JP5521235B2 - High-strength fibrin molded body and artificial ligament - Google Patents

High-strength fibrin molded body and artificial ligament Download PDF

Info

Publication number
JP5521235B2
JP5521235B2 JP2008154207A JP2008154207A JP5521235B2 JP 5521235 B2 JP5521235 B2 JP 5521235B2 JP 2008154207 A JP2008154207 A JP 2008154207A JP 2008154207 A JP2008154207 A JP 2008154207A JP 5521235 B2 JP5521235 B2 JP 5521235B2
Authority
JP
Japan
Prior art keywords
fibrin
strength
molded body
platelets
ligament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008154207A
Other languages
Japanese (ja)
Other versions
JP2009297212A (en
Inventor
大吾 松永
寛和 蓮田
雅明 田中
祐子 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Technosurgical Corp
Original Assignee
Hoya Technosurgical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Technosurgical Corp filed Critical Hoya Technosurgical Corp
Priority to JP2008154207A priority Critical patent/JP5521235B2/en
Publication of JP2009297212A publication Critical patent/JP2009297212A/en
Application granted granted Critical
Publication of JP5521235B2 publication Critical patent/JP5521235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高い破断強度を有し、移植用人工靭帯として有用な高強度フィブリン成形体及びこれを用いた人工靭帯に関する。   The present invention relates to a high-strength fibrin molded article having high breaking strength and useful as an artificial ligament for transplantation, and an artificial ligament using the same.

生体成分であるフィブリノーゲンには組織の治癒過程を促進する作用が知られているが、フィブリノーゲン製剤によるC型肝炎ウイルスの感染、HIVウイルス国内感染者の増加や狂牛病などのプリオン病の問題が深刻になる情勢を踏まえ、厚労省は平成15年7月施行の改正薬事法ならびに「安全な血液の安定供給の確保等に関する法律」の中で献血由来(特定生物由来)の血液凝固因子の使用に際しては適応を厳密にするようにとの通達を出しており、自己血液由来のフィブリノーゲンを用いた自己フィブリン糊が注目されるようになっている。   Fibrinogen, a biological component, is known to have an effect of promoting the healing process of tissues, but there are problems of prion diseases such as hepatitis C virus infection by fibrinogen preparations, an increase in HIV virus domestic infection and mad cow disease. Based on the situation becoming more serious, the Ministry of Health, Labor and Welfare has identified blood coagulation factors derived from blood donations (specific organisms) in the revised Pharmaceutical Affairs Law, which came into effect in July 2003, and the “Law Concerning Ensuring the Stable Supply of Safe Blood”. It has been announced that the indication is strictly applied in use, and self-fibrin glue using fibrinogen derived from autologous blood has been attracting attention.

また、血小板は細胞内の顆粒の中に血小板由来増殖因子(PDGF)、血管内皮増殖因子(VEGF)、インスリン様成長因子(IGF)などの成長因子を高濃度に含んでおり、血小板を高濃度に含む血漿である多血小板血漿(PRP;platelet rich plasma)を凝固させたゲルは、歯科領域を中心に血管外科や整形外科など医療分野全般で自己血液由来の組織修復材として関心が高まっており、すでに臨床応用されている(非特許文献1,2,3,4,5,6)。血小板内の成長因子は通常すぐに放出されてしまうが、このゲルにはキャリアーとして血小板内の成長因子を徐放性に放出するドラッグ デリバリー システムの効果もあるとされている(非特許文献7)。   In addition, platelets contain a high concentration of growth factors such as platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and insulin-like growth factor (IGF) in intracellular granules. Gels obtained by coagulating platelet rich plasma (PRP), which is the plasma contained in, are gaining interest as tissue repair materials derived from autologous blood in general medical fields such as vascular surgery and orthopedic surgery, mainly in the dental field. Have already been clinically applied (Non-Patent Documents 1, 2, 3, 4, 5, 6). Although the growth factor in platelets is usually released immediately, it is said that this gel also has the effect of a drug delivery system that slowly releases the growth factor in platelets as a carrier (Non-patent Document 7). .

しかしながら、フィブリノーゲンをトロンビンで活性化させることで得られるフィブリンゲルは、フィブリン糊として医療分野で幅広く用いられているにもかかわらず、その強度は非常に弱く、力学的な引っ張りに対しては容易に断裂するため、靭帯として使用できるような物性は持ち合わせていない。このため、PRPゲルにコラーゲンを添加することで靭帯修復のための仮足場(provisional scaffold)を作製しようとする試みもあるが、特定生物由来のコラーゲンを用いているにもかかわらず、その強度は十分ではない(非特許文献8)。   However, although fibrin gel obtained by activating fibrinogen with thrombin is widely used in the medical field as a fibrin glue, its strength is very weak and it is easy for mechanical pulling. Because it tears, it has no physical properties that can be used as a ligament. For this reason, there is an attempt to produce a provisional scaffold for repairing the ligament by adding collagen to the PRP gel, but despite the use of collagen derived from a specific organism, its strength is It is not enough (Non-Patent Document 8).

