JP5520256B2 - MICROGRID, ITS CONTROL DEVICE, AND ITS CONTROL METHOD - Google Patents

MICROGRID, ITS CONTROL DEVICE, AND ITS CONTROL METHOD Download PDF

Info

Publication number
JP5520256B2
JP5520256B2 JP2011117656A JP2011117656A JP5520256B2 JP 5520256 B2 JP5520256 B2 JP 5520256B2 JP 2011117656 A JP2011117656 A JP 2011117656A JP 2011117656 A JP2011117656 A JP 2011117656A JP 5520256 B2 JP5520256 B2 JP 5520256B2
Authority
JP
Japan
Prior art keywords
power
facilities
command value
shared
distributed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011117656A
Other languages
Japanese (ja)
Other versions
JP2012249374A (en
Inventor
則昭 徳田
義就 山口
智全 武部
裕介 山本
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP2011117656A priority Critical patent/JP5520256B2/en
Publication of JP2012249374A publication Critical patent/JP2012249374A/en
Application granted granted Critical
Publication of JP5520256B2 publication Critical patent/JP5520256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Description

本発明は、マイクログリッドとその制御装置及びその制御方法に関する。   The present invention relates to a microgrid, a control device thereof, and a control method thereof.

近年、発電設備の分野では、低炭素型社会の実現に向けて、太陽光発電や風力発電等の再生可能エネルギーを利用した分散型電源設備の開発や実用化が押し進められている。なお、再生可能エネルギーをエネルギー源とした発電の場合、特許文献1、2に示されるように、その瞬時発電量は気象の変動等に左右されるのでその不安定性が主な課題となっている。   In recent years, in the field of power generation facilities, development and commercialization of distributed power source facilities using renewable energy such as solar power generation and wind power generation have been promoted in order to realize a low-carbon society. In addition, in the case of power generation using renewable energy as an energy source, as shown in Patent Documents 1 and 2, the instability is a major problem because the instantaneous power generation amount is affected by changes in weather and the like. .

このため、蓄電設備を併用して電力系統に安定した電力を供給するスマートグリッド(Smart Grid)やマイクログリッド(Micro Grid)が注目されている。例えば、以下の非特許文献1〜3には、街レベルの広範囲な地域内で安定的な電力供給と効率的な電力運用とが図られるようなスマートグリッドの事例が紹介されている。   For this reason, smart grids and micro grids that supply stable power to the power system using power storage facilities are drawing attention. For example, the following Non-Patent Documents 1 to 3 introduce examples of smart grids that enable stable power supply and efficient power operation in a wide area at the city level.

特開2002−17044号公報JP 2002-17044 A 特開2008−259357号公報JP 2008-259357 A

一方、マイクログリッドの事例としては、グリッド(送電網)内に1台の大容量の蓄電設備を設置し、この大容量の蓄電設備でグリッド内全ての分散型電源設備の出力変動を吸収し、マイクログリッドと商用の電力系統との連系点(以下、グリッド連系点と呼ぶ)での電力平滑化を図ることが検討されている。   On the other hand, as an example of a microgrid, one large-capacity power storage facility is installed in the grid (power transmission network), and this large-capacity power storage facility absorbs output fluctuations of all distributed power supply facilities in the grid. It has been studied to smooth the power at the connection point between the microgrid and the commercial power system (hereinafter referred to as the grid connection point).

しかしながら、大容量の蓄電設備を設置する場合には、設置スペースや導入コストの問題が生じてしまう。特に、商用の電力系統が設けられていない離島や山間僻地等の地域では、ディーゼル発電機等の常用発電機を主とした独立電源設備が設置されているものの電源安定性の観点から見れば商用の電力系統に劣るので、蓄電設備の更なる大容量化が必要となり、上記の設置スペースや導入コストの問題はより一層顕著となる。   However, when installing a large-capacity power storage facility, problems of installation space and introduction cost arise. In particular, in remote islands and mountainous areas where commercial power systems are not established, independent power supply facilities such as diesel generators are mainly installed, but from the viewpoint of power supply stability, commercial power systems are used. Therefore, it is necessary to further increase the capacity of the power storage equipment, and the problems of the installation space and the introduction cost become more remarkable.

本発明は、このような課題を解決するためになされたもので、その目的は、マイクログリッドと電力系統(独立電源設備を含む)との連系点での電力平滑化を適切に実現することにある。   The present invention has been made in order to solve such problems, and an object thereof is to appropriately realize power smoothing at a connection point between a microgrid and a power system (including an independent power supply facility). It is in.

上記の課題を解決するために、本発明のある形態(aspect)に係るマイクログリッドの制御装置は、外部の電力系統と連系点を介して連系される複数の分散型電源設備を備え、それぞれの当該分散型電源設備は、発電設備と、当該発電設備により発電された電力を当該電力系統に供給可能となるようにその形態を変換する電力変換器と、当該電力変換器内に設けられた又は当該電力変換器の所定のインタフェースを介して接続された蓄電設備とを備えているマイクログリッドの制御装置であって、前記複数の分散型電源設備それぞれの前記発電設備の発電電力を取得する手段と、取得したそれぞれの前記発電設備の発電電力を合算した総発電電力を算出する手段と、算出した前記総発電電力を平滑化して前記グリッド連系点での平滑化目標電力を算出する手段と、算出した前記平滑化目標電力と算出した前記総発電電力との差分である総充放電電力指令値を算出する手段と、算出した前記総充放電電力指令値を前記複数の分散型電源設備それぞれの前記蓄電設備に分担させるように前記蓄電設備それぞれに対する分担電力指令値を算出する手段と、算出した前記分担電力指令値を前記複数の分散型電源設備それぞれの前記蓄電設備に送信する手段と、前記蓄電設備における充電電力量に相当する放電可能残量又は当該蓄電設備における容量から充電電力量を差し引いた差電力量に相当する充電可能残量である充放電可能残量を前記複数の分散型電源設備それぞれについて取得する手段と、を備え、前記分担電力指令値を算出する手段は、取得したそれぞれの前記蓄電設備の充放電可能残量から得られるそれぞれの前記蓄電設備の充放電可能残量比に基づいて前記分担電力指令値を算出するように構成されているものである。 In order to solve the above problems, a microgrid control device according to an aspect of the present invention includes a plurality of distributed power supply facilities that are interconnected via an interconnection point with an external power system, Each of the distributed power facilities is provided in the power converter, a power converter that converts the form so that the power generated by the power generation facility can be supplied to the power system, and the power converter. Or a control device for a microgrid comprising a power storage facility connected via a predetermined interface of the power converter, wherein the generated power of the power generation facility of each of the plurality of distributed power supply facilities is acquired. Means for calculating the total generated power obtained by adding the generated power of each of the acquired power generation facilities; smoothing the calculated total generated power to smooth the target power at the grid connection point Means for calculating, means for calculating a total charge / discharge power command value that is a difference between the calculated smoothing target power and the calculated total generated power, and the calculated total charge / discharge power command value for the plurality of variances Means for calculating a shared power command value for each of the power storage facilities so as to be shared by the power storage facilities of each type power supply facility, and transmitting the calculated shared power command value to the power storage facilities of each of the plurality of distributed power supply facilities And a chargeable / dischargeable remaining amount that is a remaining chargeable amount corresponding to a chargeable remaining amount corresponding to a capacity obtained by subtracting a charged power amount from a capacity in the power storage facility. Means for obtaining each of a plurality of distributed power supply facilities, and means for calculating the shared power command value is capable of charging and discharging each of the obtained power storage facilities. Are those configured to calculate the shared power command value based on the charge and discharge the remaining ratio of each of the power storage equipment obtained from the amount.

この制御装置によれば、1台の大容量の蓄電設備を新たに設けるのではなく、分散型電源設備向けの電力変換器のパッケージに元々付随している蓄電設備を、マイクログリッドと電力系統との連系点での電力平滑化の制御に併用することで、設置スペースや導入コストを抑えることが可能となる。また、マイクログリッド内の複数の分散型電源設備それぞれの発電設備及び蓄電設備を例えば1台の仮想発電設備及び仮想蓄電設備とみなして、マイクログリッドと電力系統との連系点での電力平滑化を実現するための統合化された指標である平滑化目標電力を、各発電設備の発電方法の違い(太陽光、風力等)による各出力変動(大きさ、周期、時期の相違)が相殺されるように設定することができる。また、この平滑化目標電力と仮想発電設備の発電電力(各分散型電源設備の総発電電力)との差分として算出された仮想蓄電設備に対する総充放電電力指令値を各蓄電設備に分担させているので、各発電設備の出力変動に応じて各蓄電設備の容量を個別に決定する方式と比べると、各蓄電設備にとって必要な容量を抑えることが可能となる。以上のとおり、この制御方法によれば、マイクログリッドと電力系統との連系点での電力平滑化を適切に実現することができる。また、この制御装置によれば、各蓄電設備の充放電可能残量比に応じて各蓄電設備に対する分担電力指令値を算出することで、各蓄電設備の容量の上下限値に到達し、各発電設備が各蓄電設備に対して充放電を行えなくなるような事態を回避できる。また、このような事態を回避することでマイクログリッド全体での平滑化目標電力や各蓄電設備に対する分担電力指令値の自由度が増し、各蓄電設備が充放電可能な状態を継続、維持しやすくなる。 According to this control apparatus, instead of newly providing one large-capacity power storage facility, the power storage facility originally attached to the power converter package for the distributed power supply facility is connected to the microgrid and the power system. By using it together with the control of power smoothing at the connection point, it is possible to reduce installation space and introduction cost. Further, the power generation facilities and power storage facilities of each of the plurality of distributed power supply facilities in the microgrid are regarded as, for example, one virtual power generation facility and virtual power storage facility, and power smoothing at the connection point between the microgrid and the power system is performed. The smoothed target power, which is an integrated indicator for achieving the above, is offset by output fluctuations (differences in size, period, and time) due to differences in power generation methods (solar, wind, etc.) of each power generation facility Can be set to Moreover, the total charge / discharge power command value for the virtual power storage facility calculated as the difference between the smoothed target power and the power generated by the virtual power generation facility (total power generation of each distributed power facility) is shared by each power storage facility. Therefore, compared with a method in which the capacity of each power storage facility is individually determined according to the output fluctuation of each power generation facility, the capacity required for each power storage facility can be suppressed. As described above, according to this control method, it is possible to appropriately realize power smoothing at the connection point between the microgrid and the power system. Further, according to this control device, by calculating the shared power command value for each power storage facility according to the chargeable / dischargeable remaining amount ratio of each power storage facility, the upper and lower limit values of the capacity of each power storage facility are reached, It is possible to avoid a situation where the power generation facility cannot charge / discharge each power storage facility. In addition, by avoiding such a situation, the degree of freedom of the smoothed target power and the shared power command value for each power storage facility in the entire microgrid increases, and it is easy to continue and maintain the state where each power storage facility can be charged and discharged. Become.

