JP5542633B2 - Ground improvement body and horizontal strength calculation method of ground improvement body - Google Patents

Ground improvement body and horizontal strength calculation method of ground improvement body Download PDF

Info

Publication number
JP5542633B2
JP5542633B2 JP2010258115A JP2010258115A JP5542633B2 JP 5542633 B2 JP5542633 B2 JP 5542633B2 JP 2010258115 A JP2010258115 A JP 2010258115A JP 2010258115 A JP2010258115 A JP 2010258115A JP 5542633 B2 JP5542633 B2 JP 5542633B2
Authority
JP
Japan
Prior art keywords
ground improvement
improvement body
horizontal
shear
inclination angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010258115A
Other languages
Japanese (ja)
Other versions
JP2012107446A (en
Inventor
剛 本多
純次 濱田
聡 尾本
三男 浅野
裕 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2010258115A priority Critical patent/JP5542633B2/en
Publication of JP2012107446A publication Critical patent/JP2012107446A/en
Application granted granted Critical
Publication of JP5542633B2 publication Critical patent/JP5542633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)

Description

本発明は、地盤改良体及び地盤改良体の水平耐力算定方法に関する。   The present invention relates to a ground improvement body and a horizontal strength calculation method for the ground improvement body.

軟弱地盤等では、地盤改良された地盤改良体の上に構造物が構築される。地盤改良体は、構造物の基礎と地盤改良体の間の摩擦抵抗で基礎の滑動を抑制し、杭に作用する水平力を軽減している。しかし、地震力や偏土圧によって地盤改良体に大きな水平力が作用するときには、構造物の基礎と地盤改良体の間の摩擦抵抗力が不足して、基礎と地盤改良体の間が滑動する。   In soft ground or the like, a structure is constructed on the ground improvement body that has been improved. The ground improvement body suppresses the sliding of the foundation by the frictional resistance between the foundation of the structure and the ground improvement body, and reduces the horizontal force acting on the pile. However, when a large horizontal force acts on the ground improvement body due to seismic force or uneven earth pressure, the friction resistance force between the foundation of the structure and the ground improvement body is insufficient, and the space between the foundation and the ground improvement body slides. .

この滑動を防止するために、杭径を大きくする選択もあるが施工コストが増大する。このため、基礎と地盤改良体の間に、せん断力を伝達させる凹凸部やシアキー(伝達部材)等の滑り止め機構を設けて対応している(特許文献1)。   In order to prevent this sliding, there is a choice to increase the pile diameter, but the construction cost increases. For this reason, a non-slip mechanism such as an uneven part for transmitting a shearing force or a shear key (transmission member) is provided between the foundation and the ground improvement body (Patent Document 1).

特許文献1の滑り止め機構108は、図10に示すように、土間スラブ110と地盤112の間に地盤改良体114を構築し、土間スラブ110と地盤改良体114の間を凹凸部116で接合した構成である。地盤改良体114の深さは基礎フーチング118の底面までとされ、地盤改良体114の底面は地盤112と平面で接している。また、土間スラブ110と地盤改良体114の周囲は、基礎フーチング118と水平方向に接している。   As shown in FIG. 10, the anti-slip mechanism 108 of Patent Document 1 constructs a ground improvement body 114 between the soil slab 110 and the ground 112, and joins between the soil slab 110 and the ground improvement body 114 with an uneven portion 116. This is the configuration. The depth of the ground improvement body 114 is set to the bottom surface of the foundation footing 118, and the bottom surface of the ground improvement body 114 is in contact with the ground 112 in a plane. Further, the periphery of the soil slab 110 and the ground improvement body 114 is in contact with the foundation footing 118 in the horizontal direction.

これにより、土間スラブ110と地盤改良体114の一体化が図られ、地震時の水平力を受けたとき、地盤改良体114の底面と地盤112の間で滑動する。
即ち、特許文献1は、滑動位置を、土間スラブ110と地盤改良体114の間から、地盤改良体114と地盤112の間に変更したに過ぎず、地盤改良体114の特質を生かした構成とはいえない。
As a result, the soil slab 110 and the ground improvement body 114 are integrated, and slides between the bottom surface of the ground improvement body 114 and the ground 112 when receiving a horizontal force during an earthquake.
That is, Patent Document 1 merely changes the sliding position between the soil slab 110 and the ground improvement body 114 and between the ground improvement body 114 and the ground 112, and uses the characteristics of the ground improvement body 114. I can't say that.

また、滑り止め機構108を設けた地盤改良体114の水平耐力についても、具体的な算定方法は記載されていない。   Also, no specific calculation method is described for the horizontal strength of the ground improvement body 114 provided with the anti-slip mechanism 108.

特開2007−321402号公報JP 2007-321402 A

本発明は、上記事実に鑑み、地盤改良体の特質を生かした滑り止め機構、及び滑り止め機構を設けた地盤改良体の水平耐力の算定方法を提供することを目的とする。   In view of the above-described facts, an object of the present invention is to provide a slip prevention mechanism that takes advantage of the characteristics of the ground improvement body and a method for calculating the horizontal strength of the ground improvement body provided with the slip prevention mechanism.

請求項1に記載の発明に係る水平耐力算定方法は、頭部に凹凸部が形成され、凸部を構造物の躯体に呑み込ませた地盤改良体で前記構造物を支持し、水平力を前記躯体から前記地盤改良体へ伝達する、地盤改良体の水平耐力算定方法であって、前記水平力により、前記凸部が破壊されるときに生じるせん断破壊面の水平面に対する傾斜角度をせん断面傾斜角度をαとし、前記せん断面傾斜角度αに沿って構造物が変位するときに、前記構造物が重力に逆らって変位するときに消費される仕事量を、前記地盤改良体の水平耐力に加算することを特徴としている。   In the horizontal yield strength calculation method according to the first aspect of the present invention, an uneven portion is formed on the head, the structure is supported by a ground improvement body in which the protrusion is swallowed into the structure body, and the horizontal force is A method for calculating a horizontal strength of a ground improvement body, which is transmitted from a frame to the ground improvement body, wherein a slope angle of a shear fracture surface generated when the convex portion is broken by the horizontal force with respect to a horizontal plane is a shear plane slope angle. When the structure is displaced along the shear plane inclination angle α, the amount of work consumed when the structure is displaced against the gravity is added to the horizontal strength of the ground improvement body. It is characterized by that.

請求項1に記載の発明によれば、せん断面傾斜角度αに沿って構造物が重力に逆らって変位するときに消費される仕事量と、地盤改良体の水平耐力と、を加算して地盤改良体の水平耐力が算定される。即ち、せん断面傾斜角度αを適切に選択することで、地震時の水平力を、構造物が重力に逆らって変位するときに消費される仕事量の形で減衰させることができる。
これにより、地盤改良体の負担を軽減させることができ、地盤改良体の特質を生かした滑り止め機構の算定方法を提供することができる。
According to the first aspect of the present invention, the amount of work consumed when the structure is displaced against the gravity along the shear plane inclination angle α and the horizontal strength of the ground improvement body are added together to add the ground. The horizontal strength of the improved body is calculated. That is, by appropriately selecting the shear plane inclination angle α, the horizontal force at the time of the earthquake can be attenuated in the form of work consumed when the structure is displaced against the gravity.
Thereby, the burden of a ground improvement body can be reduced and the calculation method of the anti-slip | skid mechanism which utilized the characteristic of the ground improvement body can be provided.

請求項2に記載の発明に係る水平耐力算定方法は、請求項1に記載の水平耐力算定方法において、前記水平耐力の算定方法は、前記せん断面傾斜角度αと前記地盤改良体の水平耐力F(α)の関係を示す水平耐力特性を、下式で算出する水平耐力特性算出ステップと、前記水平耐力特性から、前記水平耐力F(α)を最も小さくする前記せん断面傾斜角度αpを求め、前記せん断面傾斜角度αpにおける水平耐力F(αp)を、地盤改良体の水平耐力とする最小耐力算出ステップと、を有することを特徴としている。

Figure 0005542633

ここに The horizontal yield strength calculation method according to the invention described in claim 2 is the horizontal yield strength calculation method according to claim 1, wherein the horizontal yield strength calculation method includes the shear plane inclination angle α and the horizontal yield strength F of the ground improvement body. From the horizontal proof stress characteristic calculation step for calculating the horizontal proof stress characteristic indicating the relationship of (α) and the horizontal proof stress characteristic, the shear plane inclination angle αp that minimizes the horizontal proof stress F (α) is obtained, And a minimum proof stress calculating step in which the horizontal proof stress F (αp) at the shear plane inclination angle αp is set as the horizontal proof stress of the ground improvement body.

Figure 0005542633

here

Pf:地盤改良体と躯体境界面の摩擦抵抗面における鉛直力(kN)
Ps:地盤改良体のせん断抵抗面における鉛直力(kN)
α:地盤改良体のせん断面傾斜角度(度)
φ:地盤改良体の摩擦角(度)
μ:地盤改良体と躯体境界面の摩擦係数( − )
S:地盤改良体のせん断面の1個当たりの面積( m

Figure 0005542633

De:地盤改良体の奥行き方向の有効幅( m )
La:地盤改良体の凸部の水平長さ( m )
H :地盤改良体の凸部の高さ( m )
Fc:躯体のコンクリートのせん断強度(kN/m
N:地盤改良体の凸部の総数( 個 )
Pf: Vertical force (kN) at the frictional resistance surface between the ground improvement body and the body boundary
Ps: Vertical force (kN) on the shear resistance surface of the ground improvement body
α: Shear surface inclination angle of ground improvement body (degree)
φ: Friction angle of ground improvement body (degree)
μ: Coefficient of friction between the ground improvement body and the frame interface (-)
S: Area per shear surface of ground improvement body (m 2 )

Figure 0005542633

De: Effective width of the ground improvement body in the depth direction (m)
La: Horizontal length of convex part of ground improvement body (m)
H: Height of convex part of ground improvement body (m)
Fc: Shear strength (kN / m 2 ) of the concrete of the frame
N: Total number of convex parts of ground improvement body ()

請求項2に記載の発明によれば、水平耐力特性算出ステップと最小耐力算出ステップを経て、地盤改良体の水平耐力F(αp)が算出される。
即ち、構造物重量、地盤改良体の強度、及び地盤改良体頭部の凹凸部形状等に基づいて、地盤改良体の水平耐力を算出できる。このとき、(1)式で複数の凹凸部の存在が前提とされているため、小規模な凹凸部を密に設置することも可能となり、施工性を向上させ、かつ、必要な水平耐力F(αp)を確保できる。
According to the second aspect of the invention, the horizontal proof stress F (αp) of the ground improvement body is calculated through the horizontal proof stress characteristic calculating step and the minimum proof stress calculating step.
That is, the horizontal strength of the ground improvement body can be calculated based on the weight of the structure, the strength of the ground improvement body, and the shape of the uneven portion of the head of the ground improvement body. At this time, since it is assumed in the formula (1) that there are a plurality of uneven portions, it is possible to install small uneven portions densely, improving the workability, and necessary horizontal strength F (Αp) can be secured.

