JP5544739B2 - Thermosetting resin composition for light reflection, optical semiconductor element mounting substrate using the same, manufacturing method thereof, and optical semiconductor device - Google Patents

Thermosetting resin composition for light reflection, optical semiconductor element mounting substrate using the same, manufacturing method thereof, and optical semiconductor device Download PDF

Info

Publication number
JP5544739B2
JP5544739B2 JP2009084929A JP2009084929A JP5544739B2 JP 5544739 B2 JP5544739 B2 JP 5544739B2 JP 2009084929 A JP2009084929 A JP 2009084929A JP 2009084929 A JP2009084929 A JP 2009084929A JP 5544739 B2 JP5544739 B2 JP 5544739B2
Authority
JP
Japan
Prior art keywords
thermosetting resin
resin composition
light
optical semiconductor
light reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009084929A
Other languages
Japanese (ja)
Other versions
JP2010235756A (en
Inventor
勇人 小谷
直之 浦崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2009084929A priority Critical patent/JP5544739B2/en
Publication of JP2010235756A publication Critical patent/JP2010235756A/en
Application granted granted Critical
Publication of JP5544739B2 publication Critical patent/JP5544739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Description

本発明は、光半導体素子と蛍光体等の波長変換手段とを組み合わせた光半導体装置などに用いられる光反射用熱硬化性樹脂組成物、これを用いた光半導体素子搭載用基板及びその製造方法、並びに光半導体装置に関する。   The present invention relates to a light-reflective thermosetting resin composition used in an optical semiconductor device in which an optical semiconductor element and wavelength conversion means such as a phosphor are combined, an optical semiconductor element mounting substrate using the same, and a method for manufacturing the same And an optical semiconductor device.

近年、LED(Light Emitting Diode:発光ダイオード)等の光半導体素子と蛍光体とを組み合わせた光半導体装置は、高エネルギー効率及び長寿命等の利点から、屋外用ディスプレイ、携帯液晶バックライト、及び車載用途等様々な用途に適用され、その需要が拡大しつつある。   In recent years, an optical semiconductor device in which an optical semiconductor element such as an LED (Light Emitting Diode) and a phosphor are combined has advantages of high energy efficiency, long life, and the like. It is applied to various uses such as uses, and its demand is expanding.

これに伴って、LEDデバイスの高輝度化が進み、素子の発熱量増大によるジャンクション温度の上昇、又は直接的な光エネルギーの増大による素子材料の劣化が問題視され、近年、熱劣化及び光劣化に対して耐性を有する素子材料の開発が課題となっている。   Along with this, the brightness of LED devices has been increasing, and the rise in junction temperature due to an increase in the amount of heat generated by the element, or the deterioration of element materials due to a direct increase in light energy, has been regarded as a problem. Development of a device material having resistance to the problem has been an issue.

こうした状況下、熱や光に起因する輝度低下の問題を防止する技術として、下記特許文献1には、光半導体素子が搭載される部位に光反射率の高いリフレクターを設けた光半導体素子搭載用基板が提案されている。また、特許文献1には、トランスファー成形によりリフレクターなどを形成することが開示されており、その材料として、エポキシ樹脂、硬化剤、硬化触媒及び白色顔料などを含有する光反射用熱硬化性樹脂組成物が提案されている。他にも、下記特許文献2には、光半導体素子の収納パッケージの材料として、ジアリルフタレートポリマー、重合開始剤、酸化チタン及び光安定剤を含有するジアリルフタレート樹脂組成物が提案されている。   Under such circumstances, as a technique for preventing the problem of luminance reduction caused by heat and light, the following Patent Document 1 discloses an optical semiconductor element mounting in which a reflector having a high light reflectance is provided at a site where the optical semiconductor element is mounted. A substrate has been proposed. Patent Document 1 discloses that a reflector or the like is formed by transfer molding. The material includes an epoxy resin, a curing agent, a curing catalyst, a white pigment, and the like. Things have been proposed. In addition, Patent Document 2 below proposes a diallyl phthalate resin composition containing a diallyl phthalate polymer, a polymerization initiator, titanium oxide, and a light stabilizer as a material for an optical semiconductor element storage package.

特開2006−140207号公報JP 2006-140207 A 特開2008−255338号公報JP 2008-255338 A

しかし、上記従来の樹脂組成物を用いて、光半導体素子を取り囲むリフレクターを形成したり光半導体素子が接続される電極間の基板反対側に通じる隙間を埋めたりした場合であっても、光半導体素子からの発光が一部透過する光漏れが発生することがある。この光漏れが多いと光半導体装置の上面へ放射されるべき光が損失するため、光半導体装置としての光取出し効率を十分に高めることが難しくなる。液晶ディスプレイなどの用途では小型のLEDデバイスが使用されるが、この場合、リフレクターの壁部分や基板の厚みがより小さくなるので特に光漏れの問題が顕在化してしまう。   However, even if the conventional resin composition is used to form a reflector surrounding the optical semiconductor element or fill a gap between the electrodes to which the optical semiconductor element is connected to the opposite side of the substrate, the optical semiconductor In some cases, light leakage that partially transmits light emitted from the element may occur. If this light leakage is large, the light to be emitted to the upper surface of the optical semiconductor device is lost, so that it is difficult to sufficiently increase the light extraction efficiency as the optical semiconductor device. In applications such as liquid crystal displays, small LED devices are used. In this case, however, the wall portion of the reflector and the thickness of the substrate become smaller, so that the problem of light leakage becomes particularly apparent.

本発明は、上記事情に鑑みてなされたものであり、遮光性に優れた硬化物を形成できる光反射用熱硬化性樹脂組成物、それを用いた光半導体素子搭載用基板およびその製造方法、並びに、光半導体装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a thermosetting resin composition for light reflection capable of forming a cured product having excellent light shielding properties, a substrate for mounting an optical semiconductor element using the same, and a method for producing the same. An object of the present invention is to provide an optical semiconductor device.

上記課題を解決するため、本発明は、トランスファー成形によって硬化物を得るための熱硬化性樹脂組成物であって、熱硬化性樹脂成分と、充填剤成分とを含有し、下記式(1)で示されるXが0.30〜0.70であることを特徴とするLEDデバイスの光反射用熱硬化性樹脂組成物を提供する。

Figure 0005544739

[式(1)中、nは充填剤成分の成分数を示し、φはn個の充填剤成分を1番からn番まで任意に順番をつけたときにi番目の充填剤成分の光反射用熱硬化性樹脂全体における体積割合を示し、nはi番目の充填剤成分の屈折率を示し、nrejinは熱硬化性樹脂成分全体の屈折率を示す。] To achieve the above object, the present invention is a thermosetting resin composition for obtaining the thus cured product transfer molding, a thermosetting resin component, containing a filler component, the following equation (1 The thermosetting resin composition for light reflection of an LED device is provided, wherein X represented by) is 0.30 to 0.70.
Figure 0005544739

[In formula (1), n represents the number of filler components, and φ i represents the light of the i-th filler component when n filler components are arbitrarily ordered from 1 to n. It indicates the volume percentage in the entire reflecting thermosetting resin, n i is the refractive index of the i-th filler component, n rejin is the refractive index of the entire thermosetting resin component. ]

本発明の光反射用熱硬化性樹脂組成物によれば、上記パラメータXが上記範囲となるように熱硬化性樹脂成分及び充填剤成分を含有することにより、遮光性に優れた硬化物を形成することができる。   According to the thermosetting resin composition for light reflection of the present invention, a cured product having excellent light shielding properties is formed by containing a thermosetting resin component and a filler component so that the parameter X falls within the above range. can do.

また、本発明の光反射用熱硬化性樹脂組成物によれば、樹脂基板、金属性基板等の下地表面に硬化物を形成した場合には、下地の色を遮蔽する効果や、光による樹脂劣化などを抑制する効果を奏することができる。   Moreover, according to the thermosetting resin composition for light reflection of the present invention, when a cured product is formed on the base surface of a resin substrate, a metallic substrate, etc., the effect of shielding the base color or the resin by light The effect which suppresses degradation etc. can be show | played.

本発明の光反射用熱硬化性樹脂組成物は、厚みが0.1mmの硬化物を形成したときに、当該硬化物の波長460nmにおける光反射率が90%以上であることが好ましい。   When the thermosetting resin composition for light reflection of the present invention forms a cured product having a thickness of 0.1 mm, the light reflectance at a wavelength of 460 nm of the cured product is preferably 90% or more.

本発明の光反射用熱硬化性樹脂組成物において、充填剤成分が、屈折率が1.6〜3.0の、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化アンチモン、水酸化アルミニウム、水酸化マグネシウムからなる群より選ばれる少なくとも1種の無機酸化物を含むことが好ましい。   In the light reflecting thermosetting resin composition of the present invention, the filler component has a refractive index of 1.6 to 3.0, titanium oxide, zinc oxide, aluminum oxide, magnesium oxide, zirconium oxide, antimony oxide, water. It is preferable to include at least one inorganic oxide selected from the group consisting of aluminum oxide and magnesium hydroxide.

また、光反射用熱硬化性樹脂組成物を混合する際に熱硬化樹脂成分へ高充填化する観点から、上記無機酸化物の中心粒径が0.1〜20μmの範囲内にあることが好ましい。   Moreover, it is preferable that the center particle diameter of the said inorganic oxide exists in the range of 0.1-20 micrometers from a viewpoint of making a thermosetting resin component highly filled when mixing the thermosetting resin composition for light reflections. .

また、上記無機酸化物の含有量が、上記熱硬化性樹脂成分100質量部に対して70〜400質量部であることが好ましい。   Moreover, it is preferable that content of the said inorganic oxide is 70-400 mass parts with respect to 100 mass parts of said thermosetting resin components.

従来の光反射用熱硬化性樹脂組成物において、光漏れを抑制するために酸化チタンなどの白色顔料の配合量を増量しすぎると、リフレクターなどの成形体を作製するときの成形加工性や、コーティングなどにより光反射膜を形成する際の塗工性などが損なわれ、所望の光特性を有する光半導体素子搭載用基板やLEDデバイスを製造することが困難になる場合がある。これに対して、本発明によれば、上記無機酸化物の含有量を上記範囲とした場合であっても、熱硬化性樹脂組成物成分の含有量及び比重並びに充填剤成分の屈折率及び比重から上記式(1)に基づいて光反射率及び遮光性に十分優れた硬化物を容易に得ることができる。すなわち、上記無機酸化物を上記含有量で配合してパラメータXを0.30〜0.70とした場合、光反射率、遮光性及び成形加工性を更に高水準で満足する光反射用熱硬化性樹脂組成物が実現可能となる。   In the conventional thermosetting resin composition for light reflection, if the amount of white pigment such as titanium oxide is excessively increased in order to suppress light leakage, molding processability when producing a molded body such as a reflector, In some cases, the coating property or the like at the time of forming the light reflecting film is impaired by coating or the like, and it may be difficult to manufacture an optical semiconductor element mounting substrate or an LED device having desired optical characteristics. On the other hand, according to the present invention, even when the content of the inorganic oxide is within the above range, the content and specific gravity of the thermosetting resin composition component and the refractive index and specific gravity of the filler component. From the above formula (1), it is possible to easily obtain a cured product that is sufficiently excellent in light reflectance and light shielding property. That is, when the inorganic oxide is blended with the above content and the parameter X is set to 0.30 to 0.70, thermosetting for light reflection satisfying the light reflectance, light shielding property and molding processability at a higher level. The functional resin composition can be realized.

樹脂基板、金属性基板等の下地表面に硬化物を形成した場合、これを高温環境下に放置すると界面剥離、変形、破壊等の不具合を伴う可能性がある。このような不具合が発生しないためには基板との熱膨張率差が整合されていることが望ましい。そのような観点から、上記無機酸化物の含有量が、上記熱硬化性樹脂成分100質量部に対して130〜400質量部であることが好ましい。   When a cured product is formed on the base surface of a resin substrate, a metallic substrate, etc., leaving it in a high temperature environment may cause problems such as interface peeling, deformation, and destruction. In order to prevent such a problem from occurring, it is desirable that the difference in thermal expansion coefficient with the substrate is matched. From such a viewpoint, the content of the inorganic oxide is preferably 130 to 400 parts by mass with respect to 100 parts by mass of the thermosetting resin component.

また、本発明の光反射用熱硬化性樹脂組成物において、上記充填剤成分が、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス、架橋スチレン系樹脂及び架橋アクリル系樹脂からなる群より選ばれる少なくとも1種の材質を含んでなる外殻と、屈折率が1.0〜1.1である空隙部と、を有する中空粒子を含むことが好ましい。   Moreover, in the thermosetting resin composition for light reflection of the present invention, the filler component is selected from the group consisting of sodium silicate glass, aluminum silicate glass, sodium borosilicate glass, a crosslinked styrene resin, and a crosslinked acrylic resin. It is preferable to include hollow particles having an outer shell including at least one material and a void portion having a refractive index of 1.0 to 1.1.

また、光反射性の観点から、上記中空粒子の中心粒径が0.1〜50μmの範囲内にあることが好ましい。   From the viewpoint of light reflectivity, it is preferable that the center particle diameter of the hollow particles is in the range of 0.1 to 50 μm.

また、上記中空粒子の含有量が、上記熱硬化性樹脂成分100質量部に対して20〜85質量部であることが好ましい。   Moreover, it is preferable that content of the said hollow particle is 20-85 mass parts with respect to 100 mass parts of said thermosetting resin components.

上記中空粒子の含有量を上記範囲とすることにより、光反射率、遮光性及び成形加工性を更に高水準で満足する光反射用熱硬化性樹脂組成物が実現可能となる。   By setting the content of the hollow particles in the above range, it is possible to realize a light-reflective thermosetting resin composition that satisfies the light reflectance, light-shielding property, and molding processability at a higher level.

本発明はまた、本発明の光反射用熱硬化性樹脂組成物の硬化物を備える光半導体素子搭載用基板を提供する。   The present invention also provides an optical semiconductor element mounting substrate provided with a cured product of the light reflecting thermosetting resin composition of the present invention.

