外気温センサ41,バッテリ温度センサ42,及び強電水温センサ43により外気温,バッテリ温度,及びバッテリ用冷媒流路3内の冷媒の温度がそれぞれ20℃以下,5〜20℃,及び5〜20℃であることが検出された場合、コントローラ4は、図5に実線で示すように、三方弁30を制御することによりバッテリ用冷媒流路3内の冷媒のみがバッテリ21に流れるようにする。具体的には、バッテリ用冷媒流路3内の冷媒は、ラジエータ22,DC/DCコンバータ23,及び充電器24を経由してバッテリ21に循環される。一方、空調用冷媒流路2内の冷媒は、ヒータ11及びヒータコア12を循環し、空調用に適した温度範囲に温度が制御される。
(2-2) Medium temperature When the outside air temperature sensor 41, the battery temperature sensor 42, and the strong electric water temperature sensor 43 are used, the outside air temperature, the battery temperature, and the temperature of the refrigerant in the battery refrigerant flow path 3 are respectively 20 ° C. or less, 5 to 20 When it is detected that the temperature is 5 ° C. and 5 to 20 ° C., the controller 4 controls the three-way valve 30 so that only the refrigerant in the battery refrigerant flow path 3 is charged to the battery 21 as shown by the solid line in FIG. To flow into. Specifically, the refrigerant in the battery refrigerant flow path 3 is circulated to the battery 21 via the radiator 22, the DC / DC converter 23, and the charger 24. On the other hand, the refrigerant in the air conditioning refrigerant flow path 2 circulates through the heater 11 and the heater core 12, and the temperature is controlled to a temperature range suitable for air conditioning.

(2−3)高温時(1)
外気温センサ41,バッテリ温度センサ42,及び強電水温センサ43により外気温,バッテリ温度,及びバッテリ用冷媒流路3内の冷媒の温度がそれぞれ20℃以上,20℃以上,及び20〜50℃であることが検出された場合、コントローラ4は、図6に実線で示すように、三方弁30を制御することにより水冷式エバポレータ32により冷却された冷媒がバッテリ21に流れるようにする。具体的には、バッテリ用冷媒流路3内の冷媒は、ラジエータ22を経由せずにDC/DCコンバータ23及び充電器24を循環する。またバッテリ21には、循環ポンプ33を駆動させることにより水冷式エバポレータ32により冷却された冷媒が循環される。このような構成によれば、バッテリ21とDC/DCコンバータ23及び充電器24とを個別に適温に制御することができる。一方、空調用冷媒流路2内の冷媒は、ヒータ11及びヒータコア12を循環し、空調用に適した温度範囲に温度が制御される。
(2-3) High temperature (1)
The outside air temperature sensor 41, the battery temperature sensor 42, and the strong electric water temperature sensor 43 are used to set the outside air temperature, the battery temperature, and the temperature of the refrigerant in the battery refrigerant flow path 3 to 20 ° C., 20 ° C., and 20-50 ° C., respectively. When it is detected, the controller 4 controls the three-way valve 30 so that the refrigerant cooled by the water-cooled evaporator 32 flows to the battery 21 as indicated by the solid line in FIG. Specifically, the refrigerant in the battery refrigerant flow path 3 circulates through the DC / DC converter 23 and the charger 24 without passing through the radiator 22. Further, the refrigerant cooled by the water-cooled evaporator 32 is circulated in the battery 21 by driving the circulation pump 33. According to such a configuration, the battery 21, the DC / DC converter 23, and the charger 24 can be individually controlled at appropriate temperatures. On the other hand, the refrigerant in the air conditioning refrigerant flow path 2 circulates through the heater 11 and the heater core 12, and the temperature is controlled to a temperature range suitable for air conditioning.