また、凹凸部における凸部の水平長さLa、凹部の水平長さLb、凸部の高さHの比が一定であれば、(1)式で得られる地盤改良体の水平耐力は同じ値となる。このことから、施工性に応じて凹凸部の形状を変えることができる。
また、凹凸部の寸法を、凹凸部と躯体側コンクリートのせん断強度比(2〜5倍程度)に対応させた寸法(2〜5倍程度)とすることにより、躯体側コンクリートを無筋にすることも可能となり、施工コストの削減と省力化が図れる。
Moreover, if the ratio of the horizontal length La of the convex part in the concavo-convex part, the horizontal length Lb of the concave part, and the height H of the convex part is constant, the horizontal proof stress of the ground improvement body obtained by the equation (1) is the same value. It becomes. From this, the shape of the concavo-convex portion can be changed according to the workability.
In addition, by making the size of the uneven part a dimension (about 2 to 5 times) corresponding to the shear strength ratio (about 2 to 5 times) between the uneven part and the body side concrete, the body side concrete is made bare. This also makes it possible to reduce construction costs and save labor.

請求項3に記載の発明は、請求項2に記載の水平耐力算定方法において、前記水平耐力特性算出ステップと、予め設定した、せん断面傾斜角度αqにおける前記水平耐力F(αq)が最小値となるよう、前記凹凸部の凸部の高さHを調整し、調整後の前記高さHに対応させた前記水平耐力特性を前記(1)式で算出する凹凸部調整ステップと、最小値とされた前記水平耐力F(αq)を、前記地盤改良体の水平耐力とする最小耐力算出ステップと、を有することを特徴としている。   The invention according to claim 3 is the horizontal yield strength calculation method according to claim 2, wherein the horizontal yield strength characteristic calculation step, and the preset horizontal strength F (αq) at the shear plane inclination angle αq is a minimum value. Adjusting the height H of the convex part of the concavo-convex part so that the horizontal proof stress characteristic corresponding to the height H after the adjustment is calculated by the formula (1), a minimum value, And a minimum proof stress calculating step in which the horizontal proof stress F (αq) is used as the horizontal proof stress of the ground improvement body.

請求項3に記載の発明によれば、(1)式で算出された水平耐力特性を用いて、せん断面傾斜角度αqにおける水平耐力F(αq)が最小値となるよう、凸部の高さHが調整されている。凸部の高さHを適切に調整することで、予め設定した、せん断面傾斜角度αqにおける水平耐力F(αq)の値を最小値にすることができる。
即ち、せん断破壊面の位置(せん断面傾斜角度αq)を、設計段階で予め設定しておくことができる。
According to the invention described in claim 3, the height of the convex portion is set so that the horizontal proof stress F (αq) at the shear plane inclination angle αq becomes a minimum value using the horizontal proof stress characteristic calculated by the equation (1). H is adjusted. By appropriately adjusting the height H of the convex portion, the preset value of the horizontal proof stress F (αq) at the shear plane inclination angle αq can be minimized.
That is, the position of the shear fracture surface (shear surface inclination angle αq) can be set in advance at the design stage.

請求項4に記載の発明は、請求項3に記載の水平耐力算定方法において、前記せん断面傾斜角度αqを0度(水平面)とすることを特徴としている。
請求項3に記載の発明によれば、水平面に、せん断破断面を生じさせることができる。
これにより、地盤改良体のせん断強度を最大限活用でき、水平耐力F(αq)を最も高くすることができる。
The invention according to claim 4 is characterized in that, in the horizontal proof stress calculation method according to claim 3, the shear surface inclination angle αq is set to 0 degree (horizontal plane).
According to invention of Claim 3, a shear fracture surface can be produced in a horizontal surface.
Thereby, the shear strength of the ground improvement body can be utilized to the maximum, and the horizontal proof stress F (αq) can be maximized.

請求項5に記載の発明は、請求項3に記載の水平耐力算定方法において、前記せん断面傾斜角度αqを10〜45度の範囲内のいずれかとすることを特徴としている。   The invention according to claim 5 is characterized in that, in the horizontal proof stress calculation method according to claim 3, the shear surface inclination angle αq is any one within a range of 10 to 45 degrees.

請求項5に記載の発明によれば、せん断面傾斜角度αqを10〜45度の範囲内のいずれかの角度で選択できる。
これにより、凸部が極限滑り抵抗力を超える水平力を受けて部分的に損傷しても、凸部の残された部分により、ある程度の残留滑り抵抗力が確保され、滑り止め機構の抵抗力の急激な低下を防止できる。
According to the fifth aspect of the present invention, the shear plane inclination angle αq can be selected at any angle within the range of 10 to 45 degrees.
As a result, even if the convex portion receives a horizontal force exceeding the ultimate slip resistance force and is partially damaged, the remaining portion of the convex portion ensures a certain residual slip resistance force and the anti-slip mechanism resistance force. Can be prevented.

請求項6に記載の発明に係る地盤改良体は、頭部に凹凸部を形成し、凸部を躯体に呑み込ませて水平力を前記躯体へ伝達する地盤改良体であって、前記水平力により、凹部と隣り合う前記凸部が破壊されるときに生じるせん断破壊面の水平面に対する傾斜角度をせん断面傾斜角度αとし、下式で算出される前記せん断面傾斜角度αと前記地盤改良体の水平耐力F(α)の関係を示す水平耐力特性において、予め設定した、せん断面傾斜角度αqにおける前記水平耐力F(αq)が最小値となるよう、前記凹凸部における前記凸部の高さH、前記凸部の水平長さLa、及び前記凸部の総数Nが調整されていることを特徴としている。

Figure 0005542633

ここに The ground improvement body which concerns on invention of Claim 6 is a ground improvement body which forms an uneven | corrugated | grooved part in a head, makes a convex part squeeze into a housing | casing, and transmits horizontal force to the said housing | casing, The inclination angle of the shear fracture surface generated when the convex portion adjacent to the concave portion is destroyed with respect to the horizontal plane is defined as the shear surface inclination angle α, and the shear surface inclination angle α calculated by the following equation and the horizontal surface of the ground improvement body In the horizontal proof stress characteristic indicating the relationship of the proof stress F (α), the height H of the convex portion in the concavo-convex portion is set so that the horizontal proof stress F (αq) at the shear plane inclination angle αq set in advance is a minimum value. The horizontal length La of the convex portions and the total number N of the convex portions are adjusted.

Figure 0005542633

here

Pf:地盤改良体と躯体境界面の摩擦抵抗面における鉛直力(kN)
Ps:地盤改良体のせん断抵抗面における鉛直力(kN)
α:地盤改良体のせん断面傾斜角度(度)
φ:地盤改良体の摩擦角(度)
μ:地盤改良体と躯体境界面の摩擦係数(−)
S:地盤改良体のせん断面の1個当たりの面積(m

Figure 0005542633

De:地盤改良体の奥行き方向の有効幅(m)
La:地盤改良体の凸部の水平長さ(m)
H :地盤改良体の凸部の高さ(m)
Fc:躯体のコンクリートのせん断強度(kN/m
N:地盤改良体の凸部の総数(個)
Pf: Vertical force (kN) at the frictional resistance surface between the ground improvement body and the body boundary
Ps: Vertical force (kN) on the shear resistance surface of the ground improvement body
α: Shear surface inclination angle of ground improvement body (degree)
φ: Friction angle of ground improvement body (degree)
μ: Coefficient of friction between ground improvement body and frame interface (-)
S: Area per one shear surface of the ground improvement body (m 2 )

Figure 0005542633

De: Effective width in the depth direction of ground improvement body (m)
La: Horizontal length of convex part of ground improvement body (m)
H: Height of convex part of ground improvement body (m)
Fc: Shear strength (kN / m 2 ) of the concrete of the frame
N: Total number of convex parts of the ground improvement body (pieces)

請求項6に記載の発明によれば、地盤改良体の頭部には滑り止め機構としての凹凸部が形成され、凸部が躯体に呑み込まれている。これにより、水平力を躯体から地盤改良体へ伝達できる。
地盤改良体の水平耐力F(α)は、水平力により、凹部と隣り合う凸部が破壊されるときに生じるせん断破壊面の水平面に対する傾斜角度をせん断面傾斜角度αとしたとき、(2)式で算出することができる。
According to invention of Claim 6, the uneven | corrugated | grooved part as a non-slip | skid mechanism is formed in the head of the ground improvement body, and the convex part is swallowed by the housing. Thereby, the horizontal force can be transmitted from the frame to the ground improvement body.
The horizontal proof stress F (α) of the ground improvement body is (2) when the inclination angle with respect to the horizontal plane of the shear fracture surface generated when the convex portion adjacent to the concave portion is destroyed by the horizontal force is the shear plane inclination angle α. It can be calculated by a formula.

せん断面傾斜角度αと地盤改良体の水平耐力F(α)の関係を示す特性を水平耐力特性としたとき、予め設定した、せん断面傾斜角度αqにおける水平耐力F(αq)が最小値となるよう、凹凸部における凸部の高さH、凸部の水平長さLa、及び凸部の総数Nが調整されている。   When the characteristic indicating the relationship between the shear surface inclination angle α and the horizontal strength F (α) of the ground improvement body is defined as the horizontal strength characteristic, the preset horizontal strength F (αq) at the shear surface inclination angle αq becomes the minimum value. As described above, the height H of the convex portions in the concave and convex portions, the horizontal length La of the convex portions, and the total number N of convex portions are adjusted.

これにより、予め設定した、せん断面傾斜角度αqにおける水平耐力F(αq)が最小値となる地盤改良体を提供できる。即ち、せん断破壊面の位置(せん断面傾斜角度αq)を、設計段階で予め設定しておくことができる。   Thereby, the ground improvement body from which the horizontal proof stress F ((alpha) q) in the shear plane inclination-angle (alpha) q set in advance becomes the minimum value can be provided. That is, the position of the shear fracture surface (shear surface inclination angle αq) can be set in advance at the design stage.

請求項7に記載の発明は、請求項6に記載の地盤改良体において、前記せん断面傾斜角度αqを0度(水平面)とすることを特徴としている。
即ち、水平面に、せん断破断面を生じさせることができる。これにより、地盤改良体のせん断強度を最大限活用でき、水平耐力F(αq)を最も高くすることができる。
The invention according to claim 7 is the ground improvement body according to claim 6, wherein the shear surface inclination angle αq is set to 0 degree (horizontal plane).
That is, a shear fracture surface can be generated in the horizontal plane. Thereby, the shear strength of the ground improvement body can be utilized to the maximum, and the horizontal proof stress F (αq) can be maximized.

請求項8に記載の発明は、請求項6に記載の地盤改良体において、前記せん断面傾斜角度αqを10〜45度の範囲内のいずれかの角度とすることを特徴としている。
即ち、せん断面傾斜角度αqを、10〜45度の範囲内のいずれかの角度で選択できる。これにより、これにより、凸部が極限滑り抵抗力を超える水平力を受けて部分的に損傷しても、凸部の残された部分により、ある程度の残留滑り抵抗力が確保され、滑り止め機構の抵抗力の急激な低下を防止できる。
The invention according to claim 8 is the ground improvement body according to claim 6, wherein the shear surface inclination angle αq is any angle within a range of 10 to 45 degrees.
That is, the shear plane inclination angle αq can be selected at any angle within the range of 10 to 45 degrees. Thereby, even if the convex portion receives a horizontal force exceeding the ultimate slip resistance force and is partially damaged, the remaining portion of the convex portion ensures a certain residual slip resistance force, and the anti-slip mechanism Can prevent a sudden drop in the resistance.

