JP5516307B2 - Component mounting apparatus and component mounting method - Google Patents

Component mounting apparatus and component mounting method Download PDF

Info

Publication number
JP5516307B2
JP5516307B2 JP2010230016A JP2010230016A JP5516307B2 JP 5516307 B2 JP5516307 B2 JP 5516307B2 JP 2010230016 A JP2010230016 A JP 2010230016A JP 2010230016 A JP2010230016 A JP 2010230016A JP 5516307 B2 JP5516307 B2 JP 5516307B2
Authority
JP
Japan
Prior art keywords
component
light source
light
imaging
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010230016A
Other languages
Japanese (ja)
Other versions
JP2012084701A (en
Inventor
満 久保
照秋 西岡
賢 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2010230016A priority Critical patent/JP5516307B2/en
Publication of JP2012084701A publication Critical patent/JP2012084701A/en
Application granted granted Critical
Publication of JP5516307B2 publication Critical patent/JP5516307B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Description

本発明は、部品実装装置及び部品実装方法に関する。   The present invention relates to a component mounting apparatus and a component mounting method.

ピンを備えたコネクタ等の電子部品を基板に搭載する際に、基板に設けられたスルーホールにピンを圧入する。このようにピンをスルーホールに圧入することによって部品を基板に搭載することが可能な部品実装装置として、以下のような装置が知られている。このような部品実装装置は、実装ヘッドに回転部を備え、この回転部の先端部にそれぞれ吸装着ノズルを有する。そして、一の吸装着ノズルの途中部に透過光源が設けられ、他の吸装着ノズルの途中部に反射板が設けられる。さらに、実装ヘッドの側方に、ラインセンサ、レンズ系、ミラー及び反射光源、ビームスプリッタを有する撮像装置を一体に設ける(特許文献1参照)。   When an electronic component such as a connector having pins is mounted on a substrate, the pins are press-fitted into through holes provided in the substrate. As a component mounting apparatus capable of mounting a component on a board by press-fitting pins into a through hole in this way, the following apparatuses are known. In such a component mounting apparatus, the mounting head includes a rotating portion, and each of the rotating portions has a suction mounting nozzle at the tip. A transmission light source is provided in the middle of one suction mounting nozzle, and a reflector is provided in the middle of the other suction mounting nozzle. Further, an imaging device having a line sensor, a lens system, a mirror, a reflection light source, and a beam splitter is provided integrally on the side of the mounting head (see Patent Document 1).

特開平8−148888号公報JP-A-8-148888

部品を基板に搭載するとき、部品の状態だけでなく、基板の状態も把握することにより、ピンをスルーホールへ圧入する作業の精度を向上させることができる。   When mounting a component on a substrate, not only the state of the component but also the state of the substrate can be grasped to improve the accuracy of the operation for press-fitting the pin into the through hole.

しかしながら、上記のような部品実装装置は、部品の状態を認識し、部品の位置補正等は可能であるが、部品が搭載される基板の状態を把握することまでは考慮されていない。   However, the component mounting apparatus as described above can recognize the state of the component and correct the position of the component, but does not take into account the grasp of the state of the board on which the component is mounted.

そこで、本明細書開示の部品実装装置及び部品実装方法は、部品の状態と基板の状態の双方を認識し、スルーホールへのピンの圧入作業の精度を向上させることを課題とする。   Accordingly, it is an object of the component mounting apparatus and the component mounting method disclosed in this specification to recognize both the component state and the substrate state, and to improve the accuracy of the press-fitting operation of the pins into the through holes.

本明細書開示の部品実装装置は、基板の上方へ移動可能である部品把持手段と、
前記部品把持手段とともに移動する光源と、前記光源から照射される光を複数に分光する分光手段と、前記分光手段によって分光され、基板に照射された光を撮像する第1撮像手段と、前記分光手段によって分光された他の光を前記部品が備えるピンとともに撮像する第2撮像手段と、前記第1撮像手段によって取得された画像に画像処理を施し、前記基板の状態を演算するとともに、前記第2撮像手段によって取得された画像に画像処理を施し、前記部品の状態を演算する演算部と、前記演算部によって取得された前記基板の状態及び前記部品の状態に基づいて、前記基板と前記部品との位置関係を補正する補正手段と、を備えたことを特徴とする部品実装装置。
The component mounting apparatus disclosed in the present specification includes component gripping means that is movable above a substrate,
A light source that moves together with the component gripping means; a spectroscopic means that splits the light emitted from the light source into a plurality of light; a first imaging means that images the light that has been split by the spectroscopic means and applied to the substrate; A second imaging unit that images other light dispersed by the unit together with a pin included in the component; and an image process is performed on the image acquired by the first imaging unit, the state of the substrate is calculated, and the first (2) An image processing unit that performs image processing on an image acquired by the imaging unit and calculates a state of the component; and the substrate and the component based on the state of the substrate and the state of the component acquired by the calculation unit And a correction means for correcting the positional relationship between the component mounting apparatus and the component mounting apparatus.

光源から照射された光を分光し、一の光を部品の状態の判別に用い、他の光を基板の状態の判別に用いる。これにより、部品の状態と基板の状態の双方を認識し、スルーホールへのピンの圧入作業の精度を向上させることができる。   The light emitted from the light source is dispersed, one light is used for determining the state of the component, and the other light is used for determining the state of the substrate. Thereby, both the state of a component and the state of a board | substrate can be recognized, and the precision of the press-fit operation | work of the pin to a through hole can be improved.

本明細書開示の部品実装装置によれば、部品の状態と基板の状態の双方を認識し、スルーホールへのピンの圧入作業の精度を向上させることができる。   According to the component mounting apparatus disclosed in this specification, it is possible to recognize both the state of the component and the state of the board, and to improve the accuracy of the press-fitting operation of the pin into the through hole.

図1は、比較例の部品実装装置を模式的に示した説明図である。FIG. 1 is an explanatory view schematically showing a component mounting apparatus of a comparative example. 図2は、比較例の部品実装装置の問題点を指摘する説明図である。FIG. 2 is an explanatory diagram that points out the problems of the component mounting apparatus of the comparative example. 図3は、比較例の部品実装装置の問題点を指摘する説明図である。FIG. 3 is an explanatory diagram that points out the problems of the component mounting apparatus of the comparative example. 図4は、比較例の部品実装装置の問題点を指摘する説明図である。FIG. 4 is an explanatory diagram for pointing out the problems of the component mounting apparatus of the comparative example. 図5は、実施例の部品実装装置のブロック図である。FIG. 5 is a block diagram of the component mounting apparatus according to the embodiment. 図6は、コネクタ搬送部が第1カメラの上方に位置した状態の部品実装装置を模式的に示す説明図である。FIG. 6 is an explanatory diagram schematically illustrating the component mounting apparatus in a state where the connector transport unit is located above the first camera. 図7は、コネクタ搬送部がプリント基板上に移動した状態の部品実装装置を模式的に説明図である。FIG. 7 is an explanatory diagram schematically illustrating the component mounting apparatus in a state where the connector transport unit has moved onto the printed circuit board. 図8(A)はアパーチャを装着していない状態のレーザー光の照射の様子を示し、図8(B)は、アパーチャを装着した状態のレーザー光の照射の様子を示した説明図である。FIG. 8A shows the state of laser light irradiation when no aperture is attached, and FIG. 8B is an explanatory view showing the state of laser light irradiation when the aperture is attached. 図9は、実施例の部品実装装置によるコネクタ実装の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of connector mounting by the component mounting apparatus according to the embodiment. 図10は、コネクタの位置ズレ及び傾きの検出方法の説明図である。FIG. 10 is an explanatory diagram of a method for detecting the positional deviation and inclination of the connector. 図11は、プリント基板の傾き検出方法の説明図である。FIG. 11 is an explanatory diagram of a method for detecting the tilt of the printed circuit board. 図12は、プリント基板高さの検出方法の説明図である。FIG. 12 is an explanatory diagram of a method for detecting the printed circuit board height. 図13は、Y軸及びZ軸の説明図である。FIG. 13 is an explanatory diagram of the Y axis and the Z axis. 図14は、アライメントマーカーの説明図である。FIG. 14 is an explanatory diagram of an alignment marker.

以下、本発明の実施形態について、添付図面を参照しつつ説明する。ただし、図面中、各部の寸法、比率等は、実際のものと完全に一致するようには図示されていない場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, in the drawings, the dimensions, ratios, and the like of each part may not be shown so as to completely match the actual ones.

まず、本実施例の部品実装装置1を説明する前に、図1乃至図4を参照しつつ比較例の部品実装装置100について説明する。図1は、比較例の部品実装装置100を模式的に示した説明図である。図2乃至図4は、比較例の部品実装装置100の問題点を指摘する説明図である。   First, before describing the component mounting apparatus 1 of this embodiment, a component mounting apparatus 100 of a comparative example will be described with reference to FIGS. 1 to 4. FIG. 1 is an explanatory view schematically showing a component mounting apparatus 100 of a comparative example. 2 to 4 are explanatory diagrams pointing out problems of the component mounting apparatus 100 of the comparative example.

部品実装装置100は、図1に示すように、コネクタ150を基板に相当する搬送するプリント基板151上に搬送する。ピン150Pを備えたコネクタ150は、プリント基板151に搭載される部品の一例である。ピン150Pは行列をなすように複数設けられている。   As shown in FIG. 1, the component mounting apparatus 100 transports the connector 150 onto a printed circuit board 151 that transports the connector 150. The connector 150 including the pins 150P is an example of a component mounted on the printed board 151. A plurality of pins 150P are provided so as to form a matrix.