ところで、人工靭帯に関しては、1980年代に汎用された歴史を持つが、磨耗粉による異物反応が生じやすい、経年的な劣化が著しいなどの理由により、ほとんど使用されていない(非特許文献9,10)。
Mazzucco L, et al. The use of autologous platelet gel to treat difficult-to-heal wounds: a pilot study. Transfusion 2004;44:1013-10181. Senet P, et al. Randomized trial and local biological effect of autologous platelets used as adjuvant therapy for chronic venous leg ulcers. J Vasc Surg 2003;38:1342-1348. Iba O, et al. Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs. Circulation 2002;106:2019-2025. Anitua E, et al. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 2004;91:4-15. Marlovits S, et al. A new simplified technique for producing platelet-rich plasma: a short technical note. Eur Spine J 2004;1:S102-106. Ishida K, et al. The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng. 2007;13:1103-1112. Yazawa M, et al. Basic studies on the clinical applications of platelet-rich plasma. Cell Transplant 2003; 12: 509-518. Murray MM, et al. Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. J Orthop Res 2007;25:1007-1017 Claes LE, et al. Biological response to ligament wear particles. J Appl Biomater 1995;6:35-41. Murray AW, et al.10-16 year results of Leeds-Keio anterior cruciate ligament reconstruction. Knee 2004;11:9-14.
By the way, the artificial ligament has a history of being widely used in the 1980s, but it is rarely used due to the fact that foreign matter reaction due to wear powder is likely to occur and deterioration over time is remarkable (Non-Patent Documents 9 and 10). ).
Mazzucco L, et al. The use of autologous platelet gel to treat difficult-to-heal wounds: a pilot study.Transfusion 2004; 44: 1013-10181. Senet P, et al. Randomized trial and local biological effect of autologous platelets used as adjuvant therapy for chronic venous leg ulcers.J Vasc Surg 2003; 38: 1342-1348. Iba O, et al. Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs. Circulation 2002; 106: 2019-2025. Anitua E, et al. Autologous platelets as a source of proteins for healing and tissue regeneration.Thromb Haemost 2004; 91: 4-15. Marlovits S, et al. A new simplified technique for producing platelet-rich plasma: a short technical note.Eur Spine J 2004; 1: S102-106. Ishida K, et al. The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel.Tissue Eng. 2007; 13: 1103-1112. Yazawa M, et al. Basic studies on the clinical applications of platelet-rich plasma.Cell Transplant 2003; 12: 509-518. Murray MM, et al. Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold.J Orthop Res 2007; 25: 1007-1017 Claes LE, et al. Biological response to ligament wear particles. J Appl Biomater 1995; 6: 35-41. Murray AW, et al. 10-16 year results of Leeds-Keio anterior cruciate ligament reconstruction.Knee 2004; 11: 9-14.

しかしながら、生活の質に対する人々の要求の高まりとともに靭帯再建を必要とする手術の件数は年々増加傾向にあり、その代表例である前十字靭帯再建手術の場合は、全世界で年間25万件以上、本邦では1万6千件程度行われている。
米国のように死体からの同種組織移植が一般的ではない日本やヨーロッパの場合、移植(再建)に用いる再建靭帯にあたっては、主として自己の健常組織(靭帯や腱)を犠牲にして移植用組織片(graft)として用いるのが一般的であるが、組織片として採取された靭帯や腱の機能的損失は深刻である。
このように、生体親和性と優れた初期強度を併せ持ち、生体活性の高い仮足場型人工靭帯の開発は非常に重要である。
従って、本発明の目的は、生体親和性と優れた初期強度を有する人工靭帯に有用な成形体及びこれを用いた人工靭帯を提供することにある。
However, the number of operations requiring ligament reconstruction is increasing year by year as people's demands for quality of life increase, and in the case of anterior cruciate ligament reconstruction surgery, a typical example, more than 250,000 cases worldwide worldwide In Japan, there are about 16,000 cases.
In the case of Japan and Europe where allogeneic tissue transplantation from the cadaver is not common as in the United States, the reconstructed ligament used for transplantation (reconstruction) is mainly a sacrifice of the healthy tissue (ligament or tendon) of the transplanted tissue piece. Although it is generally used as a (graft), the functional loss of ligaments and tendons collected as tissue pieces is serious.
As described above, it is very important to develop a temporary scaffold type artificial ligament having both biocompatibility and excellent initial strength and high bioactivity.
Accordingly, an object of the present invention is to provide a molded article useful for an artificial ligament having biocompatibility and excellent initial strength, and an artificial ligament using the same.

そこで本発明者は、生体親和性の観点から自己フィブリンに着目して研究してきたところ、予め濃縮した血漿成分と血小板とカルシウムイオンを懸濁し、これを所定の形状に成形固化させた後、洗浄すれば、コラーゲンなどを添加しなくても、破断強度0.01MPa以上の極めて高強度のフィブリン成形体が得られることを見出した。さらにこのフィブリン成形体を足場型人工靭帯として移植したところ、優れた生着性を有し、正常の靭帯組織同様な靭帯が再生されることを見出し、本発明を完成した。   Therefore, the present inventor has been studying focusing on self-fibrin from the viewpoint of biocompatibility, suspending the plasma components and platelets and calcium ions that have been concentrated in advance, solidifying this into a predetermined shape, and then washing Thus, it was found that an extremely high strength fibrin molded body having a breaking strength of 0.01 MPa or more can be obtained without adding collagen or the like. Furthermore, when this fibrin molded body was transplanted as a scaffold-type artificial ligament, it was found that it had excellent engraftment and a ligament similar to a normal ligament tissue was regenerated, and the present invention was completed.

すなわち、本発明は、1.2〜4倍に濃縮された血漿成分、血小板及びカルシウムイオンを含有する懸濁液を0.5〜72時間静置して固化成形し、得られた成形体を洗浄することにより得られる高強度フィブリン成形体を提供するものである。
また、本発明は、上記高強度フィブリン成形体を含有する人工靭帯を提供するものである。
That is, the present invention is to solidify and mold a suspension containing a plasma component, platelets and calcium ions concentrated to 1 to 4 times for 0.5 to 72 hours. A high-strength fibrin molded body obtained by washing is provided.
Moreover, this invention provides the artificial ligament containing the said high intensity | strength fibrin molded object.