本発明はまた、底面及び壁面から構成される凹部を有し、当該凹部の底面が光半導体素子の搭載部であり、凹部の壁面の少なくとも一部が、本発明の光反射用熱硬化性樹脂組成物の硬化物からなる光半導体素子搭載用基板を提供する。   The present invention also has a recess composed of a bottom surface and a wall surface, the bottom surface of the recess is a mounting portion for an optical semiconductor element, and at least a part of the wall surface of the recess is the thermosetting resin for light reflection of the present invention. An optical semiconductor element mounting substrate comprising a cured product of the composition is provided.

本発明はまた、基板と、当該基板上に設けられた第1の接続端子および第2の接続端子とを備え、第1の接続端子と第2の接続端子との間に、本発明の光反射用熱硬化性樹脂組成物の硬化物を有する光半導体素子搭載用基板を提供する。   The present invention also includes a substrate and a first connection terminal and a second connection terminal provided on the substrate, and the light of the present invention is provided between the first connection terminal and the second connection terminal. An optical semiconductor element mounting substrate having a cured product of a reflective thermosetting resin composition is provided.

本発明はまた、本発明の光半導体素子搭載用基板と、当該光半導体素子搭載用基板に搭載された光半導体素子とを有する光半導体装置を提供する。   The present invention also provides an optical semiconductor device having the optical semiconductor element mounting substrate of the present invention and an optical semiconductor element mounted on the optical semiconductor element mounting substrate.

本発明はまた、底面及び壁面から構成される凹部を有する光半導体素子搭載用基板の製造方法であって、凹部の壁面の少なくとも一部を、本発明の光反射用熱硬化性樹脂組成物をトランスファー成形して形成する工程を備える光半導体素子搭載用基板の製造方法を提供する。   The present invention is also a method for producing a substrate for mounting an optical semiconductor element having a recess composed of a bottom surface and a wall surface, wherein at least a part of the wall surface of the recess is formed from the thermosetting resin composition for light reflection of the present invention. Provided is a method for manufacturing an optical semiconductor element mounting substrate comprising a step of forming by transfer molding.

本発明の半導体素子搭載用基板の製造方法によれば、本発明の光反射用熱硬化性樹脂組成物を用いる上記工程を備えることにより、リフレクターとして機能できる光反射率が十分高く且つ遮光性に優れた凹部を設けることできる。したがって、本発明の方法により得られる半導体素子搭載用基板によれば、所望の光学特性を有する光半導体装置を製造することが容易となる。   According to the method for manufacturing a substrate for mounting a semiconductor element of the present invention, by providing the above-described process using the thermosetting resin composition for light reflection of the present invention, the light reflectivity that can function as a reflector is sufficiently high and light-shielding. An excellent recess can be provided. Therefore, according to the semiconductor element mounting substrate obtained by the method of the present invention, it becomes easy to manufacture an optical semiconductor device having desired optical characteristics.

本発明によれば、遮光性に優れた硬化物を形成できる光反射用熱硬化性樹脂組成物、それを用いた光半導体素子搭載用基板およびその製造方法、並びに、光半導体装置を提供することができる。   According to the present invention, there are provided a thermosetting resin composition for light reflection capable of forming a cured product having excellent light shielding properties, a substrate for mounting an optical semiconductor element using the same, a method for manufacturing the same, and an optical semiconductor device. Can do.

本発明の光半導体素子搭載用基板の好適な一実施形態を示す斜視図である。It is a perspective view which shows suitable one Embodiment of the board | substrate for optical semiconductor element mounting of this invention. 本発明の光半導体素子搭載用基板を製造する工程の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the process of manufacturing the board | substrate for optical semiconductor element mounting of this invention. 本発明の光半導体素子搭載用基板に光半導体素子を搭載した状態の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the state which mounted the optical semiconductor element in the board | substrate for optical semiconductor element mounting of this invention. 本発明の光半導体装置の一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing an embodiment of an optical semiconductor device of the present invention. 本発明の光半導体装置の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the optical semiconductor device of this invention. 本発明の光半導体装置の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the optical semiconductor device of this invention. 本発明に係る銅張積層板の好適な一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing a preferred embodiment of a copper-clad laminate according to the present invention. 本発明に係る銅張積層板を用いて作製された光半導体装置の一例を示す模式断面図である。It is a schematic cross section which shows an example of the optical semiconductor device produced using the copper clad laminated board which concerns on this invention. 本発明に係る光半導体装置の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the optical semiconductor device which concerns on this invention.

(光反射用熱硬化性樹脂組成物)
本発明の光反射用熱硬化性樹脂組成物は、熱硬化性樹脂成分と、充填剤成分と、を含有し、下記式(1)で示されるXが0.30〜0.70であることを特徴とする。

Figure 0005544739


[式(1)中、nは充填剤成分の成分数を示し、φはn個の充填剤成分を1番からn番まで任意に順番をつけたときにi番目の充填剤成分の光反射用熱硬化性樹脂全体における体積割合を示し、nはi番目の充填剤成分の屈折率を示し、nrejinは熱硬化性樹脂成分全体の屈折率を示す。] (Thermosetting resin composition for light reflection)
The thermosetting resin composition for light reflection of the present invention contains a thermosetting resin component and a filler component, and X represented by the following formula (1) is 0.30 to 0.70. It is characterized by.
Figure 0005544739


[In formula (1), n represents the number of filler components, and φ i represents the light of the i-th filler component when n filler components are arbitrarily ordered from 1 to n. It indicates the volume percentage in the entire reflecting thermosetting resin, n i is the refractive index of the i-th filler component, n rejin is the refractive index of the entire thermosetting resin component. ]

ここで、光反射用熱硬化性樹脂の全体積Vは、各成分の質量及び比重から算出することができる。また、各充填剤成分の体積割合φiは、i番目の充填剤成分の体積を、上記で求めた熱硬化性樹脂組成物の全体積Vで割ることにより求められる。   Here, the total volume V of the thermosetting resin for light reflection can be calculated from the mass and specific gravity of each component. Further, the volume ratio φi of each filler component is obtained by dividing the volume of the i-th filler component by the total volume V of the thermosetting resin composition obtained above.

<熱硬化性樹脂成分及び充填剤成分の屈折率について>
本明細書において、屈折率とは、温度25℃における、d線(587.562nm,He)の光に対する値である。熱硬化性樹脂成分及び充填剤成分の屈折率は、例えば、臨界角法、プリズムカップリング法、ベッケ法、vブロック法等の原理を利用した種々の屈折計を用いて測定することができる。屈折計としては、分光計、アッベ屈折計、プルリッヒ屈折計、エリプソメーター等が挙げられる。屈折計は、測定対象物の性状(薄膜、バルク、粉体などの固体、液体)に応じて適宜選択される。測定対象物が固体の場合、例えば、測定対象物を公知の方法で薄膜化して、アッベ屈折計、エリプソメーターにより測定が可能である。また、白色顔料などの充填剤成分の屈折率は、充填剤成分を構成する化合物のバルクでの測定値或いは薄膜形状とした場合の測定値を適用してもよい。粉体を測定する場合には、ベッケ法が好適に用いられる。なお、本発明において、熱硬化性樹脂成分の屈折率は、Vブロック法(カルニュー光学製、形式KPR)により、白色顔料などの充填剤成分の屈折率は、ベッケ法(標準溶液と比較する方法)により測定される。また、充填剤成分が中空粒子である場合については、空気や不活性ガスによって内部が満たされているため、屈折率は1.0の数値を適用することができる。
<Regarding Refractive Index of Thermosetting Resin Component and Filler Component>
In this specification, the refractive index is a value for light of d-line (587.562 nm, He) at a temperature of 25 ° C. The refractive indexes of the thermosetting resin component and the filler component can be measured using various refractometers utilizing the principles such as the critical angle method, the prism coupling method, the Becke method, and the v block method. Examples of the refractometer include a spectrometer, an Abbe refractometer, a Plurich refractometer, and an ellipsometer. The refractometer is appropriately selected according to the properties of the measurement object (solid, liquid such as thin film, bulk, powder). When the object to be measured is a solid, for example, the object to be measured can be thinned by a known method and measured with an Abbe refractometer or an ellipsometer. The refractive index of the filler component such as a white pigment may be a measurement value in the bulk of a compound constituting the filler component or a measurement value in a thin film shape. When measuring powder, the Becke method is preferably used. In the present invention, the refractive index of the thermosetting resin component is determined by the V-block method (manufactured by Kalnew Optical, type KPR), and the refractive index of the filler component such as a white pigment is determined by the Becke method (method compared with the standard solution ). In the case where the filler component is a hollow particle, the inside is filled with air or an inert gas, and therefore a refractive index of 1.0 can be applied.

パラメータXが0.30未満であると、十分な遮光性が得られず、光漏れを防止しにくくなる。一方、パラメータXが0.7を超えると、光反射用熱硬化性樹脂組成物の溶融粘度が高くなるなどして、成形加工性が低下する。   If the parameter X is less than 0.30, sufficient light shielding properties cannot be obtained, and it becomes difficult to prevent light leakage. On the other hand, when the parameter X exceeds 0.7, the moldability of the thermoreflective resin composition for light reflection is increased, for example, the moldability is lowered.

以下に、本発明で用いられる充填剤成分として好適なものを例示する。   Below, what is suitable as a filler component used by this invention is illustrated.

好ましい充填剤成分として、屈折率が1.6〜3.0の無機酸化物が挙げられる。このような無機酸化物は白色顔料として好適に配合することができる。具体的には、屈折率2.5〜2.7の酸化チタン、屈折率1.9〜2.0の酸化亜鉛、屈折率1.6〜1.8の酸化アルミニウム、屈折率1.7の酸化マグネシウム、屈折率2.4の酸化ジルコニウム、屈折率1.6の水酸化アルミニウム、屈折率1.6の水酸化マグネシウムが挙げられる。本発明の光反射用熱硬化性樹脂組成物は、充填剤成分として、上記の無機酸化物のうちの1種以上含むことが好ましい。更に、高屈折率の観点から、上記の無機酸化物の中でも屈折率2.5〜2.7の酸化チタンを含有することが好ましい。   Preferable filler components include inorganic oxides having a refractive index of 1.6 to 3.0. Such an inorganic oxide can be suitably blended as a white pigment. Specifically, titanium oxide having a refractive index of 2.5 to 2.7, zinc oxide having a refractive index of 1.9 to 2.0, aluminum oxide having a refractive index of 1.6 to 1.8, and having a refractive index of 1.7. Examples thereof include magnesium oxide, zirconium oxide having a refractive index of 2.4, aluminum hydroxide having a refractive index of 1.6, and magnesium hydroxide having a refractive index of 1.6. The light-reflective thermosetting resin composition of the present invention preferably contains one or more of the above inorganic oxides as a filler component. Furthermore, from the viewpoint of high refractive index, it is preferable to contain titanium oxide having a refractive index of 2.5 to 2.7 among the above inorganic oxides.

本発明では、表面処理を施した酸化チタンを配合することが好ましい。表面処理剤としては、例えば、シリカ、アルミナ、ジルコニア等の金属酸化物;シランカップリング剤、チタンカップリング剤、有機酸、ポリオール、シリコーン等の有機物などが挙げられる。このような酸化チタンとしては、酸化チタン(TiO)としての含有量が80〜97質量%に調整された微小粒子系の酸化チタンをベースに、金属酸化物、シランカップリング剤、チタンカップリング剤、有機酸、ポリオール、シリコーン等の有機物で表面処理された酸化チタンが挙げられる。酸化チタンの結晶型としては、屈折率2.7のルチル型、屈折率2.5のアナターゼ型及び屈折率2.6のブルッカイト型の3つの結晶型があり、特には限定されないが、屈折率と光吸収特性の観点から、ルチル型が好ましい。 In the present invention, it is preferable to blend a surface-treated titanium oxide. Examples of the surface treating agent include metal oxides such as silica, alumina, and zirconia; organic substances such as silane coupling agents, titanium coupling agents, organic acids, polyols, and silicones. As such a titanium oxide, a metal oxide, a silane coupling agent, a titanium coupling based on a fine particle titanium oxide whose content as titanium oxide (TiO 2 ) is adjusted to 80 to 97% by mass. And titanium oxide surface-treated with an organic substance such as an agent, organic acid, polyol, and silicone. The crystal form of titanium oxide includes three crystal forms: a rutile form having a refractive index of 2.7, an anatase form having a refractive index of 2.5, and a brookite form having a refractive index of 2.6. From the viewpoint of light absorption characteristics, the rutile type is preferable.

表面処理を施した酸化チタンは、シリカ、アルミナ、ジルコニア及び有機物のうちの1種以上で表面処理された酸化チタン、又は、シリカ、アルミナ及びジルコニアのうちの1種以上で表面処理された酸化チタンが好ましい。   The surface-treated titanium oxide is titanium oxide surface-treated with one or more of silica, alumina, zirconia and organic substances, or titanium oxide surface-treated with one or more of silica, alumina and zirconia. Is preferred.

上記の無機酸化物は、熱硬化性樹脂成分との密着性を向上させる観点から、エポキシシラン等のシランカップリング剤を用いてさらに表面が有機処理されていてもよい。   From the viewpoint of improving the adhesion with the thermosetting resin component, the surface of the inorganic oxide may be further subjected to organic treatment using a silane coupling agent such as epoxy silane.

屈折率が1.6〜3.0の無機酸化物は、光反射用熱硬化性樹脂組成物を混合する際に熱硬化樹脂成分へ高充填化する観点から、中心粒径が0.1〜20μmであることが好ましく、0.1〜10μmであることがより好ましく、0.1〜5μmであることが更に好ましい。   The inorganic oxide having a refractive index of 1.6 to 3.0 has a central particle size of 0.1 to 0.1 from the viewpoint of highly filling the thermosetting resin component when the thermosetting resin composition for light reflection is mixed. It is preferably 20 μm, more preferably 0.1 to 10 μm, still more preferably 0.1 to 5 μm.