請求項9に記載の発明は、請求項6〜8のいずれか1項に記載の地盤改良体において、前記地盤改良体は、地盤を改良した柱状の改良柱を互いにラップさせた壁体として構成され、前記凹凸部の凹部は頭部を前記壁体の幅方向に横断する溝状に形成され、前記凹部が横断する方向は、平面視において、前記頭部の長さ方向に対し角度を持って交差していることを特徴としている。   The invention according to claim 9 is the ground improvement body according to any one of claims 6 to 8, wherein the ground improvement body is configured as a wall body in which columnar improvement pillars having improved ground are wrapped with each other. The concave portion of the concavo-convex portion is formed in a groove shape that crosses the head in the width direction of the wall body, and the direction in which the concave portion crosses has an angle with respect to the length direction of the head in plan view. It is characterized by crossing.

請求項9に記載の発明によれば、改良柱を互いにラップさせた壁体として、地盤改良体が構成されている。また、凹凸部における凹部は、頭部を壁体の幅方向に横断する溝状に形成され、凹部が横断する方向は、平面視において、頭部の長さ方向に対し角度を持って交差している。
これにより、地盤改良体の面外方向にも、滑り抵抗力を発揮できる。
According to invention of Claim 9, the ground improvement body is comprised as a wall body which mutually wrapped the improvement pillar. Further, the concave portion in the concavo-convex portion is formed in a groove shape that crosses the head portion in the width direction of the wall body, and the direction in which the concave portion crosses intersects with the length direction of the head portion at an angle in plan view. ing.
Thereby, slip resistance can be exhibited also in the out-of-plane direction of the ground improvement body.

請求項10に記載の発明は、請求項6〜8のいずれか1項に記載の地盤改良体において、前記改良柱がラップされたラップ部には、前記壁体の長さ方向に対して直交し、矩形状に形成された前記凹部が配置されていることを特徴としている。   The invention according to claim 10 is the ground improvement body according to any one of claims 6 to 8, wherein the wrap portion where the improvement pillar is wrapped is orthogonal to the length direction of the wall body. And the said recessed part formed in the rectangular shape is arrange | positioned, It is characterized by the above-mentioned.

請求項10に記載の発明によれば、矩形状の凹部が改良柱のラップ部に形成されている。これにより、地盤改良体の頭部に形成する凹凸部の掘削、除去作業を省力化できる。また、水平耐力は、構築する矩形状の凹部の深さと幅から決定することができ、必要最小限の掘削量で滑り止め機構を構築できる。   According to invention of Claim 10, the rectangular recessed part is formed in the lap | wrap part of the improvement pillar. Thereby, the excavation and removal work of the uneven part formed on the head of the ground improvement body can be saved. Further, the horizontal proof stress can be determined from the depth and width of the rectangular recess to be constructed, and the anti-slip mechanism can be constructed with the minimum necessary excavation amount.

請求項11に記載の発明は、請求項6〜8のいずれか1項に記載の地盤改良体において、前記改良柱の中心部には、円柱状に形成された前記凹部が、前記壁体の頭部から所定の深さで設けられていることを特徴としている。   Invention of Claim 11 is the ground improvement body of any one of Claims 6-8, In the center part of the said improvement pillar, the said recessed part formed in the column shape is the said wall body. It is characterized by being provided at a predetermined depth from the head.

請求項11に記載の発明によれば、改良柱の中心部に凹部が形成され、凹部は、壁体の頭部から所定の深さで円柱状に形成されている。
即ち、コアカッターを用いることで、容易に円柱状の凹部を施工でき、施工性が向上する。
According to invention of Claim 11, a recessed part is formed in the center part of an improvement pillar, and the recessed part is formed in the column shape by predetermined depth from the head of a wall body.
That is, by using a core cutter, a cylindrical recess can be easily constructed, and the workability is improved.

請求項12に記載の発明は、請求項6〜11のいずれか1項に記載の地盤改良体において、隣接する前記凹部の深さを異ならせたことを特徴としている。
請求項11に記載の発明によれば、隣接する凹部の深さが互いに異なっている。これにより、せん断破壊面が、水平方向に連続して発生するのを防止でき、地盤改良体の水平耐力を増大させることができる。
The invention according to claim 12 is characterized in that in the ground improvement body according to any one of claims 6 to 11, the depths of the adjacent concave portions are made different.
According to the eleventh aspect of the present invention, the depths of the adjacent recesses are different from each other. Thereby, it can prevent that a shear fracture surface generate | occur | produces continuously in a horizontal direction, and can increase the horizontal proof stress of a ground improvement body.

請求項13に記載の発明は、請求項6〜12のいずれか1項に記載の地盤改良体において、前記地盤改良体の頭部には、前記壁体の長さ方向に、前記凹凸部が複数形成されていることを特徴としている。   The invention according to claim 13 is the ground improvement body according to any one of claims 6 to 12, wherein the concave-convex portion is formed on a head of the ground improvement body in a length direction of the wall body. It is characterized by being formed in plural.

請求項13に記載の発明によれば、地震時の水平力から決定される凹凸部の形状比(凸部の高さHと水平長さLaの比等)を満足させるように、地盤改良体の頭部には、壁体の長さ方向に、凹凸部が複数形成されている。
これにより、躯体と地盤改良体が接触する表面積を大きくすることができる。また、地盤改良体の頭部の掘削量を削減できるので、躯体コンクリート量を減らすことができる。
According to the invention described in claim 13, the ground improvement body satisfies the shape ratio (ratio of the height H of the protrusion to the horizontal length La, etc.) of the unevenness determined from the horizontal force at the time of the earthquake. A plurality of concavo-convex portions are formed in the head portion of the head in the length direction of the wall.
Thereby, the surface area which a frame and a ground improvement body contact can be enlarged. Moreover, since the amount of excavation of the head of the ground improvement body can be reduced, the amount of frame concrete can be reduced.

請求項14に記載の発明は、請求項6〜13のいずれか1項に記載の地盤改良体において、前記地盤改良体の頭部には、靭性を補強する繊維が混入されていることを特徴としている。   The invention described in claim 14 is the ground improvement body according to any one of claims 6 to 13, wherein fibers for reinforcing toughness are mixed in a head of the ground improvement body. It is said.

請求項14に記載の発明は、地盤改良体の頭部には、靭性を補強する繊維が混入されている。これにより、局所的な応力が集中する頭部の靭性を補強することができる。また、耐震性も向上できる。また、繊維を補強していない地盤改良体の下部には、荷重分散効果で均等な水平力が伝わるようにできる。   In the invention described in claim 14, fibers for reinforcing toughness are mixed in the head of the ground improvement body. Thereby, the toughness of the head where local stress concentrates can be reinforced. In addition, earthquake resistance can be improved. In addition, a uniform horizontal force can be transmitted to the lower portion of the ground improvement body that is not reinforced with a fiber by a load dispersion effect.

本発明は、上記構成としてあるので、地盤改良体の特質を生かした滑り止め機構、及び滑り止め機構を設けた地盤改良体の水平耐力の算定方法を提供することができる。   Since this invention is set as the said structure, the calculation method of the horizontal strength of the ground improvement body which provided the antiskid mechanism which utilized the characteristic of the ground improvement body, and the antiskid mechanism can be provided.

本発明の第1の実施の形態に係る地盤改良体の算定方法を説明するための滑り止め機能の基本構造を示す断面図、及び地盤改良体の水平耐力特性図である。It is sectional drawing which shows the basic structure of the anti-slip | skid function for demonstrating the calculation method of the ground improvement body which concerns on the 1st Embodiment of this invention, and the horizontal strength characteristic figure of a ground improvement body. 本発明の第2の実施の形態に係る地盤改良体の基本構成を示す断面図、及び地盤改良体の水平耐力特性図である。It is sectional drawing which shows the basic composition of the ground improvement body which concerns on the 2nd Embodiment of this invention, and the horizontal strength characteristic figure of a ground improvement body. 本発明の第3の実施の形態に係る地盤改良体の水平耐力特性図、及び地盤改良体の抵抗力を示す模式図である。It is a schematic diagram which shows the horizontal proof stress characteristic figure of the ground improvement body which concerns on the 3rd Embodiment of this invention, and the resistance force of a ground improvement body. 本発明の第3の実施の形態に係る地盤改良体のせん断破壊面の位置を示す断面図である。It is sectional drawing which shows the position of the shear fracture surface of the ground improvement body which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る地盤改良体の基本構成を示す断面図である。It is sectional drawing which shows the basic composition of the ground improvement body which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る地盤改良体の基本構成を示す断面図である。It is sectional drawing which shows the basic composition of the ground improvement body which concerns on the 5th Embodiment of this invention. 本発明の第6の実施の形態に係る地盤改良体の基本構成を示す断面図である。It is sectional drawing which shows the basic composition of the ground improvement body which concerns on the 6th Embodiment of this invention. 本発明の第7の実施の形態に係る地盤改良体の基本構成を示す断面図である。It is sectional drawing which shows the basic composition of the ground improvement body which concerns on the 7th Embodiment of this invention. 本発明の第8の実施の形態に係る地盤改良体に混入される繊維の混入状況を示す断面図である。It is sectional drawing which shows the mixing condition of the fiber mixed in the ground improvement body which concerns on the 8th Embodiment of this invention. 従来例の地盤改良体の基本構成を示す図である。It is a figure which shows the basic composition of the ground improvement body of a prior art example.

(第1の実施の形態)
第1の実施の形態に係る地盤改良体の算定方法は、図1の断面図に示す滑り止め機構10の、水平耐力Fの算定方法である。滑り止め機構10は、頭部に凹凸部24が形成された地盤改良体12と、凹部22に入り込む、図示しない構造物の躯体16との接合部であり、地震時の水平力Rを、凹凸部24を介して地盤改良体12へ伝達する。
(First embodiment)
The calculation method of the ground improvement body which concerns on 1st Embodiment is a calculation method of the horizontal proof stress F of the anti-slip | skid mechanism 10 shown to sectional drawing of FIG. The anti-slip mechanism 10 is a joint portion between the ground improvement body 12 having an uneven portion 24 formed on the head and a housing 16 of a structure (not shown) that enters the recess 22, and the horizontal force R at the time of an earthquake is This is transmitted to the ground improvement body 12 via the part 24.

ここに、地盤改良体12は、図示しないオーガで原地盤を掘削しながら、掘削土とセメントミルクを混合、撹拌して柱体を形成し、柱体の外周部同士をラップさせて壁状とした構成である。地盤改良体12の単位面積当たりの水平耐力は、地盤改良体12には掘削土が含まれているため、躯体16に使用されるコンクリートの単位面積当たりの水平耐力より小さい。   Here, the ground improvement body 12 mixes and stirs excavated soil and cement milk while excavating the original ground with an auger (not shown) to form a column body, and wraps the outer peripheral portions of the column body to form a wall shape. This is the configuration. The horizontal strength per unit area of the ground improvement body 12 is smaller than the horizontal strength per unit area of the concrete used for the frame 16 because the ground improvement body 12 contains excavated soil.