前記マイクログリッドの制御装置において、前記総発電電力を算出する手段は、前記複数の分散型電源設備それぞれの前記発電設備の発電電力に、前記複数の分散型電源設備それぞれの前記電力変換器の変換効率を乗算して前記総発電電力を算出するように構成されている、としてもよい。   In the control apparatus for the microgrid, the means for calculating the total generated power is a conversion of the power converter of each of the plurality of distributed power facilities into the generated power of each of the plurality of distributed power facilities. The total generated power may be calculated by multiplying efficiency.

この制御装置によれば、仮想蓄電設備に対する充放電電力指令値を各蓄電設備に分担させる際に各電力変換器の変換効率を考慮に入れることで、この変換効率に起因した実系統と仮想系統との間の電力の誤差をなくし、連系点での平滑化電力不足やこの誤差の累積によって生じた各蓄電設備の充放電残量比のアンバランスを防ぐことが可能となる。   According to this control device, when the charge / discharge power command value for the virtual power storage facility is shared by each power storage facility, the conversion efficiency of each power converter is taken into consideration, so that the real system and the virtual system resulting from this conversion efficiency are taken into account. It is possible to eliminate an error in power between the power storage and the battery, and to prevent an unbalance in the remaining charge / discharge ratio of each power storage facility caused by insufficient smoothed power at the connection point and accumulation of this error.

前記マイクログリッドの制御装置において、前記分担電力指令値を算出する手段は、前記複数の分散型電源設備それぞれの前記電力変換器の入出力容量の上下限値を制約条件として前記分担電力指令値を算出するように構成されている、としてもよい。   In the control apparatus for the microgrid, the means for calculating the shared power command value is obtained by using the upper and lower limit values of the input / output capacities of the power converters of each of the plurality of distributed power supply facilities as a constraint condition. It may be configured to calculate.

この制御装置によれば、電力変換器の入出力容量の上下限値の制約条件を考慮に入れた分担量指定値を算出することで、当該制約条件によって生じる連系点での平滑化電力の不足を防ぐことができる。   According to this control apparatus, by calculating the sharing amount designation value that takes into account the constraint condition of the upper and lower limit values of the input / output capacity of the power converter, the smoothed power at the interconnection point caused by the constraint condition is calculated. Shortage can be prevented.

上記の課題を解決するために、本発明の他の形態(aspect)に係るマイクログリッドの制御方法は、外部の電力系統と連系点を介して連系される複数の分散型電源設備のそれぞれが、発電設備と、当該発電設備により発電された電力を当該電力系統に供給可能となるようにその形態を変換する電力変換器と、当該電力変換器内に設けられた又は当該電力変換器の所定のインタフェースを介して接続された蓄電設備とを備えているマイクログリッドの制御方法において、前記複数の分散型電源設備それぞれの前記発電設備の発電電力を取得するステップと、取得したそれぞれの前記発電設備の発電電力を合算した総発電電力を算出するステップと、算出した前記総発電電力を平滑化して前記グリッド連系点での平滑化目標電力を算出するステップと、算出した前記平滑化目標電力と算出した前記総発電電力との差分である総充放電電力指令値を算出するステップと、前記蓄電設備における充電電力量に相当する放電可能残量又は当該蓄電設備における容量から充電電力量を差し引いた差電力量に相当する充電可能残量である充放電可能残量を前記複数の分散型電源設備それぞれについて取得するステップと、算出した前記総充放電電力指令値を前記複数の分散型電源設備それぞれの前記蓄電設備に分担させるように前記蓄電設備それぞれに対する分担電力指令値を算出するステップと、算出した前記分担電力指令値を前記複数の分散型電源設備それぞれの前記蓄電設備に送信するステップと、を含み、前記分担電力指令値を算出するステップは、取得したそれぞれの前記蓄電設備の充放電可能残量から得られるそれぞれの前記蓄電設備の充放電可能残量比に基づいて前記分担電力指令値を算出するステップを含むものである。 In order to solve the above-described problem, a microgrid control method according to another aspect of the present invention includes a plurality of distributed power facilities connected to an external power system via a connection point. Is a power generation facility, a power converter that converts the form of power generated by the power generation facility so that it can be supplied to the power system, and a power converter provided in the power converter or of the power converter In a control method of a microgrid provided with a power storage facility connected via a predetermined interface, a step of acquiring the generated power of each of the plurality of distributed power supply facilities and the acquired power generation A step of calculating a total generated power obtained by adding up the generated power of the facility, and a step of calculating a smoothed target power at the grid interconnection point by smoothing the calculated total generated power , Calculating a total charge and discharge power command value that is a difference between the calculated and calculated the smoothed target power the total generated power, discharge remaining capacity or the power storage equipment corresponding to the charging electric energy in the energy storage equipment A chargeable / dischargeable remaining amount, which is a remaining chargeable amount corresponding to a difference power amount obtained by subtracting the charged power amount from the capacity in the above, and the calculated total charge / discharge power command value Calculating a shared power command value for each of the power storage facilities so that the power storage facility of each of the plurality of distributed power facilities is shared, and calculating the shared power command value for each of the plurality of distributed power facilities look including the steps of: transmitting to the storage equipment, the step of calculating the shared power command value, charging and discharging of each acquired of the power storage equipment And calculating the shared power command value based on the charge and discharge the remaining ratio of each obtained of the power storage equipment from remaining capacity is Dressings containing.

前記マイクログリッドの制御方法において、前記総発電電力を算出するステップは、前記複数の分散型電源設備それぞれの前記発電設備の発電電力に、前記複数の分散型電源設備それぞれの前記電力変換器の変換効率を乗算して前記総発電電力を算出するステップを含んでもよい。   In the microgrid control method, the step of calculating the total generated power includes converting the power converter of each of the plurality of distributed power facilities into the generated power of each of the plurality of distributed power facilities. A step of calculating the total generated power by multiplying by efficiency may be included.

前記マイクログリッドの制御方法において、前記分担電力指令値を算出するステップは、前記複数の分散型電源設備それぞれの前記電力変換器の入出力容量の上下限値を制約条件として前記分担電力指令値を算出するステップを含んでもよい。   In the method of controlling the microgrid, the step of calculating the shared power command value is performed by using the upper and lower limit values of the input / output capacities of the power converters of each of the plurality of distributed power supply facilities as a constraint condition. A step of calculating may be included.

上記の課題を解決するために、本発明の他の形態(aspect)に係るマイクログリッドは、外部の電力系統と連系点を介して連系されている複数の分散型電源設備と、前記複数の分散型電源設備と通信可能に接続されている制御装置と、を備え、前記複数の分散型電源設備はそれぞれ、発電設備と、前記発電設備により発電された電力を当該電力系統に供給可能となるようにその形態を変換する電力変換器と、前記電力変換器内に設けられた又は前記電力変換器の所定のインタフェースを介して接続された蓄電設備と、を備え、前記制御装置は、前記複数の分散型電源設備それぞれの前記発電設備の発電電力を取得する手段と、取得したそれぞれの前記発電設備の発電電力を合算した総発電電力を算出する手段と、算出した前記総発電電力を平滑化して前記グリッド連系点での平滑化目標電力を算出する手段と、算出した前記平滑化目標電力と算出した前記総発電電力との差分である総充放電電力指令値を算出する手段と、前記蓄電設備における充電電力量に相当する放電可能残量又は当該蓄電設備における容量から充電電力量を差し引いた差電力量に相当する充電可能残量である充放電可能残量を前記複数の分散型電源設備それぞれについて取得する手段と、算出した前記総充放電電力指令値を前記複数の分散型電源設備それぞれの前記蓄電設備に分担させるように前記蓄電設備それぞれに対する分担電力指令値を算出する手段と、算出した前記分担電力指令値を前記複数の分散型電源設備それぞれの前記蓄電設備に送信する手段と、を備え、前記分担電力指令値を算出する手段は、取得したそれぞれの前記蓄電設備の充放電可能残量から得られるそれぞれの前記蓄電設備の充放電可能残量比に基づいて前記分担電力指令値を算出する手段を含むものである。 In order to solve the above-described problems, a microgrid according to another aspect of the present invention includes a plurality of distributed power supply facilities connected to an external power system through a connection point, and the plurality of distributed power supply facilities. A control device that is communicably connected to the distributed power supply facility, wherein each of the plurality of distributed power supply facilities is capable of supplying power generation equipment and the power generated by the power generation equipment to the power system. A power converter that converts the form so as to be, and a power storage facility provided in the power converter or connected via a predetermined interface of the power converter, the control device, Means for acquiring the generated power of each of the plurality of distributed power supply facilities, means for calculating the total generated power by adding the generated power of each of the generated power generation facilities, and smoothing the calculated total generated power It means for calculating and means for calculating a smoothing target power at the grid interconnection point, a total charge and discharge power command value that is a difference between the calculated said total generated power and the calculated smoothing target power, The plurality of distributed types is a remaining chargeable / dischargeable amount corresponding to a remaining chargeable amount corresponding to a chargeable electric energy in the electric storage facility or a difference in electric energy obtained by subtracting the charged electric energy from a capacity in the electric storage facility. Means for acquiring each power supply facility; and means for calculating a shared power command value for each power storage facility so that the calculated total charge / discharge power command value is shared by the power storage facilities for each of the plurality of distributed power supply facilities; , the calculated the shared power command value and means for transmitting to the storage equipment of each of the plurality of distributed power generation system, means for calculating the shared power command value, Each of the obtained from chargeable and dischargeable residual quantity of the resulting the each of the power storage equipment on the basis of the chargeable and dischargeable residual quantity ratio of the energy storage equipment is intended to include means for calculating the shared power command value.

本発明によれば、マイクログリッドと電力系統との連系点での電力平滑化を適切に実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electric power smoothing in the connection point of a microgrid and an electric power grid | system can be implement | achieved appropriately.

図1は本発明の実施の形態におけるマイクログリッドの構成例を示した図である。FIG. 1 is a diagram showing a configuration example of a microgrid according to an embodiment of the present invention. 図2は本発明の実施の形態におけるマイクログリッドのその他の構成例を示した図である。FIG. 2 is a diagram showing another configuration example of the microgrid according to the embodiment of the present invention. 図3は本発明の実施の形態1におけるマイクログリッドのシステム構成例を模式化した図である。FIG. 3 is a diagram schematically showing a system configuration example of the microgrid according to the first embodiment of the present invention. 図4は本発明の実施の形態1に係るマイクログリッドの電力平滑化を説明するための概念図である。FIG. 4 is a conceptual diagram for explaining power smoothing of the microgrid according to the first embodiment of the present invention. 図5は本発明の実施の形態2における各蓄電設備の充放電残量の例を示した図である。FIG. 5 is a diagram showing an example of the charge / discharge remaining amount of each power storage facility in Embodiment 2 of the present invention. 図6は本発明の実施の形態3における電力変換器の入出力関係を説明するための図である。FIG. 6 is a diagram for explaining the input / output relationship of the power converter according to Embodiment 3 of the present invention. 図7(a)は電力変換器のDCリンク側に蓄電設備が接続される場合における電力変換器の入出力と変換効率との関係を説明するための図である。図7(b)は電力変換器のACリンク側に蓄電設備が接続される場合における電力変換器の入出力と変換効率との関係を説明するための図である。FIG. 7A is a diagram for explaining the relationship between the input / output of the power converter and the conversion efficiency when the storage facility is connected to the DC link side of the power converter. FIG. 7B is a diagram for explaining the relationship between the input / output of the power converter and the conversion efficiency when the power storage facility is connected to the AC link side of the power converter. 図8は本発明の実施の形態3における平滑化目標関数の各項の一例をグラフ化した図である。FIG. 8 is a graph showing an example of each term of the smoothing target function in Embodiment 3 of the present invention. 図9は本発明の実施の形態3における平滑化目標関数の一例をグラフ化した図である。FIG. 9 is a graph showing an example of the smoothing target function in Embodiment 3 of the present invention. 図10は本発明の実施の形態4における平滑化目標関数の各項の一例をグラフ化した図である。FIG. 10 is a graph showing an example of each term of the smoothing target function in the fourth embodiment of the present invention.