なお、本発明に用いられる酸化チタンは、その入手方法には特に制限はなく、市販の酸化チタンであってもよい。市販の酸化チタンとしては、例えば、ルチル型酸化チタンである堺化学工業(株)製のD−918、FTR−700(いずれも商品名)、石原産業(株)製のタイペークCR−50、CR−50−2、CR−60、CR−60−2、CR−63、CR−80、CR−90、CR−90−2、CR−93、CR−95、CR−97、(いずれも商品名)、テイカ(株)製のJR−403、JR−805、JR−806、JR−701、JR−800等(いずれも商品名)、冨士チタン工業(株)製のTR−600、TR−700、TR−750、TR−840、TR−900(いずれも商品名)等が挙げられる。   In addition, the titanium oxide used for this invention does not have a restriction | limiting in particular in the acquisition method, Commercially available titanium oxide may be sufficient. Examples of commercially available titanium oxide include D-918, FTR-700 (both trade names) manufactured by Sakai Chemical Industry Co., Ltd., which are rutile-type titanium oxides, and Taipei CR-50, CR manufactured by Ishihara Sangyo Co., Ltd. -50-2, CR-60, CR-60-2, CR-63, CR-80, CR-90, CR-90-2, CR-93, CR-95, CR-97 (all trade names ), JR-403, JR-805, JR-806, JR-701, JR-800, etc. (all trade names) manufactured by Teika Corporation, TR-600, TR-700 manufactured by Fuji Titanium Industry Co., Ltd. , TR-750, TR-840, TR-900 (all are trade names), and the like.

ここで、酸化チタンは、原料となる天然物を、公知の硫酸法または塩酸法で製造して得られる。硫酸法と塩酸法のそれぞれから得られる酸化チタンは、屈折率が同等であるにもかかわらず、製造時に処理液から混入する元素の違いにより、酸化チタンの色すなわち反射スペクトル特性が異なるものが得られる。通常は塩酸法から得られる酸化チタンには波長460〜800nmの光反射率が高く、硫酸法から得られる酸化チタンは波長460〜800nmの光反射率が前者に劣る。本発明の光反射用熱硬化性樹脂組成物においては、波長460〜800nmの光反射率が高い塩酸法で製造される酸化チタンを用いることが好ましい。   Here, titanium oxide is obtained by producing a natural product as a raw material by a known sulfuric acid method or hydrochloric acid method. Titanium oxide obtained from each of the sulfuric acid method and hydrochloric acid method has different refractive indices, but the titanium oxide color, that is, the reflection spectrum characteristics, is different depending on the elements mixed from the treatment liquid during production. It is done. Normally, titanium oxide obtained from the hydrochloric acid method has a high light reflectance at a wavelength of 460 to 800 nm, and titanium oxide obtained from the sulfuric acid method has a light reflectance at a wavelength of 460 to 800 nm inferior to the former. In the thermosetting resin composition for light reflection of the present invention, it is preferable to use titanium oxide produced by a hydrochloric acid method having a high light reflectance at a wavelength of 460 to 800 nm.

屈折率が1.6〜3.0の無機酸化物の配合量は、熱硬化性樹脂成分100質量部に対して、70〜400質量部であることが好ましい。係る配合量が70質量部未満であると、遮光性に優れた硬化物が得られ難い傾向があり、400質量部を超えると、樹脂組成物の成型性が低下し、基板の作製が困難となる傾向がある。   The compounding amount of the inorganic oxide having a refractive index of 1.6 to 3.0 is preferably 70 to 400 parts by mass with respect to 100 parts by mass of the thermosetting resin component. If the blending amount is less than 70 parts by mass, it tends to be difficult to obtain a cured product excellent in light-shielding properties. If it exceeds 400 parts by mass, the moldability of the resin composition is lowered and it is difficult to produce a substrate. Tend to be.

本発明の光反射用熱硬化性樹脂組成物をトランスファー成形用とする場合には、屈折率が1.6〜3.0の無機酸化物の配合量は、熱硬化性樹脂成分100質量部に対して130〜400質量部であることが好ましい。本発明の光反射用熱硬化性樹脂組成物を基板のコーティング用とする場合には、屈折率が1.6〜3.0の無機酸化物の配合量は、熱硬化性樹脂成分100質量部に対して130〜400質量部であることが好ましい。   When the thermosetting resin composition for light reflection of the present invention is used for transfer molding, the amount of inorganic oxide having a refractive index of 1.6 to 3.0 is 100 parts by mass of the thermosetting resin component. It is preferable that it is 130-400 mass parts with respect to it. When the light-reflective thermosetting resin composition of the present invention is used for coating a substrate, the compounding amount of the inorganic oxide having a refractive index of 1.6 to 3.0 is 100 parts by mass of the thermosetting resin component. It is preferable that it is 130-400 mass parts with respect to.

本発明においては、酸化チタンを配合し、その平均粒子径及び含有量を上記の範囲内とすることにより、表面反射率が高く且つ遮光性に優れる成形品を良好に形成できる光反射用熱硬化性樹脂組成物がより有効に実現可能となる。   In the present invention, by adding titanium oxide and making the average particle size and content within the above-mentioned range, thermosetting for light reflection capable of forming a molded article having high surface reflectance and excellent light shielding properties. The functional resin composition can be realized more effectively.

更に、別の好ましい充填剤成分として、中空粒子が挙げられる。この中空粒子は白色顔料として好適に配合することができる。中空粒子を配合する場合、熱処理や樹脂組成物の混合によって中空粒子が破壊されて中空部が失われると、遮光性が損なわれてしまう。そのため、中空粒子は、耐熱性および耐圧強度が高いものが好ましい。中空粒子の外殻を構成する材料としては、無機化合物の場合、無機ガラス、シリカ、アルミナ等の金属酸化物、炭酸カルシウム、炭酸バリウム、珪酸カルシウム、炭酸ニッケル等の金属塩等が挙げられ、より具体的には珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラスが挙げられる。有機化合物の場合、ポリスチレン系樹脂、ポリ(メタ)アクリレート系樹脂、及び、これらの架橋体等が挙げられる。また、外殻は、上記の材料の2種以上から構成されていてもよい。   Furthermore, another preferred filler component includes hollow particles. These hollow particles can be suitably blended as a white pigment. When blending hollow particles, if the hollow particles are destroyed by heat treatment or mixing of the resin composition and the hollow portion is lost, the light shielding property is impaired. Therefore, it is preferable that the hollow particles have high heat resistance and pressure strength. Examples of the material constituting the outer shell of the hollow particles include inorganic oxides, metal oxides such as inorganic glass, silica, and alumina, and metal salts such as calcium carbonate, barium carbonate, calcium silicate, and nickel carbonate. Specific examples include sodium silicate glass, aluminum silicate glass, and borosilicate soda glass. In the case of an organic compound, examples thereof include polystyrene resins, poly (meth) acrylate resins, and crosslinked products thereof. Moreover, the outer shell may be comprised from 2 or more types of said material.

中空粒子の外殻を透過した光は中空粒子内部で反射されるため、中空部は屈折率が低い媒質で満たされていることが好ましい。そのような観点から、中空粒子内部の空間は、屈折率1.0〜1.1の空気等の混合気体によって満たされていることが好ましい。   Since light transmitted through the outer shell of the hollow particle is reflected inside the hollow particle, the hollow part is preferably filled with a medium having a low refractive index. From such a viewpoint, it is preferable that the space inside the hollow particle is filled with a mixed gas such as air having a refractive index of 1.0 to 1.1.

本発明においては、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス、架橋スチレン系樹脂及び架橋アクリル系樹脂からなる群より選ばれる少なくとも1種の材質を含んでなる外殻と、屈折率が1.0〜1.1である空隙部とを有する中空粒子を用いることが好ましい。なお、空隙部は、真空であってもよく、屈折率が1.0〜1.1である媒質で満たされていてもよい。媒質としては、空気、窒素やアルゴン等の不活性ガスが挙げられる。   In the present invention, an outer shell comprising at least one material selected from the group consisting of sodium silicate glass, aluminum silicate glass, sodium borosilicate glass, cross-linked styrene resin and cross-linked acrylic resin, and a refractive index of 1 It is preferable to use hollow particles having a void portion of 0.0 to 1.1. The gap may be a vacuum or may be filled with a medium having a refractive index of 1.0 to 1.1. Examples of the medium include air, an inert gas such as nitrogen or argon.

上記の中空粒子は、光反射性、取扱性の観点から、中心粒径が0.1〜50μmであることが好ましい。中心粒径が0.1μmより小さいと、中空粒子が不均一に分散しやすくなり、50μmより大きいと、厚みが小さい反射板を成形することが困難となり、反射率が低下する傾向にある。光反射率を高める観点から、中空粒子の中心粒径は0.1〜30μmが好ましい。   The hollow particles preferably have a center particle size of 0.1 to 50 μm from the viewpoint of light reflectivity and handleability. If the center particle size is smaller than 0.1 μm, the hollow particles are likely to be dispersed unevenly, and if it is larger than 50 μm, it is difficult to form a reflector having a small thickness, and the reflectance tends to decrease. From the viewpoint of increasing the light reflectance, the center particle diameter of the hollow particles is preferably 0.1 to 30 μm.

中空粒子の配合量は、熱硬化性樹脂成分100質量部に対して、20〜85質量部であることが好ましい。係る配合量が20質量部未満であると、遮光性に優れた硬化物が得られ難い傾向があり、85質量部を超えると、樹脂組成物の成型性が低下し、基板の作製が困難となる傾向がある。   It is preferable that the compounding quantity of a hollow particle is 20-85 mass parts with respect to 100 mass parts of thermosetting resin components. If the blending amount is less than 20 parts by mass, it tends to be difficult to obtain a cured product excellent in light-shielding properties. If it exceeds 85 parts by mass, the moldability of the resin composition is lowered and it is difficult to produce a substrate. Tend to be.

本発明の光反射用熱硬化性樹脂組成物をトランスファー成形用とする場合には、中空粒子の配合量は、熱硬化性樹脂成分100質量部に対して20〜85質量部とすることが好ましく、基板のコーティング用とする場合には、熱硬化性樹脂成分100質量部に対して20〜50質量部とすることが好ましい。   When the thermosetting resin composition for light reflection of the present invention is used for transfer molding, the amount of hollow particles is preferably 20 to 85 parts by mass with respect to 100 parts by mass of the thermosetting resin component. When the substrate is used for coating, it is preferably 20 to 50 parts by mass with respect to 100 parts by mass of the thermosetting resin component.

本発明においては、上記の屈折率が1.6〜3.0の無機酸化物と、上記の中空粒子とを併用することが好ましく、これにより、遮光性に更に優れた光反射用熱硬化性樹脂組成物を得ることができる。   In the present invention, the inorganic oxide having a refractive index of 1.6 to 3.0 and the hollow particles are preferably used in combination, whereby the light-reflective thermosetting property is further improved. A resin composition can be obtained.

本発明の光反射用熱硬化性樹脂組成物において、成形性を向上させる観点から、上述した以外の充填剤成分を含有させることが好ましい。このような充填剤成分としては、例えば、シリカ、硫酸バリウム、炭酸マグネシウム、炭酸バリウムなどの無機充填剤が挙げられる。これらのうち、成型性の点から、シリカが好ましい。シリカとしては、溶融球状シリカ、破砕状シリカ、微細孔を有し吸油性を発現する多孔質シリカを用いることができる。   In the light-reflective thermosetting resin composition of the present invention, a filler component other than those described above is preferably contained from the viewpoint of improving moldability. Examples of such filler components include inorganic fillers such as silica, barium sulfate, magnesium carbonate, and barium carbonate. Of these, silica is preferable from the viewpoint of moldability. As the silica, fused spherical silica, crushed silica, and porous silica having fine pores and exhibiting oil absorption can be used.

上記の無機充填剤を配合する場合、熱硬化性樹脂成分との密着性を向上させる観点から、カップリング剤を更に添加することができる。カップリング剤としては、例えば、シランカップリング剤及びチタネート系カップリング剤が挙げられる。シランカップリング剤としては、エポキシシラン系、アミノシラン系、カチオニックシラン系、ビニルシラン系、アクリルシラン系、メルカプトシラン系及びこれらの複合系のものが挙げられる。カップリング剤の配合量は、硬化性を向上させる観点から、熱硬化性樹脂組成物全体に対して5質量%以下であることが好ましい。また、予め上記カップリング剤で処理された無機充填剤を配合することもできる。   When blending the above-mentioned inorganic filler, a coupling agent can be further added from the viewpoint of improving the adhesion with the thermosetting resin component. Examples of the coupling agent include silane coupling agents and titanate coupling agents. Examples of the silane coupling agent include epoxy silane, amino silane, cationic silane, vinyl silane, acrylic silane, mercapto silane, and composites thereof. It is preferable that the compounding quantity of a coupling agent is 5 mass% or less with respect to the whole thermosetting resin composition from a viewpoint of improving sclerosis | hardenability. Moreover, the inorganic filler previously processed with the said coupling agent can also be mix | blended.

上記の無機充填剤の中心粒径は、上述した屈折率が1.6〜3.0の無機酸化物や中空粒子などの白色顔料とのパッキング効率を良くする観点から、1〜100μmの範囲内にあることが好ましい。本発明の光反射用熱硬化性樹脂組成物における上記無機充填剤の含有量は、上記式(1)で示されるXが0.30〜0.70となる範囲で適宜設定することができる。   The center particle diameter of the inorganic filler is within the range of 1 to 100 μm from the viewpoint of improving the packing efficiency with the white pigment such as the inorganic oxide or the hollow particles having the refractive index of 1.6 to 3.0. It is preferable that it exists in. Content of the said inorganic filler in the thermosetting resin composition for light reflections of this invention can be suitably set in the range from which X shown by said Formula (1) will be 0.30-0.70.