(2−4)高温時(2)
外気温センサ41,バッテリ温度センサ42,及び強電水温センサ43により外気温,バッテリ温度,及びバッテリ用冷媒流路3内の冷媒の温度がそれぞれ20℃以上,20℃以上,及び50℃以上であることが検出された場合、コントローラ4は、図7に実線で示すように、三方弁30を制御することにより水冷式エバポレータ32により冷却された冷媒がバッテリ21に流れるようにする。具体的には、バッテリ用冷媒流路3内の冷媒は、(2−3)高温時(1)と比較して温度が高いので、ラジエータ22を経由せずにDC/DCコンバータ23及び充電器24と空調用冷媒流路2を循環する。またバッテリ21には、循環ポンプ33を駆動させることにより水冷式エバポレータ32により冷却された冷媒が循環される。このような構成によれば、バッテリ21とDC/DCコンバータ23及び充電器24とを個別に適温に制御することができる。
(2-4) High temperature (2)
The outside air temperature sensor 41, the battery temperature sensor 42, and the strong electric water temperature sensor 43 cause the outside air temperature, the battery temperature, and the temperature of the refrigerant in the battery refrigerant flow path 3 to be 20 ° C. or higher, 20 ° C. or higher, and 50 ° C. or higher, respectively. When this is detected, the controller 4 controls the three-way valve 30 so that the refrigerant cooled by the water-cooled evaporator 32 flows to the battery 21 as shown by a solid line in FIG. Specifically, since the refrigerant in the battery refrigerant flow path 3 is higher in temperature than (2-3) high temperature (1), the DC / DC converter 23 and the charger are not passed through the radiator 22. 24 and the refrigerant flow path 2 for air conditioning are circulated. Further, the refrigerant cooled by the water-cooled evaporator 32 is circulated in the battery 21 by driving the circulation pump 33. According to such a configuration, the battery 21, the DC / DC converter 23, and the charger 24 can be individually controlled at appropriate temperatures.

(その他の動作)
空調用冷媒流路2内の冷媒の温度制御範囲とバッテリ用冷媒流路3内の冷媒の温度制御範囲は異なる。このため、空調用冷媒流路2とバッテリ用冷媒流路3とを接続した際、空調用冷媒流路2内の冷媒とバッテリ用冷媒流路3内の冷媒間に温度差が存在し、バッテリ21の温度を充電に好適な温度に速やかに制御することが困難になる。そこで空調用冷媒流路2とバッテリ用冷媒流路3とを接続する際には、図4に示すようにして空調用冷媒流路2内の冷媒の温度とバッテリ用冷媒流路3内の冷媒の温度を個別に調整した後に、図7に示すように空調用冷媒流路2とバッテリ用冷媒流路3を接続することが望ましい。このような制御方法によれば、空調用冷媒流路2内の冷媒とバッテリ用冷媒流路3内の冷媒間の温度差が小さくなるので、バッテリ21の温度を充電に好適な温度に速やかに制御できる。
(Other operations)
The temperature control range of the refrigerant in the air conditioning refrigerant flow path 2 and the temperature control range of the refrigerant in the battery refrigerant flow path 3 are different. For this reason, when the air conditioning refrigerant flow path 2 and the battery refrigerant flow path 3 are connected, there is a temperature difference between the refrigerant in the air conditioning refrigerant flow path 2 and the refrigerant in the battery refrigerant flow path 3. It becomes difficult to quickly control the temperature of 21 to a temperature suitable for charging. Therefore, when connecting the air conditioning refrigerant flow path 2 and the battery refrigerant flow path 3, the temperature of the refrigerant in the air conditioning refrigerant flow path 2 and the refrigerant in the battery refrigerant flow path 3 as shown in FIG. It is desirable to connect the air conditioning refrigerant passage 2 and the battery refrigerant passage 3 as shown in FIG. According to such a control method, the temperature difference between the refrigerant in the air conditioning refrigerant flow path 2 and the refrigerant in the battery refrigerant flow path 3 is reduced, so that the temperature of the battery 21 can be quickly adjusted to a temperature suitable for charging. Can be controlled.

以上の説明から明らかなように、本発明の実施形態となるバッテリ温度制御装置1によれば、バッテリ用冷媒流路3に強電系部品であるDC/DCコンバータ23と充電器24が配置され、DC/DCコンバータ23と充電器24からの排熱を利用してバッテリ21に供給される冷媒を加熱するので、バッテリ21の加温に要する電力量を削減することができる。   As is clear from the above description, according to the battery temperature control device 1 according to the embodiment of the present invention, the DC / DC converter 23 and the charger 24 that are high-power components are arranged in the battery refrigerant flow path 3. Since the refrigerant supplied to the battery 21 is heated using the exhaust heat from the DC / DC converter 23 and the charger 24, the amount of power required for heating the battery 21 can be reduced.