地盤改良体12の頭部には、深さH1の凸部14(幅La)が、凹部22(幅Lb)を挟んで連続して複数形成された凹凸部24が設けられている。凹凸部24の上には躯体16が形成され、凸部14は躯体16のコンクリートに呑み込まれている。
この構成において、地震時の水平力Rにより凸部14が破壊されるとき、水平面20と角度αをなす、せん断破壊面18の位置で地盤改良体12が破壊される。このときの水平耐力は、地盤改良体12のせん断破壊面18の位置における水平耐力と、構造物が重力に逆らってせん断面傾斜角度αに沿って変位するときに消費される仕事量と、を加算することで算定される。
The head of the ground improvement body 12 is provided with a concavo-convex portion 24 in which a plurality of convex portions 14 (width La) having a depth H1 are continuously formed across the concave portion 22 (width Lb). A casing 16 is formed on the concavo-convex portion 24, and the convex portion 14 is encased in the concrete of the casing 16.
In this configuration, when the convex portion 14 is broken by the horizontal force R at the time of the earthquake, the ground improvement body 12 is broken at the position of the shear fracture surface 18 that forms an angle α with the horizontal plane 20. The horizontal proof stress at this time is the horizontal proof stress at the position of the shear fracture surface 18 of the ground improvement body 12 and the work consumed when the structure is displaced along the shear plane inclination angle α against gravity. Calculated by adding.

即ち、地盤改良体12を、せん断面傾斜角度αの位置で破壊させることで、地震時の水平力を、構造物が重力に逆らって変位するときに消費される仕事量の形で減衰させることができる。
この結果、地盤改良体12の負担が軽減され、地盤改良体12の特質を生かした滑り止め機構の算定方法を提供することができる。
That is, by destroying the ground improvement body 12 at the position of the shear plane inclination angle α, the horizontal force during the earthquake is attenuated in the form of work consumed when the structure is displaced against gravity. Can do.
As a result, the burden on the ground improvement body 12 is reduced, and a method for calculating the anti-slip mechanism that makes use of the characteristics of the ground improvement body 12 can be provided.

ここに、構造物が重力に逆らって変位するときに消費される仕事量は、構造物の質量とせん断面傾斜角度αにより決定することができる。また、滑り止め機構10の水平耐力Fは、次の手順で算定することができる。
先ず、水平耐力特性算出ステップを実行する。せん断面傾斜角度αにおける地盤改良体の水平耐力をF(α)としたとき、せん断面傾斜角度αと水平耐力F(α)の関係を示す水平耐力特性Pは、下式で算出される。

Figure 0005542633

ここに Here, the amount of work consumed when the structure is displaced against the gravity can be determined by the mass of the structure and the shear plane inclination angle α. Moreover, the horizontal proof stress F of the anti-slip | skid mechanism 10 can be calculated in the following procedure.
First, a horizontal proof stress characteristic calculation step is executed. When the horizontal proof stress of the ground improvement body at the shear surface inclination angle α is F (α), the horizontal proof stress characteristic P indicating the relationship between the shear surface inclination angle α and the horizontal proof strength F (α) is calculated by the following equation.

Figure 0005542633

here

Pf:地盤改良体と躯体境界面の摩擦抵抗面における鉛直力(kN)
Ps:地盤改良体のせん断抵抗面における鉛直力(kN)
α:地盤改良体のせん断面傾斜角度(度)
φ:地盤改良体の摩擦角(度)
μ:地盤改良体と躯体境界面の摩擦係数(−)
S:地盤改良体のせん断面の1個当たりの面積(m

Figure 0005542633

De:地盤改良体の奥行き方向の有効幅(m)
La:地盤改良体の凸部の水平長さ(m)
H :地盤改良体の凸部の高さ(m)
Fc:躯体のコンクリートのせん断強度(kN/m
N:地盤改良体の凸部の総数(個) Pf: Vertical force (kN) at the frictional resistance surface between the ground improvement body and the body boundary
Ps: Vertical force (kN) on the shear resistance surface of the ground improvement body
α: Shear surface inclination angle of ground improvement body (degree)
φ: Friction angle of ground improvement body (degree)
μ: Coefficient of friction between ground improvement body and frame interface (-)
S: Area per one shear surface of the ground improvement body (m 2 )

Figure 0005542633

De: Effective width in the depth direction of ground improvement body (m)
La: Horizontal length of convex part of ground improvement body (m)
H: Height of convex part of ground improvement body (m)
Fc: Shear strength (kN / m 2 ) of the concrete of the frame
N: Total number of convex parts of the ground improvement body (pieces)

図1(B)に、地盤改良体12の物性値を用いて、上式により水平耐力特性F(α)の値を算出した結果を示す。横軸はせん断面傾斜角度α(度)で、縦軸は水平耐力F(α)(kN)である。   FIG. 1B shows the result of calculating the value of the horizontal strength characteristic F (α) by the above formula using the physical property values of the ground improvement body 12. The horizontal axis is the shear plane inclination angle α (degrees), and the vertical axis is the horizontal proof stress F (α) (kN).

算出された水平耐力特性P1は実線で示されている。せん断面傾斜角度αが水平付近(0度〜10度程度)と鉛直付近(65度〜75度程度)で高い値を示し、その中間の範囲で低い値を示している。算出された水平耐力特性P1から、中間の範囲で破壊され易いことが分かる。   The calculated horizontal strength characteristic P1 is indicated by a solid line. The shear plane inclination angle α shows a high value in the vicinity of the horizontal (about 0 to 10 degrees) and the vicinity of the vertical (about 65 to 75 degrees), and a low value in the middle range. It can be seen from the calculated horizontal proof stress characteristic P1 that it is easily broken in an intermediate range.

次に、最小耐力算出ステップを実行する。手順は、図1(B)に示す水平耐力特性P1において、水平耐力F(α)が最も小さい位置を求める。その後、抽出された水平耐力F(α)が最も小さい位置におけるせん断面傾斜角度αpを求める。同時に、せん断面傾斜角度αpにおける水平耐力F(αp)の値を求め、地盤改良体12の水平耐力F(α)とする。   Next, a minimum yield strength calculation step is executed. The procedure obtains a position where the horizontal proof stress F (α) is the smallest in the horizontal proof stress characteristic P1 shown in FIG. Thereafter, the shear plane inclination angle αp at the position where the extracted horizontal proof stress F (α) is the smallest is obtained. At the same time, the value of the horizontal proof stress F (αp) at the shear plane inclination angle αp is obtained and used as the horizontal proof stress F (α) of the ground improvement body 12.

具体的には、水平耐力特性P1の水平耐力F(α)の最小値は、丸印M1で囲んだ位置である。丸印M1で囲んだ位置におけるせん断面傾斜角度αpは、横軸の目盛から28度であり、丸印M1における水平耐力F(α)は、縦軸の目盛から120000(kN)である。 Specifically, the minimum value of the horizontal strength F (α) of the horizontal strength property P1 is a position surrounded by a circle M1. The shear plane inclination angle αp at the position surrounded by the circle M1 is 28 degrees from the scale on the horizontal axis, and the horizontal proof stress F (α) at the circle M1 is 120,000 (kN) from the scale on the vertical axis.

上述の手順を経て、水平耐力Fが120000(kN)と算出される。ここに、上式は下記手順で求めることができる。 Through the above-described procedure, the horizontal proof stress F is calculated as 120,000 (kN). Here, the above equation can be obtained by the following procedure.

地盤改良体12の頭部に作用する鉛直力P(kN)は、摩擦による破壊領域As(m)における分担鉛直応力Psと、せん断による破壊領域Af(m)における分担鉛直応力Pfの和となり、次の手順で求めることができる。
P=Ps+Pf

Figure 0005542633

Figure 0005542633

Figure 0005542633
ここに、 The vertical force P (kN) acting on the head of the ground improvement body 12 is the sum of the shared vertical stress Ps in the fracture region As (m 2 ) due to friction and the shared vertical stress Pf in the fracture region Af (m 2 ) due to shear. And can be obtained by the following procedure.
P = Ps + Pf

Figure 0005542633

Figure 0005542633

Figure 0005542633
here,

P :地盤改良体(面内壁)頭部の鉛直力(kN)
Pf:地盤改良体と躯体境界面の摩擦抵抗面における鉛直力(kN)
Ps:地盤改良体のせん断抵抗面における鉛直力(kN)
La:地盤改良体凸部の水平長さ(m)
Lb:地盤改良体凹部の水平長さ(m)
Lc:地盤改良体のせん断破壊領域の水平長さ(m)
H1:地盤改良体凸部の高さ(m)
P: Vertical force (kN) of ground improvement body (in-plane wall) head
Pf: Vertical force (kN) at the frictional resistance surface between the ground improvement body and the body boundary
Ps: Vertical force (kN) on the shear resistance surface of the ground improvement body
La: Horizontal length of ground improvement body convex part (m)
Lb: Horizontal length of ground improvement body recess (m)
Lc: Horizontal length of the shear failure area of the ground improvement body (m)
H1: Height of ground improvement body convex part (m)

また、地盤改良体12の頭部の水平耐力Fは、躯体16と地盤改良体12の境界面における摩擦抵抗力Ffと、地盤改良体12の凸部14のせん断破壊抵抗力Fsの和で表わされる。
F=Ff+Fs
摩擦抵抗力Ff、及びせん断破壊抵抗力Fsは、次式で表すことができる。

Figure 0005542633

Figure 0005542633

ここで、地盤改良体12のせん断強度τfは、次式で表わされる。

Figure 0005542633
The horizontal strength F of the head of the ground improvement body 12 is represented by the sum of the frictional resistance Ff at the boundary surface between the frame 16 and the ground improvement body 12 and the shear fracture resistance Fs of the convex portion 14 of the ground improvement body 12. It is.
F = Ff + Fs
The frictional resistance force Ff and the shear fracture resistance force Fs can be expressed by the following equations.

Figure 0005542633

Figure 0005542633

Here, the shear strength τf of the ground improvement body 12 is expressed by the following equation.

Figure 0005542633

以上から、地盤改良体12(面内壁)の水平耐力F(α)は上述した(3)式となる。
更に、(3)式を用いて、水平耐力F(α)が最も小さくなるときの地盤改良体12の、せん断面方向角αを求めることで、水平耐力F(α)を決定することができる。
From the above, the horizontal proof stress F (α) of the ground improvement body 12 (in-plane wall) is the above-described equation (3).
Further, the horizontal yield strength F (α) can be determined by obtaining the shear plane direction angle α of the ground improvement body 12 when the horizontal yield strength F (α) is minimized by using the equation (3). .

以上説明したように、本実施の形態によれば、水平耐力特性算出ステップと最小耐力算出ステップを経て、地盤改良体12の水平耐力F(α)を算出できる。即ち、建物重量、地盤改良体12の強度、及び地盤改良体12の頭部の凹凸部24の形状等に基づいて、地盤改良体12の水平耐力F(α)が決定される。このとき、後述するように、(3)式では複数の凹凸部24の存在が前提とされている。即ち、小規模な凹凸部24を密に設置することにより、凹凸部24の施工性を向上させ、かつ、必要な水平耐力Fを確保できる。   As described above, according to the present embodiment, the horizontal proof stress F (α) of the ground improvement body 12 can be calculated through the horizontal proof stress characteristic calculating step and the minimum proof stress calculating step. That is, the horizontal strength F (α) of the ground improvement body 12 is determined based on the building weight, the strength of the ground improvement body 12, the shape of the uneven portion 24 of the head of the ground improvement body 12, and the like. At this time, as will be described later, the presence of a plurality of concave and convex portions 24 is assumed in the expression (3). That is, by installing the small uneven portions 24 densely, it is possible to improve the workability of the uneven portions 24 and to secure the necessary horizontal proof stress F.

