JP5521428B2 - Reaction vessel for manufacturing glass particulate deposits - Google Patents

Reaction vessel for manufacturing glass particulate deposits Download PDF

Info

Publication number
JP5521428B2
JP5521428B2 JP2009179270A JP2009179270A JP5521428B2 JP 5521428 B2 JP5521428 B2 JP 5521428B2 JP 2009179270 A JP2009179270 A JP 2009179270A JP 2009179270 A JP2009179270 A JP 2009179270A JP 5521428 B2 JP5521428 B2 JP 5521428B2
Authority
JP
Japan
Prior art keywords
door
furnace body
reaction vessel
sealing material
mating surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009179270A
Other languages
Japanese (ja)
Other versions
JP2011032123A (en
Inventor
智哉 鈴木
希一郎 川崎
和昌 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009179270A priority Critical patent/JP5521428B2/en
Publication of JP2011032123A publication Critical patent/JP2011032123A/en
Application granted granted Critical
Publication of JP5521428B2 publication Critical patent/JP5521428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、酸水素火炎によりガラス微粒子をターゲットに吹き付け堆積させる反応容器に関し、特に、異物汚染の少ない光ファイバ用ガラス母材の製造に用いて好適なものである。   The present invention relates to a reaction vessel in which glass particles are sprayed and deposited on a target with an oxyhydrogen flame, and is particularly suitable for use in the production of an optical fiber glass preform with little contamination by foreign matter.

光ファイバプリフォーム等のガラス製品の製造では、反応容器内のターゲットに対向させてガラス微粒子合成用バーナを配置し、ターゲットの表面にガラス微粒子を層状に堆積させて(スス付けして)ガラス多孔質体(スス体)を得る。反応容器には余剰のススを排出する排気装置が接続される。反応容器は、例えば直方体形状に形成され、耐熱温度が200〜300℃の金属製炉体を有し、その作業者面側の一面(開口面)に出発ロッドの取り付けや内部清掃などを行うための開口部を有する。開口面には開口部の周囲に四角枠状の合わせ面が形成される。炉体にはヒンジ(蝶番)を介して扉が開閉自在に取り付けられ、扉は開口面を覆って開口部を密閉する。すなわち、開口部周囲の合わせ面と、扉の合わせ面とが気密状態に密接される。   In the manufacture of glass products such as optical fiber preforms, a glass particle synthesis burner is placed facing the target in the reaction vessel, and glass particles are deposited on the surface of the target in layers (sooted). Obtain a solid body (soot body). An exhaust device that discharges excess soot is connected to the reaction vessel. The reaction vessel is formed in, for example, a rectangular parallelepiped shape, has a metal furnace body with a heat-resistant temperature of 200 to 300 ° C., and is used for attaching a starting rod, cleaning the inside, etc. on one side (opening surface) of the operator side Having an opening. A square frame-shaped mating surface is formed around the opening on the opening surface. A door is openably / closably attached to the furnace body via a hinge, and the door covers the opening and seals the opening. That is, the mating surface around the opening and the mating surface of the door are brought into an airtight state.

図5(a)は従来の反応容器における開口面開放時の断面図、(b)は開口面密閉時の断面図である。
従来の反応容器における開口面の密閉構造は、図5(a)に示すように、内面が金属製(例えばニッケル)隔壁501に覆われた炉体503の開口面505が、不図示のヒンジによって回動自在に支持された扉507によって開閉される。開口面505の周囲には複数のクランプ部材509が設けられる。クランプ部材509は、炉体503に固定されるブラケット511と、ブラケット511に支持される支持軸513と、支持軸513に回動自在に支持され揺動可能となる揺動軸515と、揺動軸515に螺合されるクランプハンドル517とからなる。
FIG. 5A is a cross-sectional view of the conventional reaction vessel when the opening surface is opened, and FIG. 5B is a cross-sectional view when the opening surface is sealed.
As shown in FIG. 5 (a), the opening structure 505 of the furnace body 503 whose inner surface is covered with a metal (for example, nickel) partition wall 501 is formed by a hinge (not shown). It is opened and closed by a door 507 that is rotatably supported. A plurality of clamp members 509 are provided around the opening surface 505. The clamp member 509 includes a bracket 511 fixed to the furnace body 503, a support shaft 513 supported by the bracket 511, a swing shaft 515 that is rotatably supported by the support shaft 513, and a swing shaft. The clamp handle 517 is screwed onto the shaft 515.

上記密閉構造において、炉体503の開口面505を密閉するには、図5(b)に示すように、扉507を閉め、揺動軸515を炉体503及び扉507の枠材519,521に切り欠かれた受入部523,525に進入させ、クランプハンドル517を締め込み方向に回転することで、開口面505が気密状態に密閉される。   In the above sealing structure, in order to seal the opening surface 505 of the furnace body 503, as shown in FIG. 5B, the door 507 is closed, and the swing shaft 515 is attached to the furnace body 503 and the frame members 519 and 521 of the door 507. The opening 505 is sealed in an airtight state by entering the receiving portions 523 and 525 that are notched in the direction and rotating the clamp handle 517 in the tightening direction.