本発明の実施形態となるバッテリ温度制御装置1によれば、バッテリ用冷媒流路3は、バッテリ21を経由せずに冷媒を流すバイパス流路31を備えるので、温度制御範囲が異なるバッテリ21とDC/DCコンバータ23及び充電器24とを個別に温度制御することができる。   According to the battery temperature control device 1 according to the embodiment of the present invention, the battery refrigerant flow path 3 includes the bypass flow path 31 that allows the refrigerant to flow without going through the battery 21. The DC / DC converter 23 and the charger 24 can be individually temperature controlled.

本発明の実施形態となるバッテリ温度制御装置1によれば、バイパス流路31には、バッテリ21を冷却するための水冷式エバポレータ32が設けられているので、温度制御範囲が異なるバッテリ21とDC/DCコンバータ23及び充電器24とを個別に冷却することができる。   According to the battery temperature control device 1 according to the embodiment of the present invention, since the water-cooled evaporator 32 for cooling the battery 21 is provided in the bypass flow path 31, the battery 21 and the DC having different temperature control ranges are provided. / DC converter 23 and charger 24 can be cooled separately.

本発明の実施形態となるバッテリ温度制御装置1によれば、空調用冷媒流路2とバッテリ用冷媒流路3とを接続する際、空調用冷媒流路2内の冷媒の温度とバッテリ用冷媒流路3内の冷媒の温度を個別に調整した後に空調用冷媒流路2とバッテリ用冷媒流路3を接続するので、バッテリ21の温度を充電に好適な温度に速やかに制御できる。   According to the battery temperature control device 1 according to the embodiment of the present invention, when the air conditioning refrigerant flow path 2 and the battery refrigerant flow path 3 are connected, the temperature of the refrigerant in the air conditioning refrigerant flow path 2 and the battery refrigerant. Since the air conditioning refrigerant flow path 2 and the battery refrigerant flow path 3 are connected after individually adjusting the temperature of the refrigerant in the flow path 3, the temperature of the battery 21 can be quickly controlled to a temperature suitable for charging.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論である。   The embodiment to which the invention made by the present inventors is applied has been described above, but the present invention is not limited by the description and the drawings that constitute a part of the disclosure of the present invention. That is, it is needless to say that other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1:バッテリ温度制御装置
2:空調用冷媒流路
3:バッテリ用冷媒流路
4:コントローラ
5a,5b,26,29,31:バイパス流路
11:PTC(Positive Temperature Coefficient)ヒータ
12:ヒータコア
13,25,31:循環ポンプ
21:バッテリ
22:ラジエータ
23:DC/DCコンバータ
24:充電器
27,28:サーモバルブ
32:水冷式エバポレータ
41:外気温センサ
42:バッテリ温度センサ
43:強電水温センサ
1: Battery temperature control device 2: Air conditioning refrigerant flow path 3: Battery refrigerant flow path 4: Controllers 5a, 5b, 26, 29, 31: Bypass flow path 11: PTC (Positive Temperature Coefficient) heater 12: Heater core 13, 25, 31: Circulation pump 21: Battery 22: Radiator 23: DC / DC converter 24: Charger 27, 28: Thermo valve 32: Water-cooled evaporator 41: Outside air temperature sensor 42: Battery temperature sensor 43: Strong electric water temperature sensor

Claims (2)