本発明の高強度フィブリン成形体は、破断強度0.01MPa以上の優れた初期強度を有し、かつ生体成分だけで構成されていることから生体親和性に優れ、足場人工靭帯として有用である。この人工靭帯は、膝、肘、肩、手関節、足関節、手指の関節等の靭帯や腱の再建手術用材料として有用である。また、本発明の高強度フィブリン成形体は、治療を受ける本人の血液由来の血漿及び血小板から細胞培養などの煩雑な手技を用いることなく簡単な操作で製造できるため、ウイルス感染や細菌感染、生体適合性の問題も解消される。   The high-strength fibrin molded body of the present invention has excellent initial strength with a breaking strength of 0.01 MPa or more and is composed of only biological components, so that it has excellent biocompatibility and is useful as a scaffold artificial ligament. This artificial ligament is useful as a material for reconstruction surgery of ligaments and tendons such as knees, elbows, shoulders, wrist joints, ankle joints, and finger joints. In addition, since the high-strength fibrin molded body of the present invention can be manufactured from plasma and platelets derived from the blood of the person undergoing treatment without using complicated procedures such as cell culture, virus infection, bacterial infection, Compatibility issues are also eliminated.

本発明の高強度フィブリン成形体は、1.2〜4倍に濃縮された血漿成分と血小板とカルシウムイオンを含有する懸濁液を0.5〜72時間静置して固化成形し、得られた成形体を洗浄することにより得られる。ここで、血漿成分と血小板とは、同一の血液から分離して調製するのが好ましい。すなわち、まず、血液を90〜4500×gで一段階もしくは二段階で遠心分離して、乏血小板血漿(PPP)と血小板の分画であるバフィーコート及び赤血球成分の3分画、あるいは多血小板血漿(PRP)及びその他の血球成分の2分画に分離し、PPP、血小板あるいはPRPを分取する。二段階で遠心分離する方法としては、バフィーコート法などが挙げられる。これらの操作は、生理的条件、例えば4〜40℃で行うのが好ましい。   The high-strength fibrin molded product of the present invention is obtained by solidifying and molding a suspension containing a plasma component concentrated to 1.2 to 4 times, platelets and calcium ions for 0.5 to 72 hours. It can be obtained by washing the molded body. Here, the plasma component and platelets are preferably prepared separately from the same blood. That is, first, blood is centrifuged at 90 to 4500 × g in one or two stages, and the platelet-poor plasma (PPP) and the fraction of buffy coat and red blood cell components, which are platelet fractions, or platelet-rich plasma. Separate into two fractions of (PRP) and other blood cell components and fractionate PPP, platelets or PRP. A buffy coat method etc. are mentioned as a method of centrifuging in two steps. These operations are preferably performed under physiological conditions, for example, 4 to 40 ° C.

血漿成分は1.2〜4倍に濃縮するが、より好ましくは2〜3倍に濃縮する。濃縮倍率が1.2倍未満では、十分な強度を有するフィブリン成形体が得られない。また濃縮倍率が4倍を超えると、粘調度が極端に高くなり、好ましくない。濃縮手段としては、限外濾過、乾燥剤、凍結乾燥が挙げられるが、限外濾過、さらにポアサイズが分子量で10,000から300,000の限外濾過、特にタンジェンシャルフロー方式の限外濾過を採用するのが簡便かつ短時間に清潔操作で濃縮を行う点で好ましい。これらの濃縮操作は、生理的条件下、例えば4〜40℃、特に20〜24℃で行うのが好ましい。   The plasma component is concentrated 1.2 to 4 times, more preferably 2 to 3 times. If the concentration ratio is less than 1.2 times, a fibrin molded product having sufficient strength cannot be obtained. On the other hand, if the concentration ratio exceeds 4 times, the viscosity becomes extremely high, which is not preferable. Concentration means include ultrafiltration, desiccant, and freeze-drying. Ultrafiltration, and further ultrafiltration with a pore size of 10,000 to 300,000 in molecular weight, especially tangential flow type ultrafiltration. It is preferable to adopt it because it is simple and performs the concentration by a clean operation in a short time. These concentration operations are preferably performed under physiological conditions, for example, 4 to 40 ° C, particularly 20 to 24 ° C.

血小板濃度の調整は、PPPを濃縮後に、バフィーコートを加えることで行ってもよいが、血液から分離したPRPをそのまま限外濾過などで濃縮することでも血小板の濃縮は可能であり、PRPを90〜400×gで軽遠心することで血小板を沈殿させて濃度を調整して使用してもよい。懸濁液中の血小板含有量は、血小板内に含まれる各種成長因子を有効に利用することを考えれば高濃度のほうが有利であると推察されるが、血小板の過剰な添加がフィブリン成形体の強度を低下させることを考慮すれば、血漿から遠心分離法では分離しきれずに残存する程度の濃度、例えば正常血小板量の1/10濃度から、血漿の原料となった血液量の10倍相当分量、好ましくは5倍相当分程度までとするのが現実的である。血小板には個体差が大きいが、ヒト血液の場合、15×104〜40×104/μL程度が正常範囲とされている。従って、具体的な懸濁液中の血小板含有量は、1×104/μL〜400×104/μL程度が好ましい。 The platelet concentration may be adjusted by adding a buffy coat after concentrating the PPP, but it is also possible to concentrate the platelets by concentrating the PRP separated from the blood by ultrafiltration or the like. It may be used by adjusting the concentration by precipitating platelets by light centrifugation at ˜400 × g. The platelet content in the suspension is presumed to be higher when considering the effective use of various growth factors contained in the platelets. Taking into account the reduction in strength, the amount of blood remaining as a plasma raw material from the concentration that remains without being separated from plasma by centrifugation, for example, 1/10 of the normal platelet amount However, it is realistic that the amount is preferably about 5 times. Individual differences in platelets are large, but in the case of human blood, the normal range is about 15 × 10 4 to 40 × 10 4 / μL. Therefore, platelet content of specific suspension, 1 × 10 4 / μL~400 × about 10 4 / [mu] L are preferred.