以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
(実施の形態1)
===グリッド連系点での余剰又は不足電力を、各電力変換器に付随した蓄電設備が分担する手法===
[構成例]
図1は本発明の実施の形態におけるマイクログリッド(Micro Grid)の構成例を示した図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout the drawings, and redundant description thereof is omitted.
(Embodiment 1)
=== A method in which the power storage equipment attached to each power converter shares the surplus or shortage power at the grid connection point ===
[Configuration example]
FIG. 1 is a diagram showing a configuration example of a micro grid in the embodiment of the present invention.

図1に示すマイクログリッドでは、風車10aや太陽電池10b,10c等の発電設備が、コンバータ12aやパワーコンディショナ(以下、パワコンと呼ぶ)12b,12c等の電力変換器を介して互いにグリッド内で連系されており、負荷30に対して電力供給を行うとともに、グリッド連系点102を介して外部の電力系統(商用系統)200に電力供給するか、外部の電力系統200から電力供給を受けている。   In the microgrid shown in FIG. 1, power generation facilities such as a windmill 10a and solar cells 10b and 10c are mutually connected in a grid via power converters such as a converter 12a and power conditioners (hereinafter referred to as power conditioners) 12b and 12c. The power is supplied to the load 30 and supplied to the external power system (commercial system) 200 via the grid connection point 102 or is supplied with power from the external power system 200. ing.

コンバータ12aとは、風車10aにより発電機を駆動して得られた交流電力を負荷30が利用可能な交流電力に変換する機器のことであり、パワコン12b,12cとは、主に太陽電池10b,10cが発電した直流電力を負荷30が利用可能な交流電力に変換する機器のことであり、それぞれ発電設備(10a,10b,10c)に付随して設けられている。つまり、電力変換器(12a,12b,12c)は、各発電設備により発電された電力を電力系統200に供給可能となるようにその形態を変換(AC−AC変換,AC−DC−AC変換、DC−AC変換、周波数変換など)するものである。   The converter 12a is a device that converts AC power obtained by driving a generator by the windmill 10a into AC power that can be used by the load 30, and the power conditioners 12b and 12c are mainly solar cells 10b, It is a device that converts the DC power generated by 10c into AC power that can be used by the load 30, and is provided in association with each of the power generation facilities (10a, 10b, 10c). That is, the power converters (12a, 12b, 12c) convert the form so that the power generated by each power generation facility can be supplied to the power system 200 (AC-AC conversion, AC-DC-AC conversion, DC-AC conversion, frequency conversion, etc.).

電力変換器12a,12b,12cには、蓄電設備13a,13b,13cが標準的に含まれているか、あるいは蓄電設備13a,13b,13c向けのインタフェースが含まれている。このように蓄電設備をパッケージ化した電力変換器12a,12b,12cを発電設備の種類や仕様、また設置場所や環境に応じてそれらの容量を選定し、自由に組み合わせて分散型電源を構築すれば、1台の大容量の蓄電設備を導入する場合と比べて、導入コストや設置場所の制約の面で有利である。   Power converters 12a, 12b, and 12c typically include power storage facilities 13a, 13b, and 13c, or include interfaces for power storage facilities 13a, 13b, and 13c. In this way, the power converters 12a, 12b, and 12c in which the power storage facilities are packaged can be selected according to the type and specifications of the power generation facilities, the installation location and the environment, and freely combined to construct a distributed power source. For example, it is more advantageous in terms of introduction cost and installation location restrictions than when one large-capacity power storage facility is introduced.

図1に示す実施の形態では、蓄電設備13a,13b,13cは、電力変換器12a,12b,12cの発電設備10a,10b,10c側(以下、DCリンク側と呼ぶ)に接続されている。この他に、図2に示すように、蓄電設備13a,13b,13cは、電力変換器12a,12b,12cのグリッド連系点102側(以下、ACリンク側と呼ぶ)にインバータ16a,16b,16cを介して接続されている又は設けられてもよい。以下では、いずれの場合も同様の説明となるため、蓄電設備13a,13b,13cが電力変換器12a,12b,12cのDCリンク側に接続されている又は設けられている場合を前提として説明する。   In the embodiment shown in FIG. 1, the power storage facilities 13a, 13b, 13c are connected to the power generation facilities 10a, 10b, 10c side (hereinafter referred to as DC link side) of the power converters 12a, 12b, 12c. In addition, as shown in FIG. 2, the power storage facilities 13a, 13b, and 13c are connected to the inverters 16a, 16b, and 16c on the grid interconnection point 102 side (hereinafter referred to as the AC link side) of the power converters 12a, 12b, and 12c. 16c may be connected or provided. In the following, since the description is the same in any case, the description will be made on the assumption that the power storage facilities 13a, 13b, 13c are connected to or provided on the DC link side of the power converters 12a, 12b, 12c. .

図1に示すマイクログリッドでは、グリッド連系点102での電力平滑化を達成するために、蓄電設備13a,13b,13cに対する充放電量の分担制御を司るマイクログリッド計算機110が設けられている。マイクログリッド計算機110は、所定の通信回線を介してグリッド内全ての分散型電源設備と通信可能に接続されている。   In the microgrid shown in FIG. 1, in order to achieve power smoothing at the grid interconnection point 102, a microgrid computer 110 that manages charge / discharge sharing control for the power storage facilities 13 a, 13 b, and 13 c is provided. The microgrid computer 110 is communicably connected to all the distributed power supply facilities in the grid via a predetermined communication line.

具体的には、分散型電源設備側として、発電設備10a,10b,10cの出力側には、それらの発電電力をマイクログリッド計算機110に送信するための通信手段11a,11b,11cが設けられている。また、蓄電設備13a,13b,13cには、鉛蓄電池やリチウムイオン蓄電池などの蓄電池14a,14b,14cと、マイクログリッド計算機110との間で通信を行うための通信手段15a,15b,15cと、不図示の充放電回路とが備えられている。これらの構成に併せて、マイクログリッド計算機110は、通信手段111を備えており、発電設備10a,10b,10cそれぞれの通信手段11a,11b,11c並びに蓄電設備13a,13b,13cそれぞれの通信手段15a,15b、15cと所定の通信回線を介して互いに通信可能に接続されている。マイクログリッド計算機110は、例えば、MCU(micro control unit)、CPU(central processing unit)、MPU(micro processing unit)、PLC(programmable logic controller)等で構成されている。なお、マイクログリッド計算機110は、図1に示すように1台で構成される他に、互いに協働して分散制御する複数の計算機によって構成されていてもよい。   Specifically, communication means 11a, 11b, and 11c for transmitting the generated power to the microgrid computer 110 are provided on the output side of the power generation facilities 10a, 10b, and 10c as the distributed power supply facility side. Yes. The power storage facilities 13a, 13b, and 13c include communication means 15a, 15b, and 15c for performing communication between the storage batteries 14a, 14b, and 14c such as lead storage batteries and lithium ion storage batteries, and the microgrid computer 110, A charge / discharge circuit (not shown) is provided. In addition to these configurations, the microgrid computer 110 includes a communication unit 111, each of the communication units 11a, 11b, and 11c of the power generation facilities 10a, 10b, and 10c, and the communication unit 15a of each of the power storage facilities 13a, 13b, and 13c. , 15b, 15c and a predetermined communication line so that they can communicate with each other. The microgrid computer 110 includes, for example, an MCU (micro control unit), a CPU (central processing unit), an MPU (micro processing unit), a PLC (programmable logic controller), and the like. Note that the microgrid computer 110 may be configured by a plurality of computers that perform distributed control in cooperation with each other, in addition to being configured as a single unit as illustrated in FIG.

以下、図3、図4を参照しながら、グリッド連系点102での余剰又は不足電力をN台の電力変換器INV#1〜INV#N(図1では、12a,12b,12c)にそれぞれ付随した蓄電設備BAT#1〜BAT#N(図1では、13a,13b,13c)が分担する制御手法について説明する。なお、図3は、本発明の実施の形態1におけるマイクログリッドのシステム構成例を模式化した図であり、図4は、本発明の実施の形態1に係るマイクログリッドの電力平滑化手法を説明するための概念図である。   Hereinafter, referring to FIG. 3 and FIG. 4, the surplus or insufficient power at the grid interconnection point 102 is respectively transferred to N power converters INV # 1 to INV # N (12a, 12b, and 12c in FIG. 1). A control method shared by the accompanying power storage facilities BAT # 1 to BAT # N (13a, 13b, and 13c in FIG. 1) will be described. FIG. 3 is a diagram schematically showing a system configuration example of the microgrid according to the first embodiment of the present invention, and FIG. 4 illustrates a power smoothing method for the microgrid according to the first embodiment of the present invention. It is a conceptual diagram for doing.

N台の発電設備GEN#1〜GEN#N(図1では、10a,10b,10c)のグリッド連系点102での総発電電力を平滑化するために、N台の発電設備GEN#1〜GEN#Nそれぞれの発電電力を合算した総発電電力を発電する1台の仮想発電設備とこれに付随した1台の仮想蓄電設備を想定する。なお、仮想発電設備並びに仮想蓄電設備は本発明の概念を分かり易く説明するために想定したものであり、以下の実施の形態と同様の制御手法を実現していく上で、必ずしも仮想発電設備並びに仮想蓄電設備の想定をしなくてもよい。   In order to smooth the total generated power at the grid interconnection point 102 of the N power generation facilities GEN # 1 to GEN # N (10a, 10b, and 10c in FIG. 1), the N power generation facilities GEN # 1 to GEN # 1 Assume that one virtual power generation facility that generates total power generated by adding the power generated by each of GEN # N and one virtual power storage facility associated therewith. Note that the virtual power generation facility and the virtual power storage facility are assumed for easy understanding of the concept of the present invention, and the virtual power generation facility and the virtual power generation facility are not necessarily used in realizing the control method similar to the following embodiment. It is not necessary to assume a virtual power storage facility.

まず、発電設備GEN#1〜GEN#Nそれぞれの発電電力をP_1〜P_nとすると、仮想発電設備の発電電力T_orgは次式によって表される。   First, assuming that the generated power of each of the power generation facilities GEN # 1 to GEN # N is P_1 to P_n, the generated power T_org of the virtual power generation facility is expressed by the following equation.