部品実装装置100は、移動レール110に沿って、プリント基板151の上方に移動可能であるコネクタ搬送部120を備えている。このコネクタ搬送部120は、コネクタ150を把持するハンド機構121を備えている。   The component mounting apparatus 100 includes a connector transport unit 120 that can move above the printed circuit board 151 along the moving rail 110. The connector transport unit 120 includes a hand mechanism 121 that holds the connector 150.

そして、コネクタ搬送部120には、進行方向前側に配置された第1基準ピン122を備えている。また、進行方向後側に第2基準ピン123を備えている。また、コネクタ搬送部120は、プリント基板151の状態を認識するためにプリント基板151を撮像する第1カメラ124を備えている。さらに、コネクタ搬送部120は、プリント基板151までの距離を測位する基板測位センサ125を備えている。なお、部品実装装置100は、プリント基板151が設置されるステージ側にコネクタ150のピン150Pとともに第1基準ピン122及び第2基準ピン123を撮像する第2カメラ130を備えている。また、部品実装装置100は、コネクタ搬送部120が移動レールに沿って移動するときに、第2カメラ130によって撮像される第1基準ピン122、第2基準ピン123、コネクタ150のピン150Pを照射する照明140を備えている。   And the connector conveyance part 120 is equipped with the 1st reference | standard pin 122 arrange | positioned in the advancing direction front side. A second reference pin 123 is provided on the rear side in the traveling direction. Further, the connector transport unit 120 includes a first camera 124 that captures an image of the printed circuit board 151 in order to recognize the state of the printed circuit board 151. Further, the connector transport unit 120 includes a board positioning sensor 125 that measures the distance to the printed board 151. The component mounting apparatus 100 includes a second camera 130 that images the first reference pin 122 and the second reference pin 123 together with the pin 150P of the connector 150 on the stage side where the printed circuit board 151 is installed. Further, the component mounting apparatus 100 irradiates the first reference pin 122, the second reference pin 123, and the pin 150P of the connector 150, which are imaged by the second camera 130, when the connector transport unit 120 moves along the moving rail. Illumination 140 is provided.

部品実装装置100は、ハンド機構121に把持されたコネクタ150の状態、具体的には、どのようなズレを生じているかを検出するため、行列をなすピン150Pの並びを第2カメラ130で撮像し、画像処理を行う。このとき、仮に、第1基準ピン122、第2基準ピン113が省略されており、ピン150Pのみを撮像すると、ピン150Pのコネクタ搬送部120に対するズレを判断するための基準となる点を取得することができなくなる。この場合、ピン150Pと、コネクタ搬送部120の所定の一部を基準とすることが考えられるが、撮像した画像を画像処理するときに、ピン150Pのみを抽出することが困難となることが考えられる。   In order to detect the state of the connector 150 held by the hand mechanism 121, specifically, what kind of deviation is generated, the component mounting apparatus 100 captures an array of pins 150P forming a matrix with the second camera 130. Then, image processing is performed. At this time, if the first reference pin 122 and the second reference pin 113 are omitted, and only the pin 150P is imaged, a point serving as a reference for determining the displacement of the pin 150P with respect to the connector conveyance unit 120 is acquired. I can't do that. In this case, it is conceivable that the pin 150P and a predetermined part of the connector conveying unit 120 are used as a reference, but it is difficult to extract only the pin 150P when image processing is performed on the captured image. It is done.

比較例の部品実装装置100であれば、コネクタ搬送部120に固定された第1基準ピン122、第2基準ピン123をピン150Pとともに撮像してこの撮像画像を元にしてコネクタ150の状態を把握することができる。   In the component mounting apparatus 100 of the comparative example, the first reference pin 122 and the second reference pin 123 fixed to the connector conveying unit 120 are imaged together with the pin 150P, and the state of the connector 150 is grasped based on the captured image. can do.

しかしながら、比較例の部品実装装置100では、以下のような不都合が生じることが懸念される。   However, in the component mounting apparatus 100 of the comparative example, there is a concern that the following inconvenience may occur.

まず、図2に示すように、ハンド機構121によって把持される対象が、高さ方向の寸法の異なるコネクタ150aとコネクタ150bである場合、以下のような不都合が生じる。第2カメラ130でピン150aPを第1基準ピン、第2基準ピン123とともに撮像しようとするとき、第1基準ピン122、第2基準ピン123の先端と第2カメラ130迄の距離をピン150aPの先端と第2カメラ130迄の距離を一致させる。これにより、第1基準ピン122、第2基準ピン123、ピン150aPをピントが合った状態で撮像することができる。ところが、ハンド機構121がコネクタ150aに代えてコネクタ150bを把持する場合、そのままでは、第1基準ピン122、第2基準ピン123の先端よりも、ピン150bPの先端の位置が第2カメラ130に近づく。このため、ピントを合わせた状態で撮像するためには、第1基準ピン122の先端、第2基準ピン123の先端の位置調整が必要となる。これは、部品実装の工数増加と作業性低下を招く。   First, as shown in FIG. 2, when the objects to be gripped by the hand mechanism 121 are the connector 150a and the connector 150b having different dimensions in the height direction, the following inconvenience occurs. When the second camera 130 attempts to image the pin 150aP together with the first reference pin and the second reference pin 123, the distance from the tip of the first reference pin 122 and the second reference pin 123 to the second camera 130 is determined by the pin 150aP. The distance between the tip and the second camera 130 is matched. Thereby, the first reference pin 122, the second reference pin 123, and the pin 150aP can be imaged in a focused state. However, when the hand mechanism 121 grips the connector 150b instead of the connector 150a, the position of the tip of the pin 150bP is closer to the second camera 130 than the tips of the first reference pin 122 and the second reference pin 123 as they are. . For this reason, in order to capture an image in a focused state, it is necessary to adjust the positions of the tip of the first reference pin 122 and the tip of the second reference pin 123. This leads to an increase in man-hours for component mounting and a decrease in workability.

また、図3に示すように、コネクタ150a用の第1基準ピン122a、第2基準ピン123aを準備し、コネクタ150b用の第1基準ピン122b、第2基準ピン123bを準備する場合、以下のような不都合が生じる。ここで、第1基準ピン122a、第2基準ピン123aの高さは、ピン150aPの高さと一致させている。第1基準ピン122b、第2基準ピン123bの高さは、ピン150bPの高さと一致させている。ハンド機構121を取り替えることにより、コネクタ搬送部120の中心部から第1基準ピン122aまでの距離Aと、第1基準ピン122bまでの距離Bとにバラツキが生じるおそれがある。このように基準ピンの位置にバラツキが生じるのでは、基準ピンを基準として用いることができない。また、ハンド機構121を取り替えるときに、図中、矢示Cで示すように、上下方向のバラツキが生じるおそれもある。   Further, as shown in FIG. 3, when preparing the first reference pin 122a and the second reference pin 123a for the connector 150a and preparing the first reference pin 122b and the second reference pin 123b for the connector 150b, Such inconvenience occurs. Here, the heights of the first reference pin 122a and the second reference pin 123a are matched with the height of the pin 150aP. The heights of the first reference pin 122b and the second reference pin 123b are matched with the height of the pin 150bP. By exchanging the hand mechanism 121, there is a possibility that the distance A from the center portion of the connector transport unit 120 to the first reference pin 122a and the distance B to the first reference pin 122b may vary. Thus, if the position of the reference pin varies, the reference pin cannot be used as a reference. Further, when the hand mechanism 121 is replaced, there is a possibility that vertical variation occurs as indicated by an arrow C in the drawing.

さらに、図4に示すように、プリント基板151上に既に他の部品153が搭載されている場合は以下のような不都合が考えられる。すなわち、コネクタ搬送部120をプリント基板151上に搭載しようとすると、第1基準ピン122や第2基準ピン123が部品153と接触してしまうことがある。これにより、部品153や第1基準ピン122、第2基準ピン123が破損するおそれがある。また、他の部品153が搭載されていないときであっても、ピン150Pの先端と第1基準ピン122、第2基準ピン123の先端は同じ高さに調節されている。このため、コネクタ150の圧入時に第1基準ピン122、第2基準ピン123がプリント基板151に接触し、第1基準ピン122、第2基準ピン123を曲げてしまう等の不都合が生じるおそれがある。これに対処すべく、第1基準ピン122、第2基準ピン123にバネ材等を仕込むことも考えられるが、その反面、位置のバラツキ発生のおそれが増す。   Furthermore, as shown in FIG. 4, when another component 153 is already mounted on the printed circuit board 151, the following inconvenience can be considered. In other words, if the connector conveying unit 120 is to be mounted on the printed circuit board 151, the first reference pin 122 or the second reference pin 123 may come into contact with the component 153. As a result, the component 153, the first reference pin 122, and the second reference pin 123 may be damaged. Even when the other component 153 is not mounted, the tip of the pin 150P and the tips of the first reference pin 122 and the second reference pin 123 are adjusted to the same height. For this reason, when the connector 150 is press-fitted, the first reference pin 122 and the second reference pin 123 may come into contact with the printed circuit board 151 and the first reference pin 122 and the second reference pin 123 may be bent. . In order to cope with this, it is conceivable to use a spring material or the like for the first reference pin 122 and the second reference pin 123, but on the other hand, the possibility of variation in position increases.