カルシウムイオン源としては、塩化カルシウム、グルコン酸カルシウム、L−アスパラギン酸カルシウム、乳酸カルシウム、リン酸水素カルシウム、グリセロリン酸カルシウム、炭酸カルシウム、クエン酸カルシウム、リンゴ酸カルシウム等の水溶性カルシウム塩を用いるのが好ましく、特に塩化カルシウムとグルコン酸カルシウムが好ましい。懸濁液中のカルシウムイオン濃度は、たとえば5%のクエン酸ナトリウム1容と血液9容を混合した血液を使用した血液から懸濁液を作成した場合には、懸濁液に添加した分量のカルシウムイオンの最終濃度が5〜35mM、さらに10〜30mM、特に15〜25mMであるのが、フィブリン成形体の強度を向上させる点で好ましい。
As the calcium ion source, water-soluble calcium salts such as calcium chloride, calcium gluconate, calcium L-aspartate, calcium lactate, calcium hydrogen phosphate, calcium glycerophosphate, calcium carbonate, calcium citrate and calcium malate are used. Particularly preferred are calcium chloride and calcium gluconate. The concentration of calcium ions in the suspension is, for example, the amount of calcium ion added to the suspension when the suspension is made from blood using a mixture of 1 volume of 5% sodium citrate and 9 volumes of blood. The final concentration of calcium ions is preferably 5 to 35 mM , more preferably 10 to 30 mM , and particularly preferably 15 to 25 mM in terms of improving the strength of the fibrin molded body.

ここで懸濁液には、フィブリン成形体の強度を向上させたり、強度を調節する目的、あるいは線溶系による溶解を遅延させる目的で、コラーゲン、ゼラチン、トラネキサム酸、アプロチニン、大豆トリプシンインヒビター等を含有させることができる。   The suspension contains collagen, gelatin, tranexamic acid, aprotinin, soybean trypsin inhibitor, etc. for the purpose of improving the strength of the fibrin molded body, adjusting the strength, or delaying dissolution by the fibrinolytic system. Can be made.

懸濁液は0.5〜72時間静置することにより固化成形する。ここで、成形は懸濁液を、フィブリン成形体の形状に合わせた容器に充填して静置して固化すればよい。すなわち、円柱状のフィブリン成形体を得る場合には円筒状のチューブ中で固化させればよい。形状としては、薄膜状、角柱状、円柱状等が挙げられる。好ましい静置時間は、1〜48時間、さらに好ましくは3〜24時間である。静置条件は、酵素反応である血液凝固反応が起こりうる生理的条件、例えば25〜40℃が好ましい。   The suspension is solidified by allowing to stand for 0.5 to 72 hours. Here, the molding may be performed by filling the suspension into a container that matches the shape of the fibrin molded body and allowing to stand and solidify. That is, when a columnar fibrin molded body is obtained, it may be solidified in a cylindrical tube. Examples of the shape include a thin film shape, a prismatic shape, and a cylindrical shape. The preferred standing time is 1 to 48 hours, more preferably 3 to 24 hours. The standing conditions are preferably physiological conditions in which a blood coagulation reaction that is an enzyme reaction can occur, for example, 25 to 40 ° C.

本発明においては、静置により得られるフィブリン成形体の強度は十分ではないので、洗浄する。洗浄操作により強度が向上する。洗浄は、フィブリン成形体を洗浄液に浸漬するのが好ましい。ここで洗浄液には、0〜30mMの無機塩含有水溶液を用いるのが好ましい。無機塩含有水溶液としては、0.1〜30mMのカルシウムイオン含有水溶液が好ましい。特に10〜25mM塩化カルシウム水溶液が好ましい。 In the present invention, the strength of the fibrin molded body obtained by standing is not sufficient, and is washed. Strength is improved by washing operation. Cleaning is preferably performed by immersing the fibrin molded body in a cleaning solution. Here, it is preferable to use a 0-30 mM aqueous solution containing an inorganic salt as the cleaning solution. The inorganic salt-containing aqueous solution is preferably a 0.1-30 mM calcium ion-containing aqueous solution. 10-25 mM calcium chloride aqueous solution is especially preferable.

また、洗浄工程において、成形体に0.5〜10kPaの荷重を負荷するのが、強度を向上させる点で特に好ましい。ここで荷重は、押圧でもよいし、引張り力でもよい。より好ましい荷重は、1〜8kPa、さらに好ましい荷重は1〜5kPaである。具体的には、成形体全体を長軸方向へのゴムやばねの力で牽引する、長軸方向に垂直な力で圧迫する、静水圧を印加する等することにより荷重を負荷するのが好ましい。荷重の負荷は、0.5〜72時間、さらに1〜48時間、特に6〜24時間継続するのが好ましい。   In the cleaning step, it is particularly preferable to apply a load of 0.5 to 10 kPa to the molded body from the viewpoint of improving the strength. Here, the load may be a pressing force or a tensile force. A more preferable load is 1 to 8 kPa, and a more preferable load is 1 to 5 kPa. Specifically, it is preferable to apply a load by pulling the entire molded body with the force of rubber or a spring in the major axis direction, pressing with a force perpendicular to the major axis direction, applying a hydrostatic pressure, or the like. . It is preferable that the load is continued for 0.5 to 72 hours, further 1 to 48 hours, particularly 6 to 24 hours.

より好ましい荷重負荷手段は、圧迫手段、例えば漬物容器等のように圧迫板で圧迫した状態とする手段である。この手段によれば、成形体全体に一定の荷重を、均一に負荷することができる。   A more preferable load loading means is a means for pressing with a compression plate, such as a compression means such as a pickled container. According to this means, a constant load can be uniformly applied to the entire molded body.