T_org=P_1+P_2+・・・+P_n・・・(1)
つぎに、この仮想発電設備の発電電力T_orgの変動を抑制するために、この仮想発電設備の発電電力T_orgを例えば一次遅れフィルタリングを用いて平滑化し、この平滑化した値を平滑化目標電力Tと表す。ここで、一次遅れフィルタリングの時定数をTsとすると、平滑化目標電力Tは次式によって表される。
T_org = P_1 + P_2 +... + P_n (1)
Next, in order to suppress fluctuations in the generated power T_org of the virtual power generation facility, the generated power T_org of the virtual power generation facility is smoothed using, for example, first-order lag filtering, and the smoothed value is set as the smoothed target power T. Represent. Here, if the time constant of first-order lag filtering is Ts, the smoothing target power T is expressed by the following equation.

T=T_org/(1+Ts)・・・(2)
つぎに、平滑化目標電力Tと仮想発電設備の発電電力T_orgとの差分を算出し、次式のとおり、この算出した差分を仮想蓄電設備の総充放電電力指令値ΔTとする。
T = T_org / (1 + Ts) (2)
Next, the difference between the smoothing target power T and the generated power T_org of the virtual power generation facility is calculated, and this calculated difference is set as the total charge / discharge power command value ΔT of the virtual power storage facility as shown in the following equation.

ΔT=T−T_org・・・(3)
なお、総充放電電力指令値ΔTは、仮想蓄電設備に対して平滑化目標電力Tと発電電力T−orgとの差分(電力)を充放電させるための指令値であるが、その差分に応じた電力量を充放電させるための指令値も含む。例えば、仮想蓄電設備の総充放電電力指令値ΔTの極性が正の場合、平滑化目標電力Tと比べて仮想発電設備の発電電力T_orgが少ない電力不足の状態なので、総充放電電力指令値ΔTは仮想蓄電設備に対して放電電力指令となる。一方、仮想蓄電設備の総充放電電力指令値ΔTの極性が負の場合、平滑化目標電力Tと比べて仮想発電設備の発電電力T_orgが多い電力余剰の状態なので、総充放電電力指令値ΔTは仮想蓄電設備に対して充電電力指令となる。
ΔT = T−T_org (3)
The total charge / discharge power command value ΔT is a command value for charging / discharging the difference (electric power) between the smoothing target power T and the generated power T-org with respect to the virtual power storage facility. It also includes command values for charging and discharging the amount of power. For example, when the polarity of the total charge / discharge power command value ΔT of the virtual power storage facility is positive, the generated power T_org of the virtual power generation facility is less than the smoothing target power T, so the total charge / discharge power command value ΔT Is a discharge power command for the virtual power storage facility. On the other hand, when the polarity of the total charge / discharge power command value ΔT of the virtual power storage facility is negative, the total charge / discharge power command value ΔT is a surplus state in which the generated power T_org of the virtual power generation facility is larger than the smoothing target power T. Is a charge power command for the virtual power storage facility.

また、仮想蓄電設備の総充放電電力指令値ΔTは、次式のように、現実の各蓄電設備BAT#1〜BAT#Nそれぞれの分担電力指令値x_1〜x_nの総和として表される。   Further, the total charge / discharge power command value ΔT of the virtual power storage facility is expressed as the sum of the shared power command values x_1 to x_n of the actual power storage facilities BAT # 1 to BAT # N, as in the following equation.

ΔT=x_1+x_2+・・・+x_n・・・(4)
なお、分担電力指令値x_1〜x_nについても総充放電電力指令値ΔTと同様に各蓄電設備BAT#1〜BAT#Nそれぞれに充放電させる電力量の指令値を含む。ここで、1台の仮想蓄電設備の総充放電電力指令値ΔTを蓄電設備BAT#1〜BAT#Nそれぞれに分担させる手法としては、均等に分担させる手法、容量(残容量、総容量)毎に分担させる手法、電池特性毎に分担させる手法等を採用することができる。これらの手法の中から各蓄電設備BAT#1〜BAT#Nの構成や発電状況に応じた手法を選択すればよい。よって、式(4)及び所定の分担手法に基づいて、仮想蓄電設備に対する総充放電電力指令値ΔTから蓄電設備BAT#1〜BAT#Nそれぞれに対する分担電力指令値x_1〜x_nが算出される。
ΔT = x_1 + x_2 +... + X_n (4)
Note that the shared power command values x_1 to x_n also include command values for the amount of power to be charged / discharged to each of the power storage facilities BAT # 1 to BAT # N, similarly to the total charge / discharge power command value ΔT. Here, as a method of sharing the total charge / discharge power command value ΔT of one virtual power storage facility to each of the power storage facilities BAT # 1 to BAT # N, a method of equally sharing, capacity (remaining capacity, total capacity) It is possible to adopt a technique for sharing the battery characteristics, a technique for sharing the battery characteristics, and the like. What is necessary is just to select the method according to the structure and electric power generation condition of each electrical storage equipment BAT # 1-BAT # N from these methods. Therefore, shared power command values x_1 to x_n for the power storage facilities BAT # 1 to BAT # N are calculated from the total charge / discharge power command value ΔT for the virtual power storage facility based on Expression (4) and a predetermined sharing method.

以上、本実施の形態1によれば、1台の大容量の蓄電設備を新たに設けるのではなく、分散型電源設備向けの電力変換器のパッケージに元々付随している蓄電設備を、マイクログリッドと電力系統との連系点での電力平滑化の制御に併用することで、設置スペースや導入コストを抑えることが可能となる。また、具体的には、マイクログリッド内の複数の分散型電源設備それぞれの発電設備及び蓄電設備を例えば1台の仮想発電設備及び仮想蓄電設備とみなす。そして、各発電設備の発電方法の違い(太陽光、風力等)による各出力変動(大きさ、周期、時期の相違)が相殺されるように、マイクログリッドと電力系統との連系点での電力平滑化を実現するための統括的な指標である平滑化目標電力を設定することができる。また、この平滑化目標電力と仮想発電設備の発電電力(各発電設備の発電電力の総和)との差分として算出された仮想蓄電設備に対する総充放電電力指令値を各蓄電設備にそれぞれ分担させるので、各発電設備の出力変動に応じて各蓄電設備の容量を個別に決定していく方式と比べると、各蓄電設備それぞれに必要な容量を抑えることができ、これにより設置スペースや導入コストが抑えられる。以上のとおり、この制御方法によれば、マイクログリッドと電力系統との連系点での電力平滑化を適切に実現することができる。
(実施の形態2)
===グリッド連系点での余剰又は不足電力を各電力変換器に付随した蓄電設備がそれらの充放電残量比に基づいて分担する手法===
本発明の実施の形態2では、仮想蓄電設備の分担電力指令値を各蓄電設備に分担させる手法として、各蓄電設備の充放電残量比に基づく手法を提案する。以下では、本実施の形態2の手法を図3と図5に示す各蓄電設備の充放電残量の例を用いて説明する。
As described above, according to the first embodiment, instead of newly providing one large-capacity power storage facility, the power storage facility originally attached to the power converter package for the distributed power source facility is replaced with a microgrid. By using it together with the control of power smoothing at the connection point between the power system and the power system, the installation space and the introduction cost can be reduced. Specifically, the power generation facilities and power storage facilities of each of the plurality of distributed power supply facilities in the microgrid are regarded as one virtual power generation facility and virtual power storage facility, for example. And so that each output fluctuation (difference in size, period, time) due to the difference in power generation method (solar, wind, etc.) of each power generation facility is offset, the connection point between the microgrid and the power system A smoothing target power, which is a comprehensive index for realizing power smoothing, can be set. In addition, since the total charge / discharge power command value for the virtual power storage facility calculated as the difference between the smoothing target power and the power generated by the virtual power generation facility (the sum of the power generated by each power generation facility) is shared by each power storage facility. Compared with the method of determining the capacity of each power storage facility individually according to the output fluctuation of each power generation facility, the capacity required for each power storage facility can be suppressed, thereby reducing the installation space and introduction cost. It is done. As described above, according to this control method, it is possible to appropriately realize power smoothing at the connection point between the microgrid and the power system.
(Embodiment 2)
=== A method in which the power storage equipment associated with each power converter shares the surplus or shortage power at the grid connection point based on the charge / discharge remaining amount ratio ===
In the second embodiment of the present invention, a method based on the charge / discharge remaining amount ratio of each power storage facility is proposed as a method of sharing the shared power command value of the virtual power storage facility to each power storage facility. Below, the method of this Embodiment 2 is demonstrated using the example of the charge / discharge residual amount of each electrical storage equipment shown to FIG. 3 and FIG.

まず、仮想蓄電設備の総充放電電力指令値ΔTの極性が正(放電電力指令)の場合、i(=1〜Nのいずれか)番目の蓄電設備BAT#iの分担電力指令値x_iは次式のように表される。なお、次式において、各蓄電設備BAT#1〜#Nそれぞれの放電可能残量をd_1〜d_nと表しており、“d_i/(d_1+d_2+・・・+d_n)”は、全ての蓄電設備BAT#1〜#Nの放電可能残量の総和に対するi番目の蓄電設備BAT#iの放電可能残量の比(以下、放電可能残量比)である。   First, when the polarity of the total charge / discharge power command value ΔT of the virtual power storage facility is positive (discharge power command), the shared power command value x_i of the i (= 1 to N) -th power storage facility BAT # i is It is expressed as an expression. In the following equation, the remaining dischargeable amounts of the respective power storage facilities BAT # 1 to #N are represented as d_1 to d_n, and “d_i / (d_1 + d_2 +... + D_n)” is all power storage facilities BAT # 1. The ratio of the remaining dischargeable amount of the i-th power storage equipment BAT # i to the total dischargeable remaining amount of #N (hereinafter, dischargeable remaining amount ratio).

x_i=ΔT*d_i/(d_1+d_2+・・・+d_n)・・・(5)
一方、仮想蓄電設備の総充放電電力指令値ΔTの極性が負(充電電力指令)の場合、i(=1〜Nのいずれか)番目の蓄電設備BAT#iの分担電力指令値x_iは次式のように表される。なお、次式において、各蓄電設備BAT#1〜#Nそれぞれの充電可能残量をc_1〜c_nと表しており、“c_i/(c_1+c_2+・・・+c_n)”は、全ての蓄電設備BAT#1〜#Nの充電可能残量の総和に対するi番目の蓄電設備BAT#iの充電可能残量の比(以下、充電可能残量比)である。
x_i = ΔT * d_i / (d_1 + d_2 +... + d_n) (5)
On the other hand, when the polarity of the total charge / discharge power command value ΔT of the virtual power storage facility is negative (charge power command), the shared power command value x_i of the i (= 1 to N) -th power storage facility BAT # i is It is expressed as an expression. In the following equation, the remaining chargeable amounts of the respective power storage facilities BAT # 1 to #N are represented as c_1 to c_n, and “c_i / (c_1 + c_2 +... + C_n)” represents all the power storage facilities BAT # 1. Is the ratio of the chargeable remaining amount of the i-th power storage equipment BAT # i to the total remaining chargeable amount of #N (hereinafter referred to as the chargeable remaining amount ratio).

x_i=ΔT*c_i/(c_1+c_2+・・・+c_n)・・・(6)
図5では、3台の蓄電設備BAT#1,BAT#2,BAT#3を想定しており、蓄電設備BAT#1,BAT#2,BAT#3それぞれの容量(電力量換算)が60kWh,20kWh,40kWhとする。また、蓄電設備BAT#1,BAT#2,BAT#3には18kWh,12kWh,20kWhの電力量が既に充電されているものとする。
x_i = ΔT * c_i / (c_1 + c_2 +... + c_n) (6)
In FIG. 5, three power storage facilities BAT # 1, BAT # 2, and BAT # 3 are assumed, and the capacity (electric power conversion) of each of the power storage facilities BAT # 1, BAT # 2, and BAT # 3 is 60 kWh, 20 kWh and 40 kWh. In addition, it is assumed that the power storage facilities BAT # 1, BAT # 2, and BAT # 3 are already charged with 18 kWh, 12 kWh, and 20 kWh.