特開2000−169174号公報JP 2000-169174 A

しかしながら、扉507は、200〜300℃前後の高熱となるため、熱による部材の歪みにより若干の隙間が生じ、充分に気密性を上げることができない。また、排気装置の接続される炉体503内は、若干の負圧となるため、反応容器外に浮遊している異物が扉507の隙間(炉体503と扉507との合わせ面527,529の間隙)を通じて反応容器内に進入し、スス体に付着する。スス付け時に、スス体の内部や表面に異物が混入または付着すると、ガラス化した際の気泡発生の原因となり、線引時の断線を誘発し歩留を低下させる不具合が生じる。反応容器を密閉するには、例えば、特許文献1に開示されるように扉507に密閉材を設けることが望ましいが、扉507は高温になるため、高温に耐え、且つ柔軟性を持つ密閉材を見つけるのが困難であった。また、密閉材の素材性能のみならず、高温変形時の歪みを吸収しながら、密閉性能が維持できる新たな密閉構造の開発も望まれていた。   However, since the door 507 has a high heat of about 200 to 300 ° C., a slight gap is generated due to distortion of the member due to heat, and the airtightness cannot be sufficiently improved. In addition, since the inside of the furnace body 503 to which the exhaust device is connected has a slight negative pressure, foreign matter floating outside the reaction container is caused by the gap between the doors 507 (the mating surfaces 527 and 529 between the furnace body 503 and the door 507). It enters the reaction vessel through the gap between the two and adheres to the soot body. When foreign matter enters or adheres to the inside or surface of the soot body at the time of sooting, it may cause bubbles when vitrified, causing a problem of inducing breakage during drawing and reducing yield. In order to seal the reaction vessel, for example, it is desirable to provide a sealing material on the door 507 as disclosed in Patent Document 1. However, since the door 507 is at a high temperature, the sealing material is resistant to high temperatures and has flexibility. It was difficult to find. In addition, the development of a new sealed structure that can maintain the sealing performance while absorbing not only the material performance of the sealing material but also distortion at the time of high-temperature deformation has been desired.

本発明は上記状況に鑑みてなされたもので、その目的は、炉体と扉の密閉性を高めて異物の混入を防止できるガラス微粒子堆積体製造用反応容器を提供し、もって、光ファイバ用ガラス母材における異物汚染の低減を図ることにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a reaction vessel for producing a glass particulate deposit body that can improve the sealing performance of a furnace body and a door and prevent the entry of foreign matter, and thus for an optical fiber. The object is to reduce the contamination of foreign substances in the glass base material.

本発明に係る上記目的は、下記構成により達成される。
(1) 酸水素火炎によりガラス微粒子をターゲットに吹き付け堆積させるバーナを内部に有する炉体と、該炉体の作業者側開口面を覆う扉とを備え、前記炉体と該扉との合わせ面に第1の密閉材が設けられたガラス微粒子堆積体製造用反応容器であって、
前記合わせ面に対し垂直となる外周囲に、前記合わせ面の端部を外側から覆うように該端部に取り付けられる耐熱性を有する第2の密閉材を具備し、
前記第2の密閉材は、前記合わせ面の端部を外側から覆うように設置されたフレーム内面に配設され、
前記フレームの外側には、前記扉を閉じた状態に保ち、前記炉体の端部と前記扉の端部とを挟み、前記フレームを前記合わせ面に押し付けるための断面コの字形状の複数のクランプ部材が設けられていることを特徴とするガラス微粒子堆積体製造用反応容器。
The above object of the present invention is achieved by the following configuration.
(1) A furnace body having a burner that internally burns and deposits glass particles on a target by an oxyhydrogen flame, and a door that covers an opening surface on the operator side of the furnace body, and a mating surface of the furnace body and the door A reaction vessel for producing a glass particulate deposit, wherein the first sealing material is provided with
A second sealing material having heat resistance attached to the end portion so as to cover the end portion of the mating surface from the outside on the outer periphery perpendicular to the mating surface ,
The second sealing material is disposed on the inner surface of the frame installed so as to cover the end of the mating surface from the outside,
A plurality of U-shaped cross sections for holding the door in a closed state, sandwiching the end of the furnace body and the end of the door, and pressing the frame against the mating surface, outside the frame A reaction container for producing a glass particulate deposit, wherein a clamp member is provided .

このガラス微粒子堆積体製造用反応容器によれば、炉体と扉の合わせ面が第1の密閉材で塞がれ、前段の隙間塞ぎ(気密シール)が行え、合わせ面が表出する炉体と扉の外周囲にさらに第2の密閉材が押し当てられ、後段の隙間塞ぎが行われる。これにより、炉体と扉の隙間が多段構造で塞がれ、密閉性が高まる。前段の隙間塞ぎ部では第1の密閉材により断熱効果が得られるため、後段の隙間塞ぎ部は、前段の隙間塞ぎ部よりも低温となる。後段の隙間塞ぎ部では、比較的温度の低い条件にすることができるため、密閉材の選択肢を広げることができ、炉体内への異物混入が確実に防止される。   According to this reaction vessel for producing a fine glass particle deposit, the mating surface of the furnace body and the door is closed with the first sealing material, and the previous gap can be closed (airtight seal), and the mating surface is exposed. Further, the second sealing material is pressed against the outer periphery of the door, and the subsequent gap is closed. Thereby, the clearance gap between a furnace body and a door is block | closed with a multistage structure, and airtightness improves. Since the heat insulation effect is obtained by the first sealing material in the front gap closing portion, the rear gap closing portion is at a lower temperature than the front gap closing portion. Since the downstream gap closing portion can be made at a relatively low temperature, the options for the sealing material can be expanded, and contamination with foreign matter into the furnace body is surely prevented.