洗浄と荷重の負荷により強度が向上する理由は、明確ではないが、成形体中のアルブミン等の不純物が除去されるとともに、成形体構造中の水分が一定量除去され、またこれによって自己由来の凝固第13因子によるフィブリンの架橋が進行することによるものと考えられる。したがって、前記の方法で濃縮した血漿を凍結解凍することでフィブリノーゲンを高濃度に含む沈殿物であるクリオプレシピテートを得た後、アルブミンを高濃度に含むこの上清の一部を取り除くことで、懸濁液における相対的なアルブミンの含有量を減少させ、これを固化成形させることで、この洗浄の過程に要する時間を短縮できる。   The reason why the strength is improved by washing and loading is not clear, but impurities such as albumin in the molded body are removed, and a certain amount of moisture in the molded body structure is removed. This is considered to be due to the progress of cross-linking of fibrin by coagulation factor 13. Therefore, cryoprecipitate, which is a precipitate containing fibrinogen at a high concentration, is obtained by freezing and thawing the plasma concentrated by the above method, and then removing a part of this supernatant containing albumin at a high concentration. By reducing the relative albumin content in the suspension and solidifying it, the time required for this washing process can be shortened.

なお、洗浄及び荷重の負荷工程は、生理的条件である必要はなく、0〜40℃、より好ましくは4〜30℃、さらに好ましくは4〜25℃で行うことができる。   In addition, the loading process of washing | cleaning and a load does not need to be physiological conditions, It can carry out at 0-40 degreeC, More preferably, 4-30 degreeC, More preferably, it is 4-25 degreeC.

上記の操作により、本発明の高強度フィブリン成形体が得られる。得られたフィブリン成形体は、白色の柔軟性を有する成形体である。その破断強度は0.01MPa以上であり、従来知られているフィブリン体の強度からは全く予想できない程度高強度である。好ましい破断強度は0.1MPa以上であり、さらに好ましい破断強度は0.5MPa以上である。   By the above operation, the high-strength fibrin molded body of the present invention is obtained. The obtained fibrin molded product is a molded product having white flexibility. Its breaking strength is 0.01 MPa or more, which is high enough that it cannot be predicted from the strength of conventionally known fibrin bodies. A preferred breaking strength is 0.1 MPa or more, and a more preferred breaking strength is 0.5 MPa or more.

このように本発明のフィブリン成形体は柔軟性と高強度を有することから、人工靭帯、人工硬膜、人工骨膜、創傷被覆材、組織欠損部の充填材料等として有用であり、特に足場型人工靭帯として有用である。通常のフィブリンゲルはもろく、縫合糸で固定することは不可能であるが、本発明成形体は縫合糸をかけても裂けない強度を有する。本発明のフィブリン成形体を靭帯や腱の移植用足場として使用する場合には、血漿及び血小板のいずれも患者由来のものを用いるのが好ましい。   Thus, since the fibrin molded body of the present invention has flexibility and high strength, it is useful as an artificial ligament, an artificial dura mater, an artificial periosteum, a wound dressing material, a filling material for a tissue defect portion, etc. Useful as a ligament. Ordinary fibrin gel is brittle and cannot be fixed with a suture, but the molded article of the present invention has a strength that does not tear even when the suture is applied. When the fibrin molded body of the present invention is used as a scaffold for transplantation of ligaments and tendons, it is preferable to use plasma and platelets derived from patients.

本発明のフィブリン成形体を用いて靭帯や腱の再建術を行うには、膝、肘等の再建が必要な部位にフィブリン成形体を移植すればよい。このとき、フィブリン成形体は、所望の形状、例えば細いヒモ状、生理的靭帯の形状を模した扁平な形状等に切断して用いることができる。   In order to reconstruct a ligament or tendon using the fibrin molded body of the present invention, the fibrin molded body may be transplanted to a site requiring reconstruction such as a knee or an elbow. At this time, the fibrin molded body can be cut into a desired shape, for example, a thin string shape, a flat shape imitating the shape of a physiological ligament, and the like.

次に実施例を挙げて本発明を詳細に説明するが、本発明は何らこれに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited to this at all.

実施例1
抗凝固剤として5%クエン酸ナトリウム水溶液100mLを添加したウシ血液900mLを3000×gで15分間遠心分離して、血漿成分及びバフィーコートの層を分画採取した。血漿成分はさらに3000×g、15分の遠心分離を行い血漿の層に混入した赤血球を取り除き、さらに分画分子量10000(ドイツHannoverにあるVivascience AG社のVivaflow 50を使用)で限外濾過して2倍に濃縮した。一方、バフィーコートは3000×gで15分の遠心分離を2回行いバフィーコートの層に混入した赤血球を取り除き、これに血漿を加えて10mLに調整した。濃縮血漿11.6mL、この量の血漿に対応する血小板量に相当するバフィーコート0.12mL、及び1M CaCl2 0.27mLをポリプロピレン(PP)製又はPET製チューブに加えて混合した(図1)。得られた懸濁液を37℃インキュベーター中に3時間静置した。3時間後懸濁液がゲル化しているのが確認された(図2)。得られた成形体をチューブから取り出し、10mM CaCl2水溶液に浸した(図3)。その状態で、漬物容器(東京都品川区新輝合成株式会社製ピクレK−10)で1晩(約15時間)、加圧開始時3.3KPa、加圧終了時1.3KPaの加圧をしたところ、高強度フィブリン成形体が得られた(図4)。成形体は幅14mm、長さ69〜73mm、厚さは1mmであった。
得られたフィブリン成形体の引張強度(破断強度)を測定した。試験方法は、島津社製機械式引張試験機EZ−TESTを用い、クロスヘッド速度10mm/minで評点間距離30mmで行った。その結果、最大荷重7〜17N、最大応力0.50〜1.22MPaであった。
Example 1
900 mL of bovine blood to which 100 mL of 5% aqueous sodium citrate solution was added as an anticoagulant was centrifuged at 3000 × g for 15 minutes, and the plasma component and the buffy coat layer were fractionated. The plasma component was further centrifuged at 3000 × g for 15 minutes to remove red blood cells mixed in the plasma layer, and further ultrafiltered with a molecular weight cut off of 10,000 (using Vivaflow 50 of Vivascience AG, Hanover, Germany). Concentrated twice. On the other hand, the buffy coat was centrifuged twice at 3000 × g for 15 minutes to remove red blood cells mixed in the buffy coat layer, and plasma was added thereto to adjust to 10 mL. 11.6 mL of concentrated plasma, 0.12 mL of buffy coat corresponding to the amount of platelets corresponding to this amount of plasma, and 0.27 mL of 1M CaCl 2 were added to a polypropylene (PP) or PET tube and mixed (FIG. 1). . The obtained suspension was allowed to stand in a 37 ° C. incubator for 3 hours. After 3 hours, it was confirmed that the suspension was gelled (FIG. 2). The obtained molded body was taken out from the tube and immersed in a 10 mM CaCl 2 aqueous solution (FIG. 3). In that state, in a pickle container (Pikure K-10, Shinki-ku, Shinagawa-ku, Tokyo) overnight (about 15 hours), pressurize 3.3 KPa at the start of pressurization and 1.3 KPa at the end of pressurization. As a result, a high-strength fibrin molded body was obtained (FIG. 4). The molded body had a width of 14 mm, a length of 69 to 73 mm, and a thickness of 1 mm.
The tensile strength (breaking strength) of the obtained fibrin molded body was measured. The test method was performed using a mechanical tensile tester EZ-TEST manufactured by Shimadzu Corporation with a crosshead speed of 10 mm / min and a distance between ratings of 30 mm. As a result, the maximum load was 7 to 17 N and the maximum stress was 0.50 to 1.22 MPa.