つぎに、本実施例の部品実装装置1について図5〜図7を参照しつつ説明する。図5は、実施例の部品実装装置1のブロック図である。図6は、コネクタ搬送部20が第1カメラ31の上方に位置した状態の部品実装装置1を模式的に示す説明図である。図7は、コネクタ搬送部20機構がプリント基板151上に移動した状態の部品実装装置1を模式的に説明図である。   Next, the component mounting apparatus 1 of the present embodiment will be described with reference to FIGS. FIG. 5 is a block diagram of the component mounting apparatus 1 according to the embodiment. FIG. 6 is an explanatory diagram schematically illustrating the component mounting apparatus 1 in a state where the connector transport unit 20 is located above the first camera 31. FIG. 7 is an explanatory diagram schematically showing the component mounting apparatus 1 in a state where the connector transport unit 20 mechanism has moved onto the printed circuit board 151.

部品実装装置1は、移動レール10に沿って、プリント基板151の上方に移動可能であるコネクタ搬送部20を備えている。コネクタ搬送部20は、図6に示すように部品実装行程において矢示70の方向に移動する。このコネクタ搬送部20は、コネクタ150を把持する部品把持手段の一例であるハンド機構21を備えている。また、コネクタ搬送部20は、Z方向の移動を実現する上下移動機構22を備える。コネクタ搬送部20は、X軸方向の移動を実現する左右移動機構23を備える。コネクタ搬送部20は、Z軸回りの回転を実現するハンド回転機構24を備える。なお、本明細書において、Z軸方向、X軸方向、Y軸方向は図6に示す方向とする。   The component mounting apparatus 1 includes a connector transport unit 20 that is movable along the moving rail 10 and above the printed circuit board 151. The connector transport unit 20 moves in the direction of arrow 70 in the component mounting process as shown in FIG. The connector transport unit 20 includes a hand mechanism 21 that is an example of a component gripping unit that grips the connector 150. The connector transport unit 20 includes a vertical movement mechanism 22 that realizes movement in the Z direction. The connector transport unit 20 includes a left-right moving mechanism 23 that realizes movement in the X-axis direction. The connector transport unit 20 includes a hand rotation mechanism 24 that realizes rotation around the Z axis. In this specification, the Z-axis direction, the X-axis direction, and the Y-axis direction are directions shown in FIG.

部品実装装置1は、ハンド機構21を含むコネクタ搬送部20とともに移動する光源、すなわち、第1レーザー発光部(第1光源)25と第2レーザー発光部(第2光源)27を備えている。光源は、どのような光源であっても採用することができるが、指向性が良好なレーザー光源を用いている。すなわち、例えば、ハロゲンや、LED(Light Emitting Diode)を用いることができるが、これらの光源は、光量不足となることが考えられる。光量不足の対策として、カメラのゲイン調整(アップ)を行っても、コネクタ150のピン150Pの光量が強く、ハレーションが発生するおそれがあり、ピン150Pの画像が適切に取り込めないおそれがある。そこで、レーザー光源を用いることが望ましい。第1レーザー発光部25は、コネクタ搬送部20の進行方向前側に配置され、第2レーザー発光部27は、コネクタ搬送部20の進行方向後側に配置されている。第1レーザー発光部25、第2レーザー発光部27は、コネクタ搬送部20に取り付けられているため、発光するレーザー光を基準点とすることができる。レーザー光を利用することで、比較例で発生するおそれがあった、プリント基板150や既にプリント基板150へ搭載された部品への接触、破損を回避することができる。   The component mounting apparatus 1 includes a light source that moves together with the connector transport unit 20 including the hand mechanism 21, that is, a first laser light emitting unit (first light source) 25 and a second laser light emitting unit (second light source) 27. Any light source can be used as the light source, but a laser light source with good directivity is used. That is, for example, halogen or LED (Light Emitting Diode) can be used, but it is considered that these light sources are insufficient in light quantity. As a countermeasure for the insufficient light quantity, even if the gain adjustment (up) of the camera is performed, the light quantity of the pin 150P of the connector 150 is strong, and halation may occur, and the image of the pin 150P may not be captured properly. Therefore, it is desirable to use a laser light source. The first laser light emitting unit 25 is disposed on the front side in the traveling direction of the connector transport unit 20, and the second laser light emitting unit 27 is disposed on the rear side in the traveling direction of the connector transport unit 20. Since the 1st laser light emission part 25 and the 2nd laser light emission part 27 are attached to the connector conveyance part 20, it can use the emitted laser beam as a reference point. By using laser light, it is possible to avoid contact and damage to the printed circuit board 150 and components already mounted on the printed circuit board 150, which may occur in the comparative example.

部品実装装置1は、第1レーザー発光部25から照射される光(レーザー光)L1を分光する第1分光手段の一例である第1ハーフミラー26を備えている。第1ハーフミラー26は、第1レーザー発光部25との位置関係を維持したまま移動し、第1レーザー発光部25から照射される光L1を透過光L2と屈折光L3とに分光する。   The component mounting apparatus 1 includes a first half mirror 26 that is an example of a first beam splitting unit that splits light (laser beam) L1 emitted from the first laser light emitting unit 25. The first half mirror 26 moves while maintaining the positional relationship with the first laser light emitting unit 25, and splits the light L1 emitted from the first laser light emitting unit 25 into transmitted light L2 and refracted light L3.

部品実装装置1は、第2レーザー発光部27から照射される光(レーザー光)L1を分光する第2分光手段の一例である第2ハーフミラー28を備えている。第2ハーフミラー28は、第2レーザー発光部27との位置関係を維持したまま移動し、第2レーザー発光部26から照射される光L1を透過光L2と屈折光L3とに分光する。   The component mounting apparatus 1 includes a second half mirror 28 that is an example of a second beam splitting unit that splits light (laser beam) L1 emitted from the second laser light emitting unit 27. The second half mirror 28 moves while maintaining the positional relationship with the second laser light emitting unit 27, and splits the light L1 emitted from the second laser light emitting unit 26 into the transmitted light L2 and the refracted light L3.

第1レーザー発光部25、第1ハーフミラー26、第2レーザー発光部27、第2ハーフミラー28は、光学系に含まれる。第1レーザー発光部25、第2レーザー発光部27には、それぞれアパーチャが装着されている。図8(A)はアパーチャを装着していない状態のレーザー光が照射されたレーザーポインタLPの様子を示している。図8(B)は、アパーチャを装着した状態のレーザー光が照射されたレーザーポインタLPの様子を示した説明図である。アパーチャを装着したことにより、レーザーポインタLPの形状を絞り、安定化させることができる。このため、後に行われる画像処理において、レーザーポインタLPの重心を精度よく演算することができるようになる。図8(A)、(B)中、参照番号150PPは、撮像画像におけるピンを示している。   The first laser light emitting unit 25, the first half mirror 26, the second laser light emitting unit 27, and the second half mirror 28 are included in the optical system. Apertures are mounted on the first laser light emitting unit 25 and the second laser light emitting unit 27, respectively. FIG. 8A shows the state of the laser pointer LP irradiated with the laser light in a state where no aperture is attached. FIG. 8B is an explanatory diagram showing a state of the laser pointer LP irradiated with the laser light with the aperture attached. By mounting the aperture, the shape of the laser pointer LP can be narrowed and stabilized. For this reason, the center of gravity of the laser pointer LP can be accurately calculated in the image processing performed later. 8A and 8B, reference numeral 150PP indicates a pin in the captured image.

部品実装装置1は、コネクタ搬送部20とともに移動する第1カメラ29を備えている。第1カメラ29は、基板151の状態を認識するための撮像を行う。第1カメラ29は、エリアセンサ−カメラであるが、ラインセンサ−カメラとすることもできる。このような第1カメラ29は、第1撮像手段の一例である。図7に示すように、第1カメラ29は、第1ハーフミラー26によって分光され、プリント基板151に照射された屈折光L3と、前記第2ハーフミラー28によって分光され、基板に照射された屈折光を撮像する。   The component mounting apparatus 1 includes a first camera 29 that moves together with the connector transport unit 20. The first camera 29 performs imaging for recognizing the state of the substrate 151. The first camera 29 is an area sensor-camera, but may be a line sensor-camera. Such a first camera 29 is an example of a first imaging unit. As shown in FIG. 7, the first camera 29 is split by the first half mirror 26 and is refracted by the refracted light L3 irradiated to the printed circuit board 151 and the second half mirror 28 and refracted by the substrate. Imaging light.

部品実装装置1は、コネクタピン撮像部30を備える。コネクタピン撮像部30は、コネクタ搬送部20とは別個に、プリント基板151が設置されるステージ側に設けられている。コネクタピン撮像部30は、第2カメラ31とを含む。第2カメラ31は、第1ハーフミラー26によって分光された透過光と、第2ハーフミラー28によって分光された透過光と、コネクタ150が備えるピン150Pを撮像する。第2カメラ31は、ラインセンサ−カメラであるが、エリアセンサ−カメラとすることもできる。このような第2カメラ31は、第2撮像手段の一例である。   The component mounting apparatus 1 includes a connector pin imaging unit 30. The connector pin imaging unit 30 is provided on the stage side where the printed circuit board 151 is installed, separately from the connector transport unit 20. Connector pin imaging unit 30 includes a second camera 31. The second camera 31 images the transmitted light dispersed by the first half mirror 26, the transmitted light dispersed by the second half mirror 28, and the pin 150P included in the connector 150. The second camera 31 is a line sensor-camera, but may be an area sensor-camera. Such a second camera 31 is an example of a second imaging unit.

