JP5504507B2 - 集積回路装置 - Google Patents

集積回路装置 Download PDF

Info

Publication number
JP5504507B2
JP5504507B2 JP2010534730A JP2010534730A JP5504507B2 JP 5504507 B2 JP5504507 B2 JP 5504507B2 JP 2010534730 A JP2010534730 A JP 2010534730A JP 2010534730 A JP2010534730 A JP 2010534730A JP 5504507 B2 JP5504507 B2 JP 5504507B2
Authority
JP
Japan
Prior art keywords
voltage
integrated circuit
output terminal
switching element
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010534730A
Other languages
English (en)
Other versions
JPWO2010047140A1 (ja
Inventor
健 竹内
正 安福
光一 石田
真 高宮
貴康 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2010534730A priority Critical patent/JP5504507B2/ja
Publication of JPWO2010047140A1 publication Critical patent/JPWO2010047140A1/ja
Application granted granted Critical
Publication of JP5504507B2 publication Critical patent/JP5504507B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • G11C5/04Supports for storage elements, e.g. memory modules; Mounting or fixing of storage elements on such supports
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/005Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor comprising combined but independently operative RAM-ROM, RAM-PROM, RAM-EPROM cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/12Programming voltage switching circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19106Disposition of discrete passive components in a mirrored arrangement on two different side of a common die mounting substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