また、このガラス微粒子堆積体製造用反応容器によれば、炉体に形成された開口部の周縁部と扉の周縁部とが閉扉状態で重なり、これら周縁部の合わせ面の端部は第2の密閉材で塞がれる。第2の密閉材は、前記合わせ面を覆うように設置されたフレーム内面に配設されており、さらにその外側に複数のクランプ部材が装備されて閉扉状態に固定する。クランプ部材は断面コの字形状をしており、このクランプ部材で炉体端部と扉端部とを挟み込み、締め付けることによって固定する。また、クランプ部材により締め付けることによって、開口部の周縁部に表出する前記合わせ面は、フレームの内面に配設された第2の密閉材に押し当てられ、より密閉されて塞がれる。 Further, according to this reaction container for producing a glass particle deposit, the peripheral edge of the opening formed in the furnace body and the peripheral edge of the door overlap in a closed state, and the end of the mating surface of these peripheral edges is the second. It is closed with a sealing material. The second sealing member is disposed on the inner surface of the frame installed so as to cover the mating surface, and a plurality of clamp members are provided on the outer side to fix the door in a closed state. The clamp member has a U-shaped cross section, and the clamp member fixes the furnace body end portion and the door end portion by sandwiching and clamping. Further, by tightening with the clamp member, the mating surface exposed to the peripheral edge of the opening is pressed against the second sealing material disposed on the inner surface of the frame, and is further sealed and closed.

) (1)のガラス微粒子堆積体製造用反応容器であって、
前記第2の密閉材は、シリコンゴムスポンジであることを特徴とするガラス微粒子堆積体製造用反応容器。
( 2 ) A reaction vessel for producing a glass particulate deposit according to ( 1) ,
The second sealing material is a silicon rubber sponge, a reaction container for producing a fine glass particle deposit.

このガラス微粒子堆積体製造用反応容器によれば、第2の密閉材をシリコンゴムスポンジとすることで、耐熱性、耐摩耗性、断熱性、及び反発弾性に優れ、200℃程度の高温状態においても、熱膨張に伴う合わせ面の変位をクッション性により吸収して、密閉構造を維持し続けることが可能となる。   According to this reaction container for producing a fine glass particle deposit, the second sealing material is a silicon rubber sponge, which is excellent in heat resistance, wear resistance, heat insulation, and rebound resilience, and at a high temperature of about 200 ° C. However, the displacement of the mating surface due to thermal expansion can be absorbed by the cushioning property, and the sealed structure can be maintained.

本発明に係るガラス微粒子堆積体製造用反応容器によれば、炉体と扉との合わせ面に第1の密閉材を設けたガラス微粒子堆積体製造用反応容器において、炉体と扉との合わせ面に対し垂直となる外周囲に、合わせ面の端部を外側から覆うように該端部に耐熱性を有する第2の密閉材を取り付けたので、炉体と扉の密閉性を高めることができ、異物の混入を防止できる。この結果、異物汚染の少ない光ファイバ用ガラス母材を製造することができる。   According to the reaction vessel for producing a glass particulate deposit according to the present invention, in the reaction vessel for producing a glass particulate deposit, the first sealing material is provided on the mating surface between the furnace and the door. Since the second sealing material having heat resistance is attached to the outer periphery so as to cover the end portion of the mating surface from the outside in the outer periphery perpendicular to the surface, the sealing performance of the furnace body and the door can be improved. It is possible to prevent foreign matter from entering. As a result, it is possible to manufacture a glass preform for an optical fiber that is less contaminated with foreign matter.

本発明に係るガラス微粒子堆積体製造用反応容器の開扉時の斜視図である。It is a perspective view at the time of door opening of the reaction container for glass fine particle deposits manufacture concerning the present invention. 図1に示したガラス微粒子堆積体製造用反応容器の閉扉時の斜視図である。It is a perspective view at the time of the door closing of the reaction container for glass fine particle deposits manufacture shown in FIG. 閉扉時におけるフレーム及び合わせ面の断面図である。It is sectional drawing of a flame | frame and a mating surface at the time of a door closing. (a)はクランプ部材の非クランプ時の断面図、(b)はクランプ部材のクランプ時の断面図である。(A) is sectional drawing when the clamp member is not clamped, (b) is a sectional view when the clamp member is clamped. (a)は従来のガラス微粒子堆積体製造用反応容器における開口面開放時の断面図、(b)は開口面密閉時の断面図である。(A) is sectional drawing at the time of opening surface opening in the conventional reaction container for glass fine particle deposit body manufacture, (b) is sectional drawing at the time of opening surface sealing.