部品実装装置1は、基板位置決め部40を備える。基板位置決め部40は、プリント基板151をY軸方向に移動させる基板移動機構41を含む。また、基板位置決め部40は、プリント基板151をY軸回りに回転させる第1基板回転機構42、プリント基板151をZ軸回りに回転させる第2基板回転機構43を含む。なお、プリント基板151をZ方向に移動させる機構は、備えられていない。この理由は、コネクタ搬送部20が備える上下移動機構22により、プリント基板151とコネクタ150との相対的な位置調整が可能であるためである。   The component mounting apparatus 1 includes a board positioning unit 40. The board positioning unit 40 includes a board moving mechanism 41 that moves the printed board 151 in the Y-axis direction. The board positioning unit 40 includes a first board rotating mechanism 42 that rotates the printed board 151 around the Y axis, and a second board rotating mechanism 43 that rotates the printed board 151 around the Z axis. Note that a mechanism for moving the printed circuit board 151 in the Z direction is not provided. This is because the relative position of the printed circuit board 151 and the connector 150 can be adjusted by the vertical movement mechanism 22 provided in the connector transport unit 20.

部品実装装置1は、演算部50を備える。演算部50は、第1カメラ29によって取得された画像に画像処理を施し、プリント基板151の状態を演算する。また、第2カメラ31によって取得された画像に画像処理を施し、コネクタ150の状態を演算する。具体的に、演算部50は、2値化処理部51、基準特徴パターン検出部52、重心検出部53を備える。さらに、演算部50は、ピン位置演算部54、コネクタ位置演算部55、基板高さ及び傾き演算部56、基板位置演算部57を備える。   The component mounting apparatus 1 includes a calculation unit 50. The computing unit 50 performs image processing on the image acquired by the first camera 29 and computes the state of the printed circuit board 151. Further, the image acquired by the second camera 31 is subjected to image processing, and the state of the connector 150 is calculated. Specifically, the calculation unit 50 includes a binarization processing unit 51, a reference feature pattern detection unit 52, and a centroid detection unit 53. Further, the calculation unit 50 includes a pin position calculation unit 54, a connector position calculation unit 55, a board height and inclination calculation unit 56, and a board position calculation unit 57.

部品実装装置1は、制御部60を備えている。制御部60は、部品実装装置1全体の制御を司る。制御部60は、コネクタ搬送部20、コネクタピン撮像部30と電気的に接続されている。制御部60は、演算部50によって取得されたプリント基板151の状態及びコネクタ150の状態に基づいてプリント基板150とコネクタ150との位置関係を補正する補正指令を発する。具体的には、補正手段に含まれる上下移動機構22、左右移動機構23、ハンド回転機構24、基板移動機構41、第1基板回転機構42、第2基板回転機構43に対して制御部60より補正指令が発せれる。   The component mounting apparatus 1 includes a control unit 60. The control unit 60 controls the entire component mounting apparatus 1. The control unit 60 is electrically connected to the connector transport unit 20 and the connector pin imaging unit 30. The control unit 60 issues a correction command for correcting the positional relationship between the printed circuit board 150 and the connector 150 based on the state of the printed circuit board 151 and the state of the connector 150 acquired by the calculation unit 50. Specifically, the controller 60 controls the vertical movement mechanism 22, the horizontal movement mechanism 23, the hand rotation mechanism 24, the substrate movement mechanism 41, the first substrate rotation mechanism 42, and the second substrate rotation mechanism 43 included in the correction unit. A correction command is issued.

このように、本実施例の部品実装装置1は、比較例の部品実装装置100と異なる。部品実装装置1と部品実装装置100との相違点を整理すると、部品実装装置1は、第1基準ピン122に代えて、第1レーザー発光部25及び第1ハーフミラー26を備えている。また、部品実装装置1は、第2基準ピン123に代えて、第2レーザー発光部27及び第2ハーフミラー28を備えている。   Thus, the component mounting apparatus 1 of the present embodiment is different from the component mounting apparatus 100 of the comparative example. To summarize the differences between the component mounting apparatus 1 and the component mounting apparatus 100, the component mounting apparatus 1 includes a first laser light emitting unit 25 and a first half mirror 26 instead of the first reference pin 122. Further, the component mounting apparatus 1 includes a second laser light emitting unit 27 and a second half mirror 28 instead of the second reference pin 123.

つぎに、以上のような部品実装装置1の動作について、図9を参照しつつ説明する。部品実装装置1の動作は、制御部60の指令に基づいて行われる。   Next, the operation of the component mounting apparatus 1 as described above will be described with reference to FIG. The operation of the component mounting apparatus 1 is performed based on a command from the control unit 60.

まず、ステップS1において、ハンド機構21によってコネクタ150を把持する。そして、ステップS2において、コネクタ150を把持したコネクタ搬送部20を移動レール10に沿って移動させる。このとき、コネクタ搬送部20とともに移動する第1レーザー発光部25から照射されたレーザー光L1を第1ハーフミラー26により透過光L2と屈折光L3とに分光する。また、コネクタ搬送部20とともに移動する第2レーザー発光部27から照射されたレーザー光L1を第2ハーフミラー28により透過光L2と屈折光L3とに分光する。そして、移動レール10に沿って移動するコネクタ150が備えるピン150Pと二つの透過光L2をラインセンサーカメラである第2カメラ31によって撮像する。   First, in step S <b> 1, the connector 150 is gripped by the hand mechanism 21. In step S <b> 2, the connector conveyance unit 20 that holds the connector 150 is moved along the moving rail 10. At this time, the laser beam L1 emitted from the first laser emitting unit 25 moving together with the connector conveying unit 20 is split into transmitted light L2 and refracted light L3 by the first half mirror 26. Further, the laser beam L1 emitted from the second laser emitting unit 27 moving together with the connector conveying unit 20 is split into transmitted light L2 and refracted light L3 by the second half mirror 28. And the pin 150P with which the connector 150 which moves along the moving rail 10 and two transmitted light L2 are imaged with the 2nd camera 31 which is a line sensor camera.

つぎに、ステップS3において、ステップS2で撮像した画像に対し演算部50による画像処理を行う。具体的には、2値化処理部51において2値化処理を行い、2値化処理が行われた画像に対し、基準特徴パターン検出部52により基準特徴パターンの検出を行う。ここで、基準特徴パターンとは、2値化処理された画像上のレーザー画像LPとピン150Pが映し出されたピン画像PPの配列である。ステップS3では、さらに、重心検出部53による重心検出が行われる。重心検出は、レーザー画像LP、ピン画像PPの位置座標を得るために、各画像の重心を検出するものである。   Next, in step S3, image processing by the calculation unit 50 is performed on the image captured in step S2. Specifically, the binarization processing unit 51 performs binarization processing, and the reference feature pattern detection unit 52 detects the reference feature pattern for the binarized image. Here, the reference feature pattern is an array of a laser image LP on a binarized image and a pin image PP on which pins 150P are projected. In step S3, the center of gravity is further detected by the center of gravity detector 53. The centroid detection is to detect the centroid of each image in order to obtain the position coordinates of the laser image LP and the pin image PP.

つぎに、ステップS4において、ピン位置演算部54、コネクタ位置演算部55によるコネクタ把持ズレの算出を行う。すなわち、二つの透過光L2と、コネクタ150が備えるピン150Pを撮像した画像に画像処理を施し、コネクタ150の状態を演算する。このコネクタ把持ズレには、コネクタ150のコネクタ搬送部20に対するX軸方向及びY軸方向の位置ズレ(Sx、Sy)とZ軸回りの角度ズレθ1が含まれる。図10は、画像処理を行い、検出された重心の配置の一例を示したものである。図10中、符号Pfは、第1レーザー発光部25による透過光L2の位置を示している。符号Prは、第2レーザー発光部27による透過光L2の位置を示している。レーザー照射点Pfとレーザー照射点Prとの距離はLであり、この距離Lは固定値である。この例では、コネクタ150は、4行×10列のピン150Pを備えている。図10では、1行1列目に位置するピン150Pの重心がP11と表されている。そして、その位置座標は、レーザー照射点Pfを原点として、X軸方向に距離a離れ、Y軸方向に距離b離れた座標(Xa、Yb)と表記される。   Next, in step S <b> 4, the connector gripping deviation is calculated by the pin position calculation unit 54 and the connector position calculation unit 55. That is, image processing is performed on an image obtained by capturing the two transmitted light L2 and the pin 150P included in the connector 150, and the state of the connector 150 is calculated. This connector gripping deviation includes a positional deviation (Sx, Sy) in the X-axis direction and the Y-axis direction with respect to the connector conveying portion 20 of the connector 150 and an angular deviation θ1 about the Z-axis. FIG. 10 shows an example of the arrangement of the center of gravity detected after image processing. In FIG. 10, the symbol Pf indicates the position of the transmitted light L <b> 2 from the first laser light emitting unit 25. The symbol Pr indicates the position of the transmitted light L2 from the second laser light emitting unit 27. The distance between the laser irradiation point Pf and the laser irradiation point Pr is L, and this distance L is a fixed value. In this example, the connector 150 includes pins 150P of 4 rows × 10 columns. In FIG. 10, the center of gravity of the pin 150P located in the first row and the first column is represented as P11. The position coordinates are expressed as coordinates (Xa, Yb) that are separated from each other by a distance a in the X-axis direction and a distance b in the Y-axis direction with the laser irradiation point Pf as the origin.