蓄電設備BAT#1では、現時点の放電可能残量d_1(ここでは電力量換算とする。以下、同じ。)は18kWhであり、現時点の充電可能残量c_1(ここでは電力量換算とする。以下、同じ。)は42kWh(=60kWh−18kWh)である。また、蓄電設備BAT#2では、現時点の放電可能残量d_2は12kWhであり、現時点の充電可能残量c_1は8kWh(=20kWh−12kWh)である。また、蓄電設備BAT#3では、現時点の放電可能残量d_3は20kWhであり、現時点の充電可能残量c_3は20kWh(=40kWh−20kWh)である。   In the power storage facility BAT # 1, the current dischargeable remaining amount d_1 (here, referred to as electric energy conversion; hereinafter the same) is 18 kWh, and the current chargeable remaining amount c_1 (here, referred to as electric energy conversion. , The same) is 42 kWh (= 60 kWh-18 kWh). Further, in the power storage facility BAT # 2, the current dischargeable remaining amount d_2 is 12 kWh, and the current chargeable remaining amount c_1 is 8 kWh (= 20 kWh-12 kWh). In the power storage facility BAT # 3, the current dischargeable remaining amount d_3 is 20 kWh, and the current chargeable remaining amount c_3 is 20 kWh (= 40 kWh-20 kWh).

まず、仮想蓄電設備に対する総充放電電力指令値ΔT(ここでは説明の都合上、電力量換算とする。)が5kWhの場合、言い換えると、仮想蓄電設備に対する5kWhの放電電力指令(同様に電力量換算とする。)の場合、蓄電設備BAT#1,BAT#2,BAT#3それぞれの分担電力指令値x_1,x_2,x_3(同様に電力量換算とする。)は、式(5)に基づきそれぞれ次のとおりとなる。   First, when the total charge / discharge power command value ΔT for the virtual power storage facility (here, for the convenience of explanation, the power amount is converted) is 5 kWh, in other words, the discharge power command of 5 kWh for the virtual power storage facility (similarly, the power amount In the case of conversion), the shared power command values x_1, x_2, and x_3 (similarly converted into electric energy) of the power storage facilities BAT # 1, BAT # 2, and BAT # 3 are based on Expression (5). Each is as follows.

x_1=5kWh*18kWh/(18kWh+12kWh+20kWh)
=1.8kWh・・・(7−1)
x_2=5kWh*12kWh/(18kWh+12kWh+20kWh)
=1.2kWh・・・(7−2)
x_3=5kWh*20kWh/(18kWh+12kWh+20kWh)
=2.0kWh・・・(7−3)
なお、分担電力指令値x_1,x_2,x_3の極性は全て正であるため、蓄電設備BAT#1,BAT#2,BAT#3全てに対して放電電力指令が実行される。
x_1 = 5 kWh * 18 kWh / (18 kWh + 12 kWh + 20 kWh)
= 1.8kWh (7-1)
x_2 = 5 kWh * 12 kWh / (18 kWh + 12 kWh + 20 kWh)
= 1.2kWh (7-2)
x — 3 = 5 kWh * 20 kWh / (18 kWh + 12 kWh + 20 kWh)
= 2.0kWh (7-3)
Note that since the polarities of the shared power command values x_1, x_2, and x_3 are all positive, the discharge power command is executed for all of the power storage facilities BAT # 1, BAT # 2, and BAT # 3.

また、仮想蓄電設備に対する総充放電電力指令値ΔTが−7kWhの場合、言い換えると、仮想蓄電設備に対する7kWhの充電電力指令の場合、蓄電設備BAT#1,BAT#2,BAT#3それぞれの分担電力指令値x_1,x_2,x_3は、式(6)に基づきそれぞれ次のとおりとなる。   In addition, when the total charge / discharge power command value ΔT for the virtual power storage facility is −7 kWh, in other words, in the case of a 7 kWh charge power command for the virtual power storage facility, each of the power storage facilities BAT # 1, BAT # 2, and BAT # 3 The electric power command values x_1, x_2, and x_3 are as follows based on Expression (6).

x_1=−7kWh*42kWh/(42kWh+8kWh+20kWh)
=−4.2kWh・・・(8−1)
x_2=−7kWh*8kWh/(42kWh+8kWh+20kWh)
=−0.8kWh・・・(8−2)
x_3=−7kWh*20kWh/(42kWh+8kWh+20kWh)
=−2.0kWh・・・(8−3)
なお、分担電力指令値x_1,x_2,x_3の極性は全て負であるため、蓄電設備BAT#1,BAT#2,BAT#3全てに対して充電電力指令が実行される。
x_1 = -7 kWh * 42 kWh / (42 kWh + 8 kWh + 20 kWh)
= -4.2 kWh (8-1)
x_2 = -7 kWh * 8 kWh / (42 kWh + 8 kWh + 20 kWh)
= -0.8kWh (8-2)
x — 3 = −7 kWh * 20 kWh / (42 kWh + 8 kWh + 20 kWh)
= -2.0 kWh (8-3)
Note that since the polarities of the shared power command values x_1, x_2, and x_3 are all negative, the charging power command is executed for all of the power storage facilities BAT # 1, BAT # 2, and BAT # 3.

以上、本実施の形態2によれば、仮想蓄電設備に対する総充放電電力指令値を各蓄電設備に分担させる際に、充電可能残量又は放電可能残量の多い蓄電設備がより多くの充電又は放電を行えるようになる。このため、各蓄電設備の容量の上下限値に到達し、各発電設備が各蓄電設備に対して充放電を行えなくなるような事態を回避できる。また、このような事態を回避することで、マイクログリッド全体での平滑化目標電力や各蓄電設備に対する分担電力指令値の制約が減ずるため、各蓄電設備が充放電可能な状態を継続、維持しやすくなるという利点もある。
(実施の形態3)
===電力変換器の変換効率を考慮に入れた分担手法===
本発明の実施の形態3では、電力変換器の変換効率分、グリッド内で電力が実質的に減少することを勘案して、仮想蓄電設備に対する総充放電電力指令値を各蓄電設備に分担させる際に各電力変換器の変換効率を考慮に入れることで、仮想系統の電力(制御上の電力)と実系統の電力との誤差をなくし、グリッド連系点での電力平滑化の精度を向上させる手法を提案する。
As described above, according to the second embodiment, when the total charge / discharge power command value for the virtual power storage facility is assigned to each power storage facility, the power storage facility with a large remaining chargeable capacity or the remaining dischargeable capacity is charged more or It becomes possible to discharge. For this reason, it is possible to avoid a situation in which the upper and lower limits of the capacity of each power storage facility are reached, and each power generation facility cannot charge or discharge each power storage facility. In addition, by avoiding such a situation, restrictions on the smoothed target power in the entire microgrid and the shared power command value for each power storage facility are reduced, so that each power storage device can continue to be charged and discharged. There is also an advantage that it becomes easy.
(Embodiment 3)
=== Sharing method taking into account the conversion efficiency of the power converter ===
In the third embodiment of the present invention, the total charge / discharge power command value for the virtual power storage facility is assigned to each power storage facility in consideration of the fact that the power substantially decreases in the grid by the conversion efficiency of the power converter. By taking into account the conversion efficiency of each power converter, the error between the power of the virtual system (control power) and the power of the real system is eliminated, and the accuracy of power smoothing at the grid connection point is improved. We propose a technique for

図6は、本発明の実施の形態3における電力変換器の入出力関係を説明するための図である。図6に示すとおり、電力変換器12の発電設備10並びに蓄電設備13側(DCリンク側)の電力,電力系統200側(ACリンク側)の電力,変換効率をそれぞれA,B,kと表すと、発電設備10並びに蓄電設備13側の電力Aが電力変換器12の入力(蓄電設備13の放電)となる場合には“B=A*k”となり、発電設備10並びに蓄電設備13側の電力Aが電力変換器12の出力(蓄電設備13の充電)となる場合には“B=A/k”となる。   FIG. 6 is a diagram for explaining the input / output relationship of the power converter according to Embodiment 3 of the present invention. As shown in FIG. 6, the power on the power generation equipment 10 and the power storage equipment 13 side (DC link side), the power on the power system 200 side (AC link side), and the conversion efficiency of the power converter 12 are represented as A, B, and k, respectively. When the electric power A on the power generation facility 10 and the storage facility 13 side becomes the input of the power converter 12 (discharge of the storage facility 13), “B = A * k”, and the power generation facility 10 and the storage facility 13 side When the power A is the output of the power converter 12 (charging of the power storage facility 13), “B = A / k”.

図7(a)は電力変換器のDCリンク側に蓄電設備が接続される場合における電力変換器の入出力と変換効率との関係を説明するための図である。この場合、電力変換器INV#iには発電設備GEN#iの発電電力P_iと蓄電設備BAT#iの分担電力指令値x_iとの和が入力される。ここで、発電設備GEN#iの発電電力P_iと蓄電設備BAT#iの分担電力指令値x_iとの和(P_i+x_i)が正(蓄電設備BAT#iに対する放電電力指令)の場合、電力変換器INV#iの出力T_iは“(P_i+x_i)*k_i”と表される。また、発電設備GEN#iの発電電力P_iと蓄電設備BAT#iの分担電力指令値x_iとの和(P_i+x_i)が負(蓄電設備BAT#iに対する充電電力指令)の場合、電力変換器INV#iの入力T_iは“(P_i+x_i)*(1/k_i)”と表される。   FIG. 7A is a diagram for explaining the relationship between the input / output of the power converter and the conversion efficiency when the storage facility is connected to the DC link side of the power converter. In this case, the sum of the generated power P_i of the power generation facility GEN # i and the shared power command value x_i of the power storage facility BAT # i is input to the power converter INV # i. Here, when the sum (P_i + x_i) of the generated power P_i of the power generation facility GEN # i and the shared power command value x_i of the power storage facility BAT # i is positive (discharge power command for the power storage facility BAT # i), the power converter INV The output T_i of #i is expressed as “(P_i + x_i) * k_i”. Further, when the sum (P_i + x_i) of the generated power P_i of the power generation facility GEN # i and the shared power command value x_i of the power storage facility BAT # i is negative (charging power command for the power storage facility BAT # i), the power converter INV # The input T_i of i is expressed as “(P_i + x_i) * (1 / k_i)”.