以下、本発明の実施の形態を図面を参照して説明する。
図1は本発明に係るガラス微粒子堆積体製造用反応容器の開扉時の斜視図、図2は図1に示したガラス微粒子堆積体製造用反応容器の閉扉時の斜視図である。
ガラス微粒子堆積体製造用反応容器(以下、単に「反応容器」と呼称する。)100は、例えば直方体形状に形成され、耐熱温度が200〜300℃の金属製炉体11を有し、その作業者面側の一面(開口面13)に出発ロッド15の取り付けや内部清掃などを行うための開口部17を有する。開口面13には開口部17の周囲に、扉23との合わせ面となる四角枠状の合わせ面19が形成される。炉体11にはヒンジ(蝶番)21を介して扉23が回動自在に取り付けられ、扉23は開口面13を覆って開口部17を密閉する。すなわち、開口部17周囲の合わせ面19と、扉23の合わせ面25とが気密状態に合わさる。炉体11及び扉23の内面は、金属製隔壁27にて覆われる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view when a reaction container for producing a glass fine particle deposit according to the present invention is opened, and FIG. 2 is a perspective view when the reaction container for producing a glass fine particle deposit shown in FIG. 1 is closed.
A reaction vessel 100 for producing a glass particulate deposit (hereinafter simply referred to as “reaction vessel”) 100 has a metal furnace body 11 formed in, for example, a rectangular parallelepiped shape and having a heat-resistant temperature of 200 to 300 ° C. An opening 17 for attaching the starting rod 15 and cleaning the inside is provided on one side (opening surface 13) of the person side. A square frame-shaped mating surface 19 that is a mating surface with the door 23 is formed on the opening surface 13 around the opening 17. A door 23 is rotatably attached to the furnace body 11 via a hinge 21, and the door 23 covers the opening surface 13 and seals the opening 17. That is, the mating surface 19 around the opening 17 and the mating surface 25 of the door 23 are in an airtight state. The inner surfaces of the furnace body 11 and the door 23 are covered with a metal partition wall 27.

反応容器100は、気体を供給する給気口(不図示)及び炉体11内の気体を排出する排気口29と、炉体11内でターゲット(多孔質母材)33を堆積させるための出発ロッド15と、ターゲット33を挟んで排気口29の反対側に配設され生成するガラス微粒子を出発ロッド15に堆積させるバーナ35と、扉23を閉じたままで反応容器内部が観察できるようにした石英ガラス製の観察窓37と、を備える。   The reaction vessel 100 has an air supply port (not shown) for supplying gas, an exhaust port 29 for discharging gas in the furnace body 11, and a start for depositing a target (porous base material) 33 in the furnace body 11. The rod 15, the burner 35 that is disposed on the opposite side of the exhaust port 29 across the target 33 and deposits the generated fine glass particles on the starting rod 15, and the quartz that allows the inside of the reaction vessel to be observed with the door 23 closed. An observation window 37 made of glass.

バーナ35は、出発ロッド15に原料ガスである四塩化ケイ素(SiCl4)、燃料ガスである水素ガス(H2)、助燃料ガスである酸素ガス(O2)及び不活性ガス(N2)を用いて加水分解反応若しくは熱酸化反応により火炎39と共にガラス微粒子を生成し、出発ロッド15に堆積させる。なお、図1はバーナが1本の例を示しているが、特に1本バーナに限定するものではない。 The burner 35 is supplied to the starting rod 15 with silicon tetrachloride (SiCl 4 ) as a raw material gas, hydrogen gas (H 2 ) as a fuel gas, oxygen gas (O 2 ) as an auxiliary fuel gas, and inert gas (N 2 ). Is used to generate glass fine particles together with the flame 39 by a hydrolysis reaction or a thermal oxidation reaction and deposit them on the starting rod 15. In addition, although FIG. 1 has shown the example with one burner, it does not specifically limit to one burner.

炉体11の開口部周囲で四角枠状となった炉体11の合わせ面19には第1の密閉材である帯状のパッキン41が固着される。パッキン41は、扉23の合わせ面25の外枠と略同形状の四角枠状に形成され、接着剤、係止構造、或いは固定ビスにて炉体11の合わせ面19に保持される。本実施の形態では固定ビス42(図3参照)にて固定される。パッキン41としては、200℃以上の耐熱性をもつ素材、例えばテフロン(登録商標)等のフッ素樹脂を好適に用いることができる。炉体11の開口部17は、扉23が閉められることで、合わせ面19,25同士の間にパッキン41が挟まれて高い気密性で密閉されるようになっている。   A belt-like packing 41 as a first sealing material is fixed to the mating surface 19 of the furnace body 11 having a square frame shape around the opening of the furnace body 11. The packing 41 is formed in a square frame shape that is substantially the same shape as the outer frame of the mating surface 25 of the door 23, and is held on the mating surface 19 of the furnace body 11 with an adhesive, a locking structure, or a fixing screw. In this embodiment, it is fixed with a fixing screw 42 (see FIG. 3). As the packing 41, a material having heat resistance of 200 ° C. or higher, for example, a fluororesin such as Teflon (registered trademark) can be suitably used. When the door 23 is closed, the opening 17 of the furnace body 11 is sealed with high airtightness with the packing 41 sandwiched between the mating surfaces 19 and 25.

図3は閉扉時におけるフレーム及び合わせ面の断面図である。
図3に示すように、扉23が閉められることで、パッキン41を挟んで密接した開口部17周囲の合わせ面19,25は、端部19a,25aが表出する。合わせ面19,25の端部19a,25aは、矩形状の扉23の4辺部の外周部に沿って表出する。反応容器100には、端部19a,25aを覆うようにして後述する第2の密閉材が内側に設置されたフレーム49が取り付けられ、さらに、図1に示すように閉扉状態に固定する複数のクランプ部材47が取付けられる。
FIG. 3 is a cross-sectional view of the frame and the mating surface when the door is closed.
As shown in FIG. 3, when the door 23 is closed, the end portions 19 a and 25 a are exposed at the mating surfaces 19 and 25 around the opening 17 in close contact with the packing 41. The end portions 19 a and 25 a of the mating surfaces 19 and 25 are exposed along the outer peripheral portions of the four sides of the rectangular door 23. The reaction vessel 100 is attached with a frame 49 in which a second sealing material, which will be described later, is installed so as to cover the end portions 19a and 25a, and a plurality of doors fixed in a closed state as shown in FIG. A clamp member 47 is attached.