ここで、より正確な座標(Xa、Yb)を得るために、X軸方向の直線近似式Xapp、Y軸方向の直線近似式Yappを算出し、この交点を座標(Xa、Yb)とする。図10において、1行2列目の重心は、P12と表され、1行3列目の重心は、P13と表され、1行10列目の重心は、P110と表される。4行1列目の重心はP41と表され、4行10列目の重心は、P410と表される。直線近似式Xappは、X軸方向に延びるP11〜P110の重心の座標を用いることによって得る。直線近似式Yappは、Y軸方向に延びるP11〜P41の重心の座標を用いることによって得る。   Here, in order to obtain more accurate coordinates (Xa, Yb), a linear approximation formula Xapp in the X-axis direction and a linear approximation formula Yapp in the Y-axis direction are calculated, and this intersection point is set as a coordinate (Xa, Yb). In FIG. 10, the center of gravity of the first row and second column is represented as P12, the center of gravity of the first row and third column is represented as P13, and the center of gravity of the first row and tenth column is represented as P110. The center of gravity of the fourth row and first column is represented as P41, and the center of gravity of the fourth row and tenth column is represented as P410. The linear approximation formula Xapp is obtained by using the coordinates of the center of gravity of P11 to P110 extending in the X-axis direction. The linear approximation expression Yapp is obtained by using the coordinates of the center of gravity of P11 to P41 extending in the Y-axis direction.

制御部60は、重心P11が本来位置するべき正規座標(X0、Y0)の情報を予め記憶している。正規座標(X0、Y0)は、コネクタ搬送部20個々の固有の値である。制御部60は、直線近似式Xappと直線近似式Yappの交点として得られた座標(Xa、Yb)との差分を算出する。すなわち、
(Xa、Yb)−(X0、Y0)=位置ズレ量(Sx、Sy)
となる。
The control unit 60 stores in advance information on normal coordinates (X0, Y0) where the center of gravity P11 should be originally located. The normal coordinates (X0, Y0) are unique values of each connector transport unit 20. The control unit 60 calculates a difference between the coordinates (Xa, Yb) obtained as the intersection of the linear approximation formula Xapp and the linear approximation formula Yapp. That is,
(Xa, Yb)-(X0, Y0) = Position shift amount (Sx, Sy)
It becomes.

角度ズレθ1は、直線近似式XappのX軸方向に対する角度である。この角度ズレθ1は、以下のようにして算出する。   The angle deviation θ1 is an angle with respect to the X-axis direction of the linear approximation formula Xapp. This angle deviation θ1 is calculated as follows.

図10中、符号Pin1は、レーザー照射点PfからY軸方向に延長した第1線分Yex1と直線近似式Xappとの交点である。この交点Pin1の位置Pfからの距離はcである。図10中、符号Pin2は、レーザー照射点PrからY方向に延長した第2線分Yex2と直線近似式Xappとの交点である。この交点Pin2の位置Prからの距離はdである。これにより、図10中に示した距離eを算出し、θ1を算出することができる。すなわち、
tan−1=e/L
(e=d−c)
となる。
In FIG. 10, the symbol Pin1 is the intersection of the first line segment Yex1 extended in the Y-axis direction from the laser irradiation point Pf and the linear approximation formula Xapp. The distance from the position Pf of this intersection Pin1 is c. In FIG. 10, the symbol Pin2 is the intersection of the second line segment Yex2 extended in the Y direction from the laser irradiation point Pr and the linear approximation formula Xapp. The distance from the position Pr of the intersection Pin2 is d. Thereby, the distance e shown in FIG. 10 can be calculated, and θ1 can be calculated. That is,
tan −1 = e / L
(E = dc)
It becomes.

以上のように、コネクタ150の位置ズレ(Sx、Sy)と、角度ズレθ1を算出することができる。   As described above, the positional deviation (Sx, Sy) and the angular deviation θ1 of the connector 150 can be calculated.

ステップS5では、制御部60は、位置ズレ(Sx、Sy)と、角度ズレθ1を補正するように、左右移動機構23、ハンド回転機構24、基板移動機構41に指令を発する。なお、図13(A)、(B)は、各軸に対するプリント基板151の回転の様子を示している。コネクタ150の角度ズレθ1が生じている場合であっても、プリント基板151を回転させることにより、相対的な位置合せを行うことができる。   In step S5, the control unit 60 issues a command to the left / right moving mechanism 23, the hand rotating mechanism 24, and the substrate moving mechanism 41 so as to correct the positional deviation (Sx, Sy) and the angular deviation θ1. 13A and 13B show how the printed circuit board 151 rotates with respect to each axis. Even when the angle deviation θ1 of the connector 150 is generated, relative alignment can be performed by rotating the printed circuit board 151.

ステップS6では、制御部60は、コネクタ150を基板、すなわちプリント基板151上に搬送する。なお、ステップS6の処理は、ステップS3〜ステップS5の処理と並行して行ってもよい。   In step S <b> 6, the control unit 60 conveys the connector 150 onto the board, that is, the printed board 151. Note that the process of step S6 may be performed in parallel with the processes of step S3 to step S5.

コネクタ150がプリント基板151上に搬送されたら、ステップ7において、第1カメラ29によりプリント基板151に照射された二つの屈折光L3を撮像する。   When the connector 150 is conveyed onto the printed circuit board 151, in step 7, the two refracted lights L <b> 3 irradiated on the printed circuit board 151 by the first camera 29 are imaged.

ステップS8では、ステップS7で撮像した画像に対し演算部50による画像処理を行う。具体的には、二つの屈曲光L3の重心を求め、その座標を検出する。重心は、ステップS3の場合と同様に行う。   In step S8, image processing by the calculation unit 50 is performed on the image captured in step S7. Specifically, the center of gravity of the two bending lights L3 is obtained, and the coordinates are detected. The center of gravity is performed in the same manner as in step S3.

ステップS9では、基板高さ及び傾き演算部56により、プリント基板151のY軸回りの傾きθ3を算出する。傾きθ3の算出につき、図11を参照しつつ説明する。屈曲光L3の水平方向との角度θ2を固定値として設定しておく。第1レーザー発光部25と第2レーザー発光部27との中心線と、第1ハーフミラー26による屈曲光L3のプリント基板151上の位置と距離Wlを計測する。これは画像処理した画像を用いて行う。これにより、第1レーザー発光部25が位置する側(前側)のプリント基板151の端部の高さHlを算出することができる。すなわち、
Wl/tanθ2=Hl
となる。
In step S <b> 9, the board height and inclination calculator 56 calculates the inclination θ <b> 3 about the Y axis of the printed board 151. The calculation of the inclination θ3 will be described with reference to FIG. An angle θ2 with respect to the horizontal direction of the bending light L3 is set as a fixed value. The center line of the 1st laser light emission part 25 and the 2nd laser light emission part 27, the position on the printed circuit board 151 of the bending light L3 by the 1st half mirror 26, and distance Wl are measured. This is performed using the image processed image. Thereby, the height Hl of the end portion of the printed circuit board 151 on the side (front side) where the first laser light emitting unit 25 is located can be calculated. That is,
Wl / tan θ2 = Hl
It becomes.

他方、第1レーザー発光部25と第2レーザー発光部27との中心線と、第2ハーフミラー28による屈曲光L3のプリント基板151上の位置と距離Wrを計測する。これは画像処理した画像を用いて行う。これにより、第2レーザー発光部27が位置する側(後側)のプリント基板151の端部の高さHrを算出することができる。すなわち、
Wr/tanθ2=Hr
となる。
On the other hand, the center line of the 1st laser light emission part 25 and the 2nd laser light emission part 27, the position on the printed circuit board 151 of the bending light L3 by the 2nd half mirror 28, and the distance Wr are measured. This is performed using the image processed image. As a result, the height Hr of the end portion of the printed circuit board 151 on the side (rear side) where the second laser light emitting unit 27 is located can be calculated. That is,
Wr / tan θ2 = Hr
It becomes.

そして、
Hl−Hr=Ht
Wl+Wr=Wt
を算出し、その後、
tan−1θ3=Ht/Wt
により、プリント基板151のY軸回りの傾きθ3が算出される。
And
Hl-Hr = Ht
Wl + Wr = Wt
And then
tan −1 θ3 = Ht / Wt
Thus, the inclination θ3 about the Y axis of the printed circuit board 151 is calculated.

ステップS10では、制御部60は、傾きθ3を補正するように、第1基板回転機構42に指令を発する。   In step S10, the control unit 60 issues a command to the first substrate rotation mechanism 42 so as to correct the inclination θ3.

ステップS11では、再び第1カメラ29によりプリント基板151に照射された二つの屈折光L3を撮像する。すなわち、傾き補正が終了した状態でプリント基板151に照射された二つの屈折光L3を撮像する。   In step S11, the two refracted lights L3 irradiated to the printed circuit board 151 by the first camera 29 are imaged again. That is, the two refracted lights L3 irradiated on the printed circuit board 151 in a state where the inclination correction is completed are imaged.