実施例2
(1)バフィーコートの添加量を変化させる以外は、実施例1と同様にしてフィブリン成形体を得た。バフィーコートの添加量は、実施例1の2分の1倍に相当する0.06mL、3倍に相当する0.36mL、5倍に相当する0.60mL、7倍に相当する0.84mL、10倍に相当する1.20mLとした。さらに、全くバフィーコートを添加しない場合についても行った。その結果、バフィーコートを加えない場合には、血漿より実施例1と同様に作成した懸濁液にカルシウムを添加してから凝固までに3時間以上を要し、72時間でも凝固しない場合があった。得られた成形体を実施例1と同様に加圧して得られた高強度フィブリン形成形体の強度は0.40〜0.80MPaであった。また、バフィーコート添加量の増加に伴い、カルシウム及びバフィーコート添加から固化までの時間は短縮したが、実施例1と同様にして最終的に得られた高強度フィブリン成形体の強度は、バフィーコートを5倍以上添加した場合には概ね0,50MPa以下まで低下した。すなわち、バフィーコート量(血小板量として)が、懸濁液に対応する血液量に相当する血小板量の5を超えると概ね強度が低下する傾向がみられた。
Example 2
(1) A fibrin molded body was obtained in the same manner as in Example 1 except that the amount of buffy coat added was changed. The amount of buffy coat added was 0.06 mL corresponding to a half of Example 1, 0.36 mL corresponding to 3 times, 0.60 mL corresponding to 5 times, 0.84 mL corresponding to 7 times, The amount was 1.20 mL corresponding to 10 times. Furthermore, the case where no buffy coat was added was also performed. As a result, when no buffy coat was added, it took 3 hours or more from the addition of calcium to the suspension prepared in the same manner as in Example 1 from plasma, and it did not coagulate even after 72 hours. It was. The strength of the high-strength fibrin-formed product obtained by pressurizing the obtained molded body in the same manner as in Example 1 was 0.40 to 0.80 MPa. Further, as the amount of buffy coat added increased, the time from calcium and buffy coat addition to solidification was shortened, but the strength of the high strength fibrin molded product finally obtained in the same manner as in Example 1 was When added 5 times or more, the pressure dropped to approximately 0.50 MPa or less. That is, when the amount of buffy coat (as the amount of platelets) exceeds 5 times the amount of platelets corresponding to the amount of blood corresponding to the suspension, the strength generally tends to decrease.

(2)限外濾過による血漿成分の濃縮度を1倍から4倍に変化させる以外は、実施例1と同様にしてフィブリン成形体を得た。その結果、血漿成分の濃縮度は2〜3倍が、フィブリン成形体の強度の向上に良好であることが判明した。 (2) A fibrin molded body was obtained in the same manner as in Example 1 except that the concentration of plasma components by ultrafiltration was changed from 1 to 4 times. As a result, it was found that the concentration of plasma components was 2 to 3 times better for improving the strength of the fibrin molded article.

(3)1M CaCl2水溶液の添加量を変化させる以外は、実施例1と同様にしてフィブリン成形体を得た。懸濁液に加えたカルシウムイオンの最終濃度は、実施例1での添加量に相当する0.25mM、および0.10mM、0.20mM、0.30mM、0.45mMとした。0.10mMではゲル化しないサンプルがあった。0.45mMでは固化は起こらなかった。0.20mM及び0.30mMでは確実にゲル化がみられた。固化によって得られた成形体を実施例1の要領で加圧して得られた高強度フィブリン成形体については、破断強度は0.58〜1.14MPaとなった。 (3) A fibrin molded body was obtained in the same manner as in Example 1 except that the addition amount of the 1M CaCl 2 aqueous solution was changed. The final concentration of calcium ions added to the suspension was 0.25 mM corresponding to the amount added in Example 1, and 0.10 mM, 0.20 mM, 0.30 mM, and 0.45 mM. There was a sample that did not gel at 0.10 mM. Solidification did not occur at 0.45 mM. Gelation was observed reliably at 0.20 mM and 0.30 mM. About the high intensity | strength fibrin molded object obtained by pressurizing the molded object obtained by solidification in the way of Example 1, breaking strength became 0.58-1.14MPa.

(4)懸濁液の静置時間を変化させて、実施例1と同様にしてフィブリン成形体を得た。その結果、静置時間が3時間以下の場合には固化が不十分であることが多く、12時間以上の静置には特に強度を高める効果はみられなかった。 (4) A fibrin molded body was obtained in the same manner as in Example 1 by changing the standing time of the suspension. As a result, when the standing time was 3 hours or less, solidification was often insufficient, and when standing for 12 hours or more, the effect of increasing the strength was not particularly observed.