車室内空調用の冷媒が循環する空調用冷媒流路と、
車両に搭載されたバッテリの温度を調整する冷媒が循環するバッテリ用冷媒流路と、
前記空調用冷媒流路と前記バッテリ用冷媒流路間で冷媒を循環させる第1バイパス流路と、
前記第1バイパス流路を開閉する第1開閉手段と、
前記バッテリ用冷媒流路の冷媒を、前記バッテリを通過しないようにバイパスさせる第2バイパス流路と、
前記バッテリ用冷媒流路と前記第2バイパス流路との間で冷媒流路を切り替える第2開閉手段と、
前記バッテリの温度を検出するバッテリ温度検出手段と、
前記バッテリ温度検出手段により検出された前記バッテリの温度に応じて前記第1及び第2開閉手段を開閉することにより当該バッテリの温度を制御する制御手段とを備え、
前記バッテリ用冷媒流路は、強電系部品の排熱により流路内の冷媒を加熱する加熱手段と、前記バッテリを迂回して冷媒を循環させ、前記冷媒を冷却するための水冷式エバポレータが設けられている第3バイパス流路を有し、前記加熱手段と前記バッテリとの間に前記第1〜第3バイパス流路が接続され、流路内の冷媒は前記加熱手段から前記第1バイパス流路との接続部分、前記第2バイパス流路との接続部分、前記第3バイパス流路との接続部分の順に流れて前記バッテリに送られること
を特徴とするバッテリ温度制御装置。
An air-conditioning refrigerant flow path through which a refrigerant for air-conditioning the vehicle interior circulates;
A refrigerant flow path for a battery through which a refrigerant for adjusting a temperature of a battery mounted on the vehicle circulates;
A first bypass passage for circulating a refrigerant between the air conditioning refrigerant passage and the battery refrigerant passage;
First opening and closing means for opening and closing the first bypass flow path;
A second bypass passage for bypassing the refrigerant in the battery refrigerant passage so as not to pass through the battery;
A second opening / closing means for switching the refrigerant flow path between the battery refrigerant flow path and the second bypass flow path;
Battery temperature detecting means for detecting the temperature of the battery;
Control means for controlling the temperature of the battery by opening and closing the first and second opening and closing means according to the temperature of the battery detected by the battery temperature detection means,
The battery refrigerant flow path is provided with a heating unit that heats the refrigerant in the flow path by exhaust heat of the high-power components, and a water-cooled evaporator that circulates the refrigerant around the battery and cools the refrigerant. is the third bypass passage possess is, the being the first to third bypass passage connected between the heating means and the battery, the refrigerant in the flow passage wherein the first bypass flow from the heating means A battery temperature control device, wherein the battery temperature control device flows in the order of a connection portion with a road, a connection portion with the second bypass flow path, and a connection portion with the third bypass flow path .
請求項1に記載のバッテリ温度制御装置において、
前記制御手段は、前記バッテリの温度が所定の第1温度以上のときに前記第2開閉手段を前記第2バイパス流路に切り替えて、前記第3バイパス流路に設置された循環ポンプを作動させ、前記バッテリと前記第3バイパス流路との間で冷媒を循環させることを特徴とするバッテリ温度制御装置。
The battery temperature control device according to claim 1,
The control means switches the second opening / closing means to the second bypass flow path when the temperature of the battery is equal to or higher than a predetermined first temperature, and operates a circulation pump installed in the third bypass flow path. A battery temperature control device for circulating a refrigerant between the battery and the third bypass flow path .
JP2009121984A 2009-05-20 2009-05-20 Battery temperature control device Expired - Fee Related JP5556058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121984A JP5556058B2 (en) 2009-05-20 2009-05-20 Battery temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121984A JP5556058B2 (en) 2009-05-20 2009-05-20 Battery temperature control device

Publications (2)

Publication Number Publication Date
JP2010272289A JP2010272289A (en) 2010-12-02
JP5556058B2 true JP5556058B2 (en) 2014-07-23

Family

ID=43420168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121984A Expired - Fee Related JP5556058B2 (en) 2009-05-20 2009-05-20 Battery temperature control device

Country Status (1)