ステップS12では、ステップS11で撮像した画像に対し演算部50による画像処理を行う。具体的には、二つの屈曲光L3の重心を求め、その座標を検出する。重心は、ステップS3の場合と同様に行う。   In step S12, image processing by the calculation unit 50 is performed on the image captured in step S11. Specifically, the center of gravity of the two bending lights L3 is obtained, and the coordinates are detected. The center of gravity is performed in the same manner as in step S3.

ステップS13では、基板高さ及び傾き演算部56により、プリント基板151の高さΔHを算出する。高さΔHの算出につき、図12を参照しつつ説明する。まず、第1ハーフミラー26と第2ハーフミラー28と間隔を第1レーザー発光部25と第2レーザー発光部27の間隔と同様に距離Lに設定しておく。距離Lは固定値である。また、屈曲光L3の水平方向との角度θ2を固定値として設定しておく。   In step S <b> 13, the board height and inclination calculation unit 56 calculates the height ΔH of the printed board 151. The calculation of the height ΔH will be described with reference to FIG. First, the distance between the first half mirror 26 and the second half mirror 28 is set to the distance L in the same manner as the distance between the first laser light emitting unit 25 and the second laser light emitting unit 27. The distance L is a fixed value. Further, the angle θ2 of the bending light L3 with the horizontal direction is set as a fixed value.

そして、プリント基板151上に照射された屈曲光L3の重心の間隔Wを画像処理した画像から求める。これにより、
L/2・tanθ2=H
W/2・tanθ2=h
が算出され、
ΔH=H−h
が算出される。
Then, the interval W of the center of gravity of the bending light L3 irradiated on the printed circuit board 151 is obtained from the image processed image. This
L / 2 · tan θ2 = H
W / 2 · tan θ2 = h
Is calculated,
ΔH = H-h
Is calculated.

ステップS14では、制御部60は、規定高さとの基板高さズレを補正するように、上下移動機構22に指令を発する。なお、プリント基板151が設置されたテーブルに上下移動機構が装着されている場合には、この上下移動機構によって高さ調整を行ってもよい。   In step S14, the control unit 60 issues a command to the vertical movement mechanism 22 so as to correct the substrate height deviation from the specified height. When a vertical movement mechanism is mounted on the table on which the printed circuit board 151 is installed, the height adjustment may be performed by this vertical movement mechanism.

ステップS15では、再び第1カメラ29によりプリント基板151に照射された二つの屈折光L3を撮像する。すなわち、傾き補正、高さ補正が終了した状態でプリント基板151に照射された二つの屈折光L3を撮像する。このとき、図14に示すようなアライメントマーカーMを併せて撮像する。アライメントマーカーMは、プリント基板151の表面に矩形に配置されており、これを基準とすることにより、プリント基板151のZ軸回りのズレを検出することができる。   In step S15, the two refracted lights L3 irradiated on the printed circuit board 151 by the first camera 29 are imaged again. That is, two refracted lights L3 irradiated on the printed circuit board 151 in a state where the inclination correction and the height correction are completed are imaged. At this time, the alignment marker M as shown in FIG. 14 is also imaged. The alignment marker M is arranged in a rectangular shape on the surface of the printed circuit board 151, and by using this as a reference, it is possible to detect a shift around the Z axis of the printed circuit board 151.

ステップS16では、ステップS15で撮像した画像に対し演算部50による画像処理を行う。具体的には、二つの屈曲光L3の重心及びアライメントマーカーMの重心を求め、その座標を検出する。重心は、ステップS3の場合と同様に行う。   In step S16, image processing by the calculation unit 50 is performed on the image captured in step S15. Specifically, the center of gravity of the two bending lights L3 and the center of gravity of the alignment marker M are obtained, and the coordinates are detected. The center of gravity is performed in the same manner as in step S3.

ステップS17では、基板位置演算部57により、プリント基板151のZ軸回りのズレを算出する。具体的には、アライメントマーカーMの重心の並びがX軸及びY軸に対してどの程度乖離しているかによって算出する。   In step S <b> 17, the board position calculation unit 57 calculates the deviation of the printed board 151 around the Z axis. Specifically, the calculation is performed based on how far the alignment of the center of gravity of the alignment marker M is deviated from the X axis and the Y axis.

ステップS18では、制御部60は、プリント基板151のZ軸回りの傾きを補正するように、第2基板回転機構43、もしくはハンド回転機構24に指令を発する。   In step S <b> 18, the control unit 60 issues a command to the second substrate rotation mechanism 43 or the hand rotation mechanism 24 so as to correct the inclination of the printed circuit board 151 around the Z axis.

ステップS19では、制御部60は、上下移動機構22に指令を発し、あらかじめ規定された量だけコネクタ150をプリント基板151側へ移動させ、ピン150Pをプリント基板151に設けられたスルーホールに圧入する。   In step S <b> 19, the control unit 60 issues a command to the vertical movement mechanism 22, moves the connector 150 to the printed board 151 side by a predetermined amount, and press-fits the pin 150 </ b> P into a through hole provided in the printed board 151. .

以上が、部品実装装置1の一連の動作である。本実施例の部品実装装置1は、第1レーザー発光部25、第2レーザー発光部27によって発光したレーザー光を用いてコネクタ150の傾きや、ズレといった状態を検出しているため、装置がプリント基板151やプリント基板151に搭載された部品に接触してしまうことがない。また、レーザー光を分光してプリント基板151の傾きや、ズレといった状態を把握し、これに基づいて補正を行っている。すなわち、コネクタ(部品)150の状態とプリント基板151の状態の双方を認識し、スルーホールへのピン150Pの圧入作業の精度を向上させることができる。   The above is a series of operations of the component mounting apparatus 1. Since the component mounting apparatus 1 according to the present embodiment detects a state such as an inclination or displacement of the connector 150 using the laser light emitted by the first laser light emitting unit 25 and the second laser light emitting unit 27, the apparatus performs printing. There is no contact with components mounted on the board 151 or the printed board 151. In addition, the laser beam is dispersed to grasp the state of the printed circuit board 151, such as the inclination and displacement, and correction is performed based on this. That is, it is possible to recognize both the state of the connector (component) 150 and the state of the printed circuit board 151 and improve the accuracy of the press-fitting operation of the pin 150P into the through hole.

以上本発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。例えば、第1レーザー発光部25や第2レーザー発光部27のレーザー光をさらに分光することにより、プリント基板151のX軸回りの傾きも算出し、これを補正することができる。   Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the specific embodiments, and various modifications, within the scope of the gist of the present invention described in the claims, It can be changed. For example, by further dispersing the laser light from the first laser light emitting unit 25 and the second laser light emitting unit 27, the inclination of the printed circuit board 151 around the X axis can also be calculated and corrected.

(付記)
(付記1)
基板の上方へ移動可能である部品把持手段と、
前記部品把持手段とともに移動する光源と、
前記光源から照射される光を複数に分光する分光手段と、
前記分光手段によって分光され、基板に照射された光を撮像する第1撮像手段と、
前記分光手段によって分光された他の光を前記部品が備えるピンとともに撮像する第2撮像手段と、
前記第1撮像手段によって取得された画像に画像処理を施し、前記基板の状態を演算するとともに、前記第2撮像手段によって取得された画像に画像処理を施し、前記部品の状態を演算する演算部と、
前記演算部によって取得された前記基板の状態及び前記部品の状態に基づいて、前記基板と前記部品との位置関係を補正する補正手段と、
を、備えたことを特徴とする部品実装装置。
(Appendix)
(Appendix 1)
Component gripping means movable above the substrate;
A light source that moves with the component gripping means;
A spectroscopic means for splitting light emitted from the light source into a plurality of light;
First imaging means for imaging light split by the spectroscopic means and applied to the substrate;
Second imaging means for imaging other light spectrally separated by the spectral means together with pins included in the component;
An arithmetic unit that performs image processing on the image acquired by the first imaging unit and calculates the state of the substrate, and performs image processing on the image acquired by the second imaging unit and calculates the state of the component When,
Correction means for correcting the positional relationship between the substrate and the component based on the state of the substrate and the state of the component acquired by the arithmetic unit;
A component mounting apparatus comprising:

(付記2)
前記光源は、前記部品把持手段とともに移動する第1光源および第2光源とを含み、
前記分光手段は、前記第1光源との位置関係を維持したまま移動し、前記第1光源から照射された光を透過光と屈折光とに分光する第1分光手段と、前記第2光源との位置関係を維持したまま移動し、前記第2光源から照射された光を透過光と屈折光とに分光する第2分光手段とを含み、
前記第1撮像手段は、前記第1分光手段によって分光され、基板に照射された屈折光と、前記第2分光手段によって分光され、基板に照射された屈折光を撮像し、
前記第2撮像手段は、前記第1分光手段によって分光された透過光と、前記第2分光手段によって分光された透過光と、前記部品が備えるピンを撮像することを特徴とする付記1記載の部品実装装置。
(Appendix 2)
The light source includes a first light source and a second light source that move together with the component gripping means,
The spectroscopic means moves while maintaining a positional relationship with the first light source, and a first spectroscopic means for splitting light emitted from the first light source into transmitted light and refracted light, and the second light source, And a second spectroscopic means for splitting the light emitted from the second light source into transmitted light and refracted light.
The first imaging means images the refracted light that is split by the first spectroscopic means and applied to the substrate, and the refracted light that is split by the second spectroscopic means and applied to the substrate,
The supplementary note 1 is characterized in that the second imaging unit images the transmitted light dispersed by the first spectral unit, the transmitted light dispersed by the second spectral unit, and a pin included in the component. Component mounting equipment.