本発明は、集積回路装置に関し、詳しくは、第1の電圧で動作する第1の集積回路を有する第1の集積回路チップを含む集積回路チップを複数積層してなる積層体を備える集積回路装置に関する。
従来、この種の集積回路装置としては、フラッシュメモリを有するフラッシュメモリチップが複数積層されたものが提案されている(例えば、非特許文献1参照)。この装置では、フラッシュメモリチップを複数積層することにより、装置の小型化を図ることができるとしている。
田中啓安他2名,「NAND型フラッシュメモリ」,東芝レビュー,2008年,Vol.63 ,No.2,p.28−31
フラッシュメモリでは記憶を書き込むための書き込み電圧が記憶を読み出すための読み出し電圧より高いため、上述した集積回路装置では、電源電圧を書き込み電圧に昇圧してフラッシュメモリチップに供給する昇圧供給回路が必要とされる。こうした昇圧供給回路は、互いに電源電圧が異なるロジック回路とアナログ回路とが混載されたアナログ−デジタル混載チップなどの集積回路チップが複数積層されてなるものでも必要とされ、一般に、集積回路チップに形成されるが、昇圧供給回路を集積回路チップに形成すると集積回路チップの面積が大きくなり、装置全体の小型化が図れなくなってしまう。
本発明の集積回路装置は、装置全体の小型化を図ることを主目的とする。
本発明の集積回路装置は、上述の主目的を達成するために以下の手段を採った。
本発明の集積回路装置は、
第1の電圧で動作する第1の集積回路を有する第1の集積回路チップを含む集積回路チップを複数積層してなる積層体を備える集積回路装置であって、
電源側から供給される所定電圧を前記第1の電圧に昇圧して前記積層体を構成する前記第1の集積回路チップの前記第1の集積回路に供給する昇圧供給回路を有するインターポーザが前記積層体の一方の端面に配置されている
ことを要旨とする。
この本発明の集積回路装置では、電源側から供給される所定電圧を第1の電圧に昇圧して積層体を構成する第1の集積回路チップの第1の集積回路に供給する昇圧供給回路を有するインターポーザが積層体の一方の端面に配置されている。この結果、昇圧供給回路を第1の集積回路チップに搭載したものに比して、装置全体の小型化を図ることができる。
こうした本発明の集積回路装置において、前記昇圧供給回路は、前記所定電圧が供給される入力端子と前記第1の電圧を供給する出力端子との間に直列に接続されたインダクタと、前記インダクタと前記出力端子との間に直列に接続され電流を前記入力端子から前記出力端子に向かう方向へ整流する整流素子と、前記インダクタと前記整流素子との間で前記インダクタからみて前記出力端子に並列に接続されたスイッチング素子と、前記整流素子と前記出力端子との間で前記整流素子からみて前記出力端子に並列に接続されたキャパシタと、前記整流素子と前記出力端子との間で前記整流素子からみて前記出力端子に並列に接続された抵抗と、を有するブーストコンバータと、前記スイッチング素子をスイッチング制御するスイッチング制御回路と、を備える回路であるものとすることもできる。こうすれば、昇圧供給回路としてブーストコンバータを備えるものを用いたときでも、装置の小型化を図ることができる。
また、昇圧供給回路がブーストコンバータとスイッチング制御回路を備える態様の本発明の集積回路装置において、前記スイッチング制御回路は、前記出力端子の電圧が高くなるほど高くなる傾向に調整した周波数で前記スイッチング素子がスイッチングするよう前記スイッチング素子を制御する回路であるものとすることもできる。こうすれば、出力端子の電圧が高くなるほどより緩慢に電圧を昇圧するから、より適正に電源側から供給される所定電圧を第1の電圧に昇圧することができる。前記スイッチング制御回路は、前記出力端子の電圧が前記第1の電圧になるよう調整した周波数で前記スイッチング素子がスイッチングするよう前記スイッチング素子を制御する回路であるものとすることもできる。この場合、前記スイッチング制御回路は、前記出力端子の電圧が前記所定電圧から該所定電圧より高く前記第1の電圧より低い第1の制御用電圧に至るまでは第1の周波数で前記スイッチング素子がスイッチングするよう前記スイッチング素子を制御し、前記出力端子の電圧が前記第1の制御用電圧に至ってから前記第1の制御用電圧より高く前記第1の電圧より低い第2の制御用電圧に至るまでは前記第1の周波数より高い第2の周波数で前記スイッチング素子がスイッチングするよう前記スイッチング素子を制御し、前記出力端子の電圧が前記第2の制御用電圧に至ってから前記第1の電圧に至るまでは前記第2の周波数より高い第3の周波数で前記スイッチング素子がスイッチングするよう前記スイッチング素子を制御し、前記出力端子の電圧が前記第1の電圧に至ってからは前記スイッチング素子のスイッチングを停止する。前記出力端子の電圧が前記第1の電圧に至ってから前記第2の制御電圧まで低下したときには前記第1の電圧に至るまで前記第3の周波数で前記スイッチング素子がスイッチングするよう前記スイッチング素子を制御する回路であるものとすることもできる。出力端子の電圧が所定電圧から第1の制御用電圧に至るまでは第1の周波数で前記スイッチング素子をスイッチングさせ、出力端子の電圧が第1の制御用電圧に至ってから第2の周波数でスイッチング素子をスイッチングさせ、出力端子の電圧が第2の制御用電圧に至ってから第1の電圧に至るまでは第3の周波数でスイッチング素子をスイッチングさせるから、出力端子の電圧を第1の制御用電圧に至るまでは比較的迅速に昇圧し、第2の制御用電圧に至るまでは第1の制御用電圧に至るまでに比して緩慢に昇圧し、第1の電圧に至るまでは第2の制御用電圧に至るまでに比して緩慢に昇圧する。こうすれば、より適正に電源側から供給される所定電圧を第1の電圧に昇圧することができる。また、出力端子の電圧が第1の電圧に至ってから第2の制御電圧まで低下したときには第1の電圧に至るまで第3の周波数でスイッチング素子がスイッチングさせるから、出力端子の電圧が第1の電圧から低下したときでも迅速に第1の電圧に戻すことができる。
さらに、本発明の集積回路装置において、前記昇圧供給回路は、前記所定電圧が供給される入力端子と前記第1の電圧を供給する出力端子との間に直列に接続されたインダクタと、前記インダクタと前記出力端子との間に直列に接続され電流を前記入力端子から前記出力端子に向かう方向へ整流する整流素子と、前記インダクタと前記整流素子との間で前記インダクタからみて前記出力端子に並列に接続されたスイッチング素子と、を有するブーストコンバータと、パルス信号を用いて前記スイッチング素子をスイッチング制御するスイッチング制御回路と、を備える回路であるものとすることもできる。こうすれば、昇圧供給回路としてブーストコンバータを備えるものを用いたときでも、装置の小型化を図ることができる。
昇圧供給回路がブーストコンバータとパルス信号を用いてスイッチング素子をスイッチング制御するスイッチング制御回路とを備える態様の本発明の集積回路装置おいて、前記スイッチング制御回路は、前記出力端子の電圧として出力電圧を検出する電圧検出部と、前記スイッチング素子に前記パルス信号を1周期分印加したときの前記出力電圧の変化量を検出する電圧変化量検出部と、前記パルス信号の周波数およびデューティ比と前記検出された出力電圧と前記検出された出力電圧の変化量とを用いて前記出力端子に接続されている負荷容量を推定し、前記出力電圧が前記第1の電圧になり且つ前記推定した負荷容量に対して前記ブーストコンバータを効率よく駆動するよう調整した周波数およびデューティ比のパルス信号を用いて前記スイッチング素子をスイッチング制御するスイッチング制御部と、を有する回路であるものとすることもできる。こうすれば、出力端子に接続された負荷容量が変動することによりブーストコンバータにおける消費電力の増加を抑制することができる。この場合において、前記スイッチング制御回路は、前記推定された負荷容量として推定負荷容量と前記検出された出力電圧と前記パルス信号の周波数およびデューティ比とを記憶する第1記憶部と、前記負荷容量と前記出力電圧とに対して前記出力電圧が前記第1の電圧になるまでに前記ブーストコンバータで消費されるエネルギーが比較的低くなる前記パルス信号の周波数およびデューティ比の関係として予め設定された所定関係を記憶する第2記憶部と、を有し、前記スイッチング制御部は、前記検出された出力電圧が前記第1の電圧に至るまでは前記出力端子に前記第1記憶部に記憶されている推定負荷容量の負荷が接続されている状態で前記第1記憶部に記憶されている周波数およびデューティ比のパルス信号を用いて前記スイッチング素子をスイッチング制御したときの前記出力端子の電圧の変化量を推定し前記検出された電圧変化量と前記推定された出力端子の電圧の変化量との差分が所定値未満であるときに前記第1記憶部に記憶されている周波数およびデューティ比のパルス信号を用いて前記スイッチング素子をスイッチング制御すると共に前記検出された出力電圧を第1記憶部に記憶させると共に前記検出された電圧変化量と前記推定された出力端子の電圧の変化量との差分が所定値以上であるときには前記検出された電圧変化量を用いて前記負荷容量を推定し該推定した負荷容量と前記第2記憶部に記憶されている所定関係とを用いて前記ブーストコンバータを効率よく駆動する前記パルス信号の周波数およびデューティ比を設定して該設定した周波数およびデューティ比のパルス信号を用いて前記スイッチング素子をスイッチング制御すると共に前記推定した負荷容量と前記パルス信号の周波数およびデューティ比と前記検出された出力電圧を前記第1記憶部に記憶させ、前記出力端子の電圧が前記第1の電圧に至ってからは前記スイッチング素子のスイッチングを停止する回路であるものとすることもできる。
昇圧供給回路がブーストコンバータとパルス信号を用いてスイッチング素子をスイッチング制御するスイッチング制御回路とを備える態様の本発明の集積回路装置おいて、前記入力端子の電圧を検出する電圧検出回路を備え、前記スイッチング制御回路は、前記検出された入力端子の電圧に対して前記ブーストコンバータにおける消費電力が比較的低くなるよう調整した周波数およびデューティ比のパルス信号を用いて前記スイッチング素子をスイッチング制御する回路であるものとすることもできる。こうすれば、入力端子の電圧が変動に拘わらず効率よく昇圧することができる。
さらに、昇圧供給回路がブーストコンバータとスイッチング制御回路を備える態様の本発明の集積回路装置において前記スイッチング素子は、ドレインが前記インダクタに接続されると共にソースが接地されてなるエンハンスメント型のn型金属酸化物半導体トランジスタであるものとしたり、前記スイッチング素子は、ドレインがインダクタに接続されたデプレッション型のn型金属酸化物半導体トランジスタと、ドレインが前記デプレッション型のn型金属酸化物半導体トランジスタのソースに接続されると共にソースが接地されてなるエンハンスメント型のn型金属酸化物半導体トランジスタと、を有する素子であるものとすることもできる。そして、昇圧供給回路がブーストコンバータとスイッチング制御回路を備える態様の本発明の集積回路装置において、前記整流素子は、ゲートおよびソースが前記インダクタに接続されると共にドレインが前記キャパシタに接続されてなるエンハンスメント型のn型金属酸化物半導体トランジスタであるものとすることもできる。
そして、本発明の集積回路装置において、前記第1の集積回路は、フラッシュメモリであるものとすることもできる。こうすれば、第1の集積回路がフラッシュメモリであるときでも装置全体の小型化を図ることができる。
また、本発明の集積回路装置において、前記第1の集積回路は、前記第1の電圧および前記第1の電圧と異なる第2の電圧で動作する回路であり、前記インターポーザは、前記所定電圧を前記第2の電圧に昇圧して前記積層体を構成する前記第1の集積回路チップの前記第1の集積回路に供給する第2昇圧供給回路を有するものとすることもできる。こうすれば、第1の集積回路が第1の電圧と異なる第2の電圧で動作する回路であるときでも、装置全体の小型化を図ることができる。