次に、熱硬化性樹脂成分について説明する。本発明の光反射用熱硬化性樹脂組成物には、熱硬化性樹脂成分として、熱硬化性樹脂、硬化剤、硬化促進剤などを含有させることができる。   Next, the thermosetting resin component will be described. The thermosetting resin composition for light reflection of the present invention can contain a thermosetting resin, a curing agent, a curing accelerator and the like as a thermosetting resin component.

熱硬化性樹脂としては、例えば、エポキシ樹脂、ケイ素樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、不飽和ポリエステル樹脂等、公知のものを使用することができる。光反射用熱硬化性樹脂組成物が光学材料用途や光半導体用途である場合には、光や熱により劣化しにくい特性を有する樹脂の種類が豊富である点で、エポキシ樹脂やケイ素樹脂が望ましい。熱硬化性樹脂については、その種類によって上記パラメータXの値に大きく影響するような屈折率の違いは生じにくいため、広範囲の樹脂を選択することができる。   As a thermosetting resin, well-known things, such as an epoxy resin, a silicon resin, a polyurethane resin, a diallyl phthalate resin, an unsaturated polyester resin, can be used, for example. When the thermosetting resin composition for light reflection is used for optical materials or optical semiconductors, an epoxy resin or a silicon resin is desirable because there are a wide variety of resins having characteristics that are not easily deteriorated by light or heat. . As for the thermosetting resin, a difference in refractive index that greatly influences the value of the parameter X does not easily occur depending on the type, and therefore a wide range of resins can be selected.

以下、エポキシ樹脂とその硬化剤について例示する。   Hereinafter, an epoxy resin and its curing agent will be exemplified.

エポキシ樹脂としては、電子部品封止用エポキシ樹脂成形材料で一般に使用されているものを用いることができる。具体的には、例えば、フェノールノボラック型エポキシ樹脂及びオルソクレゾールノボラック型エポキシ樹脂等のフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS及びアルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタン及びイソシアヌル酸等のポリアミンとエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、並びに脂環族エポキシ樹脂が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。   As an epoxy resin, what is generally used with the epoxy resin molding material for electronic component sealing can be used. Specifically, for example, epoxidized phenol and aldehyde novolak resins such as phenol novolak type epoxy resin and orthocresol novolak type epoxy resin, diphenols such as bisphenol A, bisphenol F, bisphenol S, and alkyl-substituted bisphenol. Glycidylamine type epoxy resin obtained by reaction of polyamine such as glycidyl ether, diaminodiphenylmethane and isocyanuric acid with epichlorohydrin, linear aliphatic epoxy resin obtained by oxidizing olefin bond with peracid such as peracetic acid, and alicyclic ring Group epoxy resin. These can be used alone or in combination of two or more.

これらのうち、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、及び、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸又は1,4−シクロヘキサンジカルボン酸から誘導されるジカルボン酸ジグリシジルエステルが、比較的着色が少ないことから好ましい。同様の理由から、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、ナジック酸及びメチルナジック酸等のジカルボン酸のジグリシジルエステルも好適である。更に、芳香環が水素化された脂環式構造を有する核水素化トリメリット酸、核水素化ピロメリット酸等のグリシジルエステルや、シラン化合物を有機溶媒、有機塩基及び水の存在下に加熱して、加水分解・縮合させることにより製造される、エポキシ基を有するポリオルガノシロキサンが好適なエポキシ樹脂として挙げられる。   Among these, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, diglycidyl isocyanurate, triglycidyl isocyanurate, and 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid or A dicarboxylic acid diglycidyl ester derived from 1,4-cyclohexanedicarboxylic acid is preferable because of relatively little coloring. For the same reason, diglycidyl esters of dicarboxylic acids such as phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, nadic acid and methylnadic acid are also suitable. Furthermore, a glycidyl ester such as a nuclear hydrogenated trimellitic acid or a nuclear hydrogenated pyromellitic acid having a cycloaliphatic structure in which an aromatic ring is hydrogenated or a silane compound is heated in the presence of an organic solvent, an organic base and water. As a suitable epoxy resin, polyorganosiloxane having an epoxy group produced by hydrolysis / condensation can be mentioned.

なお、本発明に用いられるエポキシ樹脂は、その入手方法には特に制限はなく、市販のエポキシ樹脂であってもよい。市販のエポキシ樹脂としては、例えば、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート{セロキサイド2021、セロキサイド2021A、セロキサイド2021P、(以上、ダイセル化学工業(株)製、商品名)、ERL4221、ERL4221D、ERL4221E(以上、ダウケミカル日本(株)製、商品名)}、ビス(3,4−エポキシシクロヘキシルメチル)アジペート{ERL4299(ダウケミカル日本(株)製、商品名)、EXA7015(大日本インキ化学工業(株)製、商品名)}、1−エポキシエチル−3,4−エポキシシクロヘキサン、リモネンジエポキシド{エピコートYX8000、エピコートYX8034、エピコートYL7170(以上、ジャパンエポキシレジン(株)製、商品名)、セロキサイド2081、セロキサイド3000、エポリードGT301、エポリードGT401、EHPE3150(以上、ダイセル化学工業(株)製、商品名)}、トリグリシジルイソシアヌレート(TEPIC(日産化学製、商品名)が挙げられる。   The method for obtaining the epoxy resin used in the present invention is not particularly limited, and a commercially available epoxy resin may be used. As a commercially available epoxy resin, for example, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate {Celoxide 2021, Celoxide 2021A, Celoxide 2021P (above, manufactured by Daicel Chemical Industries, Ltd., trade name) ), ERL 4221, ERL 4221D, ERL 4221E (above, manufactured by Dow Chemical Japan Co., Ltd., trade name)}, bis (3,4-epoxycyclohexylmethyl) adipate (ERL4299 (made by Dow Chemical Japan Co., Ltd., trade name)), EXA7015 (Dainippon Ink Chemical Co., Ltd., trade name)}, 1-epoxyethyl-3,4-epoxycyclohexane, limonene diepoxide {Epicoat YX8000, Epicoat YX8034, Epicoat YL7170 (above, Japan Epoch Siresin Co., Ltd., trade name), Celoxide 2081, Celoxide 3000, Epolide GT301, Epolide GT401, EHPE3150 (above, Daicel Chemical Industries, Ltd., trade name)}, triglycidyl isocyanurate (TEPIC (Nissan Chemical), Product name).

熱硬化性樹脂としてエポキシ樹脂が配合される場合の硬化剤としては、電子部品封止用エポキシ樹脂成形材料で一般に使用されている硬化剤を用いることができる。このような硬化剤としては、エポキシ樹脂と反応するものであれば、特に限定されないが、着色の少ないものが好ましく、無色又は淡黄色であることがより好ましい。   As the curing agent when an epoxy resin is blended as the thermosetting resin, a curing agent generally used in an epoxy resin molding material for sealing electronic parts can be used. Such a curing agent is not particularly limited as long as it reacts with an epoxy resin, but is preferably less colored, and more preferably colorless or light yellow.

このような硬化剤としては、例えば、酸無水物系硬化剤、イソシアヌル酸誘導体系硬化剤、フェノール系硬化剤が挙げられる。酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、無水コハク酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸が挙げられる。イソシアヌル酸誘導体としては、1,3,5−トリス(1−カルボキシメチル)イソシアヌレート、1,3,5−トリス(2−カルボキシエチル)イソシアヌレート、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレート、1,3−ビス(2−カルボキシエチル)イソシアヌレートが挙げられる。これらの硬化剤の中では、無水フタル酸、無水トリメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸又は1,3,5−トリス(3−カルボキシプロピル)イソシアヌレートを用いることが好ましい。上記硬化剤は、1種を単独で又は2種以上を組み合わせてもよい。   Examples of such a curing agent include an acid anhydride curing agent, an isocyanuric acid derivative curing agent, and a phenol curing agent. Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride. Examples include acid, dimethyl glutaric anhydride, diethyl glutaric anhydride, succinic anhydride, methyl hexahydrophthalic anhydride, and methyl tetrahydrophthalic anhydride. Isocyanuric acid derivatives include 1,3,5-tris (1-carboxymethyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5-tris (3-carboxypropyl) ) Isocyanurate, 1,3-bis (2-carboxyethyl) isocyanurate. Among these curing agents, phthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, glutaric anhydride, dimethylglutaric anhydride, anhydrous It is preferable to use diethyl glutaric acid or 1,3,5-tris (3-carboxypropyl) isocyanurate. The above curing agents may be used alone or in combination of two or more.

上述の硬化剤は、成形性および硬化物の機械特性の観点から、分子量が100〜400であることが好ましい。また、無水トリメリット酸、無水ピロメリット酸等の芳香環を有する酸無水物よりも、芳香環の不飽和結合のすべてを水素化した無水物が好ましい。酸無水物系硬化剤として、ポリイミド樹脂の原料として一般的に使用される酸無水物を用いてもよい。   The above-mentioned curing agent preferably has a molecular weight of 100 to 400 from the viewpoint of moldability and mechanical properties of the cured product. In addition, an anhydride obtained by hydrogenating all unsaturated bonds of an aromatic ring is preferable to an acid anhydride having an aromatic ring such as trimellitic anhydride or pyromellitic anhydride. As the acid anhydride curing agent, an acid anhydride generally used as a raw material for the polyimide resin may be used.

本実施形態の光反射用熱硬化性樹脂組成物において、硬化剤の配合量は、エポキシ樹脂100質量部に対して、1〜150質量部であることが好ましく、50〜120質量部であることがより好ましい。   In the thermosetting resin composition for light reflection of this embodiment, the blending amount of the curing agent is preferably 1 to 150 parts by mass, and 50 to 120 parts by mass with respect to 100 parts by mass of the epoxy resin. Is more preferable.

また、硬化剤は、エポキシ樹脂中のエポキシ基1当量に対して、当該エポキシ基との反応可能な硬化剤中の活性基(酸無水物基又は水酸基)が0.5〜0.9当量となるように配合することが好ましく、0.7〜0.8当量となるように配合することがより好ましい。上記活性基が0.5当量未満では、熱硬化性樹脂組成物の硬化速度が遅くなると共に、得られる硬化体のガラス転移温度が低くなり、充分な弾性率が得られ難くなる傾向がある。一方、上記活性基が0.9当量を超えると、硬化後の強度が低下する傾向がある。   The curing agent has 0.5 to 0.9 equivalent of an active group (an acid anhydride group or a hydroxyl group) in the curing agent capable of reacting with the epoxy group with respect to 1 equivalent of the epoxy group in the epoxy resin. It is preferable to mix | blend so that it may become, and it is more preferable to mix | blend so that it may become 0.7-0.8 equivalent. If the said active group is less than 0.5 equivalent, while the cure rate of a thermosetting resin composition will become slow, the glass transition temperature of the hardened | cured material obtained will become low, and there exists a tendency for sufficient elasticity modulus to become difficult to be obtained. On the other hand, when the active group exceeds 0.9 equivalent, the strength after curing tends to decrease.

本実施形態の光反射用熱硬化性樹脂組成物には、硬化反応を促進するために、硬化促進剤を含有させることができる。硬化促進剤としては、例えば、アミン化合物、イミダゾール化合物、有機リン化合物、アルカリ金属化合物、アルカリ土類金属化合物、第4級アンモニウム塩が挙げられる。これらの硬化促進剤の中でも、アミン化合物、イミダゾール化合物又は有機リン化合物を用いることが好ましい。アミン化合物としては、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、トリ−2,4,6−ジメチルアミノメチルフェノールが挙げられる。また、イミダゾール化合物として、例えば、2−エチル−4−メチルイミダゾールが挙げられる。更に、有機リン化合物としては、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート、テトラ−n−ブチルホスホニウム−テトラフルオロボレート、テトラ−n−ブチルホスホニウム−テトラフェニルボレートが挙げられる。これらの硬化促進剤は、1種を単独で又は2種以上を組み合わせて使用してもよい。   In order to accelerate the curing reaction, the light reflecting thermosetting resin composition of the present embodiment may contain a curing accelerator. Examples of the curing accelerator include amine compounds, imidazole compounds, organic phosphorus compounds, alkali metal compounds, alkaline earth metal compounds, and quaternary ammonium salts. Among these curing accelerators, it is preferable to use an amine compound, an imidazole compound, or an organic phosphorus compound. Examples of the amine compound include 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, and tri-2,4,6-dimethylaminomethylphenol. Examples of the imidazole compound include 2-ethyl-4-methylimidazole. Furthermore, examples of the organic phosphorus compound include triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o-diethylphosphorodithioate, tetra-n-butylphosphonium-tetrafluoroborate, tetra -N-butylphosphonium-tetraphenylborate. These curing accelerators may be used alone or in combination of two or more.

上記硬化促進剤の配合量は、エポキシ樹脂100質量部に対して、0.01〜8質量部であることが好ましく、0.1〜3質量部であることがより好ましい。硬化促進剤の配合量が、0.01質量部未満では、十分な硬化促進効果を得られない場合があり、8質量部を超えると、得られる硬化物に変色が見られる場合がある。   The blending amount of the curing accelerator is preferably 0.01 to 8 parts by mass and more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the epoxy resin. When the blending amount of the curing accelerator is less than 0.01 parts by mass, a sufficient curing acceleration effect may not be obtained, and when it exceeds 8 parts by mass, discoloration may be seen in the obtained cured product.

本発明の光反射用熱硬化性樹脂組成物には、必要に応じて、酸化防止剤、離型剤、イオン捕捉剤等の添加剤を添加することができる。   If necessary, additives such as an antioxidant, a release agent, and an ion scavenger can be added to the thermosetting resin composition for light reflection of the present invention.