クランプ部材47は、フレーム49を合わせ面19,25に押し付けるための断面コの字形状からなる。フレーム49は、端部19a,25aの各4辺部に沿う4本に分割されている。なお、フレーム49は、平板状としても良いし、図示例のように炉体11と扉23とを内側に挟む断面コの字形状の長尺材にて形成しても良い。扉23の外周には図3に示す断面L形のアングル材51が固定され、炉体11の合わせ面19の外周には断面L形のアングル材53が固定される。   The clamp member 47 has a U-shaped cross section for pressing the frame 49 against the mating surfaces 19 and 25. The frame 49 is divided into four pieces along the four sides of the end portions 19a and 25a. The frame 49 may have a flat plate shape, or may be formed of a long material having a U-shaped cross section that sandwiches the furnace body 11 and the door 23 inside as shown in the illustrated example. An L-shaped angle member 51 shown in FIG. 3 is fixed to the outer periphery of the door 23, and an L-shaped angle member 53 is fixed to the outer periphery of the mating surface 19 of the furnace body 11.

図4(a)はクランプ部材の非クランプ時の断面図、(b)はクランプ部材のクランプ時の断面図である。
図4(a)に示すように、クランプ部材47は、出力ロッド63と、トグル機構65と、レバーハンドル61と、を備えたメカニカルクランプであり、手動により駆動されるレバーハンドル61を介して出力ロッド63を駆動して、フレーム49を扉23及び炉体11側へクランプする。
4A is a cross-sectional view when the clamp member is not clamped, and FIG. 4B is a cross-sectional view when the clamp member is clamped.
As shown in FIG. 4A, the clamp member 47 is a mechanical clamp including an output rod 63, a toggle mechanism 65, and a lever handle 61, and is output via the lever handle 61 driven manually. The rod 63 is driven to clamp the frame 49 to the door 23 and the furnace body 11 side.

扉23の外周縁に設けられたアングル材51の一方の辺51aにはスロープ部材67が固定され、スロープ部材67はアングル材51の他方の辺51bに向かって徐々に低くなる傾斜面67aを有している。   A slope member 67 is fixed to one side 51 a of the angle member 51 provided on the outer peripheral edge of the door 23, and the slope member 67 has an inclined surface 67 a that gradually decreases toward the other side 51 b of the angle member 51. doing.

図4(b)に示すように、クランプ部材47は、支持ピン57を回動中心に回動され、フレーム49の内方にアングル材51,53を挟んだ位置(クランプ位置)で、レバーハンドル61が回動操作されると、トグル機構65を介して出力ロッド63が突出され、出力ロッド63の先端がスロープ部材67の傾斜面67aに押圧される。出力ロッド63が傾斜面67aを押圧することで、出力ロッド63を介してクランプ部材47には図4の右方向に付勢される反力が作用し、フレーム49は内面49aを合わせ面19,25の端部19a,25aに接近させる方向に付勢される。   As shown in FIG. 4B, the clamp member 47 is rotated around the support pin 57 as a rotation center, and the lever handle is at a position (clamp position) between which the angle members 51 and 53 are sandwiched inside the frame 49. When 61 is rotated, the output rod 63 protrudes through the toggle mechanism 65, and the tip of the output rod 63 is pressed against the inclined surface 67 a of the slope member 67. When the output rod 63 presses the inclined surface 67a, a reaction force urged in the right direction in FIG. 4 acts on the clamp member 47 via the output rod 63, and the frame 49 aligns the inner surface 49a with the mating surfaces 19, It is urged | biased in the direction which approaches the edge parts 19a and 25a of 25.

トグル機構65は、レバーハンドル61がクランプ方向に倒され、出力ロッド63を押圧してクランプ状態となる。クランプ状態では、レバーハンドル61を操作しない限り、出力ロッド63が外力を受けて解除位置側へ後退しなくなる。なお、出力ロッド63の先端部には突出長を調整可能とした調整部材71が螺合される。調整部材71は、回動調整されることで、出力ロッド63の先端位置を変えて、出力ロッド63の傾斜面67aに対するクランプ力を可変可能としている。   The toggle mechanism 65 is in a clamped state by the lever handle 61 being tilted in the clamping direction and pressing the output rod 63. In the clamped state, unless the lever handle 61 is operated, the output rod 63 is not retracted to the release position side due to an external force. An adjustment member 71 that can adjust the protruding length is screwed to the tip of the output rod 63. By adjusting the rotation of the adjustment member 71, the tip position of the output rod 63 can be changed to change the clamping force of the output rod 63 against the inclined surface 67a.