図7(b)は電力変換器のACリンク側に蓄電設備が接続される場合の電力変換器の入出力電力と変換効率との関係を説明するための図である。この場合、電力変換器INV#iには発電設備GEN#iの発電電力P_iが入力される。ここで、蓄電設備BAT#iの分担電力指令値x_iが正(蓄電設備BAT#iに対する放電電力指令)の場合、電力変換器INV#iの出力T_iは“x_i*k_i”と表される。また、蓄電設備BAT#iの分担電力指令値x_iが負(蓄電設備BAT#iに対する充電電力指令)の場合、電力変換器INV#iの入力T_iは“x_i*(1/k_i)”と表される。   FIG. 7B is a diagram for explaining the relationship between the input / output power of the power converter and the conversion efficiency when the power storage facility is connected to the AC link side of the power converter. In this case, the generated power P_i of the power generation facility GEN # i is input to the power converter INV # i. Here, when the shared power command value x_i of the power storage facility BAT # i is positive (discharge power command for the power storage facility BAT # i), the output T_i of the power converter INV # i is expressed as “x_i * k_i”. Further, when the shared power command value x_i of the power storage facility BAT # i is negative (charging power command for the power storage facility BAT # i), the input T_i of the power converter INV # i is expressed as “x_i * (1 / k_i)”. Is done.

ここで、電力変換器INV#iのDCリンク側に蓄電設備BAT#iが接続される場合において、グリッド連系点での平滑化目標電力Tを算出するための関数である平滑化目標関数T(x_1)は、次式のように、電力変換器INV#iの出力T_iである“(P_i+x_i)*k_i”の総和として定義される。   Here, when the power storage equipment BAT # i is connected to the DC link side of the power converter INV # i, the smoothing target function T that is a function for calculating the smoothing target power T at the grid connection point. (X_1) is defined as the sum of “(P_i + x_i) * k_i”, which is the output T_i of the power converter INV # i, as in the following equation.

T(x_1)=(P_1+x_1)*k_1(x_1)+(P_2+x_2)*k_2(x_2)+・・・+(P_n+x_n)*k_n(x_n・・・(9)
但し、
k_i(x_i)=k_i (P_i+x_i≧0)・・・(10−1)
=1/k_i (P_i+x_i<0)・・・(10−2)
x_i=(d_i/d_1)*x_1 (ΔT>0)・・・(11−1)
=(c_i/c_1)*x_1 (ΔT≦0)・・・(11−2)
式(9)で定義された平滑化目標関数T(x_1)は、所定の蓄電設備BAT#1に対する分担電力指令値x_1(操作量)を基準としたものであるが、その他の蓄電設備BAT#2〜BAT#Nに対する分担電力指令値x_2〜x_nを基準としてもよい。
T (x_1) = (P_1 + x_1) * k_1 (x_1) + (P_2 + x_2) * k_2 (x_2) + ... + (P_n + x_n) * k_n (x_n) (9)
However,
k_i (x_i) = k_i (P_i + x_i ≧ 0) (10-1)
= 1 / k_i (P_i + x_i <0) (10-2)
x_i = (d_i / d_1) * x_1 (ΔT> 0) (11-1)
= (C_i / c_1) * x_1 (ΔT ≦ 0) (11-2)
The smoothing target function T (x_1) defined by Expression (9) is based on the shared power command value x_1 (operation amount) for a predetermined power storage facility BAT # 1, but other power storage facilities BAT # The shared power command values x_2 to x_n for 2 to BAT # N may be used as a reference.

式(10−1),(10−2)では、変換効率k_iが、蓄電設備BAT#iに対する分担電力指令値x_iを操作量として“k_i(x_i)”と表され、且つ発電設備GEN#iの発電電力P_iと蓄電設備BAT#iの分担電力指令値x_iとの和(P_i+x_i)の極性(正又は負)に応じて場合分けされることを表している。   In the expressions (10-1) and (10-2), the conversion efficiency k_i is expressed as “k_i (x_i)” with the shared power command value x_i for the power storage facility BAT # i as an operation amount, and the power generation facility GEN # i This indicates that cases are divided according to the polarity (positive or negative) of the sum (P_i + x_i) of the generated power P_i and the shared power command value x_i of the power storage equipment BAT # i.

式(11−1),(11−2)では、分担電力指令値x_iが、仮想蓄電設備の総充放電電力指令値ΔTの極性(正又は負)に応じて場合分けされることを表している。   Expressions (11-1) and (11-2) indicate that the shared power command value x_i is divided according to the polarity (positive or negative) of the total charge / discharge power command value ΔT of the virtual power storage facility. Yes.

ここで、式(10−1),(10−2)、及び式(11−1),(11−2)の条件式を式(9)の平滑化目標関数T(x_1)にそれぞれ代入すると、式(9)の平滑化目標関数T(x_1)の各項T_i(x_1)は次式のように表される。   Here, when the conditional expressions of the expressions (10-1) and (10-2) and the expressions (11-1) and (11-2) are substituted into the smoothing target function T (x_1) of the expression (9), respectively. , Each term T_i (x_1) of the smoothing target function T (x_1) in Expression (9) is expressed as the following expression.

T_i(x_1)=(c_i/c_1)/k_i*x_1+P_i/k_i (x_1<(−P_i*c_1)/c_i)・・・(12−1)
=(c_i/c_1)*k_i*x_1+P_i*k_i (−P_i*c_1/c_i≦x_1<0)・・・(12−2)
=(d_i/d_1)*k_i*x_1+P_i*k_i (0≦x_1)・・・(12−3)
図8は、式(12−1)〜(12−3)で表現された平滑化目標関数T(x_1)の各項T_i(x_1)の一例をグラフ化した図である。電力変換器の系統毎の入出力関係を表しており、操作量x_1に応じて単調増加する連続区分線形関数として表される。
T_i (x_1) = (c_i / c_1) / k_i * x_1 + P_i / k_i (x_1 <(-P_i * c_1) / c_i) (12-1)
= (C_i / c_1) * k_i * x_1 + P_i * k_i (-P_i * c_1 / c_i ≦ x_1 <0) (12-2)
= (D_i / d_1) * k_i * x_1 + P_i * k_i (0 ≦ x_1) (12-3)
FIG. 8 is a graph showing an example of each term T_i (x_1) of the smoothing target function T (x_1) expressed by the equations (12-1) to (12-3). It represents the input / output relationship for each system of the power converter, and is represented as a continuous piecewise linear function that monotonously increases in accordance with the manipulated variable x_1.

図9は、式(9)、式(10−1),(10−2)、及び式(11−1),(11−2)で表現された平滑化目標関数T(x_1)の一例をグラフ化した図である。図9に示すように、平滑化目標関数T(x_1)は、単調増加する連続区分線形関数である各項T_i(x_1)を重ね合わせて得られる関数なので、操作量x_1に応じて単調増加する連続区分線形関数である。従って、平滑化目標関数T(x_1)の或る関数値を満たす操作量x_1は一意に求められる。例えば、図9に示す平滑化目標関数T(x_1)は、4つの項T_1(x_1)〜T_4(x_1)を重ね合わせて構成されており、平滑化目標関数T(x_1)の或る関数値として例えば“8”が決定されると、その関数値“8”に対して操作量x_1が“−1.05”として一意に求められる。   FIG. 9 shows an example of the smoothing target function T (x_1) expressed by Expression (9), Expression (10-1), (10-2), and Expression (11-1), (11-2). FIG. As shown in FIG. 9, the smoothing target function T (x_1) is a function obtained by superimposing each term T_i (x_1), which is a monotonically increasing continuous piecewise linear function, and therefore monotonically increases according to the operation amount x_1. It is a continuous piecewise linear function. Therefore, the manipulated variable x_1 that satisfies a certain function value of the smoothing target function T (x_1) is uniquely obtained. For example, the smoothing target function T (x_1) shown in FIG. 9 is configured by superposing four terms T_1 (x_1) to T_4 (x_1), and a certain function value of the smoothing target function T (x_1). For example, when “8” is determined, the manipulated variable x_1 is uniquely obtained as “−1.05” for the function value “8”.

また、基準とする蓄電設備BAT#1以外の蓄電設備BAT#2〜BAT#Nそれぞれの分担電力指令値x_2、・・・、x_nは、操作量x_1との間の充放電残量比の関係に基づいて決定される。これにより、電力変換器の変換効率を考慮に入れた各蓄電設備への分担量が全て決定される。   Further, the shared power command values x_2,..., X_n of the power storage facilities BAT # 2 to BAT # N other than the reference power storage facility BAT # 1 are related to the charge / discharge remaining amount ratio with the manipulated variable x_1. To be determined. Thereby, all the amount of allocation to each power storage facility taking into account the conversion efficiency of the power converter is determined.

以上、本実施の形態3によれば、仮想蓄電設備に対する充放電電力指令値を各蓄電設備に分担させる際に各電力変換器の変換効率を考慮に入れることで、この変換効率に起因した実系統と仮想系統との間の電力の誤差をなくし、連系点での平滑化電力不足やこの誤差の累積によって生じた各蓄電設備の充放電残量比のアンバランスを防ぐことが可能となる。
(実施の形態4)
===電力変換器の入出力制限を考慮に入れた分担手法===
本発明の実施の形態4では、電力変換器の入出力制限の影響で上記の分担手法によって決定された分担量に応じた入出力が現実的に行えない場合にはグリッド連系点で電力不足の状態が生じることを勘案して、電力変換器の入出力制限の制約下で充放電残量比に基づいて各蓄電設備に分担させる手法を提案する。
As described above, according to the third embodiment, when the charge / discharge power command value for the virtual power storage facility is assigned to each power storage facility, the conversion efficiency of each power converter is taken into consideration, so that the actual power attributed to this conversion efficiency is increased. It is possible to eliminate the power error between the grid and the virtual grid, and to prevent the smoothing power shortage at the interconnection point and the imbalance in the charge / discharge remaining ratio of each storage facility caused by the accumulation of this error. .
(Embodiment 4)
=== Sharing method considering input / output restriction of power converter ===
In the fourth embodiment of the present invention, when input / output according to the sharing amount determined by the above sharing method cannot be practically performed due to the influence of the input / output limitation of the power converter, power shortage occurs at the grid connection point. In view of this situation, a method is proposed in which each power storage facility is shared based on the charge / discharge remaining ratio under the restriction of the input / output restriction of the power converter.

本実施の形態の平滑化目標関数T(x_1)は、次式のように、電力変換器INV#iの出力T_iである“(P_i+x_i)”の総和として表される。   The smoothing target function T (x_1) of the present embodiment is expressed as the sum of “(P_i + x_i)” that is the output T_i of the power converter INV # i, as in the following equation.

T(x_1)=(P_1+x_1)+(P_2+x_2)+・・・+(P_n+x_n)・・・(13)
但し、
x_i=−P_i−W_i (P_i+x_i<−W_i)・・・(14−1)
=−P_i+W_i (P_i+x_i≧W_i)・・・(14−2)
式(14−1),(14−2)では、蓄電設備BAT#1〜BAT#Nそれぞれの分担電力指令値x_1〜x_nが電力変換器INV#iの入出力容量W_iの上下限値に制約されることを表している。例えば、電力変換器INV#1について、その入出力容量の上限値は“W_1”であり、その入出力容量の下限値は“−W_1”である。
T (x_1) = (P_1 + x_1) + (P_2 + x_2) +... + (P_n + x_n) (13)
However,
x_i = −P_i−W_i (P_i + x_i <−W_i) (14-1)
= −P_i + W_i (P_i + x_i ≧ W_i) (14-2)
In Expressions (14-1) and (14-2), the shared power command values x_1 to x_n of the power storage facilities BAT # 1 to BAT # N are restricted to the upper and lower limit values of the input / output capacity W_i of the power converter INV # i. Represents that For example, for the power converter INV # 1, the upper limit value of its input / output capacity is “W_1”, and the lower limit value of its input / output capacity is “−W_1”.