また、凹凸部24における凸部14の水平長さLa、凹部22の水平長さLb、及び凸部14の高さHの比が一定であれば、(3)式で得られる地盤改良体12の水平耐力F(α)は同じ値となる。このことから、施工性に応じて、凹凸部24の形状を選択することができる。   Moreover, if the ratio of the horizontal length La of the convex part 14 in the uneven | corrugated | grooved part 24, the horizontal length Lb of the recessed part 22, and the height H of the convex part 14 is constant, the ground improvement body 12 obtained by (3) Formula. The horizontal proof stress F (α) is the same value. From this, the shape of the uneven | corrugated | grooved part 24 can be selected according to construction property.

また、凹凸部24の寸法を、凹凸部24と躯体16側コンクリートのせん断強度比(2〜5倍程度)に対応させた寸法、即ち、凸部14の水平長さLaを、躯体16側コンクリート(凹部22の水平長さLb)の2〜5倍程度とすることにより、躯体16側コンクリートを無筋にすることも可能となり、施工コストの削減と省力化を図ることができる。   Moreover, the dimension which made the dimension of the uneven | corrugated | grooved part 24 respond | correspond to the shear strength ratio (about 2 to 5 times) of the uneven | corrugated | grooved part 24 and the housing 16 side concrete, ie, the horizontal length La of the convex part 14, is the housing 16 side concrete. By setting it to about 2 to 5 times the (horizontal length Lb of the concave portion 22), it is possible to make the frame 16 side concrete straight, and it is possible to reduce the construction cost and save labor.

(第2の実施の形態)
図2の断面図に示すように、第2の実施の形態に係る地盤改良体28は、頭部に凹凸部52が設けられ、躯体36との間で滑り止め機構34を構成している。
(Second Embodiment)
As shown in the cross-sectional view of FIG. 2, the ground improvement body 28 according to the second embodiment is provided with an uneven portion 52 at the head, and constitutes an anti-slip mechanism 34 with the housing 36.

地盤改良体28は、第1の実施の形態で説明した地盤改良体12と、凹凸部52の形状のみが相違する。即ち、地盤改良体28の頭部には、深さH2の凸部(幅Ld)が、凹部(幅Lf)を挟んで連続して複数形成されている。凹凸部52の上には躯体36が形成され、凸部48は躯体36のコンクリートに呑み込まれている。凹凸部52を介して、地震時の水平力Rが躯体36へ伝達される。 The ground improvement body 28 is different from the ground improvement body 12 described in the first embodiment only in the shape of the uneven portion 52. That is, a plurality of convex portions (width Ld) having a depth H2 are continuously formed on the head of the ground improvement body 28 with the concave portion (width Lf) interposed therebetween. A casing 36 is formed on the concavo-convex portion 52, and the convex portion 48 is encased in the concrete of the casing 36. The horizontal force R at the time of an earthquake is transmitted to the housing 36 through the uneven portion 52.

凹凸部52は、地盤改良体28の破壊強度以上の水平力Rが作用したとき、凸部48が凹部50と隣り合う面の下端部から破壊される。このときのせん断破壊面18は、凸部14の下端から、水平面20と平行な位置(角度α=0)に発生するよう形成されている。   In the uneven portion 52, the convex portion 48 is broken from the lower end portion of the surface adjacent to the concave portion 50 when a horizontal force R greater than the breaking strength of the ground improvement body 28 is applied. The shear fracture surface 18 at this time is formed so as to be generated from the lower end of the convex portion 14 at a position parallel to the horizontal plane 20 (angle α = 0).

具体的には、せん断面傾斜角度αと地盤改良体28の水平耐力F(α)の関係を示す水平耐力特性P2は、上述した(3)式で算出され、算出結果は図2(B)の実線で示す特性P2となるように、凹凸部52の寸法が決定されている。 Specifically, the horizontal strength characteristic P2 indicating the relationship between the shear plane inclination angle α and the horizontal strength F (α) of the ground improvement body 28 is calculated by the above-described equation (3), and the calculation result is shown in FIG. The dimension of the concavo-convex portion 52 is determined so as to have the characteristic P2 indicated by the solid line.

この結果、水平耐力特性P2において、水平耐力F(α)が最も小さくなるときの、せん断面傾斜角度αは、矢印M2で示す、水平面20と平行な位置(角度α=0)になる。そして、このときの水平耐力F(α)は、縦軸の目盛から180000(kN)となる。
このように、せん断面傾斜角度αを水平面20と平行な位置にすることより、地盤改良体28のせん断強度を最大限活用でき、水平耐力F(α)を最も高くすることができる。
As a result, in the horizontal proof stress characteristic P2, the shear plane inclination angle α when the horizontal proof stress F (α) is the smallest is a position (angle α = 0) parallel to the horizontal plane 20 indicated by the arrow M2. And the horizontal proof stress F ((alpha)) at this time will be 180000 (kN) from the scale of a vertical axis | shaft.
Thus, by setting the shear plane inclination angle α to a position parallel to the horizontal plane 20, the shear strength of the ground improvement body 28 can be utilized to the maximum, and the horizontal proof stress F (α) can be maximized.

その他の地盤改良体28と躯体36との接合構造34の構成については、第1の実施の形態で説明した接合構造10と同じであり、説明は省略する。   The configuration of the joint structure 34 between the other ground improvement body 28 and the frame 36 is the same as the joint structure 10 described in the first embodiment, and the description thereof is omitted.

次に、第2の実施の形態に係る地盤改良体の水平耐力算定方法について説明する。
先ず、水平耐力特性算出ステップを実行する。本ステップは、既述の第1の実施の形態と同一であり、説明は省略する。本ステップにより、図2(B)の実線で示す水平耐力特性P2を求める。
Next, a method for calculating the horizontal strength of the ground improvement body according to the second embodiment will be described.
First, a horizontal proof stress characteristic calculation step is executed. This step is the same as that of the first embodiment described above, and a description thereof will be omitted. By this step, a horizontal proof stress characteristic P2 indicated by a solid line in FIG.

次に、凹凸部調整ステップを実行する。即ち水平耐力特性算出ステップで算出された水平耐力特性P2が、予め設定した、せん断面傾斜角度αが、水平面20と並行になる位置(角度α=0)において最小値となっていない場合には、最小値となるよう、凹凸部52の凸部48の高さH2を調整する。そして、調整後の凸部48の高さH2に対応させた水平耐力特性P2を、再度(3)式で算出する。
このステップを、予め設定した、せん断面傾斜角度αが、水平面20と並行になる位置(角度α=0)において、平耐力特性P2が最小値となるまで繰り返す。
Next, the uneven | corrugated | grooved part adjustment step is performed. That is, when the horizontal strength characteristic P2 calculated in the horizontal strength characteristic calculation step is not set to a minimum value at a preset position where the shear plane inclination angle α is parallel to the horizontal plane 20 (angle α = 0). The height H2 of the convex portion 48 of the concave and convex portion 52 is adjusted so as to be the minimum value. And the horizontal proof stress characteristic P2 corresponding to the height H2 of the convex part 48 after adjustment is again calculated by Formula (3).
This step is repeated until the flat proof stress characteristic P2 reaches a minimum value at a position where the shear plane inclination angle α is set in parallel with the horizontal plane 20 (angle α = 0).

最後に、最小耐力算出ステップを実行する。即ち、せん断面傾斜角度αが、水平面20と並行になる位置の水平耐力F(α)を、地盤改良体12の水平耐力F(α)とする。
これにより、水平面20と並行な面にせん断破断面18を生じさせることができる。また、地盤改良体28のせん断強度を最大限活用でき、水平耐力F(α)を最も高くすることができる。また、せん断破壊面18の位置(せん断面傾斜角度αq)を、設計段階で予め設定しておくことができる。
Finally, the minimum yield strength calculation step is executed. That is, the horizontal proof stress F (α) at the position where the shear plane inclination angle α is parallel to the horizontal plane 20 is defined as the horizontal proof stress F (α) of the ground improvement body 12.
Thereby, the shear fracture surface 18 can be generated in a plane parallel to the horizontal plane 20. Moreover, the shear strength of the ground improvement body 28 can be utilized to the maximum, and the horizontal proof stress F (α) can be maximized. Further, the position of the shear fracture surface 18 (shear surface inclination angle αq) can be set in advance at the design stage.

(第3の実施の形態)
第3の実施の形態に係る図示しない地盤改良体は、図2に示す第2の実施の形態に係る地盤改良体28と、凹凸部52の形状のみが相違する。以下、相違点を中心に説明する。
(Third embodiment)
A ground improvement body (not shown) according to the third embodiment is different from the ground improvement body 28 according to the second embodiment shown in FIG. 2 only in the shape of the uneven portion 52. Hereinafter, the difference will be mainly described.

図示しない凹凸部は、図3(A)に示す水平耐力特性P3を有する形状とされている。即ち、水平耐力特性P3における最小値は矢印M3で示す、せん断面傾斜角度αが10〜45度の範囲内のいずれかの角度とされている。 The uneven portion (not shown) has a shape having the horizontal strength characteristic P3 shown in FIG. That is, the minimum value in the horizontal proof stress characteristic P3 is set to any angle within the range of the shear plane inclination angle α of 10 to 45 degrees indicated by the arrow M3.

これにより、凸部が極限滑り抵抗力を超える水平力を受けて、せん断面傾斜角度αの位置(10〜45度の範囲内)で破壊されても、いずれの角度においも部分的に損傷されることとなる。
この結果、図3(B)の模式図に示すように、水平変位と抵抗力の関係は次のようになる。ここに、横軸に水平変位を、縦軸に抵抗力をとっている。
As a result, even if the convex portion receives a horizontal force exceeding the ultimate slip resistance force and is destroyed at the position of the shear plane inclination angle α (within a range of 10 to 45 degrees), the angle is partially damaged at any angle. The Rukoto.
As a result, as shown in the schematic diagram of FIG. 3B, the relationship between the horizontal displacement and the resistance force is as follows. Here, the horizontal axis represents horizontal displacement and the vertical axis represents resistance.

実線Aに、せん断面傾斜角度αの位置が水平面20と並行な位置となる水平破壊の特性を示している。水平変位の初期に、一時的に大きな抵抗力RAを発生するが、凸部が破壊された後は、急激に抵抗力が低下する。   The solid line A shows the characteristic of horizontal fracture in which the position of the shear plane inclination angle α is parallel to the horizontal plane 20. Although a large resistance force RA is temporarily generated at the initial stage of the horizontal displacement, the resistance force rapidly decreases after the convex portion is destroyed.

一方、破線Bで示すように、ある程度の残留滑り抵抗力を残すように制御することで、水平変位の初期の最大抵抗力RBは抵抗力RAより低下するが、凸部が破壊された後にも、躯体と改良体の山状のメカニカルな噛み合いを残すことができる。この結果、凸部の残された部分により、ある程度の残留滑り抵抗力が確保され、滑り止め機構の抵抗力の急激な低下を防止できる。   On the other hand, as shown by the broken line B, the initial maximum resistance force RB of the horizontal displacement is lower than the resistance force RA by controlling to leave a certain amount of residual slip resistance force, but even after the convex portion is destroyed It is possible to leave a mountain-shaped mechanical engagement between the housing and the improved body. As a result, the remaining portion of the convex portion ensures a certain amount of residual slip resistance, and can prevent a sudden drop in the resistance of the anti-slip mechanism.