Country Link
JP (1) JP5556058B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101294164B1 (en) * 2011-07-27 2013-08-09 현대자동차주식회사 System for managing waste heat of electric car and method therefor
DE102011115823A1 (en) 2011-10-13 2012-05-16 Daimler Ag Method for operating electrical component i.e. semiconductor switch, of motor vehicle, involves operating electrical components, such that components produce higher power dissipation in operating mode than in another operating mode
JP5989328B2 (en) 2011-11-17 2016-09-07 トヨタ自動車株式会社 Heat exchanger
US20140322570A1 (en) * 2011-12-22 2014-10-30 Toyota Jidosha Kabushiki Kaisha Vehicle
JP5880863B2 (en) * 2012-02-02 2016-03-09 株式会社デンソー Thermal management system for vehicles
JP5912689B2 (en) * 2012-03-12 2016-04-27 ダイムラー・アクチェンゲゼルシャフトDaimler AG Hybrid electric vehicle cooling system
JP6060797B2 (en) * 2012-05-24 2017-01-18 株式会社デンソー Thermal management system for vehicles
JP5867305B2 (en) * 2012-06-20 2016-02-24 株式会社デンソー Thermal management system for vehicles
JP6015184B2 (en) * 2012-07-18 2016-10-26 株式会社デンソー Thermal management system for vehicles
JP6155907B2 (en) * 2012-08-28 2017-07-05 株式会社デンソー Thermal management system for vehicles
JP6206231B2 (en) * 2014-02-12 2017-10-04 株式会社デンソー Thermal management system for vehicles
CN105576321B (en) * 2016-03-02 2019-03-12 宁德时代新能源科技股份有限公司 Battery pack thermal management system
US10220722B2 (en) * 2016-08-22 2019-03-05 Ford Global Technologies, Llc Operation of combined cooling circuit for power electronics and battery
JP2018153074A (en) * 2017-03-09 2018-09-27 パナソニックIpマネジメント株式会社 Charging device and on-vehicle power supply unit
WO2018163711A1 (en) * 2017-03-09 2018-09-13 パナソニックIpマネジメント株式会社 Charging device, and onboard power source device
JP6637005B2 (en) * 2017-09-25 2020-01-29 トヨタ自動車株式会社 Vehicle cooling system
CN109649155A (en) * 2017-10-11 2019-04-19 河南森源重工有限公司 A kind of electric vehicle power unit temperature control system and its vehicle
CN108011153B (en) * 2017-10-27 2019-11-19 合肥国轩高科动力能源有限公司 A kind of heat management monitoring device
CN109149011A (en) * 2018-09-21 2019-01-04 广州小鹏汽车科技有限公司 A kind of BMS heat management system and its control method and device
US20220085435A1 (en) * 2018-12-21 2022-03-17 Honda Motor Co., Ltd. Vehicle
JP6911064B2 (en) * 2019-01-09 2021-07-28 本田技研工業株式会社 Storage battery charging system and storage battery charging system control device
JP7094907B2 (en) * 2019-02-25 2022-07-04 本田技研工業株式会社 Battery temperature riser
JP7377136B2 (en) 2020-03-03 2023-11-09 本田技研工業株式会社 Battery temperature management system
KR102452479B1 (en) * 2020-04-21 2022-10-11 현대위아 주식회사 Integrated thermal management system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150818A (en) * 1984-12-22 1986-07-09 Nippon Denso Co Ltd Air conditioner for automobile
JPS63159123A (en) * 1986-12-22 1988-07-02 Toyo Radiator Kk Air-conditioning device
JP2906699B2 (en) * 1991-01-29 1999-06-21 株式会社デンソー Air conditioner
JP2002354608A (en) * 2001-05-28 2002-12-06 Honda Motor Co Ltd Battery cooling device for electric automobile
JP2002352866A (en) * 2001-05-28 2002-12-06 Honda Motor Co Ltd Battery cooling system for electric vehicle
JP2002352867A (en) * 2001-05-28 2002-12-06 Honda Motor Co Ltd Battery temperature controller for electric vehicle
JP2006111116A (en) * 2004-10-14 2006-04-27 Nissan Motor Co Ltd Electric power source device for vehicle and vehicle mounted with this
JP2006151091A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Vehicular power source and vehicle mounted with the same

Also Published As

Publication number Publication date
JP2010272289A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5556058B2 (en) Battery temperature control device
JP5387129B2 (en) Battery temperature control device
US9707822B2 (en) Electric vehicle thermal management system
US9533546B2 (en) Electric vehicle thermal management system
US9919613B2 (en) Battery temperature regulating device mounted to a vehicle with an air conditioner and a battery
KR101317120B1 (en) Temperature control system for a drive device of a motor vehicle, method for operating such a temperature control system and motor vehicle having such a temperature control system
JP5556057B2 (en) Battery temperature control device
EP3163046B1 (en) Cooling system for internal combustion engine
JP2002352867A (en) Battery temperature controller for electric vehicle
JP5505328B2 (en) Hybrid vehicle cooling system
JP7132897B2 (en) vehicle
JP2011121551A (en) Heat control device of vehicle
US11318814B2 (en) Cooling apparatus
JP2009224256A (en) Battery warming up system
WO2020129258A1 (en) Vehicle
CN110871712B (en) Thermal management system for a vehicle
WO2020129260A1 (en) Vehicle
JP6239912B2 (en) Temperature control device and temperature control method
CN108340748B (en) Vehicle control method and device and vehicle
JP5960458B2 (en) Air conditioner for vehicles
JP2019047555A (en) Battery temperature control device
JP2019098906A (en) Vehicular waste heat utilization device
JP2019043178A (en) Battery warming-up device
KR102617031B1 (en) Heat management system of vehicle
KR20110139440A (en) Air conditioner for vehicle and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

LAPS Cancellation because of no payment of annual fees