さらに、本発明の集積回路装置において、前記積層体は、前記第1の電圧と異なる第2の電圧で動作する第2の集積回路を有する第2の集積回路チップを含み、前記インターポーザは、前記所定電圧を前記第2の電圧に昇圧して前記積層体を構成する前記第2の集積回路チップの前記第2の集積回路に供給する第2昇圧供給回路を有するものとすることもできる。こうすれば、積層体が第1の電圧と異なる第2の電圧で動作する第2の集積回路を有する第2の集積回路チップを含む場合でも装置全体の小型化を図ることができる。
本発明の一実施例としてコンピュータの内部記憶装置として用いられるSSに搭載された集積回路装置10の構成の概略を示す構成図である。 インターポーザ30に搭載された昇圧回路40の構成の概略を示す回路図である。 オシレータDCOの構成の概略を示す回路図である。 オシレータDCOから出力されるクロック信号CLKの時間変化の一例を示す説明図である。 昇圧回路40から出力される電圧V2およびスイッチング制御回路44から出力されるクロック信号CLKの時間変化の一例を示す説明図である。 昇圧回路140の構成の概略を示す回路図である。 入力電圧Vinを一定としたときの出力端子Voutに接続される負荷容量Clとオン時間Tonと消費エネルギーEboとの関係を示す説明図である。 入力電圧Vinを一定としたときの負荷容量Clとオフ時間Toffと消費エネルギーEboとの関係を示す説明図である。 負荷容量Clを一定としたときの入力電圧Vinとオン時間Tonと消費エネルギーEboとの関係を示す説明図であり、 負荷容量Clを一定としたときの入力電圧Vinとオフ時間Toffと消費エネルギーEboとの関係を示す説明図である。 入力電圧Vinが一定(例えば、1.8V)の場合における負荷容量Clと消費エネルギーEboが最小値Eminとなるオン時間Ton,オフ時間Toffとの関係の一例を示す説明図である。 負荷容量Clが一定(例えば、100pF)における入力電圧Vinと消費エネルギーEboが最小値Eminとなるオン時間Ton,オフ時間Toffとの一例を示す説明図である。 オシレータDCO1の構成の概略を示す回路図である。 参照電圧Vrefとキャパシタ電圧Vcap1(実線),Vcap2(破線)とクロック信号CLKの電圧との時間変化の一例を示す説明図である。 負荷容量Clが100pF,800pFであるときの昇圧が開始されてから1回目の昇圧,2回目の昇圧が終了するまでの出力電圧Voutおよびクロック信号CLKの時間変化の一例を示す説明図である。 出力端子Voutの負荷を負荷容量Clが100pF,800pFであるときの昇圧を開始してから3マイクロ秒間の出力電圧Voutおよびスイッチング制御回路144から出力されるクロック信号CLKの時間変化の一例を示す説明図である。 変形例のブーストコンバータの構成の概略を示す回路図である。
次に、本発明を実施するための最良の形態を実施例を用いて説明する。
図1は、本発明の第1実施例としてコンピュータの内部記憶装置としてSSD(Solid State Disk)に用いられる集積回路装置10の構成の概略を示す構成図である。集積回路装置10は、DRAM(Dynamic Random Access Memory)が形成されたシリコンチップとしてのDRAMチップ20とNAND型フラッシュメモリが形成されたシリコンチップとしてのフラッシュメモリチップ22とを複数積層してなる積層体24と、積層体24の上面に配置されたインターポーザ30とを備える。集積回路装置10には、図示しない外部の電源から電源電圧として電圧V1(例えば、1.8V)が供給されており、実施例では、DRAMチップ20は電圧V1で動作するものとし、NAND型フラッシュメモリは書き込み電圧が電圧V1で読み出し電圧が電圧V2(例えば、20V)であるものとした。なお、DRAMチップ20やフラッシュメモリチップ22にはチップの表面から裏面へ貫通する図示しない貫通穴が形成されており、DRAMチップ20やフラッシュメモリチップ22間は、貫通穴を導電性の比較的高い金属材料(例えば、銅など)で埋め込んで形成した接続配線で電気的に接続されている。
インターポーザ30には、電源から供給された電圧V1を電圧V2に昇圧してフラッシュメモリチップ22のフラッシュメモリに供給する昇圧回路40やDRAMやフラッシュメモリを制御するためのメモリコントローラ42,図示しない昇圧回路40やメモリコントローラ42からの接続配線などが搭載されている。図2は、インターポーザ30に搭載された昇圧回路40の構成の概略を示す回路図である。昇圧回路40は、入力端子Vinに供給された電圧V1を昇圧して出力端子Voutからフラッシュメモリに出力するブーストコンバータ42と、ブーストコンバータ42を制御するスイッチング制御回路44とを備える。ブーストコンバータ42は、電圧V1が供給される入力端子Vinと電圧V2を出力する出力端子Voutとの間に直列に接続されたインダクタLと、ゲートとソースとが互いに接続されておりソースがインダクタLに接続されると共にドレインが出力端子Voutに接続されたエンハンスメント型のNMOS(N-channel Metal Oxide Semiconductor)トランジスタN1(以下、トランジスタN1という)と、インダクタLとトランジスタN1との間でインダクタLからみて出力端子Voutに並列に接続されたデプレッション型のNMOSトランジスタN2(以下、トランジスタN2という)と、トランジスタN1と出力端子Voutとの間でトランジスタN2からみて出力端子に並列に接続されたキャパシタCL,抵抗RLとを備える。トランジスタN2は、スイッチング制御回路44からのクロック信号CLKによりスイッチングが制御されている。
スイッチング制御回路44は、クロック信号CLKを出力するオシレータDCOと、オシレータDCOからのクロック信号CLKを適正なタイミングでブーストコンバータ40のトランジスタN2のゲートに入力するアウトプットバッファOBと、出力端子Voutの電圧Voutと閾値Vth_L,Vth_M,Vth_H(例えば、それぞれ15V,18V,20Vなど)とを比較するコンパレータCMP1〜CMP3と、コンパレータCMP1〜CMP3から入力される比較結果に応じてオシレータDCOから出力するクロック信号CLKの周波数モードFMやオシレータDCOの動作を休止するためのスタンバイ信号STBを出力する制御ロジック回路46と、周波数モードFMに対応するオシレータDCOのスイッチSW1〜SW5それぞれのオンオフの情報を記憶しているレジスタREGと、入力された周波数モードFMに対応するオシレータDCOの各スイッチの情報を読み出して後述するオシレータDCOの第2回路M2,第3回路M3の各スイッチを切り替えるセレクタSLと、から構成されている。続いて、オシレータDCOの構成および動作について説明するが、図2を用いた説明を一旦中断して、図3,図4を用いて説明する。
図3は、オシレータDCOの構成の概略を示す回路図であり、図4は、オシレータDCOから出力されるクロック信号CLKの時間変化の一例を示す説明図である。オシレータDCOは、図3に示すように、定電流回路として構成された第1回路M1と、第1回路M1とカレントミラーを構成する第2回路M2,第3回路M3と、第1回路M2,M3の出力からクロック信号CLKを生成して出力するクロック信号出力回路CKOと、から構成されている。第1回路M1は、抵抗Rと、抵抗Rを介してドレインに電源電圧Vdd(ここでは、電圧V1)が供給されると共にゲートとドレインとが接続されソースが接地されたNMOSトランジスタNM1とから構成されている。第2回路M2,M3は、互いに同一の構成をしており、ソースに電源電圧Vddが供給されるPMOS(P-channel Metal Oxide Semiconductor)トランジスタPM1と、ゲート,ドレインがそれぞれトランジスタPM1のゲート,ドレインに接続されたNMOSトランジスタNM2と、ゲートがトランジスタNM1のゲートに接続されると共にドレインがトランジスタNM2のドレインに接続されたNMOSトランジスタNM3とから構成されている。第2回路M2,M3のトランジスタPM1のドレインと接地との間にスイッチSW1〜SW5を介してキャパシタC1〜C5が互いに並列接続されている。クロック信号出力回路CKOは、第1回路M1のトランジスタNM1のドレインと接地との間の電圧である参照電圧Vrefと第2回路M2のトランジスタPM1のドレインと接地との間の電圧,即ち,キャパシタC1〜C5の電極間電圧であるキャパシタ電圧Vcap1とを比較して比較結果を出力するコンパレータCMP11と、参照電圧Vrefと第3回路M3のトランジスタPM1のドレインと接地との間の電圧,即ち,キャパシタC1〜C5の電極間電圧であるキャパシタ電圧Vcap2とを比較して比較結果を出力するコンパレータCMP12と、CMP11,12からの比較結果に応じてセットまたはリセットされるフリップフロップFFとから構成されている。フリップフロップFFは、キャパシタ電圧Vcap1が参照電圧Vref以下のときにはセットされて低レベルの論理電圧の信号をクロック信号CLKとして出力し、キャパシタ電圧Vcap2が参照電圧Vref以下のときにリセットされて高レベルの論理電圧の信号をクロック信号CLKとして出力し、こうしたクロック信号CLKと逆相のクロック信号CLKBも出力する。なお、オシレータDCOは、制御ロジック回路46からスタンバイ信号STBが入力されるとクロック信号CLKの電圧を低レベルの論理電圧に固定する図示しないトランジスタも備えている。
続いて、こうして構成されたオシレータDCOの発振動作について説明する。図4は、参照電圧Vrefとキャパシタ電圧Vcap1,Vcap2とクロック信号CLKの電圧との時間変化の一例を示す説明図である。第1回路M1,第2回路M2,第3回路M3がカレントミラーを構成しているから、それぞれの回路を流れる電流Iref,Icap1,Icap2とすると、電流Iref,Icap1,Icap2は互いに等しく一定である。したがって、参照電圧Vrefは一定の電圧であり、次式(1)を用いて計算できる。式(1)中、値Rは、抵抗Rの抵抗値である。図4に示すように、第2回路M2のキャパシタ電圧Vcap1が電源電圧Vddと等しい状態(図中”1”の状態)であるときには、スイッチSW1〜SW5のうちオンになっているスイッチに接続されたキャパシタが放電を始め、キャパシタ電圧Vcap1の電圧が下がっていき参照電圧Vrefに等しい状態(図中”2”の状態)となる。このとき、電流Icap1が一定であるからキャパシタ電圧Vcap1は一定の時間変化率で下がっていく。キャパシタ電圧Vcap1の電圧が参照電圧Vrefより小さくなると、フリップフロップFFから出力されるクロック信号CLKが低電位となると共にクロック信号CLKBが高電位となり、第3回路M3のスイッチSW1〜SW5のうちオンになっているスイッチに接続されたキャパシタが放電を始め、キャパシタ電圧Vcap2の電圧が下がっていき参照電圧Vrefに等しい状態(図中”1”の状態)となる。このとき、第2回路M2ではオンになっているスイッチに接続されたキャパシタが充電されてキャパシタ電圧Vcap1が上昇する。キャパシタ電圧Vcap2の電圧が下がっていき参照電圧Vrefに等しい状態となると、フリップフロップFFから出力されるクロック信号CLKが高電位となると共にクロック信号CLKBが低電位となる。こうしてオシレータDCOは、発振してクロック信号CLKを生成する。スイッチSW1〜SW5のうちオンになっているスイッチに接続されたキャパシタを放電する時間T,即ち,クロック信号CLKの半周期Tは、次式(2)を用いて計算でき、式(2)と上述した式(1)とから式(3)を導出することができる。なお、式(2),(3)中、値Cは、第2回路M2,第3回路でスイッチSW1〜SW5のうちオンになっているスイッチに接続されたキャパシタの合成容量を示している。このように、オシレータDCOから出力されるクロック信号CLKの周波数は、抵抗Rの抵抗値Rと第2回路M2,第3回路でスイッチSW1〜SW5のうちオンになっているスイッチに接続されたキャパシタの合成容量Cとで決まるため、スイッチSW1〜SW5のうちオンにするスイッチの組み合わせにより複数種類の周波数のクロック信号CLKを出力することができる。実施例では、第2回路M2,第3回路M3を互いに同一の構成としているから、クロック信号CLKのデューティ比(クロック信号CLKが高電位となっている時間を周期2Tで除したもの)は0.5程度になる。以上、オシレータDCOについて説明した。