クランプ部材47がクランプ位置となったとき、フレーム49の内面49aが合わせ面19,25と垂直な面となる。この内面49aには耐熱性を有する第2の密閉材である帯状のガスケット73が接着剤、係止構造、或いは固定ビスにて固定されている。ガスケット73は、図4(b)に示すように、アングル材51,53の一方の辺51a,53a(図3参照)、隔壁27、パッキン41の各端面(これら各部材における合わせ面19,25に対し垂直となる面)75に押しつけられる。つまり、合わせ面19,25の端部19a,25aにはガスケット73が押し当てられる。ガスケット73は、合わせ面19,25の端部19a,25aを図4(b)の上下方向に横断して塞いでいる。なお、図4(a)には端面75の延長仮想面を二点鎖線で示す。   When the clamp member 47 is in the clamping position, the inner surface 49a of the frame 49 becomes a surface perpendicular to the mating surfaces 19 and 25. A belt-like gasket 73, which is a heat-resistant second sealing material, is fixed to the inner surface 49a with an adhesive, a locking structure, or a fixing screw. As shown in FIG. 4B, the gasket 73 includes one side 51a, 53a (see FIG. 3) of the angle members 51, 53, the partition wall 27, each end surface of the packing 41 (the mating surfaces 19, 25 of these members). The surface is perpendicular to the surface 75). That is, the gasket 73 is pressed against the end portions 19 a and 25 a of the mating surfaces 19 and 25. The gasket 73 covers the end portions 19a and 25a of the mating surfaces 19 and 25 so as to cross in the vertical direction of FIG. 4B. In FIG. 4A, an extended virtual surface of the end surface 75 is indicated by a two-dot chain line.

ガスケット73としては、シリコンゴムスポンジを好適に用いることができる。シリコンゴムスポンジは、ケイ素化合物(高分子シリコーン等)を主成分とする合成樹脂であり、耐熱性、耐薬品性、自己潤滑性、耐摩耗性、断熱性、反発弾性に優れる。シリコンゴムスポンジは、例えば発泡倍率が約4倍の低発泡シリコンゴムスポンジの場合、圧縮程度にもよるが約200℃までの使用が可能となる。低発泡シリコンゴムスポンジは、独立気泡であり、15度程度の硬度となる。シリコンゴムスポンジからなるガスケット73は、200℃程度の高温状態においても、熱膨張に伴う合わせ面19,25の変位をクッション性により吸収して、密閉構造を維持し続けることが可能となる。   As the gasket 73, a silicone rubber sponge can be suitably used. Silicone rubber sponge is a synthetic resin mainly composed of a silicon compound (polymer silicone, etc.), and is excellent in heat resistance, chemical resistance, self-lubricating property, wear resistance, heat insulating property, and impact resilience. For example, in the case of a low-foamed silicon rubber sponge having a foaming ratio of about 4 times, the silicon rubber sponge can be used up to about 200 ° C. depending on the degree of compression. The low foam silicon rubber sponge is a closed cell and has a hardness of about 15 degrees. The gasket 73 made of silicon rubber sponge can maintain the sealed structure by absorbing the displacement of the mating surfaces 19 and 25 due to thermal expansion by the cushioning property even at a high temperature of about 200 ° C.

次に、上記構成の反応容器100の作用を説明する。
反応容器100は、扉23が閉められると、合わせ面19,25がパッキン41を挟んで密接される。クランプ部材47が支持ピン57を中心にクランプ位置に回転されると、フレーム49がアングル材51,53を覆うように配置される。
Next, the operation of the reaction vessel 100 having the above configuration will be described.
When the door 23 is closed, the reaction vessel 100 is brought into close contact with the mating surfaces 19 and 25 with the packing 41 interposed therebetween. When the clamp member 47 is rotated to the clamp position around the support pin 57, the frame 49 is disposed so as to cover the angle members 51 and 53.

炉体11に形成された開口部17の周縁部と扉23の周縁部が閉扉状態で重なり、これら周縁部の合わせ面19,25の端部19a,25aは第2の密閉材であるガスケット73で塞がれる。ガスケット73は、合わせ面19,25を覆うように設置されたフレーム49内面に配設されており、さらにその外側にクランプ部材47が装備されて閉扉状態に固定する。   The peripheral edge portion of the opening 17 formed in the furnace body 11 and the peripheral edge portion of the door 23 are overlapped in a closed state, and the end portions 19a and 25a of the mating surfaces 19 and 25 of the peripheral edge portions are gaskets 73 which are second sealing materials. It is blocked by. The gasket 73 is disposed on the inner surface of the frame 49 installed so as to cover the mating surfaces 19 and 25, and a clamp member 47 is further provided on the outer side of the gasket 73 to fix it in a closed state.

この状態で、各クランプ部材47のレバーハンドル61がクランプ方向に操作されると、トグル機構65を介して出力ロッド63が突出し、スロープ部材67を押圧する。これにより、合わせ面19,25の間でパッキン41が挟まれ、間隙が高気密に塞がれて、前段の隙間塞ぎ(気密シール)が行われる。   In this state, when the lever handle 61 of each clamp member 47 is operated in the clamping direction, the output rod 63 protrudes through the toggle mechanism 65 and presses the slope member 67. As a result, the packing 41 is sandwiched between the mating surfaces 19 and 25, the gap is closed in a highly airtight manner, and the previous gap closing (airtight sealing) is performed.