次に、第1展開例に記載の地盤改良体の水平耐力算定方法について説明する。
先ず、水平耐力特性算出ステップを実行する。本ステップは、既述の第1の実施の形態と同一であり、説明は省略する。本ステップで水平耐力特性P3を算出する。
Next, a method for calculating the horizontal strength of the ground improvement body described in the first development example will be described.
First, a horizontal proof stress characteristic calculation step is executed. This step is the same as that of the first embodiment described above, and a description thereof will be omitted. In this step, the horizontal strength characteristic P3 is calculated.

次に、凹凸部調整ステップを実行する。即ち、水平耐力特性算出ステップで算出された水平耐力特性P3が、予め設定した、せん断面傾斜角度αにおいて最小値でない場合には、水平耐力特性P3が、予め設定した、せん断面傾斜角度αにおいて最小値となるよう、凹凸部24における凸部14の高さH2を調整する。そして、調整後の凸部14の高さHに対応させた水平耐力特性P3を(3)式で算出する。   Next, the uneven | corrugated | grooved part adjustment step is performed. That is, when the horizontal strength characteristic P3 calculated in the horizontal strength characteristic calculation step is not the minimum value at the preset shear plane inclination angle α, the horizontal strength characteristic P3 is set at the preset shear plane inclination angle α. The height H2 of the convex portion 14 in the concave and convex portion 24 is adjusted so as to be the minimum value. And the horizontal yield strength characteristic P3 corresponding to the height H of the convex part 14 after adjustment is calculated by (3) Formula.

このステップを、予め設定した、せん断面傾斜角度αにおいて、平耐力特性P3が最小値となるまで繰り返す。
最後に、最小耐力算出ステップを実行する。即ち、最小値とされた水平耐力F(α)を、地盤改良体12の水平耐力F(α)とする。
This step is repeated until the flat proof stress characteristic P3 reaches a minimum value at a preset shear plane inclination angle α.
Finally, the minimum yield strength calculation step is executed. That is, the horizontal proof stress F (α) set to the minimum value is set as the horizontal proof stress F (α) of the ground improvement body 12.

以上の手順により、地盤改良体の水平耐力F(α)を算定できる。   With the above procedure, the horizontal strength F (α) of the ground improvement body can be calculated.

次に、複数の凹凸部を形成することの有利な点について説明する。
図4(A)に示すように、従来用いられていた大きな凹部70は、躯体72側からコンクリートが入り込んだ突起74が設けられ、抵抗力を確保している。この方法では、凹部70を近接して設けると1個当たりの抵抗力が低下する問題があり、疎な間隔で大きな凹部70を設ける必要がある。このような場合、極限抵抗力を超えると、地盤改良体74の凹部70の周囲に受働破壊が発生すると同時に、応力集中に伴う圧縮破壊92が発生する。この結果、抵抗力が急激に低下する。
Next, advantages of forming a plurality of uneven portions will be described.
As shown in FIG. 4A, the conventionally used large concave portion 70 is provided with a protrusion 74 into which concrete has entered from the side of the housing 72, and ensures resistance. In this method, if the recesses 70 are provided close to each other, there is a problem in that the resistance per unit decreases, and it is necessary to provide the large recesses 70 at sparse intervals. In such a case, when the ultimate resistance is exceeded, passive fracture occurs around the recess 70 of the ground improvement body 74, and at the same time, a compressive fracture 92 due to stress concentration occurs. As a result, the resistance force rapidly decreases.

一方、図4(B)に示すように、本実施の形態では、凹部76と凸部78を繰り返し設けることで、水平力Rを複数の凹部76と凸部78に分散させることができるため、応力集中による圧縮破壊を防止することができ、山状の噛み合いを保持できる。この結果、残留応力を高めることができる。   On the other hand, as shown in FIG. 4B, in the present embodiment, by repeatedly providing the concave portions 76 and the convex portions 78, the horizontal force R can be dispersed in the plurality of concave portions 76 and the convex portions 78. Compressive fracture due to stress concentration can be prevented, and mountain-like engagement can be maintained. As a result, the residual stress can be increased.

これにより、大地震の終局時には、地盤改良体90の頭部で、実線94の位置でせん断破壊を生じさせてエネルギーを吸収させることができる。また、大地震後の余震に対しては、抵抗力を確保できるように、残留抵抗力を高めた滑り止め機構を提供することができる。   Thereby, at the end of a large earthquake, the head of the ground improvement body 90 can cause a shear fracture at the position of the solid line 94 to absorb energy. In addition, it is possible to provide an anti-slip mechanism with increased residual resistance so as to ensure resistance against aftershocks after a large earthquake.

更に、躯体16と地盤改良体12が接触する表面積を大きくすることができる。また、地盤改良体12の頭部の掘削量を削減できるので、躯体コンクリート量を減らすことができる。 Furthermore, the surface area which the housing 16 and the ground improvement body 12 contact can be enlarged. Moreover, since the amount of excavation of the head of the ground improvement body 12 can be reduced, the amount of concrete frame can be reduced.

(第4の実施の形態)
図5(A)(B)の断面図に示すように、第4の実施の形態に係る地盤改良体30は、地盤改良体30の頭部に凹凸部31を有する。図5(B)は滑り止め機構88の側面図であり、図5(A)は、図5(B)のX−X線断面図である。
(Fourth embodiment)
As shown in the cross-sectional views of FIGS. 5A and 5B, the ground improvement body 30 according to the fourth embodiment has an uneven portion 31 at the head of the ground improvement body 30. 5B is a side view of the anti-slip mechanism 88, and FIG. 5A is a cross-sectional view taken along line XX of FIG. 5B.

滑り止め機構88は、地盤改良体30と躯体86を有し、地盤改良体30は、原地盤を改良した柱状の地盤改良体を互いにラップさせた壁体として構成されている。 The anti-slip mechanism 88 includes a ground improvement body 30 and a frame 86, and the ground improvement body 30 is configured as a wall body obtained by wrapping columnar ground improvement bodies obtained by improving the original ground.

地盤改良体30の凹凸部31の凹部32は、頭部を壁体の幅方向に横断する溝状に形成されている。また、凹部32には、躯体86のコンクリートが入り込み、凹部32が横断する方向は、平面視において、頭部の長さ方向に対し角度βを持って交差している。 The recess 32 of the uneven portion 31 of the ground improvement body 30 is formed in a groove shape that crosses the head in the width direction of the wall body. Further, the concrete of the casing 86 enters the recess 32, and the direction in which the recess 32 crosses intersects the longitudinal direction of the head with an angle β in plan view.

これにより、地震時の水平力Rを躯体86から地盤改良体30へ伝達させる。このとき、地盤改良体30の面外方向の水平力Rに対する抵抗力の剛性は低いものの、躯体86の基礎スラブと地盤改良体30を一体化させることで、地盤改良体30の壁体に囲まれた地盤内の変形や、液状化の発生防止の効果を期待することができる。本実施の形態は、面内方向の水平抵抗力と同時に、面外方向に対して水平抵抗力を発現することができる。   Thereby, the horizontal force R at the time of an earthquake is transmitted from the frame 86 to the ground improvement body 30. At this time, although the rigidity of the resistance force to the horizontal force R in the out-of-plane direction of the ground improvement body 30 is low, the foundation slab of the frame 86 and the ground improvement body 30 are integrated to be surrounded by the wall body of the ground improvement body 30. Therefore, it can be expected to prevent deformation of the ground and prevent liquefaction. In the present embodiment, the horizontal resistance force can be expressed in the out-of-plane direction simultaneously with the horizontal resistance force in the in-plane direction.

他の構成は、第2の実施の形態と同じであり説明は省略する。
なお、図5(C)に示すように、凹部32の角度βは、鋭角に限定されることはなく、鋭角の角度βと鈍角の角度γを交互に組み合わせてもよい。更に、鈍角γのみとしてもよい。
Other configurations are the same as those of the second embodiment, and a description thereof will be omitted.
As shown in FIG. 5C, the angle β of the recess 32 is not limited to an acute angle, and the acute angle β and the obtuse angle γ may be combined alternately. Furthermore, only the obtuse angle γ may be used.

(第5の実施の形態)
図6の断面図に示すように、第5の実施の形態に係る地盤改良体40は、地盤改良体40の頭部に凹凸部45を有する。図6(B)は滑り止め機構96の側面図であり、図6(A)は、図6(B)のX−X線断面図である。
(Fifth embodiment)
As shown in the cross-sectional view of FIG. 6, the ground improvement body 40 according to the fifth embodiment has an uneven portion 45 on the head of the ground improvement body 40. 6B is a side view of the anti-slip mechanism 96, and FIG. 6A is a cross-sectional view taken along line XX of FIG. 6B.

滑り止め機構96は、地盤改良体40と躯体43を有し、地盤改良体40は、原地盤を改良した柱状の地盤改良体の外周部を互いにラップさせた壁体として構成されている。
外周部がラップされたラップ部には、地盤改良体40の壁体の長さ方向に対して直交する方向に、矩形状に形成された凹部42が配置されている。凹部42には、躯体43のコンクリートが入り込み、地震時の水平力Rを躯体43から地盤改良体40へ伝達させる。
The anti-slip mechanism 96 includes a ground improvement body 40 and a frame 43, and the ground improvement body 40 is configured as a wall body in which the outer peripheral portions of columnar ground improvement bodies obtained by improving the original ground are wrapped together.
In the lap portion where the outer peripheral portion is wrapped, a concave portion 42 formed in a rectangular shape is arranged in a direction orthogonal to the length direction of the wall body of the ground improvement body 40. The concrete of the frame 43 enters the recess 42 and transmits the horizontal force R at the time of the earthquake from the frame 43 to the ground improvement body 40.

これにより、地盤改良体40の頭部に形成する凹凸部の掘削、除去作業を省力化できる。また、水平耐力Fは、構築する矩形状の凹部の深さD、幅W、及び厚さTで決定することができ、必要最小限の掘削量で滑り止め機構96を構築できる。
他の構成は、第2の実施の形態と同じであり説明は省略する。
Thereby, the excavation and removal work of the uneven part formed on the head of the ground improvement body 40 can be saved. Further, the horizontal proof stress F can be determined by the depth D, width W, and thickness T of the rectangular recess to be constructed, and the anti-slip mechanism 96 can be constructed with the minimum necessary amount of excavation.
Other configurations are the same as those of the second embodiment, and a description thereof will be omitted.

(第6の実施の形態)
図7の断面図に示すように、第6の実施の形態に係る地盤改良体44は、地盤改良体44の頭部に凹凸部49を有する。図7(B)は滑り止め機構98の側面図であり、図7(A)は、図7(B)のX−X線断面図である。
(Sixth embodiment)
As shown in the cross-sectional view of FIG. 7, the ground improvement body 44 according to the sixth embodiment has an uneven portion 49 at the head of the ground improvement body 44. 7B is a side view of the anti-slip mechanism 98, and FIG. 7A is a cross-sectional view taken along the line XX of FIG. 7B.