本発明の光反射用熱硬化性樹脂組成物は、熱硬化後の、波長460〜800nmにおける光反射率が90%以上であることが好ましい。上記光反射率が90%未満では、光半導体装置の輝度向上に充分寄与できない傾向があり、より好ましい光反射率は95%以上である。また、光半導体装置の輝度を向上させる点で、硬化後の、波長460nmにおける光反射率が、90%以上となることが好ましく、95%以上となることがより好ましい。   The light reflecting thermosetting resin composition of the present invention preferably has a light reflectance of 90% or more at a wavelength of 460 to 800 nm after thermosetting. If the light reflectance is less than 90%, there is a tendency that it cannot sufficiently contribute to the improvement of the luminance of the optical semiconductor device. Further, in terms of improving the luminance of the optical semiconductor device, the light reflectivity at a wavelength of 460 nm after curing is preferably 90% or more, and more preferably 95% or more.

本発明の光反射用熱硬化性樹脂組成物は、高い光反射性及び耐熱性を必要とする光半導体素子実装用基板材料、電気絶縁材料、光半導体封止材料、接着材料、塗料材料並びにトランスファー成型用エポキシ樹脂成形材料など様々な用途において有用である。以下、トランスファー成型用エポキシ樹脂成形材料として使用する場合の光反射用熱硬化性樹脂組成物の好適な例について説明する。   The thermosetting resin composition for light reflection of the present invention comprises a substrate material for mounting an optical semiconductor element, an electrical insulating material, an optical semiconductor sealing material, an adhesive material, a coating material, and a transfer that require high light reflectivity and heat resistance. It is useful in various applications such as an epoxy resin molding material for molding. Hereinafter, a suitable example of a thermosetting resin composition for light reflection when used as an epoxy resin molding material for transfer molding will be described.

本発明の光反射用熱硬化性樹脂組成物は、トランスファー成形時の成形温度が180℃で、90秒間の条件で成形したときに、成形直後30秒以内のショアD硬度、即ち、熱時硬度が80〜95であることが好ましい。熱時硬度が80未満であると、成形体の硬化が阻害されており、金型から成形物を離型する際に成形物がなき別れるなど破壊されてしまう可能性がある。このような成形体の破壊が発生すると光半導体素子搭載用基板を製造する歩留りが低下し、光半導体装置を作製できなくなる。   The thermosetting resin composition for light reflection of the present invention has a Shore D hardness within 30 seconds immediately after molding, that is, a hardness during heating, when the molding temperature at the time of transfer molding is 180 ° C. and the conditions are 90 seconds. Is preferably 80 to 95. When the hot hardness is less than 80, curing of the molded product is hindered, and when the molded product is released from the mold, the molded product may be broken or broken. When such a molded body breaks down, the yield for manufacturing the substrate for mounting an optical semiconductor element decreases, and the optical semiconductor device cannot be manufactured.

本発明の光反射用熱硬化性樹脂組成物は、成形温度180℃、成形圧力6.9MPa、成形時間60〜120秒の条件でトランスファー成形した時のバリの長さが5mm以下となることが好ましい。バリの長さが5mmを超えると、光半導体素子搭載用基板を作製する際、光半導体素子搭載領域となる開口部(凹部)に樹脂汚れが発生し、光半導体素子を搭載する際の障害となる可能性があり、また、光半導体素子と金属配線とを電気的に接続する際の障害になる可能性がある。半導体装置製造時の作業性の観点から、上記バリ長さは、3mm以下であることがより好ましく、1mm以下であることがさらに好ましい。   The light-reflective thermosetting resin composition of the present invention may have a burr length of 5 mm or less when transfer molded under conditions of a molding temperature of 180 ° C., a molding pressure of 6.9 MPa, and a molding time of 60 to 120 seconds. preferable. If the length of the burr exceeds 5 mm, when manufacturing the optical semiconductor element mounting substrate, resin contamination occurs in the opening (recessed portion) that becomes the optical semiconductor element mounting region, and this is an obstacle to mounting the optical semiconductor element. In addition, there is a possibility that it becomes an obstacle when electrically connecting the optical semiconductor element and the metal wiring. From the viewpoint of workability at the time of manufacturing a semiconductor device, the burr length is more preferably 3 mm or less, and further preferably 1 mm or less.

本発明の光反射用熱硬化性樹脂組成物は、上記式(1)で示されるXが0.30〜0.70となるように選定され配合量が決定された、上述の各種成分を、均一に分散混合することで得ることができ、その手段や条件等は特に限定されない。光反射用熱硬化性樹脂組成物を作製する一般的な方法として、各成分を、ニーダー、ロール、エクストルーダー、らいかい機、自転と公転を組み合わせた攪拌混合機等によって混練する方法を挙げることができる。各成分を混練する際には、分散性を向上する観点から、溶融状態で行うことが好ましい。   The thermosetting resin composition for light reflection of the present invention is selected from the above-mentioned various components, which are selected and blended in such a manner that X represented by the above formula (1) is 0.30 to 0.70. It can be obtained by uniformly dispersing and mixing, and means and conditions thereof are not particularly limited. As a general method for producing a thermosetting resin composition for light reflection, a method of kneading each component with a kneader, a roll, an extruder, a raking machine, a stirring mixer that combines rotation and revolution, etc. Can do. When kneading each component, it is preferable to carry out in a molten state from the viewpoint of improving dispersibility.

混練の条件は、各成分の種類や配合量により適宜決定すればよく、例えば、15〜100℃で5〜40分間混練することが好ましく、20〜100℃で10〜30分間混練することがより好ましい。混練温度が15℃未満であると、各成分を混練させ難くなり、分散性も低下する傾向にあり、100℃を超えると、熱硬化性樹脂の高分子量化が進行し、混練時に熱硬化性樹脂が硬化してしまう可能性がある。また、混練時間が5分未満であると、十分な分散効果が得られない可能性がある。混練時間が40分を超えると、熱硬化性樹脂の高分子量化が進行し、熱硬化性樹脂が硬化してしまう可能性がある。   The kneading conditions may be appropriately determined depending on the type and blending amount of each component. For example, kneading is preferably performed at 15 to 100 ° C. for 5 to 40 minutes, and kneading at 20 to 100 ° C. for 10 to 30 minutes is more preferable. preferable. When the kneading temperature is less than 15 ° C., it becomes difficult to knead each component and the dispersibility tends to decrease. When the kneading temperature exceeds 100 ° C., the high molecular weight of the thermosetting resin proceeds, and thermosetting during kneading. The resin may be cured. Further, if the kneading time is less than 5 minutes, a sufficient dispersion effect may not be obtained. If the kneading time exceeds 40 minutes, the thermosetting resin may increase in molecular weight, and the thermosetting resin may be cured.

(光半導体素子搭載用基板)
本発明の光半導体素子搭載用基板は、底面及び壁面から構成される凹部を有し、凹部の底面が光半導体素子搭載部(光半導体素子搭載領域)であり、凹部の壁面、すなわち凹部の内周側面の少なくとも一部が本発明の光反射用熱硬化性樹脂組成物の硬化物からなるものである。図1は、本発明の光半導体素子搭載用基板の一実施形態を示す斜視図である。光半導体素子搭載用基板110は、Ni/Agめっき104が形成された金属配線105(第1の接続端子および第2の接続端子)と、金属配線105(第1の接続端子および第2の接続端子)間に設けられた絶縁性樹脂成形体103’と、リフレクター103とを備え、Ni/Agめっき104が形成された金属配線105及び絶縁性樹脂成形体103’とリフレクター103とから形成された凹部200を有している。この凹部200の底面は、Ni/Agめっき104が形成された金属配線105及び絶縁性樹脂成形体103’から構成され、凹部200の壁面はリフレクター103から構成されるものである。そして、リフレクター103及び絶縁性樹脂成形体103’が、上記本発明の光反射用熱硬化性樹脂組成物の硬化物からなる成形体である。
(Optical semiconductor device mounting substrate)
The substrate for mounting an optical semiconductor element according to the present invention has a recess composed of a bottom surface and a wall surface, and the bottom surface of the recess is an optical semiconductor element mounting portion (optical semiconductor element mounting region). At least a part of the peripheral side surface is made of a cured product of the thermosetting resin composition for light reflection of the present invention. FIG. 1 is a perspective view showing an embodiment of a substrate for mounting an optical semiconductor element of the present invention. The substrate for mounting an optical semiconductor element 110 includes a metal wiring 105 (first connection terminal and second connection terminal) on which Ni / Ag plating 104 is formed, and a metal wiring 105 (first connection terminal and second connection terminal). Insulating resin molded body 103 ′ provided between the terminals) and the reflector 103, and formed of the metal wiring 105 formed with the Ni / Ag plating 104 and the insulating resin molded body 103 ′ and the reflector 103. A recess 200 is provided. The bottom surface of the recess 200 is composed of the metal wiring 105 on which the Ni / Ag plating 104 is formed and the insulating resin molded body 103 ′, and the wall surface of the recess 200 is composed of the reflector 103. And reflector 103 and insulating resin molding 103 'are the moldings which consist of a hardened | cured material of the thermosetting resin composition for light reflections of the said invention.

本発明の光半導体素子搭載用基板の製造方法は特に限定されないが、例えば、本発明の光反射用熱硬化性樹脂組成物を用いたトランスファー成形により製造することができる。図2は、本発明の光半導体素子搭載用基板を製造する工程の一実施形態を示す概略図である。光半導体素子搭載用基板は、例えば、金属箔から打ち抜きやエッチング等の公知の方法により金属配線105を形成し、電気めっきによりNi/Agめっき104を施す工程(図2(a))、次いで、該金属配線105を所定形状の金型151に配置し、金型151の樹脂注入口150から本発明の光反射用熱硬化性樹脂組成物を注入し、所定の条件でトランスファー成形する工程(図2(b))、そして、金型151を外す工程(図2(c))を経て製造することができる。このようにして、光半導体素子搭載用基板には、光反射用熱硬化性樹脂組成物の硬化物からなるリフレクター103に周囲を囲まれてなる光半導体素子搭載領域(凹部)200が形成される。また、凹部の底面は、第1の接続端子となる金属配線105及び第2の接続端子となる金属配線105と、これらの間に設けられ光反射用熱硬化性樹脂組成物の硬化物からなる絶縁性樹脂成形体103’とから構成される。なお、上記トランスファー成形の条件としては、金型温度170〜200℃、より好ましくは170〜190℃、成形圧力0.5〜20MPa、より好ましくは2〜8MPaで、60〜120秒間、アフターキュア温度120℃〜180℃で1〜3時間が好ましい。   Although the manufacturing method of the board | substrate for optical semiconductor element mounting of this invention is not specifically limited, For example, it can manufacture by transfer molding using the thermosetting resin composition for light reflections of this invention. FIG. 2 is a schematic view showing an embodiment of a process for producing an optical semiconductor element mounting substrate of the present invention. The optical semiconductor element mounting substrate is formed by, for example, forming a metal wiring 105 from a metal foil by a known method such as punching or etching, and applying Ni / Ag plating 104 by electroplating (FIG. 2A), A step of placing the metal wiring 105 in a mold 151 having a predetermined shape, injecting the thermosetting resin composition for light reflection of the present invention from a resin injection port 150 of the mold 151, and performing transfer molding under predetermined conditions (FIG. 2 (b)) and a step of removing the mold 151 (FIG. 2C). In this manner, the optical semiconductor element mounting region (concave portion) 200 is formed on the optical semiconductor element mounting substrate. The optical semiconductor element mounting region (concave portion) 200 is surrounded by the reflector 103 made of a cured product of the light-reflective thermosetting resin composition. . The bottom surface of the recess is made of a metal wiring 105 serving as a first connection terminal and a metal wiring 105 serving as a second connection terminal, and a cured product of a light-reflective thermosetting resin composition provided therebetween. Insulating resin molded body 103 ′. In addition, as the conditions for the transfer molding, the mold temperature is 170 to 200 ° C., more preferably 170 to 190 ° C., the molding pressure is 0.5 to 20 MPa, more preferably 2 to 8 MPa, and the after cure temperature is 60 to 120 seconds. 1 to 3 hours are preferable at 120 ° C to 180 ° C.

(光半導体装置)
本発明の光半導体装置は、上記光半導体素子搭載用基板と、当該光半導体素子搭載用基板に搭載された光半導体素子とを有する。より具体的な例として、上記光半導体素子搭載用基板と、光半導体素子搭載用基板の凹部内に設けられた光半導体素子と、凹部を充填して光半導体素子を封止する蛍光体含有封止樹脂部とを備える光半導体装置が挙げられる。
(Optical semiconductor device)
An optical semiconductor device of the present invention includes the optical semiconductor element mounting substrate and an optical semiconductor element mounted on the optical semiconductor element mounting substrate. As a more specific example, the optical semiconductor element mounting substrate, the optical semiconductor element provided in the recess of the optical semiconductor element mounting substrate, and the phosphor-containing envelope that fills the recess and seals the optical semiconductor element An optical semiconductor device provided with a stop resin part is mentioned.

図3は、本発明の光半導体素子搭載用基板110に光半導体素子100を搭載した状態の一実施形態を示す斜視図である。図3に示すように、光半導体素子100は、光半導体素子搭載用基板110の光半導体素子搭載領域(凹部)200の所定位置に搭載され、金属配線105とボンディングワイヤ102により電気的に接続される。図4及び5は、本発明の光半導体装置の一実施形態を示す模式断面図である。図4及び5に示すように、光半導体装置は、光半導体素子搭載用基板110と、光半導体素子搭載用基板110の凹部200内の所定位置に設けられた光半導体素子100と、凹部200を充填して光半導体素子を封止する蛍光体106を含む透明封止樹脂101からなる封止樹脂部とを備えており、光半導体素子100とNi/Agめっき104が形成された金属配線105とがボンディングワイヤ102又ははんだバンプ107により電気的に接続されている。   FIG. 3 is a perspective view showing an embodiment in which the optical semiconductor element 100 is mounted on the optical semiconductor element mounting substrate 110 of the present invention. As shown in FIG. 3, the optical semiconductor element 100 is mounted at a predetermined position in the optical semiconductor element mounting region (concave portion) 200 of the optical semiconductor element mounting substrate 110 and is electrically connected by the metal wiring 105 and the bonding wire 102. The 4 and 5 are schematic cross-sectional views showing an embodiment of the optical semiconductor device of the present invention. As shown in FIGS. 4 and 5, the optical semiconductor device includes an optical semiconductor element mounting substrate 110, an optical semiconductor element 100 provided at a predetermined position in the concave portion 200 of the optical semiconductor element mounting substrate 110, and the concave portion 200. A sealing resin portion made of a transparent sealing resin 101 including a phosphor 106 that fills and seals the optical semiconductor element, and the optical semiconductor element 100 and the metal wiring 105 on which the Ni / Ag plating 104 is formed; Are electrically connected by bonding wires 102 or solder bumps 107.