合わせ面19,25に耐熱温度200℃以上のパッキン41を使用することで、前段の隙間塞ぎができ、遮熱及び断熱効果で外側の温度も下げられる。一般的に200℃以上の耐熱性をもつ材料は、柔軟性が無かったり、耐腐食性が低かったり、またはそれ自身が汚染源になってしまうなどパッキンとして適用できるものが少ない。耐熱温度の高いパッキンはあるがコスト面で現実的ではない。これに対し、厚肉のテフロン(登録商標)であれば柔軟性はさほどないが200℃以上でも耐えるのでパッキン41として使用が可能となり、熱伝導率も低いので外周面の温度低減にも効果的となる。   By using the packing 41 having a heat-resistant temperature of 200 ° C. or higher for the mating surfaces 19 and 25, the gap in the previous stage can be closed, and the outside temperature can be lowered due to the heat shielding and heat insulating effects. In general, a material having a heat resistance of 200 ° C. or higher has few materials that can be applied as a packing because it is not flexible, has low corrosion resistance, or becomes a contamination source itself. Although there are packings with a high heat-resistant temperature, it is not practical in terms of cost. In contrast, thick Teflon (registered trademark) is not very flexible, but it can withstand temperatures of 200 ° C. or higher, so it can be used as packing 41, and its thermal conductivity is low, so it is effective in reducing the temperature of the outer peripheral surface. It becomes.

次いで、全てのクランプ部材47がクランプされると、クランプ部材47は断面コの字形状をしているので、このクランプ部材47で炉体端部と扉端部とを挟み込み、締め付けることによって固定する。また、クランプ部材47により締め付けることによって、開口部17の周縁部に表出する合わせ面19,25は、フレーム49の内面に配設されたガスケット73に押し当てられ、より密閉されて塞がれる。   Next, when all the clamp members 47 are clamped, the clamp members 47 have a U-shaped cross section, and the clamp member 47 fixes the furnace body end portion and the door end portion by sandwiching and clamping. . In addition, by tightening with the clamp member 47, the mating surfaces 19 and 25 exposed on the peripheral edge of the opening 17 are pressed against the gasket 73 disposed on the inner surface of the frame 49, and are sealed and closed. .

これにより、炉体11と扉23の隙間が多段構造で塞がれ、密閉性が高まる。前段の隙間塞ぎ部ではパッキン41により断熱効果が得られるため、後段の隙間塞ぎ部は、前段の隙間塞ぎ部よりも低温となる。したがって、後段の隙間塞ぎ部では、比較的温度の低い条件で十分な隙間塞ぎができるため、密閉材の選択肢を広げることができ、炉体11内への異物混入が確実に防止されることになる。シリコンゴムスポンジは、耐熱温度が200℃程度ながら充分なクッション性があり、扉外周面に押し当てる構造を採用することで隙間を完全に塞ぐことができる。   Thereby, the clearance gap between the furnace body 11 and the door 23 is block | closed with a multistage structure, and airtightness improves. Since the heat insulation effect is obtained by the packing 41 at the front gap closing portion, the rear gap closing portion is at a lower temperature than the front gap closing portion. Accordingly, since the gap closing portion at the rear stage can sufficiently close the gap under relatively low temperature conditions, the options for the sealing material can be expanded, and contamination with foreign matter into the furnace body 11 is reliably prevented. Become. Silicone rubber sponge has a sufficient cushioning property despite its heat resistant temperature of about 200 ° C., and the gap can be completely closed by adopting a structure that presses against the outer peripheral surface of the door.

したがって、上記構成の反応容器100によれば、炉体11と扉23との合わせ面19,25にパッキン41を設け、さらに合わせ面19,25の端部19a,25aを囲むクランプ部材47を取り付け、クランプ部材47の合わせ面19,25と垂直な内面49aに耐熱性を有するガスケット73を設けたので、炉体11と扉23の密閉性を高めることができ、異物の混入を防止できる。この結果、異物汚染の少ない光ファイバ用ガラス母材を製造することができる。   Therefore, according to the reaction vessel 100 configured as described above, the packing 41 is provided on the mating surfaces 19 and 25 of the furnace body 11 and the door 23, and the clamp member 47 surrounding the end portions 19 a and 25 a of the mating surfaces 19 and 25 is attached. Since the heat-resistant gasket 73 is provided on the inner surface 49a perpendicular to the mating surfaces 19 and 25 of the clamp member 47, the sealing performance of the furnace body 11 and the door 23 can be improved, and foreign matter can be prevented from being mixed. As a result, it is possible to manufacture a glass preform for an optical fiber that is less contaminated with foreign matter.

上記構成と同様の反応容器を実際に製作し、パッキン41、ガスケット73の設けられていない従来構造の反応容器と異物汚染の程度を比較した。その結果、従来構造の反応容器では、粒径0.5μm程度の異物浮遊量が3000個であったのに対し、上記構成で製作した発明に係る反応容器では、1000個以下となることが確認できた。   A reaction vessel having the same structure as that described above was actually manufactured, and the degree of contamination of foreign matter was compared with a reaction vessel having a conventional structure in which the packing 41 and the gasket 73 are not provided. As a result, it was confirmed that the reaction container with the conventional structure had 3000 foreign matter floating amounts with a particle diameter of about 0.5 μm, whereas the reaction container according to the invention manufactured with the above configuration had 1000 or less. did it.