滑り止め機構98は、地盤改良体44と躯体48を有し、地盤改良体44は、原地盤を改良した柱状の地盤改良体の外周部を互いにラップさせた壁体として構成されている。地盤改良体44の頭部には凹凸部49が形成され、柱状の地盤改良体44の中心部には、円柱状に形成された凹部46が、壁体の頭部から深さD2で設けられている。凹部46には、躯体48のコンクリートが入り込み、地震時の水平力Rを躯体48から地盤改良体44へ伝達させる。 The anti-slip mechanism 98 includes a ground improvement body 44 and a frame 48, and the ground improvement body 44 is configured as a wall body in which outer peripheral portions of columnar ground improvement bodies obtained by improving the original ground are wrapped together. An uneven portion 49 is formed at the head of the ground improvement body 44, and a concave portion 46 formed in a columnar shape is provided at a depth D2 from the head of the wall body at the center of the columnar ground improvement body 44. ing. The concrete of the frame 48 enters the recess 46, and the horizontal force R at the time of the earthquake is transmitted from the frame 48 to the ground improvement body 44.

このように、滑り止め機構98の凹部46を円柱状とすることで、地盤改良体44が高強度に形成された場合であっても、コアカッターと呼ばれる専用の器具を用いることができ、容易に円柱状の凹部46を施工でき、施工性が向上する。
他の構成は、第2の実施の形態と同じであり説明は省略する。
In this way, by making the recess 46 of the anti-slip mechanism 98 cylindrical, a dedicated instrument called a core cutter can be used even when the ground improvement body 44 is formed with high strength. Thus, the cylindrical recess 46 can be constructed to improve the workability.
Other configurations are the same as those of the second embodiment, and a description thereof will be omitted.

(第7の実施の形態)
図8の滑り止め機構66の断面図に示すように、第7の実施の形態に係る地盤改良体54は、地盤改良体54の頭部に凹凸部60を有する。滑り止め機構66は、地盤改良体54と躯体68を有し、地盤改良体54は、原地盤を改良した柱状の地盤改良体の外周部を互いにラップさせた壁体として構成され、躯体68のコンクリートと凹凸部60で接合されている。
(Seventh embodiment)
As shown in the cross-sectional view of the anti-slip mechanism 66 in FIG. 8, the ground improvement body 54 according to the seventh embodiment has an uneven portion 60 on the head of the ground improvement body 54. The anti-slip mechanism 66 includes a ground improvement body 54 and a frame 68, and the ground improvement body 54 is configured as a wall body in which the outer peripheral portions of columnar ground improvement bodies obtained by improving the original ground are wrapped together. It is joined to the concrete with the uneven portion 60.

凹凸部60は、凸部56の両側に形成される凹部58、62の深さを、それぞれ異ならせている。即ち、凸部56の一方の端部には深さH3の凹部58が形成され、他方の端部には、深さH3より浅い深さH4の凹部62が形成されている。 The concave / convex portion 60 has different depths of the concave portions 58 and 62 formed on both sides of the convex portion 56. That is, a concave portion 58 having a depth H3 is formed at one end portion of the convex portion 56, and a concave portion 62 having a depth H4 shallower than the depth H3 is formed at the other end portion.

これにより、凸部56に発生するせん断破壊面64は、破線64で示すように、凹部58側の端部で発生したせん断破壊面64と、凹部62側の端部で発生したせん断破壊面64が、途中で角度をもって連続する特性となる。 As a result, the shear fracture surface 64 generated at the convex portion 56 includes a shear fracture surface 64 generated at the end portion on the concave portion 58 side and a shear fracture surface 64 generated on the end portion on the concave portion 62 side, as indicated by a broken line 64. However, it becomes the characteristic which continues with an angle on the way.

これにより、せん断破壊面64が水平方向に直線状に発生するのを防止でき、地盤改良体54の水平耐力Fを増大させることができる。
他の構成は、第2の実施の形態と同じであり説明は省略する。
Thereby, it can prevent that the shear fracture surface 64 generate | occur | produces linearly in a horizontal direction, and can increase the horizontal proof stress F of the ground improvement body 54. FIG.
Other configurations are the same as those of the second embodiment, and a description thereof will be omitted.

(第8の実施の形態)
第8の実施の形態に係る地盤改良体は、図1に示す地盤改良体12の頭部に、靭性を補強する繊維が混入された構成である。外観、形状は、既述の地盤改良体12と同一であり、図示及び説明は省略し、相違点である繊維を中心に説明する。
(Eighth embodiment)
The ground improvement body which concerns on 8th Embodiment is the structure by which the fiber which reinforces toughness was mixed in the head of the ground improvement body 12 shown in FIG. The appearance and shape are the same as those of the ground improvement body 12 described above, and illustration and description thereof are omitted, and the description will focus on fibers that are different points.

図9に示すように、繊維100を地盤改良体12に混入することにより、繊維100の摩擦抵抗でせん断破壊面106が補強される。   As shown in FIG. 9, by mixing the fiber 100 into the ground improvement body 12, the shear fracture surface 106 is reinforced by the frictional resistance of the fiber 100.

せん断破壊面106を補強するために混入する繊維100は、破断強度が200〜1200MPaでヤング係数が2〜15GPaの機械的性質を有するものが望ましい。例えば、ポリプロピレン繊維が該当する。   The fiber 100 mixed to reinforce the shear fracture surface 106 preferably has mechanical properties with a breaking strength of 200 to 1200 MPa and a Young's modulus of 2 to 15 GPa. For example, polypropylene fiber is applicable.

また、繊維100の直径は10〜50μmの範囲内が望ましい。これは、地盤改良体12と繊維100の接触を十分に確保するためには、ある程度の大きさが必要なこと、一方、繊維100の直径が大きくなり過ぎると、繊維100を屈曲させて相互に絡み合わせるのが困難になるため、大きさに限界があるためである。 Further, the diameter of the fiber 100 is preferably within a range of 10 to 50 μm. This is because a certain amount of size is necessary to sufficiently ensure the contact between the ground improvement body 12 and the fiber 100. On the other hand, if the diameter of the fiber 100 becomes too large, the fiber 100 is bent to each other. This is because the size is limited because it becomes difficult to intertwine.

なお、繊維100の形状が直線状では、直径が適切な大きさであっても、繊維100同士が相互に絡み合うことはなく、十分大きな摩擦抵抗を得ることはできず、図9(A)に示すように、繊維100と繊維100が相互に絡み合うよう混入させることが望ましい。   In addition, when the shape of the fiber 100 is a straight line, even if the diameter is an appropriate size, the fibers 100 are not entangled with each other, and a sufficiently large frictional resistance cannot be obtained, as shown in FIG. As shown, it is desirable to mix fibers 100 and fibers 100 so that they are intertwined with each other.

これにより、地盤改良体12と繊維100の間に十分大きな摩擦抵抗を作用させることができる。この摩擦抵抗により、地盤改良体12の表面での破壊面106の発生、破壊面106の成長を抑制できる。即ち、局所的な応力が集中する頭部の靭性を補強することができる。また、耐震性も向上できる。更に、繊維100を補強していない地盤改良体の下部には、荷重分散効果で均等な水平力が伝わるようにすることができる。 Thereby, a sufficiently large frictional resistance can be applied between the ground improvement body 12 and the fiber 100. By this frictional resistance, generation of the fracture surface 106 on the surface of the ground improvement body 12 and growth of the fracture surface 106 can be suppressed. That is, the toughness of the head where local stress is concentrated can be reinforced. In addition, earthquake resistance can be improved. Furthermore, a uniform horizontal force can be transmitted to the lower part of the ground improvement body in which the fibers 100 are not reinforced by the load dispersion effect.

他の構成は、第2の実施の形態と同じであり説明は省略する。   Other configurations are the same as those of the second embodiment, and a description thereof will be omitted.

10 滑り止め機構
12 地盤改良体
14 凸部
16 躯体
18 せん断破壊面
20 水平面
22 凹部
24 凹凸部
28 地盤改良体
104 繊維
DESCRIPTION OF SYMBOLS 10 Anti-slip mechanism 12 Ground improvement body 14 Convex part 16 Housing 18 Shear fracture surface 20 Horizontal surface 22 Concave part 24 Concavity and convexity part 28 Ground improvement body 104 Fiber

Claims (14)

頭部に凹凸部が形成され、凸部を構造物の躯体に呑み込ませた地盤改良体で前記構造物を支持し、水平力を前記躯体から前記地盤改良体へ伝達する、地盤改良体の水平耐力算定方法であって、
前記水平力により、前記凸部が破壊されるときに生じるせん断破壊面の水平面に対する傾斜角度をせん断面傾斜角度をαとし、前記せん断面傾斜角度αに沿って構造物が変位するときに、前記構造物が重力に逆らって変位するときに消費される仕事量を、前記地盤改良体の水平耐力に加算する水平耐力算定方法。
An uneven portion is formed in the head, the structure is supported by a ground improvement body in which the convex portion is swallowed into the structure body, and horizontal force is transmitted from the body to the ground improvement body. Yield calculation method,
When the horizontal force causes the inclination angle of the shear fracture surface generated when the convex portion is destroyed with respect to the horizontal plane to be the shear surface inclination angle α, and when the structure is displaced along the shear surface inclination angle α, A horizontal strength calculation method for adding a work amount consumed when a structure is displaced against gravity to a horizontal strength of the ground improvement body.
前記水平耐力の算定方法は、
前記せん断面傾斜角度αと前記地盤改良体の水平耐力F(α)の関係を示す水平耐力特性を、下式で算出する水平耐力特性算出ステップと、
前記水平耐力特性から、前記水平耐力F(α)を最も小さくする前記せん断面傾斜角度αpを求め、前記せん断面傾斜角度αpにおける水平耐力F(αp)を、地盤改良体の水平耐力とする最小耐力算出ステップと、
を有する請求項1に記載の水平耐力算定方法。

Figure 0005542633

ここに
Pf:地盤改良体と躯体境界面の摩擦抵抗面における鉛直力(kN)
Ps:地盤改良体のせん断抵抗面における鉛直力(kN)
α:地盤改良体のせん断面傾斜角度(度)
φ:地盤改良体の摩擦角(度)
μ:地盤改良体と躯体境界面の摩擦係数(−)
S:地盤改良体のせん断面の1個当たりの面積(m

Figure 0005542633

De:地盤改良体の奥行き方向の有効幅(m)
La:地盤改良体の凸部の水平長さ(m)
H :地盤改良体の凸部の高さ(m)
Fc:地盤改良体のコンクリートのせん断強度(kN/m
N:地盤改良体の凸部の総数(個)
The calculation method of the horizontal proof stress is:
A horizontal yield characteristic calculating step for calculating a horizontal yield characteristic indicating the relationship between the shear plane inclination angle α and the horizontal yield strength F (α) of the ground improvement body, according to the following equation:
The shear surface inclination angle αp that minimizes the horizontal strength F (α) is obtained from the horizontal strength characteristics, and the horizontal strength F (αp) at the shear surface inclination angle αp is defined as the minimum horizontal strength of the ground improvement body. Yield calculation step,
The horizontal proof stress calculation method of Claim 1 which has these.