ここで、式(14−1),(14−2)の制約条件を式(13)の平滑化目標関数T(x_1)にそれぞれ代入すると、式(13)の平滑化目標関数T(x_1)の各項T_i(x_1)は次式のように表される。   Here, when the constraint conditions of the equations (14-1) and (14-2) are respectively substituted into the smoothing target function T (x_1) of the equation (13), the smoothing target function T (x_1) of the equation (13). Each term T_i (x_1) is represented by the following equation.

T_i(x_1)=−W_i (x_1<(−P_i−W_i)*c_1/c_i)・・・(15−1)
=c_i/c_1*x_1+P_i ((−P_i−W_i)*c_1/c_i≦x_1<0)・・・(15−2)
=d_i/d_1*x_1+P_i (0≦x_1<(−P_i+W_i)*d_1/d_i)・・・(15−3)
=W_i((−P_i+W_i)*d_1/d_i≦x_1)・・・(15−4)
図10は、式(15−1)〜(15−4)で表現された平滑化目標関数T(x_1)の各項T_i(x_1)の一例をグラフ化した図である。式(15−1)〜(15−4)で表される平滑化目標関数T(x_1)の各項T_i(x_1)は、電力変換器の系統毎における電力変換器の入出力関係を表しており、操作量x_1に応じて単調増加する連続区分線形関数として表される。
T_i (x_1) =-W_i (x_1 <(-P_i-W_i) * c_1 / c_i) (15-1)
= C_i / c_1 * x_1 + P_i ((-P_i-W_i) * c_1 / c_i≤x_1 <0) (15-2)
= D_i / d_1 * x_1 + P_i (0 ≦ x_1 <(− P_i + W_i) * d_1 / d_i) (15-3)
= W_i ((-P_i + W_i) * d_1 / d_i ≦ x_1) (15-4)
FIG. 10 is a graph showing an example of each term T_i (x_1) of the smoothing target function T (x_1) expressed by the equations (15-1) to (15-4). Each term T_i (x_1) of the smoothing target function T (x_1) represented by the equations (15-1) to (15-4) represents the input / output relationship of the power converter in each power converter system. It is expressed as a continuous piecewise linear function that monotonously increases according to the manipulated variable x_1.

そして、式(13)の平滑化目標関数T(x_1)は、図10に示す平滑化目標関数T(x_1)の各項T_i(x_1)を重ね合わせて得られる関数なので、操作量x_1に応じて単調増加する連続区分線形関数である。従って、平滑化目標関数T(x_1)の或る関数値を満たす操作量x_1は一意に求められる。また、基準とする蓄電設備BAT#1以外の蓄電設備BAT#2〜BAT#Nそれぞれの分担電力指令値x_2、・・・、x_nは、操作量x_1との間の充放電残量比の関係に基づいて決定される。これにより、電力変換器の入出力制限を考慮に入れた各蓄電設備への分担量が全て決定される。   Since the smoothing target function T (x_1) in Expression (13) is a function obtained by superimposing the terms T_i (x_1) of the smoothing target function T (x_1) shown in FIG. 10, it depends on the manipulated variable x_1. It is a continuous piecewise linear function that increases monotonically. Therefore, the manipulated variable x_1 that satisfies a certain function value of the smoothing target function T (x_1) is uniquely obtained. Further, the shared power command values x_2,..., X_n of the power storage facilities BAT # 2 to BAT # N other than the reference power storage facility BAT # 1 are related to the charge / discharge remaining amount ratio with the manipulated variable x_1. To be determined. As a result, all of the share amounts to each power storage facility taking into account the input / output restrictions of the power converter are determined.

以上、本実施の形態4によれば、電力変換器の入出力容量の上下限値の制約条件を考慮に入れた分担量指定値を算出することで、当該制約条件によって生じる連系点での平滑化電力の不足を防ぐことができる。   As described above, according to the fourth embodiment, by calculating the sharing amount designation value taking into consideration the constraint condition of the upper and lower limit values of the input / output capacity of the power converter, the connection point generated by the constraint condition is calculated. Insufficient smoothing power can be prevented.

上記説明から、当業者にとっては、本発明の多くの改良や他の実施の形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。   From the foregoing description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.

本発明は、商用の電力系統に安定した電力を供給するマイクログリッドの運用にとって有用であり、特に、商用の電力系統が設けられていない離島や山間僻地等の地域にマイクログリッドを導入して遠方の商用の電力系統と連系させる場合に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for the operation of a microgrid that supplies a stable power to a commercial power system. In particular, the microgrid is introduced into a remote island or mountainous area where a commercial power system is not provided. This is useful when connecting to commercial power systems.

200…電力系統
102…グリッド連系点(連系点)
10a…風車(発電設備)
10b,10c…太陽電池(発電設備)
11a,11b,11c…通信手段
110…マイクログリッド計算機
12a…コンバータ(電力変換器)
12b,12c…パワーコンディショナ(電力変換器)
13a,13b,13c…蓄電設備
14a,14b,14c…蓄電池
15a,15b,15c…通信手段
16a,16b,16c…インバータ
30…負荷
P_1〜P_n…発電電力
T_org…総発電電力
T…平滑化目標電力
ΔT…総充放電電力指令値
x_1〜x_n…分担電力指令値
k_1〜k_n…変換効率
c_1〜c_n…充電可能残量
d_1〜d_n…放電可能残量
200 ... Power system 102 ... Grid connection point (connection point)
10a ... windmill (power generation equipment)
10b, 10c ... Solar cell (power generation equipment)
11a, 11b, 11c ... Communication means 110 ... Microgrid computer 12a ... Converter (power converter)
12b, 12c ... Power conditioner (power converter)
13a, 13b, 13c ... Power storage facilities 14a, 14b, 14c ... Storage batteries 15a, 15b, 15c ... Communication means 16a, 16b, 16c ... Inverter 30 ... Loads P_1-P_n ... Generated power T_org ... Total generated power T ... Smoothed target power ΔT: Total charge / discharge power command value x_1 to x_n ... Shared power command value k_1 to k_n ... Conversion efficiency c_1 to c_n ... Chargeable remaining amount d_1 to d_n ... Dischargeable remaining amount

Claims (7)