Vref=Vdd-Iref・R (1)
T=(Vdd-Vref)・C/Icap1 (2)
T=RC (3)
ここで、再び図2を用いて説明する。制御ロジック回路46は、出力電圧Voutが0V以上閾値Vth_L以下であるときには周波数モードFMを比較的低い周波数f0(例えば、10MHz)を示す値0に設定し、出力電圧Voutが閾値Vth_Lより大きく閾値Vth_M以下であるときには周波数モードFMを周波数f1より高い周波数f1(例えば、13.5MHz)を示す値1に設定し、出力電圧Voutが閾値Vth_Mより大きく閾値Vth_H以下であるときには周波数モードFMを周波数f2より高い周波数f2(例えば、20MHz)を示す値2に設定し、出力電圧Voutが閾値Vth_Hより大きいときにはスタンバイ信号STBをオシレータDCOに出力する。
レジスタREGは、内部にレジスタReg1,Reg2,Reg3を有しており、レジスタReg1,Reg2,Reg3はそれぞれ予め周波数モードFMの値毎にスイッチSW1〜SW5のオンオフの情報を記憶している。上述した式(3)から明らかなように、周波数モードFMの値が小さくオシレータDCOから出力すべきクロック信号CLKの周波数が低いほど(周期が長いほど)オシレータDCOに接続されているキャパシタC1〜C5の合成容量が大きくする必要があるため、周波数モードFMの値が小さいほどオシレータDCOに接続されているキャパシタC1〜C5の合成容量が大きくなるよう各スイッチのオンオフの情報が予めレジスタReg1,Reg2,Reg3に記憶されている。
セレクタSLは、制御ロジック回路46から周波数モータFMが入力されると、入力された周波数モードFMの値に対応する各スイッチのオンオフの情報をレジスタREGから読み出して、スイッチSW1〜SW5がレジスタREGから読み出した情報通りにオンオフするようオシレータDCOのスイッチSW1〜SW5をオンオフする。なお、レジスタREGは、外部からのクロック信号CLOCKに同期して入力されるシリアルデータSDATAによってレジスタREGに記憶されているスイッチSW1〜SW5のオンオフの情報を書き換えることができるよう構成されており、一旦レジスタREGに各スイッチのオンオフの情報を記憶した後でもレジスタREGに記憶している情報を書き換えることによりオシレータDCOから出力するクロック信号CLKの周波数を変更することができる。
続いて、こうして構成された昇圧回路40の動作について説明する。図5は、昇圧回路40から出力される電圧V2およびスイッチング制御回路44から出力されるクロック信号CLKの時間変化の一例を示す説明図である。入力端子Vinに電圧V1が供給されると、昇圧動作が開始され、出力端子Voutの電圧Voutが閾値Vth_Lを超えるまで制御ロジック回路46からセレクタSLに値0の周波数モードFMが出力される。値0の周波数モードFMが入力されたセレクタSLは、周波数モードFMが値0のときの各スイッチのオンオフの情報をレジスタREGから読み出してオシレータDCOの第2回路M2,第3回路M3のスイッチSW1〜SW5のオンオフを切り替える。こうしてスイッチSW1〜SW5が切り替えられると、オシレータDCOから周波数f0のクロック信号CLKがアウトプットバッファOBを介してブーストコンバータ42のトランジスタN2のゲートに入力され、トランジスタN2が周波数f0のクロック信号CLKでスイッチングされる。これにより、比較的迅速に出力端子Voutの電圧Voutが上昇する。こうして電圧Voutが上昇して閾値Vth_Lに至ると、制御ロジック回路46からセレクタSLに値1の周波数モードFMが出力され、セレクタSLは周波数モードFMが値1のときの各スイッチのオンオフの情報をレジスタREGから読み出してオシレータDCOの第2回路M2,第3回路M3のスイッチSW1〜SW5のオンオフを切り替える。こうしてスイッチSW1〜SW5が切り替えられると、オシレータDCOから周波数f1のクロック信号CLKがアウトプットバッファOBを介してブーストコンバータ42のトランジスタN2のゲートに入力され、トランジスタN2が周波数f0より高い周波数f1のクロック信号CLKでスイッチングされる。これにより、出力端子Voutの電圧Voutが更に上昇するが、周波数f1は周波数f0より高いため電圧Voutはより緩慢に上昇する。そして、電圧Voutが閾値Vth_Mに至ると、制御ロジック回路46からセレクタSLに値2の周波数モードFMが出力され、セレクタSLは、周波数モードFMが値2のときの各スイッチのオンオフの情報をレジスタREGから読み出してオシレータDCOの第2回路M2,第3回路M3のスイッチSW1〜SW5のオンオフを切り替える。こうしてスイッチSW1〜SW5が切り替えられると、オシレータDCOから周波数f2のクロック信号CLKがアウトプットバッファOBを介してブーストコンバータ42のトランジスタN2のゲートに入力され、トランジスタN2が周波数f1より高い周波数f2のクロック信号CLKでスイッチングされる。これにより、出力端子Voutの電圧Voutが更に上昇するが、周波数f2は周波数f1より高いため電圧Voutはより緩慢に上昇する。そして、電圧Voutが閾値Vth_H(電圧V2と同じ)に至ると、制御ロジック回路46からオシレータDCOにスタンバイ信号STBが出力され、スタンバイ信号STBが入力されたオシレータDCOは発振動作を停止して電圧Voutの上昇が停止し、昇圧回路40の昇圧動作が停止する。このような動作により、入力端子Vinに供給された電圧V1を電圧V2まで昇圧することができ、出力電圧Voutの電圧が電圧V2に近づくほどオシレータDCOの発振周波数を高くするから出力電圧Voutを緩慢に昇圧させることができる。よって、より適正に入力された電圧Vinを電圧V2に昇圧することができる。なお、こうして昇圧動作を停止すると、電圧Voutが徐々に低下を始めるが、電圧Voutが閾値Vth_H(電圧V2)を下回ると(図中、時間が2.6μsのとき)、再びオシレータDCOの発振動作が開始されて電圧Voutが上昇するから、電圧Voutを電圧V2に昇圧することができる。
こうして構成された昇圧回路40はインダクタLを含んでいるため比較的大きな面積を要するためフラッシュメモリチップ22に搭載するとフラッシュメモリチップ22の面積が大きくなることが考えられるが、実施例の集積回路装置10では積層体24の上面に配置されたインターポーザ30に昇圧回路40を搭載しているから、こうした昇圧回路40を積層体24のフラッシュメモリチップ22に搭載したものに比して、装置の小型化を図ることができる。また、入力電圧Vinに対して出力電圧Voutを比較的高い比率で昇圧する高増幅率の昇圧を行なう場合、並列に接続された複数のキャパシタを用いて入力電圧を昇圧するチャージポンプを用いるとより多くのキャパシタが必要であるため面積が大きくなったり昇圧の効率が低下したりすることが考えられるが、ブーストコンバータ42を用いることによりこうした高増幅率の昇圧を行なう場合でもインダクタLやキャパシタCL,抵抗RLを調整することにより所望の昇圧性能を得ることができ、チャージポンプを用いる場合に比して、装置の小型化や効率の低下の抑制を図ることができる。
以上説明した第1実施例の集積回路装置10によれば、昇圧回路40を積層体24の上面に配置したインターポーザ30に搭載したから、装置の小型化を図ることができる。また、昇圧回路40としてブーストコンバータを用いたから、複数のキャパシタを並列に接続してなるチャージポンプを用いるものに比して装置の小型化を図ることができる。さらに、出力電圧Voutが電圧V2に近づくほどオシレータDCOの発振周波数を高くするから出力電圧Voutを緩慢に昇圧させることができる。これにより、より適正に入力された電圧Vinを電圧V2に昇圧することができる。
第1実施例の集積回路装置10では、3種類の周波数のクロック信号CLKを用いてトランジスタN2をスイッチングするものとしたが、3種類以上の周波数のクロック信号CLKを用いたり、2種類以下の周波数のクロック信号CLKを用いるものとしてもよい。この場合、クロック信号CLKの種類に応じてスイッチング制御回路44のオシレータDCOの構成やレジスタREGに記憶されている情報などを適宜変更することにより、こうしてクロック信号CLKの種類を変更することができる。
第1実施例の集積回路装置10では、第2回路M2,第3回路M3を互いに同一の構成としてスイッチSW1〜SW5のオンオフを切り替えることによりデューティ比が0.5のクロック信号CLKを出力するものとしたが、第2回路M2のスイッチSW1〜SW5と第3回路M3のスイッチSW1〜SW5とを互いに独立に切り替えることにより、クロック信号CLKのデューティ比を0.5より大きくしたり0.5より小さくしてもよい。この場合、レジスタREGは予め出力すべきクロック信号CLKのデューティ比毎に第2回路M2,第3回路M3の各回路毎にスイッチSW1〜SW5のオンオフの情報を記憶しているものとし、制御ロジック回路46は出力電圧Voutに基づいて出力すべきクロック信号CLKのデューティ比の情報をセレクタSLに出力し、セレクタSLは制御ロジック回路46から情報に基づいてレジスタREGから対応する第2回路M2,第3回路M3のスイッチSW1〜SW5の情報を読み出し、読み出した情報を用いて第2回路M2,第3回路M3のスイッチSW1〜SW5を互いに独立にオンオフするものとする。
続いて、第2実施例の集積回路装置110について説明する。第2実施例の集積回路装置110は、インターポーザ30に搭載される昇圧回路140の構成が第1実施例の昇圧回路40の構成と異なる点を除いて、第1実施例の集積回路装置10と同一の構成をしている。したがって、ここでは、重複した説明を回避するために、集積回路装置110の構成のうち第1実施例の集積回路装置10と同一の構成については同一の符号を付し、詳細な説明を省略する。
図6は、昇圧回路140の構成の概略を示す回路図である。昇圧回路140は、入力端子Vinに供給された電圧V1を昇圧して出力端子Voutからフラッシュメモリに出力するブーストコンバータ142と、ブーストコンバータ142を制御するスイッチング制御回路144とを備える。ブーストコンバータ142は、電圧V1が供給される入力端子Vinと電圧V2を出力する出力端子Voutとの間に直列に接続されたインダクタLと、ゲートとソースとが互いに接続されておりソースがインダクタLに接続されると共にドレインが出力端子Voutに接続されたトランジスタN1と、インダクタLとトランジスタN1との間でインダクタLからみて出力端子Voutに並列に接続されたトランジスタN2とを備える。トランジスタN2は、スイッチング制御回路144からのクロック信号CLKによりスイッチングが制御されている。
スイッチング制御回路144は、クロック信号CLKを出力するオシレータDCO1と、オシレータDCO1からのクロック信号CLKを適正なタイミングでブーストコンバータ142のトランジスタN2のゲートに入力するアウトプットバッファOBと、出力端子Voutの出力電圧Voutを検出して検出値をデジタル値に変換するA/DコンバータADと、A/DコンバータADから入力される出力電圧Voutと出力電圧Voutをクロック信号CLKの周期に近い時間として予め設定された所定時間Tだけ遅延させた遅延電圧Vdlayとの差分からクロック信号CLKの1周期分の電圧変化量dVoutを演算する遅延演算回路D1と、入力端子Vinの入力電圧Vinを検出して検出値をデジタル値に変換する入力電圧検出回路VDと、A/DコンバータADからの出力電圧Voutや遅延演算回路D1からの電圧変化量dVout,入力電圧検出回路VDからの入力電圧Vinがそれぞれ入力されると共にオシレータDCO1から出力すべきクロック信号CLKが1周期でトランジスタN2をオンするオン時間Tonと1周期でトランジスタN2をオフするオフ時間Toffとを演算して出力したりオシレータDCOの動作を休止するためのスタンバイ信号STBを出力したりする制御ロジック回路146と、から構成されている。
制御ロジック回路146は、情報を記憶可能な記憶部146a,146bと記憶部146a,146bに記憶されている情報を用いてクロック信号CLKのオン時間Ton,オフ時間Toffを演算する演算部146cとを有しており、記憶部M1には出力電圧Voutや電圧変化量dVout,入力電圧Vin,後述の方法により出力端子Voutに接続されていると推定される負荷の容量としての推定負荷容量Cleが記憶されており、記憶部M2には出力端子Voutに接続される負荷容量Clと出力電圧Voutに対して出力電圧Voutを電圧V1から電圧V2まで昇圧するまでにブーストコンバータ142で消費されるエネルギーが比較的低くなるクロック信号CLKのオン時間Ton,オフ時間Toffとの関係としての参照マップが記憶されている。なお、記憶部146aでは、後述する1回目の昇圧が終了するまで、推定負荷容量Cleとして値C1(例えば、100pF)が記憶され、入力電圧Vinとして値Vref(例えば、1.8V)が記憶されているものとした。なお、制御ロジック回路146は、入力された出力電圧Voutが所定電圧V2以上であるときには、スタンバイ信号STBをオシレータDCO1に出力する。
ここで、記憶部146bに記憶されている参照マップについて説明する。図7は入力電圧Vinを一定としたときの出力端子Voutに接続される負荷容量Clとオン時間Tonと出力電圧Voutを電圧V1から電圧V2まで昇圧するまでにブーストコンバータ142で消費されるエネルギーとしての消費エネルギーEboとの関係を示す説明図であり、図8は入力電圧Vinを一定としたときの負荷容量Clとオフ時間Toffと消費エネルギーEboとの関係を示す説明図である。図7においてオフ時間Toffは負荷容量Cl毎に図8において消費エネルギーEboが最も低くなる時間であるものとし、図8においてオン時間Tonは負荷容量Cl毎に図7において消費エネルギーEboが最も低くなる時間であるものとした。負荷容量Clが一定の場合、消費エネルギーEboは、図示すように、あるオン時間Ton,オフ時間Toffで最小電力Pminとなり、最小値Pminとなるオン時間Ton,オフ時間Toffは負荷容量Clが大きくなると共に長くなる傾向となっている。図9は負荷容量Clを一定としたときの入力電圧Vinとオン時間Tonと消費エネルギーEboとの関係を示す説明図であり、図10は負荷容量Clを一定としたときの入力電圧Vinとオフ時間Toffと消費エネルギーEboとの関係を示す説明図である。図9においてオフ時間Toffは入力電圧Vin毎に図10において消費エネルギーEboが最も低くなる時間であるものとし、図10においてオン時間Tonは入力電圧Vin毎に図9において消費エネルギーEboが最も低くなる時間であるものとした。入力電圧Vinが一定の場合、消費エネルギーEboは、図示すように、あるオン時間Ton,オフ時間Toffで最小値Eminとなる。したがって、入力電圧Vinと負荷容量Clとに対して、消費エネルギーEboが最小値Eminとなるクロック信号CLKのオン時間Ton,オフ時間Toffを定めることができる。図11は入力電圧Vinが一定(例えば、1.8V)の場合における負荷容量Clと消費エネルギーEboが最小値Eminとなるオン時間Ton,オフ時間Toffとの関係の一例を示す説明図であり、図12は負荷容量Clが一定(例えば、100pF)における入力電圧Vinと消費エネルギーEboが最小値Eminとなるオン時間Ton,オフ時間Toffとの一例を示す説明図である。したがって、負荷容量Clと入力電圧Vinとに対して消費エネルギーEboが最小となるオン時間Ton,オフ時間Toff、即ち、消費エネルギーEboが最小となる周波数およびデューティ比のクロック信号CLKでブーストコンバータ142のトランジスタN2をスイッチングすると、効率よく電圧Voutを昇圧することができる。参照マップは、負荷容量Clと入力電圧Vinに対して消費エネルギーEboが最小となるオン時間Ton,オフ時間Toffとの関係として予め実験や解析などで求めたものを用いるものとした。
制御ロジック回路146の演算部146cは、入力されている出力電圧VoutがトランジスタN2の1回のスイッチングでの上昇が終了した上昇終了タイミングを検出し、上昇終了タイミングを検出したら記憶部146aに記憶されているクロック信号CLKのオン時間Ton,オフ時間Toffや推定負荷容量Cle,入力電圧Vin,出力電圧Voutを用いて、出力端子Voutに推定負荷容量Cleが接続されている状態でオン時間Ton,オフ時間Toffのクロック信号CLKでトランジスタN2をスイッチングしたときに生じる電圧変化量の推定値dVeを演算する。そして、入力された電圧変化量dVoutと演算した推定値dVeとを比較し、入力された電圧変化量dVoutと演算した推定値dVeとが所定範囲内で一致しているとき(電圧変化量dVoutと推定値dVeとの差分が所定値未満であるとき)には、出力端子Voutに記憶部146aに記憶されている推定負荷容量Cleの負荷が接続されていると判断して、記憶部146aに記憶されているオン時間Ton,オフ時間ToffをオシレータDCO1に出力すると共に制御ロジック回路146の記憶部146aに入力された入力電圧Vinや出力電圧Voutを記憶させる。入力された電圧変化量dVoutと演算した推定値dVeとが所定範囲内で一致していないとき(電圧変化量dVoutと推定値dVeとの差分が所定値以上であるとき)には、出力端子Voutに接続された負荷の容量が変更されたと判断して、オン時間Ton,オフ時間Toffのクロック信号CLKでトランジスタN2スイッチングしたときの電圧変化量が入力された電圧変化量dVoutとなる負荷容量を推定負荷容量Cleとして設定し、記憶部146bに記憶されている参照マップを参照して推定負荷容量Cleと入力電圧Vinとに対応するオン時間Ton,オフ時間ToffをオシレータDCO1に出力する。例えば、入力された電圧変化量dVoutが演算した推定値dVeより大きいときには、記憶部146aに記憶されている負荷容量より小さい負荷容量を推定負荷容量Cleとして設定される。こうしてオン時間Ton,オフ時間ToffをオシレータDCO1に出力したら、記憶部146aに入力された出力電圧Vout,入力電圧Vin,新たに設定されたオン時間Ton,オフ時間Toff、推定負荷容量Cleを記憶させる。こうした処理により、記憶部146aには1つ前のサイクルの昇圧動作における出力電圧Voutや入力電圧Vin,オン時間Ton,オフ時間Toff、推定負荷容量Cleが記憶されていることになる。このように、制御ロジック回路146は、1つ前のサイクルの昇圧動作における出力電圧Vout,入力電圧Vin,オン時間Ton,オフ時間Toff、推定負荷容量Cleを用いて出力端子Voutに接続されている負荷容量を推定し、推定した負荷容量(推定負荷容量Cle)と入力電圧Vinに対してブーストコンバータ142を効率よく駆動可能なオン時間Ton,オフ時間ToffをオシレータDCO1に出力することになる。なお、最初に昇圧を行なう際には1つ前のサイクルの昇圧動作における出力電圧Vout,入力電圧Vin,オン時間Ton,オフ時間Toff、推定負荷容量Cleが記憶部146bに記憶されていなため、入力電圧検出回路VDから入力された入力電圧VinやA/DコンバータADから入力された出力電圧Vout,推定負荷容量Cleとして予め記憶部146bに記憶されている容量Cref(例えば、100pF)を用いてオン時間Ton,オフ時間Toffを設定してオシレータDCO1に出力するものとした。
図13はオシレータDCO1の構成の概略を示す回路図である。オシレータDCO1は、図示するように、第2回路M2,第3回路M3のトランジスタPM1のドレインと接地との間にキャパシタC1s,C2sがスイッチを介さずに接続されている点や第2回路M2,第3回路M3でトランジスタPM1のドレインと接地との間に互いに独立して制御されるスイッチSW11〜SW25を介してキャパシタC11〜C25が接続されている点,キャパシタC11〜C25の容量が互いに異なる点を除いて、第1実施例のオシレータDCOと同一の構成をしている。したがって、オシレータDCO1から出力されるクロック信号CLKの周波数およびデューティ比は、抵抗Rの抵抗値Rと第2回路M2,第3回路でスイッチを介さずに接続されているキャパシタC1s、C2s,スイッチSW11〜SW25のうちオンになっているスイッチに接続されたキャパシタの合成容量Cとで決まる。即ち、スイッチSW11〜SW25のオンオフの組み合わせにより、出力するクロック信号CLKの周波数およびデューティ比、即ち、オン時間Ton,オフ時間Toffを調整することができる。なお、実施例では、キャパシタC1s,C2sがスイッチを介さずにトランジスタPM1のドレインに接続されているものとしたが、キャパシタC1s,C2sは常時トランジスタPM1のドレインに接続されていればよく、常時オンしているスイッチを介してトランジスタPM1のドレインに接続されているものとしてもよい。
クロック信号CLKのオン時間Ton,オフ時間Toffは、次式(4),(5)を用いて計算できる。式(4)中、C1nは第2回路M2においてスイッチSW11〜SW15のうちオンになっているスイッチに接続されたキャパシタの合成容量であり、C2nは第3回路M3においてスイッチSW21〜SW25のうちオンになっているスイッチに接続されたキャパシタの合成容量である。図14はオシレータDCO1の第1回路M1のトランジスタNM1のドレインと接地との電圧である参照電圧Vrefと第2回路M2,第3回路M3のそれぞれのトランジスタPM1のドレインと接地との間の電圧であるキャパシタ電圧Vcap1(実線),Vcap2(破線)とクロック信号CLKの電圧との時間変化の一例を示す説明図である。オシレータDCO1は、まずは、スイッチSW11〜SW25をオフした状態でクロック信号CLKの出力を開始して、制御ロジック回路146でオン時間Ton,オフ時間Toffが出力されたとき(図中、例えば時刻t1,t2)にオン時間Ton,オフ時間Toffに対応するスイッチSW11〜SW25のオンオフを切り替える。これは、制御ロジック回路146でオン時間Ton,オフ時間Toffを設定するのにある程度時間を要するため、スイッチを介さずにトランジスタPM1に接続されるキャパシタC1s,C2sを設けて制御ロジック回路146でオン時間Ton,オフ時間Toffを設定するのに要する時間程度のオン時間Tonを確保することにより、制御ロジック回路146からオン時間Ton,オフ時間Toffが出力される前にクロック信号CLKがトランジスタN2をオンオフして昇圧動作が行なわれるのを回避するためである。こうした制御ロジック回路146がオン時間Ton,オフ時間Toffの設定の要する時間は制御ロジック回路146の性能などにより予め設定することができるため、キャパシタC1s、C2sの容量は、制御ロジック回路146でオン時間Ton,オフ時間Toffを設定するために要する時間などにより決められる。こうして構成されたオシレータDCO1により、所望のオン時間Ton,オフ時間Toffのクロック信号CLKを出力することができる。
Ton=(C1s+C1n)・(Vdd-Vcap1)/Iref=R・(C1s+C1n) (4)
Toff=(C2s+C1n)・(Vdd-Vcap2)/Iref=R・(C2s+C2n) (5)
続いて、こうして構成された昇圧回路140の動作について説明する。図15は負荷容量Clが100pF,800pFであるときの昇圧が開始されてから1回目の昇圧,2回目の昇圧が終了するまでの出力電圧Voutおよびクロック信号CLKの時間変化の一例を示す説明図であり、図16は出力端子Voutの負荷を負荷容量Clが100pF,800pFであるときの昇圧を開始してから3マイクロ秒間の出力電圧Voutおよびスイッチング制御回路144から出力されるクロック信号CLKの時間変化の一例を示す説明図である。入力端子Vinに電圧Vinが供給されて昇圧動作が開始されると、スイッチング制御回路144の制御ロジック回路146は、まず、入力電圧検出回路VDから入力された入力電圧VinやA/DコンバータADから入力された出力電圧Vout、記憶部146bに記憶されている推定負荷容量Cle(値Cref)を用いてオン時間Ton,オフ時間Toffを設定してオシレータDCO1に出力すると共に入力された出力電圧Voutと入力電圧Vin,設定したオン時間Ton,オフ時間Tof,推定負荷容量Cleとを記憶部146aに記憶する。オン時間Ton,オフ時間Toffが入力されたオシレータDCO1は、入力したオン時間Ton,オフ時間Toffに対応するスイッチSW11〜SW25のみがオンするようスイッチSW11〜SW25のオンオフを切り替える。こうしてスイッチSW11〜SW25が切り替えられると、オシレータDCO1から設定されたオン時間Ton,オフ時間Toffのクロック信号CLKがアウトプットバッファOBを介してブーストコンバータ142のトランジスタN2のゲートに入力され、トランジスタN2が設定したオン時間Ton,オフ時間Toffのクロック信号CLKで1回スイッチングされる。こうして、1回目の昇圧動作を終了する。つまり、1回目の昇圧動作では、負荷容量Clが値Crefであると推定して、負荷容量C1と現在入力されている入力電圧Vinでブーストコンバータ142を効率よく駆動可能なオン時間Ton,オフ時間Toff、即ち、ブーストコンバータ142を効率よく駆動可能な周波数およびデューティ比のクロック信号CLKをトランジスタN2のゲートに入力して昇圧を行なうのである。したがって、実際に出力端子Voutに接続されている負荷容量Clに拘わらず、入力電圧Vinが一定の場合1回目の昇圧動作は負荷容量Clが100pFであると推定して昇圧を行なうため、オン時間Ton,オフ時間Toffは同一となる。
続いて、2回目以降の昇圧動作を開始する。2回目以降の昇圧動作では、スイッチング制御回路144の制御ロジック回路146は、電圧変化量の推定値dVeを演算し、遅延演算回路D1からの電圧変化量dVoutと演算している電圧変化量の推定値dVeとを比較して、比較結果に応じたオン時間Ton,オフ時間ToffをオシレータDCO1に出力する。負荷容量Clが100pFであるときは、1回目の昇圧で生じた電圧変化量dVoutが、負荷容量Clを100pFと推定したときの電圧変化量の推定値Cleとほぼ同じとなるため、推定負荷容量Cleが100pFであるときにブーストコンバータ142を効率よく駆動可能なオン時間Ton,オフ時間ToffでトランジスタN2のスイッチングを行なう。一方、負荷容量Clが800pFであるときには、1回目の昇圧で生じた電圧変化量dVoutが電圧変化量の推定値dVeより小さくなるから、1回目の昇圧で生じた電圧変化量dVoutに基づいてより大きい容量(例えば、800pF)を推定負荷容量Clとして設定し、推定負荷容量Clと入力電圧Vinとに対応するオン時間Ton,オフ時間ToffでトランジスタN2のスイッチングを行う。これにより、2回目以降の昇圧動作では、1つ前のサイクルでの昇圧動作に基づいて実際に接続されている負荷容量Clを推定し、推定した負荷容量Clと入力電圧Vinとに対してブーストコンバータ142を効率よく駆動させながら出力端子Voutの電圧Voutを所定電圧V2まで昇圧することができる。
こうして昇圧動作を行なって、電圧Voutが所定電圧V2に至ったら、制御ロジック146からオシレータDCO1にスタンバイ信号STBが出力され、スタンバイ信号STBが入力されたオシレータDCOは発振動作を停止して昇圧回路40の動作が停止する。これにより、電圧Voutが所定電圧V2に至るまでは、負荷容量や入力電圧Vinが変動してもブーストコンバータ142を効率よく駆動させながら電圧Voutを昇圧するから、ブースターコンバータ142のエネルギー効率の向上を図ることができる。特に、集積回路装置110が、メモリインターリーブを行なうCPU(Central Processing Unit)に搭載される場合、昇圧回路140で昇圧を行っている最中に電圧を供給すべきフラッシュメモリのメモリバンクが切り替えられて出力端子Voutに接続されている負荷容量が変化することがあると考えられるが、こうした場合でもより効率よく出力電圧Voutを昇圧することができる。
こうして構成された昇圧回路140はインダクタLを含んでいるため比較的大きな面積を要するためフラッシュメモリチップ22に搭載するとフラッシュメモリチップ22の面積が大きくなることが考えられるが、実施例の集積回路装置10では積層体24の上面に配置されたインターポーザ30に昇圧回路140を搭載しているから、こうした昇圧回路410を積層体24のフラッシュメモリチップ22に搭載したものに比して、装置の小型化を図ることができる。また、入力電圧Vinに対して出力電圧Voutを比較的高い比率で昇圧する高増幅率の昇圧を行なう場合、並列に接続された複数のキャパシタを用いて入力電圧を昇圧するチャージポンプを用いるとより多くのキャパシタが必要であるため面積が大きくなったり昇圧の効率が低下したりすることが考えられるが、ブーストコンバータ42を用いることによりこうした高増幅率の昇圧を行なう場合でもインダクタLやキャパシタCL,抵抗RLを調整することにより所望の昇圧性能を得ることができ、チャージポンプを用いる場合に比して、装置の小型化や効率の低下の抑制を図ることができる。
以上説明した第2実施例の集積回路装置110によれば、昇圧回路140を積層体24の上面に配置したインターポーザ30に搭載したから、装置の小型化を図ることができる。また、昇圧回路140としてブーストコンバータを用いたから、複数のキャパシタを並列に接続してなるチャージポンプを用いるものに比して装置の小型化を図ることができる。さらに、実際に接続されている負荷容量Clを推定し、推定した負荷容量Clと入力電圧Vinとに対してブーストコンバータ142を効率よく駆動させながら出力端子Voutの電圧Voutを所定電圧V2まで昇圧することができる。
第2実施例の集積回路装置110では、制御ロジック回路146の記憶部146bに参照マップを記憶しておくものとしたが、負荷容量Clと入力電圧Vinに対して消費エネルギーEboが最小となるオン時間Ton,オフ時間Toffとの関係を定めた数式を予め実験や解析などで求めておき、こうした数式を用いて、負荷容量Clと入力電圧Vinに対して消費エネルギーEboが最小となるオン時間Ton,オフ時間Toffを演算するものとしてもよい。
第2実施例の集積回路装置110では、オシレータDCO1は、制御ロジック回路146でオン時間Ton,オフ時間Toffが出力されたタイミングでオン時間Ton,オフ時間Toffに対応するスイッチSW11〜SW25のオンオフを切り替えるものとしたが、トランジスタN2をオフするタイミングでオン時間Ton,オフ時間Toffに対応するスイッチSW11〜SW25のオンオフを切り替えるものとしてもよい。
第2実施例の集積回路装置110では、推定した負荷容量Clと入力電圧Vinとに対してブーストコンバータ142を効率よく駆動させるオン時間Ton,オフ時間Toffのクロック信号CLKを用いてトランジスタN2をスイッチングするものとしたが、入力電圧Vinを考慮せずに推定した負荷容量Clのみに対してブーストコンバータ142を効率よく駆動させるオン時間Ton,オフ時間Toffのクロック信号CLKを用いてもよいし、負荷容量Clを考慮せずに入力電圧Vinのみに対してブーストコンバータ142を効率よく駆動させるオン時間Ton,オフ時間Toffのクロック信号CLKを用いてもよい。
第1,第2実施例の集積回路装置10,110では、ブーストコンバータ42,142は、インダクタLとトランジスタN1との間でインダクタLからみて出力端子Voutに並列に接続されたデプレッション型のNMOSトランジスタN2を備えるものとしたが、インダクタLとトランジスタN1との間でインダクタLからみて出力端子Voutに並列にクロック信号CLKでスイッチングする素子を備えていればよいから、図17に例示する変形例のブーストコンバータ42Bのように、デプレッション型のNMOSトランジスタN2に代えて、インダクタLとトランジスタN1との間に接続されたデプレッション型のNMOSトランジスタN21(以下、トランジスタN21)と、トランジスタN21と直列にエンハンスメント型のNMOSトランジスタN22(以下、トランジスタN22)とを有するものとし、トランジスタN21のゲートの電圧を所定電圧VHに固定すると共にトランジスタN22のゲートにクロック信号CLKを入力するものとしてもよい。ここで、所定電圧VHとしては、電圧V1と電圧V2との間の電圧(例えば、3.6V)とするのが望ましい。また、ブーストコンバータ42,142は、ゲートとソースとが互いに接続されておりソースがインダクタLに接続されると共にドレインが出力端子Voutに接続されたエンハンスメント型のNMOSトランジスタN1を備えるものとしたが、インダクタLと出力端子Voutとの間に直列に接続され電流を入力端子Vinから出力端子Voutに向かう方向へ整流する整流素子を備えていればよいから、トランジスタN1に代えてダイオードを備えるものとしてもよい。
第1,第2実施例の集積回路装置10,110では、フラッシュメモリチップ22は電源電圧と同じ電圧V1と電圧V1より高い電圧V2で動作するものとしたが、フラッシュメモリチップ22を電源電圧より高く電圧V2よりも低い電圧V3と電圧V2で動作するものとしてもよい。この場合、インターポーザ30には、昇圧回路40,140と共に電圧V1を電圧V3に昇圧する昇圧回路を搭載するものすればよい。
第1,第2実施例の集積回路装置10,110では、インターポーザ30を積層体24の上面に配置するものとしたが、下面に配置することもできる。また、インターポーザ30上に他の集積回路チップやインターポーザを積層するものとしてもよい。
第1,第2実施例では、集積回路装置10がSSDに用いられるものとし、積層体24がDRAMチップ20とフラッシュメモリチップ22とが積層されてなるものとしたが、集積回路10をSSDと異なる装置に用いられるものとしてもよく、例えば、集積回路装置がマイクロコンピュータに用いるものであり、積層体にはMPU(Micro Processing Unit)が搭載されたチップなどが積層されているものとしてもよい。また、コンピュータ以外の電子機器に用いるものとしてもよい。
以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、集積回路装置の製造産業などに利用可能である。

Claims (14)

  1. 第1の電圧で動作する第1の集積回路を有する第1の集積回路チップを含む集積回路チップを複数積層してなる積層体を備える集積回路装置であって、
    電源側から供給される所定電圧を前記第1の電圧に昇圧して前記積層体を構成する前記第1の集積回路チップの前記第1の集積回路に供給する昇圧供給回路を有するインターポーザが前記積層体の一方の端面に配置されている
    ことを特徴とする集積回路装置。
  2. 前記昇圧供給回路は、
    前記所定電圧が供給される入力端子と前記第1の電圧を供給する出力端子との間に直列に接続されたインダクタと、前記インダクタと前記出力端子との間に直列に接続され電流を前記入力端子から前記出力端子に向かう方向へ整流する整流素子と、前記インダクタと前記整流素子との間で前記インダクタからみて前記出力端子に並列に接続されたスイッチング素子と、前記整流素子と前記出力端子との間で前記整流素子からみて前記出力端子に並列に接続されたキャパシタと、前記整流素子と前記出力端子との間で前記整流素子からみて前記出力端子に並列に接続された抵抗と、を有するブーストコンバータと、
    前記スイッチング素子をスイッチング制御するスイッチング制御回路と、
    を備える回路である
    請求項1記載の集積回路装置。
  3. 前記スイッチング制御回路は、前記出力端子の電圧が前記第1の電圧になるよう調整した周波数で前記スイッチング素子がスイッチングするよう前記スイッチング素子を制御する回路である請求項2記載の集積回路装置。
  4. 前記スイッチング制御回路は、前記出力端子の電圧が高くなるほど高くなる傾向に調整した周波数で前記スイッチング素子がスイッチングするよう前記スイッチング素子を制御する回路である請求項3記載の集積回路装置。
  5. 前記スイッチング制御回路は、前記出力端子の電圧が前記所定電圧から該所定電圧より高く前記第1の電圧より低い第1の制御用電圧に至るまでは第1の周波数で前記スイッチング素子がスイッチングするよう前記スイッチング素子を制御し、前記出力端子の電圧が前記第1の制御用電圧に至ってから前記第1の制御用電圧より高く前記第1の電圧より低い第2の制御用電圧に至るまでは前記第1の周波数より高い第2の周波数で前記スイッチング素子がスイッチングするよう前記スイッチング素子を制御し、前記出力端子の電圧が前記第2の制御用電圧に至ってから前記第1の電圧に至るまでは前記第2の周波数より高い第3の周波数で前記スイッチング素子がスイッチングするよう前記スイッチング素子を制御し、前記出力端子の電圧が前記第1の電圧に至ってからは前記スイッチング素子のスイッチングを停止し、前記出力端子の電圧が前記第1の電圧に至ってから前記第2の制御電圧まで低下したときには前記第1の電圧に至るまで前記第3の周波数で前記スイッチング素子がスイッチングするよう前記スイッチング素子を制御する回路である請求項4記載の集積回路装置。
  6. 前記昇圧供給回路は、
    前記所定電圧が供給される入力端子と前記第1の電圧を供給する出力端子との間に直列に接続されたインダクタと、前記インダクタと前記出力端子との間に直列に接続され電流を前記入力端子から前記出力端子に向かう方向へ整流する整流素子と、前記インダクタと前記整流素子との間で前記インダクタからみて前記出力端子に並列に接続されたスイッチング素子と、を有するブーストコンバータと、
    パルス信号を用いて前記スイッチング素子をスイッチング制御するスイッチング制御回路と、
    を備える回路である
    請求項1記載の集積回路装置。
  7. 請求項6記載の集積回路装置であって、
    前記スイッチング制御回路は、
    前記出力端子の電圧として出力電圧を検出する電圧検出部と、
    前記スイッチング素子に前記パルス信号を1周期分印加したときの前記出力電圧の変化量を検出する電圧変化量検出部と、
    前記パルス信号の周波数およびデューティ比と前記検出された出力電圧と前記検出された出力電圧の変化量とを用いて前記出力端子に接続されている負荷容量を推定し、前記出力電圧が前記第1の電圧になり且つ前記推定した負荷容量に対して前記ブーストコンバータを効率よく駆動するよう調整した周波数およびデューティ比のパルス信号を用いて前記スイッチング素子をスイッチング制御するスイッチング制御部と、
    を有する回路である
    集積回路装置。
  8. 請求項7記載の集積回路装置であって、
    前記スイッチング制御回路は、
    前記推定された負荷容量として推定負荷容量と前記検出された出力電圧と前記パルス信号の周波数およびデューティ比とを記憶する第1記憶部と、
    前記負荷容量と前記出力電圧とに対して前記出力電圧が前記第1の電圧になるまでに前記ブーストコンバータで消費されるエネルギーが比較的低くなる前記パルス信号の周波数およびデューティ比の関係として予め設定された所定関係を記憶する第2記憶部と、
    を有し、
    前記スイッチング制御部は、前記検出された出力電圧が前記第1の電圧に至るまでは前記出力端子に前記第1記憶部に記憶されている推定負荷容量の負荷が接続されている状態で前記第1記憶部に記憶されている周波数およびデューティ比のパルス信号を用いて前記スイッチング素子をスイッチング制御したときの前記出力端子の電圧の変化量を推定し前記検出された電圧変化量と前記推定された出力端子の電圧の変化量との差分が所定値未満であるときに前記第1記憶部に記憶されている周波数およびデューティ比のパルス信号を用いて前記スイッチング素子をスイッチング制御すると共に前記検出された出力電圧を第1記憶部に記憶させると共に前記検出された電圧変化量と前記推定された出力端子の電圧の変化量との差分が所定値以上であるときには前記検出された電圧変化量を用いて前記負荷容量を推定し該推定した負荷容量と前記第2記憶部に記憶されている所定関係とを用いて前記ブーストコンバータを効率よく駆動する前記パルス信号の周波数およびデューティ比を設定して該設定した周波数およびデューティ比のパルス信号を用いて前記スイッチング素子をスイッチング制御すると共に前記推定した負荷容量と前記パルス信号の周波数およびデューティ比と前記検出された出力電圧を前記第1記憶部に記憶させ、前記出力端子の電圧が前記第1の電圧に至ってからは前記スイッチング素子のスイッチングを停止する回路である
    集積回路装置。
  9. 請求項7または8記載の集積回路装置であって、
    前記スイッチング制御回路は、
    前記入力端子の電圧を検出する電圧検出部を備え、
    前記スイッチング制御部は、前記検出された入力端子の電圧に対して前記ブーストコンバータを効率よく駆動するよう調整した周波数およびデューティ比のパルス信号を用いて前記スイッチング素子をスイッチング制御する
    集積回路装置。
  10. 前記スイッチング素子は、ドレインが前記インダクタに接続されると共にソースが接地されてなるデプレッション型のn型金属酸化物半導体トランジスタである請求項2ないし9のいずれか1つの請求項に記載の集積回路装置。
  11. 前記スイッチング素子は、ドレインがインダクタに接続されたデプレッション型のn型金属酸化物半導体トランジスタと、ドレインが前記デプレッション型のn型金属酸化物半導体トランジスタのソースに接続されると共にソースが接地されてなるエンハンスメント型のn型金属酸化物半導体トランジスタと、を有する素子である請求項2ないし9のいずれか1つの請求項に記載の集積回路装置。
  12. 前記整流素子は、ゲートおよびソースが前記インダクタに接続されると共にドレインが前記出力端子に接続されてなるエンハンスメント型のn型金属酸化物半導体トランジスタである請求項2ないし11のいずれか1つの請求項に記載の集積回路装置。
  13. 前記第1の集積回路は、フラッシュメモリである請求項1ないし12のいずれか1つの請求項に記載の集積回路装置。
  14. 請求項1ないし13いずれか1つの請求項に記載の集積回路装置であって、
    前記第1の集積回路は、前記第1の電圧および前記第1の電圧と異なる第2の電圧で動作する回路であり、
    前記インターポーザは、前記所定電圧を前記第2の電圧に昇圧して前記積層体を構成する前記第1の集積回路チップの前記第1の集積回路に供給する第2昇圧供給回路を有する
    集積回路装置。
JP2010534730A 2008-10-20 2009-04-17 集積回路装置 Active JP5504507B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010534730A JP5504507B2 (ja) 2008-10-20 2009-04-17 集積回路装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008270062 2008-10-20
JP2008270062 2008-10-20
JP2010534730A JP5504507B2 (ja) 2008-10-20 2009-04-17 集積回路装置
PCT/JP2009/057773 WO2010047140A1 (ja) 2008-10-20 2009-04-17 集積回路装置

Publications (2)

Publication Number Publication Date
JPWO2010047140A1 JPWO2010047140A1 (ja) 2012-03-22
JP5504507B2 true JP5504507B2 (ja) 2014-05-28

Family

ID=42119190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010534730A Active JP5504507B2 (ja) 2008-10-20 2009-04-17 集積回路装置

Country Status (4)

Country Link
US (1) US8742838B2 (ja)
JP (1) JP5504507B2 (ja)
CN (1) CN102187400A (ja)
WO (1) WO2010047140A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8289065B2 (en) * 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
JP5709197B2 (ja) * 2010-05-21 2015-04-30 国立大学法人 東京大学 集積回路装置
WO2011155295A1 (en) * 2010-06-10 2011-12-15 Semiconductor Energy Laboratory Co., Ltd. Dc/dc converter, power supply circuit, and semiconductor device
US8363418B2 (en) 2011-04-18 2013-01-29 Morgan/Weiss Technologies Inc. Above motherboard interposer with peripheral circuits
JP5888754B2 (ja) * 2011-05-18 2016-03-22 国立大学法人 東京大学 集積回路装置
JP5387629B2 (ja) * 2011-07-30 2014-01-15 株式会社デンソー Dcdcコンバータの制御装置
CN103312163B (zh) * 2012-03-13 2016-11-23 上海华虹集成电路有限责任公司 开关电源的pfm切换电路
US9391453B2 (en) 2013-06-26 2016-07-12 Intel Corporation Power management in multi-die assemblies
US10263519B2 (en) 2015-07-23 2019-04-16 International Business Machines Corporation Resonant virtual supply booster for synchronous digital circuits having a predictable evaluate time
US9612614B2 (en) 2015-07-31 2017-04-04 International Business Machines Corporation Pulse-drive resonant clock with on-the-fly mode change
US9634654B2 (en) 2015-08-07 2017-04-25 International Business Machines Corporation Sequenced pulse-width adjustment in a resonant clocking circuit
US9568548B1 (en) 2015-10-14 2017-02-14 International Business Machines Corporation Measurement of signal delays in microprocessor integrated circuits with sub-picosecond accuracy using frequency stepping
US20170213951A1 (en) * 2016-01-27 2017-07-27 Korea Research Institute Of Standards And Science Flexible thin multi-layered thermoelectric energy generating module, voltage boosting module using super capacitor, and portable thermoelectric charging apparatus using the same
JP2019128829A (ja) * 2018-01-25 2019-08-01 東芝メモリ株式会社 半導体記憶装置及びメモリシステム
US10700028B2 (en) 2018-02-09 2020-06-30 Sandisk Technologies Llc Vertical chip interposer and method of making a chip assembly containing the vertical chip interposer
US10879260B2 (en) 2019-02-28 2020-12-29 Sandisk Technologies Llc Bonded assembly of a support die and plural memory dies containing laterally shifted vertical interconnections and methods for making the same
US10839918B1 (en) * 2019-06-24 2020-11-17 Sandisk Technologies Llc Boost converter in memory chip
JP2022144032A (ja) * 2021-03-18 2022-10-03 キオクシア株式会社 半導体記憶装置
TWI780980B (zh) * 2021-11-10 2022-10-11 創意電子股份有限公司 半導體晶片裝置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319483A (ja) * 2000-04-28 2001-11-16 Agc Technology Inc 拡充可能なメモリ集積回路装置
JP2004526239A (ja) * 2001-02-16 2004-08-26 サンディスク コーポレイション マルチチップメモリシステム内での分散された電力発生のための方法およびシステム
JP2004531801A (ja) * 2001-02-16 2004-10-14 サンディスク コーポレイション メモリシステムにおける供給電圧の発生および分配の方法およびシステム
JP2008016720A (ja) * 2006-07-07 2008-01-24 Elpida Memory Inc 半導体装置の製造方法
JP2008071935A (ja) * 2006-09-14 2008-03-27 Toshiba Corp 半導体装置
JP2009003991A (ja) * 2007-06-19 2009-01-08 Toshiba Corp 半導体装置及び半導体メモリテスト装置
JP2009210448A (ja) * 2008-03-05 2009-09-17 Toshiba Corp 半導体装置
JP2009537935A (ja) * 2006-05-15 2009-10-29 アップル インコーポレイテッド 多値データ記憶セルの保守動作

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619945B2 (en) * 2006-08-18 2009-11-17 Unity Semiconductor Corporation Memory power management
JP2008071953A (ja) 2006-09-14 2008-03-27 Nec Electronics Corp 半導体装置
KR100843148B1 (ko) * 2006-12-22 2008-07-02 삼성전자주식회사 액정 표시 장치, 액정 표시 장치의 테스트용 커넥터 및이의 테스트 방법
TWI327421B (en) * 2007-03-07 2010-07-11 Orise Technology Co Ltd Method for stabling voltage, pulse frequency modulating circuit and power supply using the same
US7894230B2 (en) * 2009-02-24 2011-02-22 Mosaid Technologies Incorporated Stacked semiconductor devices including a master device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319483A (ja) * 2000-04-28 2001-11-16 Agc Technology Inc 拡充可能なメモリ集積回路装置
JP2004526239A (ja) * 2001-02-16 2004-08-26 サンディスク コーポレイション マルチチップメモリシステム内での分散された電力発生のための方法およびシステム
JP2004531801A (ja) * 2001-02-16 2004-10-14 サンディスク コーポレイション メモリシステムにおける供給電圧の発生および分配の方法およびシステム
JP2009537935A (ja) * 2006-05-15 2009-10-29 アップル インコーポレイテッド 多値データ記憶セルの保守動作
JP2008016720A (ja) * 2006-07-07 2008-01-24 Elpida Memory Inc 半導体装置の製造方法
JP2008071935A (ja) * 2006-09-14 2008-03-27 Toshiba Corp 半導体装置
JP2009003991A (ja) * 2007-06-19 2009-01-08 Toshiba Corp 半導体装置及び半導体メモリテスト装置
JP2009210448A (ja) * 2008-03-05 2009-09-17 Toshiba Corp 半導体装置

Also Published As

Publication number Publication date
US8742838B2 (en) 2014-06-03
WO2010047140A1 (ja) 2010-04-29
US20110260781A1 (en) 2011-10-27
JPWO2010047140A1 (ja) 2012-03-22
CN102187400A (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
JP5504507B2 (ja) 集積回路装置
US9013229B2 (en) Charge pump circuit
KR101629812B1 (ko) 다수의 게이트 트랜지스터들을 포함하는 차지 펌프 회로 및 그의 작동 방법
JP5888754B2 (ja) 集積回路装置
JP5940691B1 (ja) 電圧生成回路、半導体装置およびフラッシュメモリ
JP2004274861A (ja) 昇圧回路
KR20160114117A (ko) 션트 내장 전압 레귤레이터
JPWO2004025730A1 (ja) 半導体装置およびそれを用いたメモリカード
TWI524500B (zh) 積體電路裝置
US10650866B2 (en) Charge pump drive circuit
CN211046760U (zh) 电荷泵电路和非易失性存储器设备
US7417488B2 (en) Regulation circuit for inductive charge pump
JP2010124618A (ja) 電源回路
JP2008071935A (ja) 半導体装置
JP2000232773A (ja) チャージポンプ回路、チャージポンプ回路の駆動方法及び電圧変換回路
US20190165673A1 (en) Semiconductor device
US20120275226A1 (en) Nonvolatile semiconductor memory device capable of reducing power consumption
US9952615B2 (en) Charge pump and voltage generation circuit
Hatanaka et al. V SET/RESET and V PGM generator without boosting dead time for 3D-ReRAM and NAND flash hybrid solid-state drives
JP5087669B2 (ja) 電圧発生回路
US20240063657A1 (en) Power loss protection integrated circuit using low volatage capacitor
Kim et al. A small ripple regulated charge pump with automatic pumping control schemes
JPH11306781A (ja) 半導体集積回路装置
PUMPS INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)
CN112786083A (zh) 涉及与外部泵电容器和其它电路系统耦合的电荷泵的系统和方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140226

R150 Certificate of patent or registration of utility model

Ref document number: 5504507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250