(5)懸濁液中に高濃度に含まれるアルブミンを相対的に減らした上でカルシウムイオンを添加して固化させた方が、最終的に得られる高強度フィブリン成形体の強度が強くなると考えられたため、実施例1の方法で作成した懸濁液を凍結解凍し、これによって高濃度のフィブリノーゲンが含まれるクリオプレシピテートとその上清を得た。得られた上清を分子量300000のフィルター(米国Millipore社製Pellicon XL;濾過膜の種類はBiomax)で限外濾過した。この操作によって大部分のアルブミンは濾過されずに分離された。得られた濾液をクリオプレシピテートを混合し、これを懸濁液にして実施例1の方法で高強度フィブリン成形体を作成したところ、その破断強度は1.27〜1.55MPaとさらに改善された。加圧に要する時間も短縮した。 (5) It is considered that the strength of the high-strength fibrin molded body finally obtained becomes stronger when albumin contained in a high concentration in the suspension is relatively reduced and then calcium ions are added and solidified. Therefore, the suspension prepared by the method of Example 1 was freeze-thawed, thereby obtaining a cryoprecipitate containing a high concentration of fibrinogen and its supernatant. The obtained supernatant was ultrafiltered with a filter having a molecular weight of 300,000 (Pellicon XL manufactured by Millipore, USA; the type of filter membrane was Biomax). By this operation, most of the albumin was separated without being filtered. When the obtained filtrate was mixed with cryoprecipitate and made into a suspension to produce a high-strength fibrin molded body by the method of Example 1, its breaking strength was further improved to 1.27 to 1.55 MPa. It was done. The time required for pressurization was shortened.

実施例3
実施例1と同様にしてウサギの血液から得られたフィブリン成形体を用いて、ウサギの膝の靭帯再建術を行った。すなわち、日本白色家兎の両膝の内側側副靭帯を全切除し、そこに右膝のみウサギ同種血液より作製した本発明のフィブリン成形体を移植し、左膝は切除したままとした。
埋め込み(再建)手術から8週間後、フィブリン成形体を埋め込んだ右膝には内側側副靭帯様の修復組織ができていた(図5)が、靭帯を切除しただけの左膝には靭帯様の組織は存在しなかった。
上記靭帯様組織のHE染色(図6、左)では長軸方向への走行性を持った線維性組織の中に線維芽細胞と思われる紡錘形の核を持った細胞が多数存在し、シリウスレッド染色(図6、右)では長軸方向に規則正しく配列するコラーゲン線維が豊富に含まれていた。
また、フィブリン成形体と埋め込んだ骨孔の骨とフィブリン成形体の境界の脱灰標本では、靭帯と骨との境界は正常組織にみられる靭帯−骨移行部(direct insertion)と類似した像を呈していた(図7)。
Example 3
Using the fibrin molded body obtained from rabbit blood in the same manner as in Example 1, ligament reconstruction of the rabbit knee was performed. That is, the medial collateral ligaments of both knees of Japanese white rabbits were completely excised, and the fibrin molded product of the present invention prepared from rabbit allogeneic blood only on the right knee was transplanted, and the left knee was left excised.
Eight weeks after the implantation (reconstruction) surgery, the right knee with the fibrin molded body had a medial collateral ligament-like repaired tissue (Fig. 5), but the left knee with only the ligament removed had a ligamentous appearance. There was no organization.
In the HE staining of the above ligament-like tissue (Fig. 6, left), there are many cells with spindle-shaped nuclei that appear to be fibroblasts in the fibrous tissue that has a running property in the long axis direction. Staining (FIG. 6, right) contained abundant collagen fibers regularly arranged in the long axis direction.
In addition, in the decalcified specimen at the boundary between the fibrin molded body and the embedded bone hole and the fibrin molded body, the boundary between the ligament and the bone has a similar image to the ligament-bone transition (direct insertion) found in normal tissue. It was present (Fig. 7).

実施例4
日本白色家兎5羽の両膝膝蓋靭帯の中央部2分の1を切除し、右膝のみにウサギの同種血液から作製したフィブリン成形体を移植し、左膝は切除したままとした。
埋め込み手術から12週間後に両膝の膝蓋靭帯を取り出した。腱を切除した部分に見られた修復組織の中央部分の厚みはフィブリン成形体を移植した右膝が平均2.1mmで左膝の平均1.5mmよりも厚かった。島津社製機械式引張試験機EZ−TESTを用い、クロスヘッド速度10mm/minで取り出した膝蓋腱の破断強度試験を行った。フィブリン成形体を移植した右膝の膝蓋靭帯の方が破断強度は強かった。
Example 4
One half of the central part of both knee patellar ligaments of five Japanese white rabbits was excised, and a fibrin molded body prepared from rabbit allogeneic blood was transplanted only to the right knee, while the left knee was left excised.
The patella ligaments of both knees were removed 12 weeks after the implantation operation. The thickness of the central part of the repaired tissue seen in the part where the tendon was excised was 2.1 mm on the right knee transplanted with the fibrin molded body on average and 1.5 mm on average on the left knee. Using a Shimadzu mechanical tensile tester EZ-TEST, a rupture strength test of the patella tendon taken out at a crosshead speed of 10 mm / min was performed. The rupture strength of the right patellar ligament grafted with the fibrin molded body was stronger.