  1. 外部の電力系統と連系点を介して連系される複数の分散型電源設備を備え、それぞれの当該分散型電源設備は、発電設備と、当該発電設備により発電された電力を当該電力系統に供給可能となるようにその形態を変換する電力変換器と、当該電力変換器内に設けられた又は当該電力変換器の所定のインタフェースを介して接続された蓄電設備とを備えているマイクログリッドの制御装置であって、
    前記複数の分散型電源設備それぞれの前記発電設備の発電電力を取得する手段と、
    取得したそれぞれの前記発電設備の発電電力を合算した総発電電力を算出する手段と、
    算出した前記総発電電力を平滑化して前記グリッド連系点での平滑化目標電力を算出する手段と、
    算出した前記平滑化目標電力と算出した前記総発電電力との差分である総充放電電力指令値を算出する手段と、
    算出した前記総充放電電力指令値を前記複数の分散型電源設備それぞれの前記蓄電設備に分担させるように前記蓄電設備それぞれに対する分担電力指令値を算出する手段と、
    算出した前記分担電力指令値を前記複数の分散型電源設備それぞれの前記蓄電設備に送信する手段と、
    前記蓄電設備における充電電力量に相当する放電可能残量又は当該蓄電設備における容量から充電電力量を差し引いた差電力量に相当する充電可能残量である充放電可能残量を前記複数の分散型電源設備それぞれについて取得する手段と、
    を備え、
    前記分担電力指令値を算出する手段は、取得したそれぞれの前記蓄電設備の充放電可能残量から得られるそれぞれの前記蓄電設備の充放電可能残量比に基づいて前記分担電力指令値を算出するように構成されている、マイクログリッドの制御装置。
    A plurality of distributed power facilities connected to an external power system via a connection point, and each of the distributed power facilities includes a power generation facility and the power generated by the power generation facility. A microgrid comprising a power converter that converts its form so that it can be supplied, and a power storage facility provided in the power converter or connected via a predetermined interface of the power converter A control device,
    Means for obtaining the generated power of the power generation facility of each of the plurality of distributed power supply facilities;
    Means for calculating the total power generated by adding the generated power of each of the acquired power generation facilities;
    Means for smoothing the calculated total generated power to calculate a smoothing target power at the grid interconnection point;
    Means for calculating a total charge / discharge power command value that is a difference between the calculated smoothing target power and the calculated total generated power;
    Means for calculating a shared power command value for each of the power storage facilities so that the calculated total charge / discharge power command value is shared by the power storage facilities of each of the plurality of distributed power supply facilities;
    Means for transmitting the calculated shared power command value to the power storage facility of each of the plurality of distributed power supply facilities;
    The plurality of distributed types is a remaining chargeable / dischargeable amount corresponding to a remaining chargeable amount corresponding to a chargeable electric energy in the electric storage facility or a difference in electric energy obtained by subtracting the charged electric energy from a capacity in the electric storage facility. Means for acquiring each power supply facility ;
    With
    The means for calculating the shared power command value calculates the shared power command value based on the chargeable / dischargeable remaining amount ratio of each power storage facility obtained from the acquired chargeable / dischargeable remaining amount of each power storage facility. A microgrid control device configured as described above.
  2. 前記総発電電力を算出する手段は、前記複数の分散型電源設備それぞれの前記発電設備の発電電力に、前記複数の分散型電源設備それぞれの前記電力変換器の変換効率を乗算して前記総発電電力を算出するように構成されている、請求項1に記載のマイクログリッドの制御装置。   The means for calculating the total generated power is obtained by multiplying the generated power of each of the plurality of distributed power facilities by the conversion efficiency of the power converter of each of the plurality of distributed power facilities. The microgrid control device according to claim 1, wherein the control device is configured to calculate electric power.
  3. 前記分担電力指令値を算出する手段は、前記複数の分散型電源設備それぞれの前記電力変換器の入出力容量の上下限値を制約条件として前記分担電力指令値を算出するように構成されている、請求項1又は2に記載のマイクログリッドの制御装置。   The means for calculating the shared power command value is configured to calculate the shared power command value with the upper and lower limit values of the input / output capacity of the power converter of each of the plurality of distributed power supply facilities as a constraint condition. The microgrid control device according to claim 1 or 2.
  4. 外部の電力系統と連系点を介して連系される複数の分散型電源設備のそれぞれが、発電設備と、当該発電設備により発電された電力を当該電力系統に供給可能となるようにその形態を変換する電力変換器と、当該電力変換器内に設けられた又は当該電力変換器の所定のインタフェースを介して接続された蓄電設備とを備えているマイクログリッドの制御方法において、
    前記複数の分散型電源設備それぞれの前記発電設備の発電電力を取得するステップと、
    取得したそれぞれの前記発電設備の発電電力を合算した総発電電力を算出するステップと、
    算出した前記総発電電力を平滑化して前記グリッド連系点での平滑化目標電力を算出するステップと、
    算出した前記平滑化目標電力と算出した前記総発電電力との差分である総充放電電力指令値を算出するステップと、
    前記蓄電設備における充電電力量に相当する放電可能残量又は当該蓄電設備における容量から充電電力量を差し引いた差電力量に相当する充電可能残量である充放電可能残量を前記複数の分散型電源設備それぞれについて取得するステップと、
    算出した前記総充放電電力指令値を前記複数の分散型電源設備それぞれの前記蓄電設備に分担させるように前記蓄電設備それぞれに対する分担電力指令値を算出するステップと、
    算出した前記分担電力指令値を前記複数の分散型電源設備それぞれの前記蓄電設備に送信するステップと、
    を含み、
    前記分担電力指令値を算出するステップは、取得したそれぞれの前記蓄電設備の充放電可能残量から得られるそれぞれの前記蓄電設備の充放電可能残量比に基づいて前記分担電力指令値を算出するステップを含む、マイクログリッドの制御方法。
    A configuration in which each of a plurality of distributed power supply facilities connected to an external power system via a connection point can supply the power generation facility and the power generated by the power generation facility to the power system. In a method for controlling a microgrid comprising a power converter for converting the power and a power storage facility provided in the power converter or connected via a predetermined interface of the power converter,
    Obtaining generated power of the power generation facility for each of the plurality of distributed power supply facilities;
    Calculating the total power generated by adding the generated power of each of the acquired power generation facilities;
    Smoothing the calculated total generated power to calculate a smoothing target power at the grid interconnection point;
    Calculating a total charge / discharge power command value that is a difference between the calculated smoothing target power and the calculated total generated power;
    The plurality of distributed types is a remaining chargeable / dischargeable amount corresponding to a remaining chargeable amount corresponding to a chargeable electric energy in the electric storage facility or a difference in electric energy obtained by subtracting the charged electric energy from a capacity in the electric storage facility. Acquiring for each power supply facility ;
    Calculating a shared power command value for each of the power storage facilities so that the calculated total charge / discharge power command value is shared by the power storage facilities of each of the plurality of distributed power supply facilities;
    Transmitting the calculated shared power command value to the power storage facility of each of the plurality of distributed power supply facilities;
    Including
    The step of calculating the shared power command value calculates the shared power command value based on the chargeable / dischargeable remaining amount ratio of each of the power storage facilities obtained from the acquired chargeable / dischargeable remaining amount of each of the power storage facilities. A method for controlling a microgrid including steps.
  5. 前記総発電電力を算出するステップは、前記複数の分散型電源設備それぞれの前記発電設備の発電電力に、前記複数の分散型電源設備それぞれの前記電力変換器の変換効率を乗算して前記総発電電力を算出するステップを含む、請求項4に記載のマイクログリッドの制御方法。   The step of calculating the total generated power includes multiplying the generated power of the power generation facilities of each of the plurality of distributed power facilities by the conversion efficiency of the power converter of each of the plurality of distributed power facilities. The method of controlling a microgrid according to claim 4, comprising a step of calculating electric power.
  6. 前記分担電力指令値を算出するステップは、前記複数の分散型電源設備それぞれの前記電力変換器の入出力容量の上下限値を制約条件として前記分担電力指令値を算出するステップを含む、請求項4又は5に記載のマイクログリッドの制御方法。   The step of calculating the shared power command value includes a step of calculating the shared power command value with an upper and lower limit value of an input / output capacity of the power converter of each of the plurality of distributed power facilities as a constraint condition. The method for controlling a microgrid according to 4 or 5.
  7. 外部の電力系統と連系点を介して連系されている複数の分散型電源設備と、
    前記複数の分散型電源設備と通信可能に接続されている制御装置と、を備え、
    前記複数の分散型電源設備はそれぞれ、
    発電設備と、
    前記発電設備により発電された電力を当該電力系統に供給可能となるようにその形態を変換する電力変換器と、
    前記電力変換器内に設けられた又は前記電力変換器の所定のインタフェースを介して接続された蓄電設備と、を備え、
    前記制御装置は、
    前記複数の分散型電源設備それぞれの前記発電設備の発電電力を取得する手段と、
    取得したそれぞれの前記発電設備の発電電力を合算した総発電電力を算出する手段と、
    算出した前記総発電電力を平滑化して前記グリッド連系点での平滑化目標電力を算出する手段と、
    算出した前記平滑化目標電力と算出した前記総発電電力との差分である総充放電電力指令値を算出する手段と、
    前記蓄電設備における充電電力量に相当する放電可能残量又は当該蓄電設備における容量から充電電力量を差し引いた差電力量に相当する電可能残量である充放電可能残量を前記複数の分散型電源設備それぞれについて取得する手段と、
    算出した前記総充放電電力指令値を前記複数の分散型電源設備それぞれの前記蓄電設備に分担させるように前記蓄電設備それぞれに対する分担電力指令値を算出する手段と、
    算出した前記分担電力指令値を前記複数の分散型電源設備それぞれの前記蓄電設備に送信する手段と、
    を備え、
    前記分担電力指令値を算出する手段は、取得したそれぞれの前記蓄電設備の充放電可能残量から得られるそれぞれの前記蓄電設備の充放電可能残量比に基づいて前記分担電力指令値を算出する手段を含む、マイクログリッド。
    A plurality of distributed power supply facilities interconnected via an interconnection point with an external power system;
    A control device communicably connected to the plurality of distributed power supply facilities,
    Each of the plurality of distributed power facilities is
    Power generation equipment,
    A power converter that converts the form so that the power generated by the power generation facility can be supplied to the power system;
    A power storage facility provided in the power converter or connected via a predetermined interface of the power converter, and
    The control device includes:
    Means for obtaining the generated power of the power generation facility of each of the plurality of distributed power supply facilities;
    Means for calculating the total power generated by adding the generated power of each of the acquired power generation facilities;
    Means for smoothing the calculated total generated power to calculate a smoothing target power at the grid interconnection point;
    Means for calculating a total charge / discharge power command value that is a difference between the calculated smoothing target power and the calculated total generated power;
    The plurality of distributed types is a remaining chargeable / dischargeable amount corresponding to a remaining chargeable amount corresponding to a chargeable electric energy in the power storage facility, or a remaining chargeable amount corresponding to a difference electric energy obtained by subtracting the charged power amount from a capacity in the electric storage facility. Means for acquiring each power supply facility ;
    Means for calculating a shared power command value for each of the power storage facilities so that the calculated total charge / discharge power command value is shared by the power storage facilities of each of the plurality of distributed power supply facilities;
    Means for transmitting the calculated shared power command value to the power storage facility of each of the plurality of distributed power supply facilities;
    With
    The means for calculating the shared power command value calculates the shared power command value based on the chargeable / dischargeable remaining amount ratio of each power storage facility obtained from the acquired chargeable / dischargeable remaining amount of each power storage facility. A microgrid including means.
JP2011117656A 2011-05-26 2011-05-26 MICROGRID, ITS CONTROL DEVICE, AND ITS CONTROL METHOD Active JP5520256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117656A JP5520256B2 (en) 2011-05-26 2011-05-26 MICROGRID, ITS CONTROL DEVICE, AND ITS CONTROL METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117656A JP5520256B2 (en) 2011-05-26 2011-05-26 MICROGRID, ITS CONTROL DEVICE, AND ITS CONTROL METHOD

Publications (2)

Publication Number Publication Date
JP2012249374A JP2012249374A (en) 2012-12-13
JP5520256B2 true JP5520256B2 (en) 2014-06-11

Family

ID=47469295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117656A Active JP5520256B2 (en) 2011-05-26 2011-05-26 MICROGRID, ITS CONTROL DEVICE, AND ITS CONTROL METHOD

Country Status (1)

Country Link
JP (1) JP5520256B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104854770B (en) 2012-12-21 2018-10-12 索尼公司 Electric controller, battery apparatus, power supply system and method for controlling power supply
WO2014123188A1 (en) * 2013-02-08 2014-08-14 日本電気株式会社 Battery control device, battery control assistance device, battery control system, battery control method, battery control assistance method, and recording medium
JP5524428B1 (en) * 2013-08-23 2014-06-18 中国電力株式会社 Power control apparatus, control method and program for power control apparatus
JP2016103900A (en) * 2014-11-28 2016-06-02 株式会社日立製作所 Storage battery system
JP2016220352A (en) * 2015-05-18 2016-12-22 パナソニックIpマネジメント株式会社 Distributed power supply system and distributed power supply system control method
JP6210337B2 (en) 2015-07-07 2017-10-11 パナソニックIpマネジメント株式会社 Received power control method, received power control device, and electrical equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5371580B2 (en) * 2009-06-29 2013-12-18 ヤンマー株式会社 Power generation system
JP2011103736A (en) * 2009-11-11 2011-05-26 Kyushu Electric Power Co Inc Wind power generation system

Also Published As

Publication number Publication date
JP2012249374A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
Byrne et al. Energy management and optimization methods for grid energy storage systems
Yong et al. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects
US9882528B2 (en) Distributed energy storage and power quality control in photovoltaic arrays
Adefarati et al. Integration of renewable distributed generators into the distribution system: a review
JP6361304B2 (en) Battery control device, control device, battery control system, battery control method, and battery control support method
Aktas et al. Experimental investigation of a new smart energy management algorithm for a hybrid energy storage system in smart grid applications
Papadimitriou et al. Review of hierarchical control in DC microgrids
Hredzak et al. A model predictive control system for a hybrid battery-ultracapacitor power source
JP6070773B2 (en) Power control system and method
US9489701B2 (en) Adaptive energy management system
JP5865602B2 (en) Power exchange system for exchanging electrical energy between battery and power grid, and method for exchanging electrical energy between battery and power grid
CA2841052C (en) Method and apparatus for controlling a hybrid power system
Kumar et al. A review on overall control of DC microgrids
AU2009337086B2 (en) Method and apparatus for controlling a hybrid power system
Sun et al. A distributed control strategy based on DC bus signaling for modular photovoltaic generation systems with battery energy storage
CN102170249B (en) solar power system and operational approach thereof
Singh et al. A multi charging station for electric vehicles and its utilization for load management and the grid support
Madduri et al. Scalable DC microgrids for rural electrification in emerging regions
US9293917B2 (en) Energy storage system
Lu et al. Application of Petri nets for the energy management of a photovoltaic based power station including storage units
Kakigano et al. Low-voltage bipolar-type DC microgrid for super high quality distribution
Madawala et al. “Living and mobility”-a novel multipurpose in-house grid interface with plug in hybrid BlueAngle
EP2437372B1 (en) Smart microgrid
US8326467B2 (en) Controller and method of controlling a power system
US8810202B2 (en) Battery system and its control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140404

R150 Certificate of patent or registration of utility model

Ref document number: 5520256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150