11 炉体
13 開口面
19,25 合わせ面
19a,25a 合わせ面の端部
23 扉
33 ターゲット
35 バーナ
39 酸水素火炎
41 パッキン(第1の密閉材)
47 クランプ部材
49 フレーム
49a クランプ部材の合わせ面と垂直な内面
73 ガスケット(第2の密閉材)
100 ガラス微粒子堆積体製造用反応容器
11 furnace body 13 opening surface 19, 25 mating surface 19a, 25a end of mating surface 23 door 33 target 35 burner 39 oxyhydrogen flame 41 packing (first sealing material)
47 Clamp member 49 Frame 49a Inner surface perpendicular to the mating surface of the clamp member 73 Gasket (second sealing material)
100 Reaction vessel for producing glass particulate deposits

Claims (2)

酸水素火炎によりガラス微粒子をターゲットに吹き付け堆積させるバーナを内部に有する炉体と、該炉体の作業者側開口面を覆う扉とを備え、前記炉体と該扉との合わせ面に第1の密閉材が設けられたガラス微粒子堆積体製造用反応容器であって、
前記合わせ面に対し垂直となる外周囲に、前記合わせ面の端部を外側から覆うように該端部に取り付けられる耐熱性を有する第2の密閉材を具備し、
前記第2の密閉材は、前記合わせ面の端部を外側から覆うように設置されたフレーム内面に配設され、
前記フレームの外側には、前記扉を閉じた状態に保ち、前記炉体の端部と前記扉の端部とを挟み、前記フレームを前記合わせ面に押し付けるための断面コの字形状の複数のクランプ部材が設けられていることを特徴とするガラス微粒子堆積体製造用反応容器。
A furnace body having a burner for spraying and depositing glass fine particles on a target by an oxyhydrogen flame; and a door that covers an operator-side opening surface of the furnace body; a first surface on a mating surface of the furnace body and the door; A reaction vessel for producing a glass particulate deposit provided with a sealing material of
A second sealing material having heat resistance attached to the end portion so as to cover the end portion of the mating surface from the outside on the outer periphery perpendicular to the mating surface ,
The second sealing material is disposed on the inner surface of the frame installed so as to cover the end of the mating surface from the outside,
A plurality of U-shaped cross sections for holding the door in a closed state, sandwiching the end of the furnace body and the end of the door, and pressing the frame against the mating surface, outside the frame A reaction container for producing a glass particulate deposit, wherein a clamp member is provided .
請求項1記載のガラス微粒子堆積体製造用反応容器であって、
前記第2の密閉材は、シリコンゴムスポンジであることを特徴とするガラス微粒子堆積体製造用反応容器。
A reaction vessel for producing a glass particulate deposit according to claim 1,
The second sealing material is a silicon rubber sponge, a reaction container for producing a fine glass particle deposit.
JP2009179270A 2009-07-31 2009-07-31 Reaction vessel for manufacturing glass particulate deposits Active JP5521428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179270A JP5521428B2 (en) 2009-07-31 2009-07-31 Reaction vessel for manufacturing glass particulate deposits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009179270A JP5521428B2 (en) 2009-07-31 2009-07-31 Reaction vessel for manufacturing glass particulate deposits

Publications (2)

Publication Number Publication Date
JP2011032123A JP2011032123A (en) 2011-02-17
JP5521428B2 true JP5521428B2 (en) 2014-06-11

Family

ID=43761572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179270A Active JP5521428B2 (en) 2009-07-31 2009-07-31 Reaction vessel for manufacturing glass particulate deposits

Country Status (1)

Country Link
JP (1) JP5521428B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737171Y2 (en) * 1989-12-26 1995-08-23 松下冷機株式会社 Rainwater seals and drains for vending machines
JP2000169174A (en) * 1998-12-01 2000-06-20 Sumitomo Electric Ind Ltd Apparatus for production of porous preform for optical fiber

Also Published As

Publication number Publication date
JP2011032123A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
US8590861B2 (en) Gate valve and substrate processing apparatus equipped with the same
US20090308315A1 (en) Semiconductor processing apparatus with improved thermal characteristics and method for providing the same
US6367415B2 (en) View port of a chemical vapor deposition device for manufacturing semiconductor devices
JPH04264716A (en) Heat treatment device
TWI678722B (en) Heat shield ring for high growth rate epi chamber
JPS59222922A (en) Vapor growth apparatus
JP5521428B2 (en) Reaction vessel for manufacturing glass particulate deposits
TW200920871A (en) Vacuum processing apparatus
KR101614507B1 (en) Side sealing apparatus for float bath
TWI542848B (en) Heat treatment apparatus
JP2002118098A (en) Plasma-treating apparatus
KR101007098B1 (en) Gas-tight connecting element comprising a bayonet closure
JP2013124392A (en) Film forming device
JP2000058534A (en) Substrate heat treatment device
US20100101730A1 (en) Substrate processing apparatus
JPH10300358A (en) Sealing device for rotary kiln
JP2018091734A (en) Oven and chromatograph using the same
CN110318037B (en) Method for producing translucent SiC
CN206082535U (en) Ceramic membrane reaction unit
JP3602410B2 (en) Film forming equipment
JP4383143B2 (en) Vacuum container and plasma processing apparatus using the same
RU2314585C2 (en) High-temperature power entry
KR101650441B1 (en) Side sealing apparatus for float bath
JP2015013776A (en) Light control panel
JPH06256028A (en) Highly heat resistant sealant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5521428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250