懸濁液をチューブに添加した状態を示す図である。It is a figure which shows the state which added the suspension liquid to the tube. 静置後ゲル化した状態を示す図である。It is a figure which shows the state which gelatinized after stationary. 取り出したフィブリン成形体を示す図である。It is a figure which shows the taken-out fibrin molded object. 加圧後のフィブリン成形体を示す図である。It is a figure which shows the fibrin molded object after a pressurization. 移植8週間後の状態を示す図である。It is a figure which shows the state 8 weeks after a transplant. 移植8週間後のHE染色組織(左)及びシリウスレッド染色(右)を示す図である。It is a figure which shows the HE stained tissue (left) and Sirius red staining (right) 8 weeks after transplantation. 移植3週間後のHE染色組織を示す図である。It is a figure which shows the HE dyeing | staining structure | tissue 3 weeks after a transplant.

Claims (5)

2〜3倍に濃縮された血漿成分、血小板及びカルシウムイオンを含有する懸濁液を3〜24時間静置して固化成形し、得られた成形体を洗浄することにより得られる高強度フィブリン成形体であって、前記懸濁液が、血小板を正常血小板量の1/10濃度から、血漿の原料となった血液量の5倍相当分量含有し、成形体作成の過程である固化の段階におけるカルシウムイオンの最終濃度が20〜30mMであり、前記洗浄が、得られた成形体に1.3〜3.3kPaの荷重を負荷しつつ、10〜30mMのカルシウムイオン含有水溶液で行われる高強度フィブリン成形体。 High-strength fibrin molding obtained by allowing a suspension containing plasma components, platelets and calcium ions concentrated 2-3 times to stand for 3 to 24 hours to solidify and then wash the resulting molded body In the solidification stage, the suspension contains platelets in an amount equivalent to 5 times the amount of blood used as a plasma raw material, from 1/10 the normal platelet concentration to the platelets. The final concentration of calcium ions is 20 to 30 mM , and the washing is performed with an aqueous solution containing 10 to 30 mM calcium ions while applying a load of 1.3 to 3.3 kPa to the obtained molded body. High strength fibrin molded body. 静置を4〜40℃で行う請求項1記載の高強度フィブリン成形体。   The high-strength fibrin molded article according to claim 1, wherein the standing is performed at 4 to 40 ° C. 静置による固化成形を、所定の容器中で固化させることにより行う請求項1又は2記載の高強度フィブリン成形体。   The high-strength fibrin molded body according to claim 1 or 2, wherein solidification molding by standing is performed by solidifying in a predetermined container. 破断強度が0.5MPa以上である請求項1〜3のいずれか1項記載の高強度フィブリン成形体。   The high-strength fibrin molded article according to any one of claims 1 to 3, which has a breaking strength of 0.5 MPa or more. 請求項1〜4のいずれか1項記載の高強度フィブリン成形体を含有する人工靭帯。   An artificial ligament containing the high-strength fibrin molded article according to any one of claims 1 to 4.
JP2008154207A 2008-06-12 2008-06-12 High-strength fibrin molded body and artificial ligament Active JP5521235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008154207A JP5521235B2 (en) 2008-06-12 2008-06-12 High-strength fibrin molded body and artificial ligament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008154207A JP5521235B2 (en) 2008-06-12 2008-06-12 High-strength fibrin molded body and artificial ligament

Publications (2)

Publication Number Publication Date
JP2009297212A JP2009297212A (en) 2009-12-24
JP5521235B2 true JP5521235B2 (en) 2014-06-11

Family

ID=41544745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008154207A Active JP5521235B2 (en) 2008-06-12 2008-06-12 High-strength fibrin molded body and artificial ligament

Country Status (1)

Country Link
JP (1) JP5521235B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10793327B2 (en) 2017-10-09 2020-10-06 Terumo Bct Biotechnologies, Llc Lyophilization container and method of using same
CN114127501B (en) 2019-03-14 2023-02-17 泰尔茂比司特生物技术有限公司 Multi-part lyophilization container and method of use

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733545A (en) * 1995-03-03 1998-03-31 Quantic Biomedical Partners Platelet glue wound sealant
EP1538196A1 (en) * 2002-08-23 2005-06-08 ASAHI MEDICAL Co., Ltd. Fibrin-containing composition
ITRM20040638A1 (en) * 2004-12-24 2005-03-24 Advance Holdings Ltd SEMISINTETIC PIASTRINIC GEL AND METHOD FOR ITS PREPARATION.
EP1900809A4 (en) * 2005-05-17 2009-05-13 Univ Nagoya Nat Univ Corp Method of preparing cell for bone tissue formation and application of cell for bone tissue formation
WO2008060361A2 (en) * 2006-09-28 2008-05-22 Children's Medical Center Corporation Methods and collagen products for tissue repair

Also Published As

Publication number Publication date
JP2009297212A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP6892485B2 (en) Preparation of thrombin serum, its utilization and its preparation equipment
Anitua et al. Perspectives and challenges in regenerative medicine using plasma rich in growth factors
WO2013061309A2 (en) New a-prp medical device & tissue engineering composition, manufacturing machines and process
EP2976098B1 (en) Implantable serum-globin preparations for regeneration of tissues and treatment of wounds
Choukroun et al. Introducing the Low‐Speed Centrifugation Concept
JP5521235B2 (en) High-strength fibrin molded body and artificial ligament
EP3925613A1 (en) Tissue formulation or adhesive obtained from a blood composition containing platelets, and method of preparing such formulation
EP2279014B1 (en) Extracellular matrix comprising platelet factors
Goczyńska et al. Fibrin glues—the current state of knowledge
Chowdhury et al. Use of Chouk-roun's Platelet Rich Fibrin in Oral Defects
AU2013203115B2 (en) Process,tube and device for the preparation of wound healant composition
Raeissadat et al. Application of platelet-rich plasma and other platelet-derivative products in Iranian studies.
Pavlenko et al. PLASMA RICH IN PLATELETS: CURRENT VIEWS ON THE DEVELOPMENT OF PREVENTIVE MEDICINE
Gobbi et al. 7KH 8VH RI 3ODWHOHW 5LFK 3ODVPD IRU &DUWLODJH 5HSDLU
Subisha et al. Platelet concentrates: A promising innovation in Periodontal regeneration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131205

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5521235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250