Figure 0005542633

Where Pf: vertical force (kN) on the frictional resistance surface between the ground improvement body and the body boundary
Ps: Vertical force (kN) on the shear resistance surface of the ground improvement body
α: Shear surface inclination angle of ground improvement body (degree)
φ: Friction angle of ground improvement body (degree)
μ: Coefficient of friction between ground improvement body and frame interface (-)
S: Area per one shear surface of the ground improvement body (m 2 )

Figure 0005542633

De: Effective width in the depth direction of ground improvement body (m)
La: Horizontal length of convex part of ground improvement body (m)
H: Height of convex part of ground improvement body (m)
Fc: Shear strength (kN / m 2 ) of ground improvement concrete
N: Total number of convex parts of the ground improvement body (pieces)
前記水平耐力特性算出ステップと、
予め設定した、せん断面傾斜角度αqにおける前記水平耐力F(αq)が最小値となるよう、前記凹凸部の凸部の高さHを調整し、調整後の前記高さHに対応させた前記水平耐力特性を前記(1)式で算出する凹凸部調整ステップと、
最小値とされた前記水平耐力F(αq)を、前記地盤改良体の水平耐力とする最小耐力算出ステップと、
を有する請求項2に記載の水平耐力算定方法。
The horizontal yield strength calculating step;
The height H of the convex portion of the concavo-convex portion is adjusted so as to correspond to the height H after adjustment so that the horizontal proof stress F (αq) at a preset shear plane inclination angle αq is a minimum value. An uneven portion adjusting step for calculating the horizontal proof stress characteristic by the equation (1),
A minimum proof stress calculating step in which the horizontal proof stress F (αq) set as the minimum value is a horizontal proof stress of the ground improvement body;
The horizontal proof stress calculation method of Claim 2 which has these.
前記せん断面傾斜角度αqを0度(水平面)とする請求項3に記載の水平耐力算定方法。 The horizontal proof stress calculation method according to claim 3, wherein the shear plane inclination angle αq is set to 0 degree (horizontal plane). 前記せん断面傾斜角度αqを10〜45度の範囲内のいずれかの角度とする請求項3に記載の水平耐力算定方法。 The horizontal proof stress calculation method according to claim 3, wherein the shear plane inclination angle αq is any angle within a range of 10 to 45 degrees. 頭部に凹凸部を形成し、凸部を躯体に呑み込ませ水平力を前記躯体へ伝達する地盤改良体であって、
前記水平力により、凹部と隣り合う前記凸部が破壊されるときに生じるせん断破壊面の水平面に対する傾斜角度をせん断面傾斜角度αとし、下記(2)式で算出される前記せん断面傾斜角度αと前記地盤改良体の水平耐力F(α)の関係を示す水平耐力特性を用いて、予め設定した、せん断面傾斜角度αqにおける前記水平耐力F(αq)が最小値となるよう、前記凹凸部における前記凸部の高さH、前記凸部の水平長さLa、及び前記凸部の総数Nが調整されている地盤改良体。

Figure 0005542633

ここに、
Pf:地盤改良体と躯体境界面の摩擦抵抗面における鉛直力(kN)
Ps:地盤改良体のせん断抵抗面における鉛直力(kN)
α:地盤改良体のせん断面傾斜角度(度)
φ:地盤改良体の摩擦角(度)
μ:地盤改良体と躯体境界面の摩擦係数(−)
S:地盤改良体のせん断面の1個当たりの面積(m

Figure 0005542633

De:地盤改良体の奥行き方向の有効幅(m)
La:地盤改良体の凸部の水平長さ(m)
H :地盤改良体の凸部の高さ(m)
Fc:地盤改良体のコンクリートのせん断強度(kN/m
N:地盤改良体の凸部の総数(個)
Forming a concavo-convex portion on the head, and squeezing the convex portion into the housing to transmit a horizontal force to the housing;
The shear surface inclination angle α calculated by the following equation (2) is defined as the inclination angle α of the shear fracture surface with respect to the horizontal plane generated when the convex portion adjacent to the concave portion is destroyed by the horizontal force. And the horizontal proof stress indicating the relationship between the horizontal proof strength F (α) of the ground improvement body and the uneven portion so that the horizontal proof strength F (αq) at the shear plane inclination angle αq is set to a minimum value. The ground improvement body in which the height H of the said convex part in H, the horizontal length La of the said convex part, and the total number N of the said convex part are adjusted.

Figure 0005542633

here,
Pf: Vertical force (kN) at the frictional resistance surface between the ground improvement body and the body boundary
Ps: Vertical force (kN) on the shear resistance surface of the ground improvement body
α: Shear surface inclination angle of ground improvement body (degree)
φ: Friction angle of ground improvement body (degree)
μ: Coefficient of friction between ground improvement body and frame interface (-)
S: Area per one shear surface of the ground improvement body (m 2 )

Figure 0005542633

De: Effective width in the depth direction of ground improvement body (m)
La: Horizontal length of convex part of ground improvement body (m)
H: Height of convex part of ground improvement body (m)
Fc: Shear strength (kN / m 2 ) of ground improvement concrete
N: Total number of convex parts of the ground improvement body (pieces)
前記せん断面傾斜角度αqを0度(水平面)とする請求項6に記載の地盤改良体。 The ground improvement body according to claim 6, wherein the shear plane inclination angle αq is 0 degree (horizontal plane). 前記せん断面傾斜角度αqを10〜45度の範囲内のいずれかの角度とする請求項6に記載の地盤改良体。 The ground improvement body according to claim 6, wherein the shear surface inclination angle αq is any angle within a range of 10 to 45 degrees. 前記地盤改良体は、地盤を改良した柱状の改良柱を互いにラップさせた壁体として構成され、前記凹凸部の凹部は、前記地盤改良体の頭部を前記壁体の幅方向に横断する溝状に形成され、前記凹部が前記頭部を横断する方向は、平面視において、前記壁体の長さ方向に対し角度を持って交差している請求項6〜8のいずれか1項に記載の地盤改良体。   The ground improvement body is configured as a wall body in which columnar improvement pillars having improved ground are wrapped together, and the concave portion of the uneven portion is a groove that crosses the head of the ground improvement body in the width direction of the wall body. The direction which the said recessed part crosses the said head is formed in shape, and cross | intersects at an angle with respect to the length direction of the said wall body in planar view. Ground improvement body. 前記改良柱がラップされたラップ部には、前記壁体の長さ方向に対して直交し、矩形状に形成された前記凹部が配置されている請求項6〜8のいずれか1項に記載の地盤改良体。   9. The concave portion formed in a rectangular shape is disposed in the wrap portion where the improved pillar is wrapped, and is orthogonal to the length direction of the wall body. Ground improvement body. 前記改良柱の中心部には、円柱状に形成された前記凹部が、前記壁体の頭部から所定の深さで設けられている請求項6〜8のいずれか1項に記載の地盤改良体。   The ground improvement according to any one of claims 6 to 8, wherein the recess formed in a columnar shape is provided at a predetermined depth from a head of the wall body at a center portion of the improvement pillar. body. 隣接する前記凹部の深さを異ならせた請求項6〜11のいずれか1項に記載の地盤改良体。   The ground improvement body of any one of Claims 6-11 which varied the depth of the said adjacent recessed part. 前記地盤改良体の頭部には、前記壁体の長さ方向に、前記凹凸部が複数形成されている請求項6〜12のいずれか1項に記載の地盤改良体。   The ground improvement body of any one of Claims 6-12 in which the said uneven | corrugated | grooved part is formed in multiple in the length direction of the said wall body in the head of the said ground improvement body. 前記地盤改良体の頭部には、靭性を補強する繊維が混入されている請求項6〜13のいずれか1項に記載の地盤改良体。   The ground improvement body of any one of Claims 6-13 in which the fiber which reinforces toughness is mixed in the head of the ground improvement body.
JP2010258115A 2010-11-18 2010-11-18 Ground improvement body and horizontal strength calculation method of ground improvement body Active JP5542633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010258115A JP5542633B2 (en) 2010-11-18 2010-11-18 Ground improvement body and horizontal strength calculation method of ground improvement body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010258115A JP5542633B2 (en) 2010-11-18 2010-11-18 Ground improvement body and horizontal strength calculation method of ground improvement body

Publications (2)

Publication Number Publication Date
JP2012107446A JP2012107446A (en) 2012-06-07
JP5542633B2 true JP5542633B2 (en) 2014-07-09

Family

ID=46493325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010258115A Active JP5542633B2 (en) 2010-11-18 2010-11-18 Ground improvement body and horizontal strength calculation method of ground improvement body

Country Status (1)

Country Link
JP (1) JP5542633B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042820A (en) * 2013-08-26 2015-03-05 株式会社竹中工務店 Foundation structure
JP6739977B2 (en) * 2015-04-30 2020-08-12 鹿島建設株式会社 Flow control method of slope ground and flow control structure of slope ground
JP6585996B2 (en) * 2015-11-17 2019-10-02 株式会社竹中工務店 Ground improvement body connection structure
JP6866140B2 (en) * 2016-12-08 2021-04-28 株式会社竹中工務店 Molding method of uneven part for ground improvement body
JP7098436B2 (en) * 2018-06-25 2022-07-11 株式会社フジタ Foundation structure of the building

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2505976B2 (en) * 1993-11-16 1996-06-12 株式会社アスク研究所 How to create an underground structure
JP3156067B2 (en) * 1994-06-01 2001-04-16 清水建設株式会社 Liquefaction control basic structure
JP3765000B2 (en) * 1998-03-10 2006-04-12 株式会社竹中工務店 Ground improvement foundation method for soft ground.

Also Published As

Publication number Publication date
JP2012107446A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5542633B2 (en) Ground improvement body and horizontal strength calculation method of ground improvement body
JP4794390B2 (en) Pile foundation reinforcement structure and reinforcement method
JP5778968B2 (en) Improved fiber mixture
JP5728301B2 (en) Foundation structure
JP6021993B1 (en) Rigid connection structure of lower end of support and concrete pile
JP2016199861A (en) Pile foundation structure
JP5296585B2 (en) Soil cement improved structure and piled raft foundation
JP5095944B2 (en) Method for producing multistage expanded cast-in-place concrete pile and evaluation method for multistage expanded cast-in-place concrete pile
JP2012102573A (en) Construction method of horizontal force transmission structure
JP6238088B2 (en) Improved ground and ground improvement method
JP4514835B2 (en) Ground improvement method
JP2020172809A (en) Reinforcement structure and reinforcement method for masonry structure
JP5697854B2 (en) Liquefaction countermeasure structure
JP2007277830A (en) Core material, continuous underground wall, soil cement wall, continuous underground wall pile, soil cement wall pile, cast-in-place concrete pile, underground structure, and foundation structure of building
JP2014141812A (en) Method for improving ground, and ground improvement structure
JP5684069B2 (en) Pile structure
JP5684615B2 (en) Composite pile and composite pile construction method
JP5385842B2 (en) Gibber device for joining concrete members to steel members
JP7529051B2 (en) Construction method of steel pipe soil cement composite pile, steel pipe pile, and steel pipe soil cement composite pile
JP2014224355A (en) Embankment reinforcement structure
JP7467815B2 (en) Ground improvement structure
JP6618402B2 (en) Foundation structure design method and foundation structure
JP7506964B2 (en) Ground improvement composite pile foundation, ground improvement composite pile combined independent footing foundation, and design method for ground improvement composite pile combined independent footing foundation
JP4595545B2 (en) Joint structure of footing and pile
Sawamura et al. Mechanical behavior of three-hinge precast arch culvert in construction process through model experiment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140507

R150 Certificate of patent or registration of utility model

Ref document number: 5542633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150