(付記3)
移動レールに沿って移動可能である部品把持手段と、
前記部品把持手段とともに移動する第1光源と、
前記第1光源との位置関係を維持したまま移動し、前記第1光源から照射された光を透過光と屈折光とに分光する第1分光手段と、
前記部品把持手段とともに移動する第2光源と、
前記第2光源との位置関係を維持したまま移動し、前記第2光源から照射された光を透過光と屈折光とに分光する第2分光手段と、
前記第1分光手段によって分光され、基板に照射された屈折光と、前記第2分光手段によって分光され、基板に照射された屈折光を撮像する第1撮像手段と、
前記第1分光手段によって分光された透過光と、前記第2分光手段によって分光された透過光と、前記部品が備えるピンを撮像する第2撮像手段と、
前記第1撮像手段によって取得された画像に画像処理を施し、前記基板の状態を演算するとともに、前記第2撮像手段によって取得された画像に画像処理を施し、前記部品の状態を演算する演算部と、
前記演算部によって取得された前記基板の状態及び前記部品の状態に基づいて、前記基板と前記部品との位置関係を補正する補正手段と、
を、備えたことを特徴とする部品実装装置。
(Appendix 3)
Component gripping means movable along a moving rail;
A first light source that moves together with the component gripping means;
A first spectroscopic unit that moves while maintaining a positional relationship with the first light source, and that splits the light emitted from the first light source into transmitted light and refracted light;
A second light source that moves together with the component gripping means;
A second spectroscopic unit that moves while maintaining the positional relationship with the second light source, and that splits the light emitted from the second light source into transmitted light and refracted light;
First imaging means for imaging the refracted light that has been split by the first spectroscopic means and applied to the substrate, and the refracted light that has been split by the second spectroscopic means and applied to the substrate;
Transmitted light dispersed by the first spectroscopic means, transmitted light dispersed by the second spectroscopic means, and second imaging means for imaging a pin included in the component;
An arithmetic unit that performs image processing on the image acquired by the first imaging unit and calculates the state of the substrate, and performs image processing on the image acquired by the second imaging unit and calculates the state of the component When,
Correction means for correcting the positional relationship between the substrate and the component based on the state of the substrate and the state of the component acquired by the arithmetic unit;
A component mounting apparatus comprising:

(付記4)
前記第1光源は、前記部品把持手段の進行方向前側に配置され、前記第2光源は、前記部品把持手段の進行方向後側に配置されたことを特徴とする付記2又は3記載の部品実装装置。
(Appendix 4)
The component mounting according to appendix 2 or 3, wherein the first light source is disposed on the front side in the traveling direction of the component gripping means, and the second light source is disposed on the rear side in the traveling direction of the component gripping means. apparatus.

(付記5)
部品を把持した部品把持手段を基板の上方へ移動させつつ、前記部品把持手段とともに移動する光源から照射された光を分光する行程と、
基板に照射された前記光源の一の分光を撮像した画像に画像処理を施し、前記基板の状態を演算する行程と、
基板に照射された前記光源の一の分光を撮像する行程と、
前記光源の他の分光と、前記部品が備えるピンを撮像する行程と、
前記光源の他の分光と、前記部品が備えるピンを撮像した画像に画像処理を施し、前記部品の状態を演算する行程と、
演算された前記部品の状態と基板の状態とに基づいて、前記部品と前記基板との位置関係を補正する行程と、
を、備えたことを特徴とする部品実装方法。
(Appendix 5)
A step of dispersing light emitted from a light source moving together with the component gripping means while moving the component gripping means that grips the component above the substrate;
A step of performing image processing on an image obtained by imaging one spectrum of the light source irradiated on the substrate, and calculating a state of the substrate;
A step of imaging one spectrum of the light source irradiated on the substrate;
A process of imaging another spectrum of the light source and a pin included in the component;
A process of performing image processing on another spectrum of the light source and an image obtained by imaging a pin included in the component, and calculating a state of the component;
Based on the calculated state of the component and the state of the substrate, a process of correcting the positional relationship between the component and the substrate;
A component mounting method characterized by comprising:

(付記6)
前記光源は、第1の光源と第2の光源とを含み、
前記分光する行程は、第1光源から照射された光を透過光と屈折光とに分光するとともに、前記部品把持手段とともに移動する第2光源から照射された光を透過光と屈折光とに分光する行程を含み、
基板に照射された前記光源の一の分光を撮像する行程は、基板に照射された前記二つの屈折光を撮像する行程であり、
前記光源の他の分光と、前記部品が備えるピンを撮像する行程は、前記第1光源の透過光と前記第2光源の透過光と、前記部品が備えるピンを撮像する行程であり、
基板に照射された前記光源の一の分光を撮像した画像に画像処理を施し、前記基板の状態を演算する行程は、前記二つの屈折光を撮像した画像に画像処理を施し、前記基板の状態を演算する行程であり、
前記光源の他の分光と、前記部品が備えるピンを撮像した画像に画像処理を施し、前記部品の状態を演算する行程は、前記第1光源の透過光と前記第2光源の透過光と、前記部品が備えるピンを撮像する行程であることを特徴とする付記5記載の部品実装方法。
(Appendix 6)
The light source includes a first light source and a second light source,
The step of spectroscopically splits light emitted from the first light source into transmitted light and refracted light, and splits light emitted from the second light source moving together with the component gripping means into transmitted light and refracted light. Including the process of
The step of imaging one spectrum of the light source irradiated on the substrate is a step of imaging the two refracted lights irradiated on the substrate,
The process of imaging the other spectrum of the light source and the pin included in the component is a process of imaging the transmitted light of the first light source, the transmitted light of the second light source, and the pin included in the component.
The step of performing image processing on an image obtained by imaging one spectrum of the light source irradiated on the substrate and calculating the state of the substrate is performed by performing image processing on the image obtained by imaging the two refracted lights, and the state of the substrate Is the process of calculating
The process of performing image processing on an image obtained by imaging the other spectrum of the light source and the pins included in the component, and calculating the state of the component includes the transmitted light of the first light source and the transmitted light of the second light source, 6. The component mounting method according to claim 5, wherein the component mounting step is a process of imaging a pin included in the component.

(付記7)
部品を把持した部品把持手段を移動レールに沿って移動させつつ、前記部品把持手段とともに移動する第1光源から照射された光を透過光と屈折光とに分光するとともに、前記部品把持手段とともに移動する第2光源から照射された光を透過光と屈折光とに分光する行程と、
基板に照射された前記二つの屈折光を撮像する行程と、
前記二つの透過光と、前記部品が備えるピンを撮像する行程と、
前記二つの屈折光を撮像した画像に画像処理を施し、前記基板の状態を演算する行程と、
前記二つの透過光と、前記部品が備えるピンを撮像した画像に画像処理を施し、前記部品の状態を演算する行程と、
演算された前記基板の状態と部品の状態とに基づいて、前記基板と前記部品との位置関係を補正する行程と、
を、備えたことを特徴とする部品実装方法。
(Appendix 7)
While moving the component gripping means that grips the component along the moving rail, the light emitted from the first light source that moves with the component gripping means is split into transmitted light and refracted light, and moved together with the component gripping means. The step of splitting the light emitted from the second light source into transmitted light and refracted light;
A step of imaging the two refracted lights irradiated on the substrate;
A process of imaging the two transmitted light and the pin included in the component;
Performing image processing on an image obtained by imaging the two refracted lights, and calculating a state of the substrate;
A process of performing image processing on an image obtained by imaging the two transmitted light and the pin included in the component, and calculating a state of the component;
A step of correcting the positional relationship between the substrate and the component based on the calculated state of the substrate and the state of the component;
A component mounting method characterized by comprising:

1…部品実装装置
10…移動レール
20…コネクタ搬送部
21…ハンド機構
22…上下移動機構
23…左右移動機構
24…ハンド回転機構
25…第1レーザー発光部
26…第1ハーフミラー
27…第2レーザー発光部
28…第2ハーフミラー
30…コネクタピン撮像部
31…第1カメラ
32…ピン照射用照明
40…基板位置決め部
41…基板移動機構
42…第1基板回転機構
43…第2基板回転機構
50…画像処理部
51…2値化処理部
52…基準特徴パターン検出部
53…重心検出部
54…基準ピン位置演算部
55…コネクタ傾き演算部
56…基板位置演算部
60…制御部
DESCRIPTION OF SYMBOLS 1 ... Component mounting apparatus 10 ... Moving rail 20 ... Connector conveyance part 21 ... Hand mechanism 22 ... Vertical movement mechanism 23 ... Left / right movement mechanism 24 ... Hand rotation mechanism 25 ... 1st laser light emission part 26 ... 1st half mirror 27 ... 2nd Laser light emitting unit 28 ... second half mirror 30 ... connector pin imaging unit 31 ... first camera 32 ... pin irradiation illumination 40 ... substrate positioning unit 41 ... substrate moving mechanism 42 ... first substrate rotating mechanism 43 ... second substrate rotating mechanism DESCRIPTION OF SYMBOLS 50 ... Image processing part 51 ... Binarization processing part 52 ... Reference | standard feature pattern detection part 53 ... Gravity center detection part 54 ... Reference | standard pin position calculation part 55 ... Connector inclination calculation part 56 ... Board | substrate position calculation part 60 ... Control part