図6もまた、本発明の光半導体装置の一実施形態を示す模式断面図である。図6に示す光半導体装置では、リフレクター303が形成されたリード304上の所定位置にダイボンド材306を介してLED素子300が配置され、LED素子300とリード304とがボンディングワイヤ301により電気的に接続され、蛍光体305を含む透明封止樹脂302によりLED体素子300が封止されている。   FIG. 6 is also a schematic cross-sectional view showing an embodiment of the optical semiconductor device of the present invention. In the optical semiconductor device shown in FIG. 6, the LED element 300 is disposed via a die bonding material 306 at a predetermined position on the lead 304 on which the reflector 303 is formed, and the LED element 300 and the lead 304 are electrically connected by the bonding wire 301. The LED body element 300 is sealed with a transparent sealing resin 302 that is connected and includes a phosphor 305.

以上、本発明の好適な実施形態について説明したが、本発明はこれに制限されるものではない。例えば、本発明の光反射用熱硬化性樹脂組成物は光反射コート剤として用いることができる。この実施形態として、銅張積層板、光半導体素子搭載用基板及び光半導体素子について説明する。   As mentioned above, although preferred embodiment of this invention was described, this invention is not restrict | limited to this. For example, the thermosetting resin composition for light reflection of the present invention can be used as a light reflection coating agent. As this embodiment, a copper-clad laminate, an optical semiconductor element mounting substrate, and an optical semiconductor element will be described.

本発明に係る銅張積層板は、上述した本発明の光反射用熱硬化性樹脂組成物を用いて形成された光反射樹脂層と、該白色樹脂層上に積層された銅箔と、を備えるものである。   The copper clad laminate according to the present invention comprises a light reflecting resin layer formed using the above-described thermosetting resin composition for light reflection of the present invention, and a copper foil laminated on the white resin layer. It is to be prepared.

図7は、本発明に係る銅張積層板の好適な一実施形態を示す模式断面図である。図7に示すように、銅張積層板400は、基材401と、該基材401上に積層された白色樹脂層402と、該白色樹脂層402上に積層された銅箔403と、を備えている。ここで、白色樹脂層402は、上述した本発明の光反射用熱硬化性樹脂組成物を用いて形成されている。   FIG. 7 is a schematic cross-sectional view showing a preferred embodiment of a copper clad laminate according to the present invention. As shown in FIG. 7, a copper clad laminate 400 includes a base material 401, a white resin layer 402 laminated on the base material 401, and a copper foil 403 laminated on the white resin layer 402. I have. Here, the white resin layer 402 is formed using the above-described thermosetting resin composition for light reflection of the present invention.

基材401としては、銅張積層板に用いられる基材を特に制限なく用いることができるが、例えば、エポキシ樹脂積層板等の樹脂積層板、光半導体搭載用基板などが挙げられる。   As the base material 401, a base material used for a copper-clad laminate can be used without particular limitation, and examples thereof include a resin laminate such as an epoxy resin laminate and an optical semiconductor mounting substrate.

銅張積層板400は、例えば、本発明の樹脂組成物を基材401表面に塗布し、銅箔403を重ね、加熱加圧硬化して上記樹脂組成物からなる白色樹脂層402を形成することにより作製することができる。   For example, the copper-clad laminate 400 is formed by applying the resin composition of the present invention to the surface of the base material 401, stacking the copper foil 403, and curing by heating and pressing to form the white resin layer 402 made of the resin composition. Can be produced.

本発明の樹脂組成物の基板401への塗布方法としては、例えば、印刷法、ダイコート法、カーテンコート法、スプレーコート法、ロールコート法等の塗布方法を用いることができる。このとき、本発明の光反射用熱硬化性樹脂組成物には、塗布が容易となるように溶媒を含有させることができる。   As a method for applying the resin composition of the present invention to the substrate 401, for example, a printing method, a die coating method, a curtain coating method, a spray coating method, a roll coating method, or the like can be used. At this time, the light-reflective thermosetting resin composition of the present invention can contain a solvent so as to facilitate application.

加熱加圧の条件としては、特に限定されないが、例えば、130〜180℃、0.5〜4MPa、30〜600分間の条件で加熱加圧を行うことが好ましい。   The heating and pressing conditions are not particularly limited. For example, it is preferable to perform heating and pressing under conditions of 130 to 180 ° C., 0.5 to 4 MPa, and 30 to 600 minutes.

上記本発明に係る銅張積層板を使用し、LED実装用等の光学部材用のプリント配線板を作製することができる。なお、図7に示した銅張積層板400は、基材401の片面に白色樹脂層402及び銅箔403を積層したものであるが、本発明に係る銅張積層板は、基材401の両面に白色樹脂層402及び銅箔403をそれぞれ積層したものであってもよい。また、図7に示した銅張積層板400は、基材401上に白色樹脂層402及び銅箔403を積層したものであるが、本発明に係る銅張積層板は、基材401を用いることなく、白色樹脂層402及び銅箔403のみで構成されていてもよい。この場合、白色樹脂層402が基材としての役割をはたすこととなる。この場合、例えば、ガラスクロス等に本発明の樹脂組成物を含浸させ、硬化させたものを白色樹脂層402とすることができる。   Using the copper-clad laminate according to the present invention, a printed wiring board for an optical member such as for LED mounting can be produced. Note that the copper clad laminate 400 shown in FIG. 7 is obtained by laminating a white resin layer 402 and a copper foil 403 on one side of a base material 401, but the copper clad laminate according to the present invention is the base material 401. The white resin layer 402 and the copper foil 403 may be laminated on both sides. 7 is obtained by laminating a white resin layer 402 and a copper foil 403 on a base material 401. The copper clad laminate according to the present invention uses the base material 401. Instead, it may be composed of only the white resin layer 402 and the copper foil 403. In this case, the white resin layer 402 plays a role as a base material. In this case, for example, a white resin layer 402 can be obtained by impregnating a glass cloth or the like with the resin composition of the present invention and curing.

図8は、本発明に係る銅張積層板を用いて作製された光半導体装置の一例を示す模式断面図である。図8に示すように、光半導体装置500は、光半導体素子410と、該光半導体素子410が封止されるように設けられた透明な封止樹脂404とを備える表面実装型の発光ダイオードである。光半導体装置500において、半導体素子410は、接着層408を介して銅箔403に接着されており、ワイヤー409により銅箔403と電気的に接続されている。   FIG. 8 is a schematic cross-sectional view showing an example of an optical semiconductor device manufactured using the copper-clad laminate according to the present invention. As shown in FIG. 8, the optical semiconductor device 500 is a surface-mount type light emitting diode including an optical semiconductor element 410 and a transparent sealing resin 404 provided so as to seal the optical semiconductor element 410. is there. In the optical semiconductor device 500, the semiconductor element 410 is bonded to the copper foil 403 through the adhesive layer 408, and is electrically connected to the copper foil 403 by a wire 409.

更に、本発明に係る光半導体素子搭載用基板の他の実施形態として、上述した本発明の光反射用熱硬化性樹脂組成物を用いて、基材上の複数の導体部材(接続端子)間に形成された白色樹脂層を備える光半導体素子搭載用基板が挙げられる。また、本発明に係る光半導体装置の他の実施形態は、上記の光半導体素子搭載用基板に光半導体素子を搭載してなるものである。   Furthermore, as another embodiment of the substrate for mounting an optical semiconductor element according to the present invention, using the above-described thermosetting resin composition for light reflection of the present invention, a plurality of conductor members (connection terminals) on the base material are used. An optical semiconductor element mounting substrate including a white resin layer formed on the substrate. In another embodiment of the optical semiconductor device according to the present invention, the optical semiconductor element is mounted on the optical semiconductor element mounting substrate.

図9は、本発明に係る光半導体装置の好適な一実施形態を示す模式断面図である。図9に示すように、光半導体装置600は、基材601と、該該基材601の表面に形成された複数の導体部材602と、複数の導体部材(接続端子)602間に形成された、上記本発明の光反射用熱硬化性樹脂組成物からなる白色樹脂層603と、を備える光半導体素子搭載用基板に、光半導体素子610が搭載され、該光半導体素子610が封止されるように透明な封止樹脂604が設けられた、表面実装型の発光ダイオードである。光半導体装置600において、光半導体素子610は、接着層608を介して導体部材602に接着されており、ワイヤー609により導体部材602と電気的に接続されている。   FIG. 9 is a schematic cross-sectional view showing a preferred embodiment of the optical semiconductor device according to the present invention. As shown in FIG. 9, the optical semiconductor device 600 is formed between a substrate 601, a plurality of conductor members 602 formed on the surface of the substrate 601, and a plurality of conductor members (connection terminals) 602. The optical semiconductor element 610 is mounted on an optical semiconductor element mounting substrate including the white resin layer 603 made of the thermoreflective resin composition for light reflection of the present invention, and the optical semiconductor element 610 is sealed. Thus, a surface-mount type light emitting diode provided with a transparent sealing resin 604 is provided. In the optical semiconductor device 600, the optical semiconductor element 610 is bonded to the conductor member 602 through the adhesive layer 608, and is electrically connected to the conductor member 602 through a wire 609.

基材601としては、光半導体素子搭載用基板に用いられる基材を特に制限なく用いることができるが、例えば、エポキシ樹脂積層板等の樹脂積層板などが挙げられる。   As the substrate 601, a substrate used for an optical semiconductor element mounting substrate can be used without particular limitation, and examples thereof include a resin laminate such as an epoxy resin laminate.

導体部材602は、接続端子として機能するものであり、例えば、銅箔をフォトエッチングする方法等、公知の方法により形成することができる。   The conductor member 602 functions as a connection terminal, and can be formed by a known method such as a method of photoetching a copper foil.

光半導体素子搭載用基板は、本発明の光反射用熱硬化性樹脂組成物を基材601上の複数の導体部材602間に塗布し、加熱硬化して上記光反射用熱硬化性樹脂組成物からなる白色樹脂層603を形成することにより作製することができる。   For the substrate for mounting an optical semiconductor element, the thermosetting resin composition for light reflection of the present invention is applied between the plurality of conductor members 602 on the substrate 601 and cured by heating to form the thermosetting resin composition for light reflection. It can be produced by forming a white resin layer 603 made of

本発明の光反射用熱硬化性樹脂組成物の基板601への塗布方法としては、例えば、印刷法、ダイコート法、カーテンコート法、スプレーコート法、ロールコート法等の塗布方法を用いることができる。このとき、本発明の光反射用熱硬化性樹脂組成物には、塗布が容易となるように溶媒を含有させることができる。   As a method for applying the light-reflective thermosetting resin composition of the present invention to the substrate 601, for example, a coating method such as a printing method, a die coating method, a curtain coating method, a spray coating method, or a roll coating method can be used. . At this time, the light-reflective thermosetting resin composition of the present invention can contain a solvent so as to facilitate application.

光反射用熱硬化性樹脂組成物の塗膜を加熱硬化する際の加熱条件としては、特に限定されないが、例えば、130〜180℃、30〜600分間の条件で加熱を行うことが好ましい。   Although it does not specifically limit as heating conditions at the time of heat-hardening the coating film of the thermosetting resin composition for light reflections, For example, it is preferable to heat on 130-180 degreeC and the conditions for 30 to 600 minutes.

その後、導体部材602表面に余分に付着した樹脂成分は、バフ研磨等により除去し、導体部材602からなる回路を露出させ、光半導体素子搭載用基板とする。   Thereafter, the resin component adhering excessively to the surface of the conductor member 602 is removed by buffing or the like to expose the circuit formed of the conductor member 602, thereby forming an optical semiconductor element mounting substrate.

また、白色樹脂層603と導体部材602との密着性を確保するために、導体部材602に対して酸化還元処理やCZ処理(メック株式会社製)等の粗化処理を行なうことも好ましい。   In order to ensure the adhesion between the white resin layer 603 and the conductor member 602, it is also preferable to subject the conductor member 602 to a roughening treatment such as oxidation-reduction treatment or CZ treatment (manufactured by MEC Co., Ltd.).

以下、実施例及び比較例を挙げて本発明をより具体的に説明する。但し、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples.

<光反射用熱硬化性樹脂組成物の調製>
(実施例3、6〜10及び比較例1〜6)
実施例3、6、7については表1に示す配合割合(質量部)に従って、比較例1〜6については表2に示す配合割合(質量部)に従って、各成分を配合し、ミキサーによって十分に混練分散した後、ミキシングロールにより40℃で15分溶融混練することによって混練物を得た。次に、得られた混練物を冷却し、それらを粉砕することによって、光反射用熱硬化性樹脂組成物をそれぞれ調製した。
<Preparation of thermosetting resin composition for light reflection>
(Examples 3, 6 to 10 and Comparative Examples 1 to 6)
According to the formulation ratio shown in Table 1 (parts by mass) for example 3,6,7, according to the formulation ratio shown in Table 2 (parts by weight) for Comparative Examples 1-6, it was blended each component sufficiently by a mixer After kneading and dispersing, a kneaded product was obtained by melt-kneading with a mixing roll at 40 ° C. for 15 minutes. Next, the obtained kneaded material was cooled and pulverized to prepare a thermosetting resin composition for light reflection.

実施例8〜10については、表1に示す配合割合(質量部)に従って、各成分を配合し、自転公転式攪拌混合機を使用して回転数2000rpmで3分間混合することにより、光反射用熱硬化性樹脂組成物をそれぞれ調製した。   About Examples 8-10, according to the mixture ratio (mass part) shown in Table 1, each component is mix | blended and it is for light reflection by mixing for 3 minutes at the rotation speed of 2000 rpm using a rotation revolving type stirring mixer. Each thermosetting resin composition was prepared.

表1及び2中、*1〜11の詳細は以下のとおりである。*1〜11の比重及び屈折率については表1及び2中に示す。なお、熱硬化性樹脂成分についての比重及び屈折率は、エポキシ樹脂、硬化剤及び硬化触媒の混合物の比重及び屈折率を示す。   The details of * 1 to 11 in Tables 1 and 2 are as follows. * Specific gravity and refractive index of 1 to 11 are shown in Tables 1 and 2. In addition, the specific gravity and refractive index about a thermosetting resin component show the specific gravity and refractive index of the mixture of an epoxy resin, a hardening | curing agent, and a curing catalyst.

*1:トリスグリシジルイソシアヌレート(エポキシ当量100、日産化学社製、商品名:TEPIC−S)
*2:メチルヘキサヒドロ無水フタル酸(日立化成工業社製)
*3:ヘキサヒドロ無水フタル酸(和光純薬工業社製)
*4:テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチエート(日本化学工業社製、商品名:PX−4ET)
*5:トリメトキシエポキシシラン(東レダウコーニング社製、商品名:A−187)
*6:溶融球状シリカ(電気化学工業社製、商品名:FB−950)
*7:溶融球状シリカ(電気化学工業社製、商品名:FB−301)
*8:溶融球状シリカ(アドマテックス社製、商品名:SO−25R)
*9:酸化チタン(堺化学工業社製、商品名:FTR−700)
*10:酸化アルミニウム(アドマテックス社製、商品名:AO-802)
*11:外殻材質硼珪酸ソーダガラス中空粒子(住友3M社製、商品名:S60−HS)
* 1: Trisglycidyl isocyanurate (epoxy equivalent 100, manufactured by Nissan Chemical Co., Ltd., trade name: TEPIC-S)
* 2: Methylhexahydrophthalic anhydride (manufactured by Hitachi Chemical Co., Ltd.)
* 3: Hexahydrophthalic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.)
* 4: Tetra-n-butylphosphonium-o, o-diethyl phosphorodithioate (manufactured by Nippon Chemical Industry Co., Ltd., trade name: PX-4ET)
* 5: Trimethoxyepoxysilane (manufactured by Toray Dow Corning, trade name: A-187)
* 6: Fused spherical silica (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: FB-950)
* 7: Fused spherical silica (trade name: FB-301, manufactured by Denki Kagaku Kogyo Co., Ltd.)
* 8: Fused spherical silica (manufactured by Admatechs, trade name: SO-25R)
* 9: Titanium oxide (manufactured by Sakai Chemical Industry Co., Ltd., trade name: FTR-700)
* 10: Aluminum oxide (manufactured by Admatechs, trade name: AO-802)
* 11: Outer shell material Borosilicate glass hollow particles (manufactured by Sumitomo 3M, trade name: S60-HS)

Figure 0005544739
Figure 0005544739

Figure 0005544739
Figure 0005544739

<光反射用熱硬化性樹脂組成物の評価>
実施例3、6〜10及び比較例1〜6で得られた光反射用熱硬化性樹脂組成物を、180℃のホットプレート上で、硬化物厚みが0.1mm±0.05mmとなるよう加圧成形した後、150℃で2時間ポストキュアして、厚み0.1mm±0.05mmのテストピースをそれぞれ作製した
<Evaluation of thermosetting resin composition for light reflection>
The light reflecting thermosetting resin compositions obtained in Examples 3, 6 to 10 and Comparative Examples 1 to 6 were cured on a hot plate at 180 ° C. so that the thickness of the cured product was 0.1 mm ± 0.05 mm. After pressure molding, post-cure was performed at 150 ° C. for 2 hours to prepare test pieces having a thickness of 0.1 mm ± 0.05 mm, respectively.

上記で得られたテストピースについて、下記に示す方法に従い、光反射率及び漏れ光を測定した。また、光反射用熱硬化性樹脂組成物の加工特性についても評価した。結果を表1及び2に示す。   About the test piece obtained above, according to the method shown below, the light reflectance and leakage light were measured. Moreover, the processing characteristics of the thermosetting resin composition for light reflection were also evaluated. The results are shown in Tables 1 and 2.

(光反射率の測定)
積分球型分光光度計V−750型(日本分光株式会社製、商品名)を用いて、波長460nmにおける上記テストピースの光学反射率(光反射率)を測定した。
(Measurement of light reflectance)
The optical reflectance (light reflectance) of the test piece at a wavelength of 460 nm was measured using an integrating sphere type spectrophotometer V-750 type (trade name, manufactured by JASCO Corporation).

(漏れ光の測定)
漏れ光の測定には、光源として、波長460nmに波長ピークを有する発光素子を搭載し、これを取り囲むように反射枠が備えられた表面実装型光半導体装置を用いた。この表面実装型光半導体装置に対向するようにCCDカメラを設置し、発光素子からの配光分布を撮影し、最も高い輝度領域を数値化できるようにした。このとき、表面実装型光半導体装置に100mAの電流を投入すると、輝度は250000cd/mであった。
(Measurement of leakage light)
For the measurement of leakage light, a surface-mount type optical semiconductor device in which a light emitting element having a wavelength peak at a wavelength of 460 nm is mounted as a light source and a reflection frame is provided so as to surround the light emitting element is used. A CCD camera was installed so as to face this surface-mount type optical semiconductor device, and the light distribution from the light emitting elements was photographed so that the highest luminance region could be digitized. At this time, when a current of 100 mA was input to the surface-mount optical semiconductor device, the luminance was 250,000 cd / m 2 .

上記で得られたテストピースを、表面実装型光半導体装置の発光素子から1mmの距離でCCDカメラを遮るように設置した。次に、表面実装型光半導体装置に100mAの電流を投入し、テストピースを透過してくる光の配光分布を撮影し、最も高い輝度領域を数値化し、漏れ光輝度(cd/m)を求めた。また、テストピースを設置していないときの輝度に対する漏れ光輝度の割合(%)を漏れ光率(対光源比)として算出した。 The test piece obtained above was placed so as to block the CCD camera at a distance of 1 mm from the light emitting element of the surface-mount type optical semiconductor device. Next, a current of 100 mA is input to the surface-mount type optical semiconductor device, the light distribution of light passing through the test piece is photographed, the highest luminance region is digitized, and the leakage light luminance (cd / m 2 ) Asked. Moreover, the ratio (%) of the leakage light luminance with respect to the luminance when the test piece was not installed was calculated as the leakage light rate (ratio to light source).

(加工特性)
加工特性については以下の方法で評価した
A:下記の公知のトランスファー成形で加工可能。
B:下記の公知の印刷法で加工可能。
C:上記A及びBのいずれの方法を用いても成形することが困難。
(Processing characteristics)
The processing characteristics were evaluated by the following method A: Processing can be performed by the following known transfer molding.
B: It can be processed by the following known printing method.
C: It is difficult to mold any of the methods A and B.

Aのトランスファー成形は、トランスファー成形機(エムテックスマツムラ製、品名「ATOM−FX」)を使用し、金型温度180℃、硬化時間90秒、成形圧力6.9MPa、金型締め圧20tの条件で成形する方法を適用した。金型として、縦4個×横4個のマトリックス状に配置されキャビティ数を16個に設定した一括成形用金型を用いた。キャビティサイズは1個当たり3mm角、厚み1mmとした。基板は、厚み0.25mmの銀めっきを施した銅製のリードフレームを用いた。   The transfer molding of A uses a transfer molding machine (product name “ATOM-FX” manufactured by Mtex Matsumura Co., Ltd.), with a mold temperature of 180 ° C., a curing time of 90 seconds, a molding pressure of 6.9 MPa, and a mold clamping pressure of 20 t. The method of molding with was applied. As the mold, a batch molding mold was used, which was arranged in a matrix of 4 vertical x 4 horizontal and the number of cavities was set to 16. The cavity size was 3 mm square per piece and the thickness was 1 mm. As the substrate, a copper lead frame having a silver plating thickness of 0.25 mm was used.

Bの印刷法は、光半導体素子搭載用の電極部を耐熱性のマスキングテープで保護した基板上に、配合した材料(光反射用熱硬化性樹脂組成物)を注型し、ガラス製スキージを用いて均一に厚み0.1mmとなるように、5mm/sの速度でスキージを動作することで膜を形成した後、硬化温度150℃、硬化時間4時間、の条件で光反射用熱硬化性樹脂組成物を硬化し、予め張りつけた電極保護用マスキングテープをはがす方法を適用した。   In the printing method of B, the compounded material (thermosetting resin composition for light reflection) is cast on a substrate in which an electrode part for mounting an optical semiconductor element is protected with a heat-resistant masking tape, and a glass squeegee is used. After forming a film by operating a squeegee at a speed of 5 mm / s so as to obtain a uniform thickness of 0.1 mm, a thermosetting property for light reflection under conditions of a curing temperature of 150 ° C. and a curing time of 4 hours. A method of removing the masking tape for protecting the electrode applied in advance by curing the resin composition was applied.

上記Cは、上記A及びBのいずれの方法でも加工することができなかった場合を意味する。   Said C means the case where it could not be processed by any of the above methods A and B.

表1及び表2に示すように、パラメータXが0.3から0.7の範囲内にある実施例3、6〜10の光反射用熱硬化性樹脂組成物は、0.1mm厚みの薄い硬化物を形成した場合であっても、光反射率が高く、漏れ光が少ないことが確認された。これに対して、比較例1〜6で得られた光反射用熱硬化性樹脂組成物は、漏れ光が著しく発生した。特に、中空粒子だけを使用した比較例6に至っては、光漏れ抑制効果が得られないことがわかる。中空粒子と酸化チタンを組み合わせた実施例3の光反射用熱硬化性樹脂組成物は、遮光性に更に優れた硬化物が形成されていることがわかる。一方、パラメータXが0.7を越えるほどに白色顔料を添加した場合、トランスファー成形及び印刷法のいずれの方法によっても加工を施すことが困難であった。 As shown in Tables 1 and 2, the thermosetting resin compositions for light reflection in Examples 3 and 6 to 10 in which the parameter X is in the range of 0.3 to 0.7 are as thin as 0.1 mm. Even when the cured product was formed, it was confirmed that the light reflectance was high and the leakage light was small. On the other hand, the light-reflective thermosetting resin compositions obtained in Comparative Examples 1 to 6 generated significant leakage light. In particular, it can be seen that the effect of suppressing light leakage cannot be obtained in Comparative Example 6 using only hollow particles . Light reflecting thermosetting resin composition of Example 3 in combination with a medium air particles titanium oxide, it is understood that more excellent cured light shielding property is formed. On the other hand, when the white pigment is added so that the parameter X exceeds 0.7, it is difficult to perform the processing by either transfer molding or printing.

本発明の光反射用熱硬化性樹脂組成物によれば、光半導体素子搭載用基板や光半導体装置における光取り出し効率の向上が可能となる。   According to the thermosetting resin composition for light reflection of the present invention, it is possible to improve the light extraction efficiency in an optical semiconductor element mounting substrate or an optical semiconductor device.

100…光半導体素子、101…透明封止樹脂、102…ボンディングワイヤ、103…光反射用熱硬化性樹脂組成物の硬化物(リフレクター)、103’…光反射用熱硬化性樹脂組成物の硬化物(絶縁性樹脂成形体)104…Ni/Agめっき、105…金属配線、106…蛍光体、107…はんだバンプ、110…光半導体素子搭載用基板、150…樹脂注入口、151…金型、200…光半導体素子搭載領域、300…LED素子、301…ワイヤボンド、302…透明封止樹脂、303…リフレクター、304…リード、305…蛍光体、306…ダイボンド材、400…銅張積層板、401…基材、402…白色樹脂層、403…銅箔、404…封止樹脂、408…接着層、409…ワイヤー、410…光半導体素子、500,600…光半導体装置、601…基材、602…導体部材、603…白色樹脂層、604…封止樹脂、608…接着層、609…ワイヤー、610…光半導体素子。   DESCRIPTION OF SYMBOLS 100 ... Optical semiconductor element, 101 ... Transparent sealing resin, 102 ... Bonding wire, 103 ... Hardened | cured material (reflector) of the thermosetting resin composition for light reflection, 103 '... Curing of the thermosetting resin composition for light reflection Article (insulating resin molding) 104 ... Ni / Ag plating, 105 ... metal wiring, 106 ... phosphor, 107 ... solder bump, 110 ... substrate for mounting optical semiconductor element, 150 ... resin injection port, 151 ... mold, DESCRIPTION OF SYMBOLS 200 ... Optical semiconductor element mounting area, 300 ... LED element, 301 ... Wire bond, 302 ... Transparent sealing resin, 303 ... Reflector, 304 ... Lead, 305 ... Phosphor, 306 ... Die bond material, 400 ... Copper-clad laminate, 401 ... base material, 402 ... white resin layer, 403 ... copper foil, 404 ... sealing resin, 408 ... adhesive layer, 409 ... wire, 410 ... optical semiconductor element, 500, 6 0 ... optical semiconductor device, 601 ... substrate, 602 ... conductor member, 603 ... white resin layer, 604 ... sealing resin, 608 ... adhesive layer, 609 ... wire, 610 ... optical semiconductor element.

Claims (15)

トランスファー成形によって硬化物を得るための熱硬化性樹脂組成物であって、
熱硬化性樹脂成分と、充填剤成分と、を含有し、
下記式(1)で示されるXが0.30〜0.70である、LEDデバイスの光反射用熱硬化性樹脂組成物。
Figure 0005544739

[式(1)中、nは充填剤成分の成分数を示し、φはn個の充填剤成分を1番からn番まで任意に順番をつけたときにi番目の充填剤成分の光反射用熱硬化性樹脂全体における体積割合を示し、nは前記i番目の充填剤成分の屈折率を示し、nrejinは熱硬化性樹脂成分全体の屈折率を示す。]
A transfer molding Therefore a thermosetting resin composition to obtain a cured product,
Containing a thermosetting resin component and a filler component;
A thermosetting resin composition for light reflection of an LED device, wherein X represented by the following formula (1) is 0.30 to 0.70.
Figure 0005544739

[In formula (1), n represents the number of filler components, and φ i represents the light of the i-th filler component when n filler components are arbitrarily ordered from 1 to n. It indicates the volume percentage in the entire reflecting thermosetting resin, n i is the refractive index of the i-th filler component, n rejin is the refractive index of the entire thermosetting resin component. ]
厚みが0.1mmの硬化物を形成したときに、当該硬化物の波長460nmにおける光反射率が90%以上である、請求項1に記載の光反射用熱硬化性樹脂組成物。   The thermosetting resin composition for light reflection according to claim 1, wherein when a cured product having a thickness of 0.1 mm is formed, the light reflectance at a wavelength of 460 nm of the cured product is 90% or more. 前記充填剤成分が、屈折率が1.6〜3.0の、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化アンチモン、水酸化アルミニウム、水酸化マグネシウムからなる群より選ばれる少なくとも1種の無機酸化物を含む、請求項1又は2に記載の光反射用熱硬化性樹脂組成物。   The filler component is at least selected from the group consisting of titanium oxide, zinc oxide, aluminum oxide, magnesium oxide, zirconium oxide, antimony oxide, aluminum hydroxide and magnesium hydroxide having a refractive index of 1.6 to 3.0. The thermosetting resin composition for light reflection according to claim 1 or 2, comprising one kind of inorganic oxide. 前記無機酸化物の中心粒径が0.1〜20μmの範囲内にある、請求項3に記載の光反射用熱硬化性樹脂組成物。   The thermosetting resin composition for light reflection according to claim 3, wherein the center particle diameter of the inorganic oxide is in the range of 0.1 to 20 µm. 前記無機酸化物の含有量が、前記熱硬化性樹脂成分100質量部に対して70〜400質量部である、請求項3又は4に記載の光反射用熱硬化性樹脂組成物。   The thermosetting resin composition for light reflection according to claim 3 or 4, wherein the content of the inorganic oxide is 70 to 400 parts by mass with respect to 100 parts by mass of the thermosetting resin component. 前記無機酸化物の含有量が、前記熱硬化性樹脂成分100質量部に対して130〜400質量部である、請求項3〜5のいずれか一項に記載の光反射用熱硬化性樹脂組成物。   The light-reflective thermosetting resin composition according to any one of claims 3 to 5, wherein the content of the inorganic oxide is 130 to 400 parts by mass with respect to 100 parts by mass of the thermosetting resin component. object. 前記充填剤成分が、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス、架橋スチレン系樹脂及び架橋アクリル系樹脂からなる群より選ばれる少なくとも1種の材質を含んでなる外殻と、屈折率が1.0〜1.1である空隙部と、を有する中空粒子を含む、請求項1〜6のいずれか一項に記載の光反射用熱硬化性樹脂組成物。   An outer shell in which the filler component comprises at least one material selected from the group consisting of sodium silicate glass, aluminum silicate glass, sodium borosilicate glass, cross-linked styrene resin, and cross-linked acrylic resin; and a refractive index The thermosetting resin composition for light reflection as described in any one of Claims 1-6 containing the hollow particle which has the space | gap part which is 1.0-1.1. 前記中空粒子の中心粒径が0.1〜50μmの範囲内にある、請求項7に記載の光反射用熱硬化性樹脂組成物。   The thermosetting resin composition for light reflection according to claim 7, wherein the hollow particles have a center particle diameter in the range of 0.1 to 50 μm. 前記中空粒子の含有量が、前記熱硬化性樹脂成分100質量部に対して20〜85質量部である、請求項7又は8に記載の光反射用熱硬化性樹脂組成物。   The light-reflective thermosetting resin composition according to claim 7 or 8, wherein the content of the hollow particles is 20 to 85 parts by mass with respect to 100 parts by mass of the thermosetting resin component. 請求項1〜9のいずれか一項に記載の光反射用熱硬化性樹脂組成物をトランスファー成形して得られる硬化物を備える、LED素子搭載用基板。   An LED element mounting substrate comprising a cured product obtained by transfer molding the light-reflective thermosetting resin composition according to any one of claims 1 to 9. 底面及び壁面から構成される凹部を有し、当該凹部の前記底面がLED素子の搭載部であり、
前記凹部の前記壁面の少なくとも一部が、請求項1〜9のいずれか一項に記載の光反射用熱硬化性樹脂組成物をトランスファー成形して得られる硬化物からなる、LED素子搭載用基板。
It has a recess composed of a bottom surface and a wall surface, and the bottom surface of the recess is a mounting portion of the LED element,
The substrate for LED element mounting which at least one part of the said wall surface of the said recessed part becomes from the hardened | cured material obtained by transfer molding the thermosetting resin composition for light reflections as described in any one of Claims 1-9. .
基板と、当該基板上に設けられた第1の接続端子および第2の接続端子とを備え、
前記第1の接続端子と前記第2の接続端子との間に、請求項1〜9のいずれか一項に記載の光反射用熱硬化性樹脂組成物をトランスファー成形して得られる硬化物を有する、LED素子搭載用基板。
A board, and a first connection terminal and a second connection terminal provided on the board,
A cured product obtained by transfer molding the thermosetting resin composition for light reflection according to any one of claims 1 to 9, between the first connection terminal and the second connection terminal. A substrate for mounting an LED element.
請求項10〜12のいずれか一項に記載のLED素子搭載用基板と、当該LED素子搭載用基板に搭載されたLED素子と、を有する、光半導体装置。   An optical semiconductor device comprising: the LED element mounting substrate according to claim 10; and an LED element mounted on the LED element mounting substrate. 底面及び壁面から構成される凹部を有するLED素子搭載用基板の製造方法であって、
前記凹部の前記壁面の少なくとも一部を、請求項1〜9のいずれか一項に記載の光反射用熱硬化性樹脂組成物をトランスファー成形して形成する工程、
を備える、LED素子搭載用基板の製造方法。
A method for manufacturing an LED element mounting substrate having a recess composed of a bottom surface and a wall surface,
Forming at least a part of the wall surface of the recess by transfer molding the thermosetting resin composition for light reflection according to any one of claims 1 to 9,
The manufacturing method of the board | substrate for LED element mounting provided with.
光反射用熱硬化性樹脂組成物をトランスファー成形して得られる硬化物からなる成形体を備えるLED素子搭載用基板の光漏れ抑制方法であって、
前記光反射用熱硬化性樹脂組成物として、請求項1〜9のいずれか一項に記載の光反射用熱硬化性樹脂組成物を用いる、光漏れ抑制方法。
A method for suppressing light leakage of a substrate for LED element mounting comprising a molded body made of a cured product obtained by transfer molding a thermosetting resin composition for light reflection,
The light leakage suppression method using the thermosetting resin composition for light reflections as described in any one of Claims 1-9 as said thermosetting resin composition for light reflections.
JP2009084929A 2009-03-31 2009-03-31 Thermosetting resin composition for light reflection, optical semiconductor element mounting substrate using the same, manufacturing method thereof, and optical semiconductor device Active JP5544739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009084929A JP5544739B2 (en) 2009-03-31 2009-03-31 Thermosetting resin composition for light reflection, optical semiconductor element mounting substrate using the same, manufacturing method thereof, and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009084929A JP5544739B2 (en) 2009-03-31 2009-03-31 Thermosetting resin composition for light reflection, optical semiconductor element mounting substrate using the same, manufacturing method thereof, and optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2010235756A JP2010235756A (en) 2010-10-21
JP5544739B2 true JP5544739B2 (en) 2014-07-09

Family

ID=43090392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009084929A Active JP5544739B2 (en) 2009-03-31 2009-03-31 Thermosetting resin composition for light reflection, optical semiconductor element mounting substrate using the same, manufacturing method thereof, and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP5544739B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5875780B2 (en) * 2010-04-02 2016-03-02 株式会社カネカ White curable resin composition and semiconductor package using the same
WO2012053260A1 (en) * 2010-10-22 2012-04-26 パナソニック株式会社 Surface-mount light-emitting device
CN102598326B (en) * 2010-10-22 2013-02-13 松下电器产业株式会社 Unsaturated polyester resin composition for use in led reflector, and led reflector and led luminaire using the composition
US9529120B2 (en) 2011-08-11 2016-12-27 Canon Kabushiki Kaisha Light-shielding coating, light-shielding film, and optical element
JP5775408B2 (en) * 2011-09-29 2015-09-09 積水化学工業株式会社 White curable material for optical semiconductor device, method for producing white curable material for optical semiconductor device, molded article for optical semiconductor device, and optical semiconductor device
JP2013153144A (en) * 2011-12-27 2013-08-08 Panasonic Corp Unsaturated polyester resin composition for led reflector, and particulate, tablet, led reflector, surface-mount type led light-emitting device, and led luminaire
JP2013179271A (en) 2012-01-31 2013-09-09 Rohm Co Ltd Light emitting device and manufacturing method of the same
JP5903488B2 (en) * 2012-04-05 2016-04-13 ジャパンコンポジット株式会社 Molding materials and molded products for lamp reflectors
KR101957884B1 (en) 2012-05-14 2019-03-13 엘지이노텍 주식회사 Light emitting device, manufactured method of the light emitting deviceand lighting apparatus
EP2858133A4 (en) 2012-06-04 2016-04-13 Japan U Pica Co Ltd Crystalline unsaturated polyester resin composition for led reflector, granular material comprising said composition, led reflector produced by molding said granular material, surface-mount-type light-emitting device, and lighting device and image display device each equipped with said light-emitting device
WO2014109068A1 (en) * 2013-01-10 2014-07-17 パナソニック株式会社 Unsaturated polyester resin composition for led reflector, and particulate object, tablet, led reflector, surface mount type led light-emitting device, and led illuminator all obtained using same
JP5308601B1 (en) * 2013-01-10 2013-10-09 パナソニック株式会社 Unsaturated polyester resin composition for LED reflector and granule, tablet, LED reflector, surface mount LED light emitting device, LED lighting using the same
KR20150043074A (en) * 2013-10-14 2015-04-22 삼성전기주식회사 Touch sensor
JP6588276B2 (en) * 2015-08-31 2019-10-09 富士フイルム株式会社 Curable composition, color filter, light-shielding film, solid-state imaging device, and image display device
WO2017159190A1 (en) * 2016-03-14 2017-09-21 富士フイルム株式会社 Composition, film, cured film, optical sensor, and film production method
US20220019000A1 (en) * 2016-07-31 2022-01-20 3M Innovative Properties Company Light redirecting constructions and methods for sealing edges thereof
KR20190104063A (en) 2017-01-23 2019-09-05 주식회사 다이셀 Curable resin composition for light reflecting, its hardened | cured material, and optical semiconductor device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060707B2 (en) * 2004-11-10 2012-10-31 日立化成工業株式会社 Thermosetting resin composition for light reflection
JP5303097B2 (en) * 2005-10-07 2013-10-02 日立化成株式会社 Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.
JP5232369B2 (en) * 2006-02-03 2013-07-10 日立化成株式会社 Manufacturing method of package substrate for mounting optical semiconductor element and manufacturing method of optical semiconductor device using the same
JP2007297601A (en) * 2006-04-06 2007-11-15 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, substrate for loading photosemiconductor device using the same, method for producing the same, and photosemiconductor device
JP5298468B2 (en) * 2006-09-26 2013-09-25 日立化成株式会社 Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP2008143981A (en) * 2006-12-07 2008-06-26 Three M Innovative Properties Co Optically reflective resin composition, light-emitting device and optical display
JP2008189833A (en) * 2007-02-06 2008-08-21 Shin Etsu Chem Co Ltd Thermosetting epoxy resin composition and semiconductor apparatus
JP2008306151A (en) * 2007-05-09 2008-12-18 Hitachi Chem Co Ltd Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device

Also Published As

Publication number Publication date
JP2010235756A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5544739B2 (en) Thermosetting resin composition for light reflection, optical semiconductor element mounting substrate using the same, manufacturing method thereof, and optical semiconductor device
JP6306652B2 (en) Thermosetting light reflecting resin composition and method for producing the same
JP5665285B2 (en) Optical semiconductor element mounting member and optical semiconductor device
JP5298468B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP5639126B2 (en) Optical semiconductor device
JP5233186B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP6133004B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP2022075700A (en) Thermosetting resin composition for light reflection, optical semiconductor element mounting substrate and method for producing the same, and optical semiconductor device
JP2009246334A (en) Thermosetting resin composition for light reflection, substrate for loading photosemiconductor device and manufacturing method therefor, and photosemiconductor device
JP6191705B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP5831424B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP6337996B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP6209928B2 (en) Optical semiconductor device, substrate for mounting optical semiconductor element, and thermosetting resin composition for light reflection
JP2013168684A (en) Member for mounting optical semiconductor element, and optical semiconductor device
JP7459878B2 (en) Light-reflecting thermosetting resin composition, optical semiconductor element mounting substrate, and optical semiconductor device
JP6988234B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and its manufacturing method, and optical semiconductor device
WO2023281922A1 (en) Heat-curable resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device
JP2024045302A (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor elements, and optical semiconductor devices
WO2021038771A1 (en) Thermosetting resin composition for optical reflection, substrate for mounting optical semiconductor element, and optical semiconductor device
JP2009242772A (en) Method for producing thermosetting resin composition, substrate for mounting optical semiconductor element mounting substrate, method for producing the substrate, and optical semiconductor device
JP2022053019A (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R151 Written notification of patent or utility model registration

Ref document number: 5544739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350