Claims (5)

基板の上方へ移動可能である部品把持手段と、
前記部品把持手段とともに移動する光源と、
前記光源から照射される光を複数に分光する分光手段と、
前記分光手段によって分光され、基板に照射された光を撮像する第1撮像手段と、
前記分光手段によって分光された他の光を前記部品が備えるピンとともに撮像する第2撮像手段と、
前記第1撮像手段によって取得された画像に画像処理を施し、前記基板の状態を演算するとともに、前記第2撮像手段によって取得された画像に画像処理を施し、前記部品の状態を演算する演算部と、
前記演算部によって取得された前記基板の状態及び前記部品の状態に基づいて、前記基板と前記部品との位置関係を補正する補正手段と、
を、備えたことを特徴とする部品実装装置。
Component gripping means movable above the substrate;
A light source that moves with the component gripping means;
A spectroscopic means for splitting light emitted from the light source into a plurality of light;
First imaging means for imaging light split by the spectroscopic means and applied to the substrate;
Second imaging means for imaging other light spectrally separated by the spectral means together with pins included in the component;
An arithmetic unit that performs image processing on the image acquired by the first imaging unit and calculates the state of the substrate, and performs image processing on the image acquired by the second imaging unit and calculates the state of the component When,
Correction means for correcting the positional relationship between the substrate and the component based on the state of the substrate and the state of the component acquired by the arithmetic unit;
A component mounting apparatus comprising:
前記光源は、前記部品把持手段とともに移動する第1光源および第2光源とを含み、
前記分光手段は、前記第1光源との位置関係を維持したまま移動し、前記第1光源から照射された光を透過光と屈折光とに分光する第1分光手段と、前記第2光源との位置関係を維持したまま移動し、前記第2光源から照射された光を透過光と屈折光とに分光する第2分光手段とを含み、
前記第1撮像手段は、前記第1分光手段によって分光され、基板に照射された屈折光と、前記第2分光手段によって分光され、基板に照射された屈折光を撮像し、
前記第2撮像手段は、前記第1分光手段によって分光された透過光と、前記第2分光手段によって分光された透過光と、前記部品が備えるピンを撮像することを特徴とする請求項1記載の部品実装装置。
The light source includes a first light source and a second light source that move together with the component gripping means,
The spectroscopic means moves while maintaining a positional relationship with the first light source, and a first spectroscopic means for splitting light emitted from the first light source into transmitted light and refracted light, and the second light source, And a second spectroscopic means for splitting the light emitted from the second light source into transmitted light and refracted light.
The first imaging means images the refracted light that is split by the first spectroscopic means and applied to the substrate, and the refracted light that is split by the second spectroscopic means and applied to the substrate,
The said 2nd imaging means images the transmitted light disperse | distributed by the said 1st spectroscopic means, the transmitted light disperse | distributed by the said 2nd spectroscopic means, and the pin with which the said component is provided. Component mounting equipment.
前記第1光源は、前記部品把持手段の進行方向前側に配置され、前記第2光源は、前記部品把持手段の進行方向後側に配置されたことを特徴とする請求項2記載の部品実装装置。   3. The component mounting apparatus according to claim 2, wherein the first light source is disposed on the front side in the traveling direction of the component gripping means, and the second light source is disposed on the rear side in the traveling direction of the component gripping means. . 部品を把持した部品把持手段を基板の上方へ移動させつつ、前記部品把持手段とともに移動する光源から照射された光を分光する行程と、
基板に照射された前記光源の一の分光を撮像した画像に画像処理を施し、前記基板の状態を演算する行程と、
基板に照射された前記光源の一の分光を撮像する行程と、
前記光源の他の分光と、前記部品が備えるピンを撮像する行程と、
前記光源の他の分光と、前記部品が備えるピンを撮像した画像に画像処理を施し、前記部品の状態を演算する行程と、
演算された前記部品の状態と基板の状態とに基づいて、前記部品と前記基板との位置関係を補正する行程と、
を、備えたことを特徴とする部品実装方法。
A step of dispersing light emitted from a light source moving together with the component gripping means while moving the component gripping means that grips the component above the substrate;
A step of performing image processing on an image obtained by imaging one spectrum of the light source irradiated on the substrate, and calculating a state of the substrate;
A step of imaging one spectrum of the light source irradiated on the substrate;
A process of imaging another spectrum of the light source and a pin included in the component;
A process of performing image processing on another spectrum of the light source and an image obtained by imaging a pin included in the component, and calculating a state of the component;
Based on the calculated state of the component and the state of the substrate, a process of correcting the positional relationship between the component and the substrate;
A component mounting method characterized by comprising:
前記光源は、第1の光源と第2の光源とを含み、
前記分光する行程は、第1光源から照射された光を透過光と屈折光とに分光するとともに、前記部品把持手段とともに移動する第2光源から照射された光を透過光と屈折光とに分光する行程を含み、
基板に照射された前記光源の一の分光を撮像する行程は、基板に照射された前記二つの屈折光を撮像する行程であり、
前記光源の他の分光と、前記部品が備えるピンを撮像する行程は、前記第1光源の透過光と前記第2光源の透過光と、前記部品が備えるピンを撮像する行程であり、
基板に照射された前記光源の一の分光を撮像した画像に画像処理を施し、前記基板の状態を演算する行程は、前記二つの屈折光を撮像した画像に画像処理を施し、前記基板の状態を演算する行程であり、
前記光源の他の分光と、前記部品が備えるピンを撮像した画像に画像処理を施し、前記部品の状態を演算する行程は、前記第1光源の透過光と前記第2光源の透過光と、前記部品が備えるピンを撮像する行程であることを特徴とする請求項4記載の部品実装方法。
The light source includes a first light source and a second light source,
The step of spectroscopically splits light emitted from the first light source into transmitted light and refracted light, and splits light emitted from the second light source moving together with the component gripping means into transmitted light and refracted light. Including the process of
The step of imaging one spectrum of the light source irradiated on the substrate is a step of imaging the two refracted lights irradiated on the substrate,
The process of imaging the other spectrum of the light source and the pin included in the component is a process of imaging the transmitted light of the first light source, the transmitted light of the second light source, and the pin included in the component.
The step of performing image processing on an image obtained by imaging one spectrum of the light source irradiated on the substrate and calculating the state of the substrate is performed by performing image processing on the image obtained by imaging the two refracted lights, and the state of the substrate Is the process of calculating
The process of performing image processing on an image obtained by imaging the other spectrum of the light source and the pins included in the component, and calculating the state of the component includes the transmitted light of the first light source and the transmitted light of the second light source, The component mounting method according to claim 4, wherein the component mounting step is a step of imaging a pin included in the component.
JP2010230016A 2010-10-12 2010-10-12 Component mounting apparatus and component mounting method Expired - Fee Related JP5516307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010230016A JP5516307B2 (en) 2010-10-12 2010-10-12 Component mounting apparatus and component mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010230016A JP5516307B2 (en) 2010-10-12 2010-10-12 Component mounting apparatus and component mounting method

Publications (2)

Publication Number Publication Date
JP2012084701A JP2012084701A (en) 2012-04-26
JP5516307B2 true JP5516307B2 (en) 2014-06-11

Family

ID=46243275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010230016A Expired - Fee Related JP5516307B2 (en) 2010-10-12 2010-10-12 Component mounting apparatus and component mounting method

Country Status (1)

Country Link
JP (1) JP5516307B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721469B2 (en) * 2011-02-28 2015-05-20 富士機械製造株式会社 Component mounting method and component mounting apparatus
US10617049B2 (en) * 2014-01-17 2020-04-07 Fuji Corporation Component mounting device and gripping members

Also Published As

Publication number Publication date
JP2012084701A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
US10650543B2 (en) Component mounting device
KR102437902B1 (en) Laser processing apparatus
JP2008270696A (en) Component mounting position correcting method and component mounting apparatus
JP2008107194A (en) Wheel alignment measuring device for vehicle
CN107926154B (en) Component mounting apparatus
JP6889778B2 (en) Component mounting device
KR102057918B1 (en) Component mounting device
CN111096102B (en) Component mounting apparatus
JP5516307B2 (en) Component mounting apparatus and component mounting method
JP2001230597A (en) Detection method for electrical component position
JP6646916B2 (en) Image processing apparatus and image processing method for substrate
WO2015145864A1 (en) Position displacement detection method, position displacement detection device, drawing device, and substrate inspection device
JP4707607B2 (en) Image acquisition method for component recognition data creation and component mounter
JP5999809B2 (en) Component mounter
JP2014007213A (en) Component mounting apparatus and component mounting method
JP7093255B2 (en) Mounting device and mounting method
JP4664015B2 (en) Electronic component mounting method and electronic component mounting apparatus
JP2013140082A (en) Height measuring device and height measuring method
CN111434202B (en) Work device for mounted object
JP2006210705A (en) Electronic component mounting device
JP2004288824A (en) Method for calibrating electronic-part mounting device and device using its method
JP2022107020A (en) Measuring device and component mounting machine
CN108702866B (en) Component determination device and component determination method
JP4704218B2 (en) Component recognition method, apparatus and surface mounter
JP6858776B2 (en) Anti-board work machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5516307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees