JP5498311B2 - Secondary battery device and data creation method used for capacity estimation - Google Patents

Secondary battery device and data creation method used for capacity estimation Download PDF

Info

Publication number
JP5498311B2
JP5498311B2 JP2010175690A JP2010175690A JP5498311B2 JP 5498311 B2 JP5498311 B2 JP 5498311B2 JP 2010175690 A JP2010175690 A JP 2010175690A JP 2010175690 A JP2010175690 A JP 2010175690A JP 5498311 B2 JP5498311 B2 JP 5498311B2
Authority
JP
Japan
Prior art keywords
current
capacity
secondary battery
charging
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010175690A
Other languages
Japanese (ja)
Other versions
JP2012037289A (en
Inventor
孝 須藤
雅之 久保田
麻美 水谷
正博 戸原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010175690A priority Critical patent/JP5498311B2/en
Publication of JP2012037289A publication Critical patent/JP2012037289A/en
Application granted granted Critical
Publication of JP5498311B2 publication Critical patent/JP5498311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明の実施形態は、二次電池装置および容量推定に用いるデータ作成方法。   Embodiments of the present invention relate to a secondary battery device and a data creation method used for capacity estimation.

二次電池セルや、複数の二次電池セルを含む組電池が搭載された電子機器では、電池残量(SOC:State of Charge)を正確に推定することが求められている。このSOCを求める手段として、二次電池の充放電電流の積算を行い、その積算量によってSOC値を推定する方法が検討されている。   In an electronic device in which a secondary battery cell or an assembled battery including a plurality of secondary battery cells is mounted, it is required to accurately estimate a remaining battery level (SOC: State of Charge). As a means for obtaining this SOC, a method has been studied in which the charge / discharge current of the secondary battery is integrated and the SOC value is estimated from the integrated amount.

しかしながら、この方法による推定値は、二次電池セルの容量劣化は考慮されておらず、実際には経年劣化や充放電の繰返しによる容量劣化(放電特性の変化)が発生し、推定値の誤差は劣化に伴って大きくなることがあった。この誤差を小さくするために、適宜劣化した容量を学習する技術が提案されている。   However, the estimated value by this method does not take into account the capacity deterioration of the secondary battery cell. Actually, capacity deterioration due to repeated aging and repeated charge / discharge (change in discharge characteristics) occurs, resulting in an error in the estimated value. Sometimes increased with deterioration. In order to reduce this error, a technique for learning a capacity that has deteriorated as appropriate has been proposed.

その他、実際に充電終止から放電終止までの容量を測定し、その容量を新たに実容量として更新する方法が提案されている。この方法は、実際に現在の容量を測定する方法であり、更新直後は正確な容量が求めることが出来る。   In addition, a method of actually measuring the capacity from the end of charging to the end of discharging and newly updating the capacity as an actual capacity has been proposed. This method is a method of actually measuring the current capacity, and an accurate capacity can be obtained immediately after the update.

しかし、実使用状態では、自己放電などの影響が無視できる短時間内に、且つ、基準となる充放電条件で充電終止から放電終止までの充放電を行う機会は殆ど得られない。特に、電動自動車や電動バイクなどでは、一般的には放電終止に至る前に充電を行うことが想定され、実使用状態では定期検査などの特別な機会以外では、劣化容量を更新(測定)する事は不可能である。   However, in an actual use state, there is almost no opportunity to perform charge / discharge from the end of charge to the end of discharge within a short time in which the influence of self-discharge and the like can be ignored and under standard charge / discharge conditions. In particular, in electric vehicles and electric motorcycles, it is generally assumed that charging is performed before the end of discharge. In actual use conditions, the deterioration capacity is updated (measured) except for special occasions such as periodic inspections. Things are impossible.

また、1サイクルの充放電による劣化容量を既知の値として、サイクル回数により所定の劣化容量分を減算した値を現在の容量として更新し、あるいは使用しないで保存している状態が続くと、その保存温度と残量とをパラメータとして、保存期間に応じた劣化容量分を減算した値を現在の容量として更新する方法が提案されている。この方法では、サイクル回数、温度、電池残量、時間のデータから、随時、現在の容量を推定する事が可能である。   In addition, if the deterioration capacity due to charging / discharging in one cycle is a known value, the value obtained by subtracting the predetermined deterioration capacity according to the number of cycles is updated as the current capacity, or if it is stored without being used, A method has been proposed in which a value obtained by subtracting the deteriorated capacity corresponding to the storage period is updated as the current capacity using the storage temperature and the remaining amount as parameters. In this method, it is possible to estimate the current capacity at any time from data on the number of cycles, temperature, remaining battery level, and time.

特開2002−236155号公報JP 2002-236155 A 特開2002−236154号公報JP 2002-236154 A 特開2007−315880号公報JP 2007-315880 A

しかしながら、パラメータの一つとなっている電池残量は直接測定することが出来ず、容量を基準として推定される推定値である。つまり、これらのパラメータは相互パラメータであり、一方の推定精度が低下する(あるいは低い)と相互に影響し、推定精度の低下は増幅されることがあった。   However, the remaining battery level, which is one of the parameters, cannot be directly measured, but is an estimated value estimated based on the capacity. In other words, these parameters are mutual parameters, and when one of the estimation accuracy decreases (or is low), it affects each other, and the decrease in estimation accuracy may be amplified.

本発明は、二次電池セルの実際の劣化状態を考慮した容量推定を精度良く行なう二次電池装置および推定に用いるデータ作成方法を提供することを目的とする。   An object of the present invention is to provide a secondary battery device that accurately performs capacity estimation in consideration of an actual deterioration state of a secondary battery cell, and a data generation method used for estimation.

実施形態による二次電池装置は、複数の二次電池セルの温度測定手段と、前記二次電池セルの端子間電圧を測定する電圧測定手段と、前記複数の二次電池セルの電流経路に配置された電流測定手段と、前記温度測定手段、前記電圧測定手段及び前記電流測定手段によって測定した測定値と、前記二次電池セルの標準容量の特性を記憶した記憶手段と、外部に接続された充電器が第1電流により二次電池セルを充電し前記二次電池セルの端子間電圧が充電終止電圧に到達した後、前記第1電流よりも小さい第2電流による前記二次電池セルの充電により前記二次電池セルの端子間電圧が前記充電終止電圧に到達した場合に、前記第1電流による充電終了時の充電容量と、前記第2電流による充電終了時の充電容量との差、或いは前記第2電流での充電容量を演算し、前記記憶手段から前記二次電池セルの標準容量の前記第1電流値での特性を読み出し、前記充電容量の差或いは前記第2電流での充電容量と、前記第2電流と、前記第2電流による充電終了時の温度との値を用いて、前記二次電池セルの標準容量の前記第1電流値での特性から現在の標準容量を演算するように構成された演算手段と、を備える。   The secondary battery device according to the embodiment is arranged in temperature measuring means for a plurality of secondary battery cells, voltage measuring means for measuring a voltage between terminals of the secondary battery cells, and a current path of the plurality of secondary battery cells. Current measuring means, measured values measured by the temperature measuring means, voltage measuring means and current measuring means, storage means for storing characteristics of standard capacity of the secondary battery cell, and externally connected After the charger charges the secondary battery cell with the first current and the inter-terminal voltage of the secondary battery cell reaches the end-of-charge voltage, the secondary battery cell is charged with the second current smaller than the first current. When the inter-terminal voltage of the secondary battery cell reaches the end-of-charge voltage, the difference between the charge capacity at the end of charging by the first current and the charge capacity at the end of charging by the second current, or With the second current A charge capacity is calculated, a characteristic of the standard capacity of the secondary battery cell at the first current value is read from the storage means, a difference between the charge capacity or a charge capacity at the second current, and the second current And the current standard capacity from the characteristics of the standard capacity of the secondary battery cell at the first current value, using the value of the temperature at the end of charging with the second current. Means.

実施形態に係る二次電池装置の一構成例を概略的に示す図である。It is a figure which shows roughly the example of 1 structure of the secondary battery apparatus which concerns on embodiment. 実施形態に係る二次電池装置において、ステップダウン充電を行なった際の、電流積算値と、二次電池電圧との関係の一例を示す図である。In the secondary battery apparatus which concerns on embodiment, it is a figure which shows an example of the relationship between an electric current integrated value at the time of performing step-down charge, and a secondary battery voltage. 実施形態に係る二次電池装置において、二次電池セルの電池容量推定に用いるデータの作成方法の一例を説明するためのフローチャートである。5 is a flowchart for explaining an example of a method of creating data used for estimating the battery capacity of a secondary battery cell in the secondary battery device according to the embodiment. ステップダウン充電時の2段階電流の値と電流積算値との関係の一例を示す図である。It is a figure which shows an example of the relationship between the value of 2 steps | paragraph electric current at the time of step-down charge, and an electric current integrated value. 図4に示す1次式の切片と標準容量との関係の一例を示す図である。FIG. 5 is a diagram showing an example of the relationship between the intercept of the primary equation shown in FIG. 4 and a standard capacity. 図4に示す一時式の傾きと標準容量との関係の一例を示す図である。FIG. 5 is a diagram illustrating an example of a relationship between a temporary inclination and a standard capacity illustrated in FIG. 4. 実施形態に係る二次電池装置において二次電池セルの容量推定に用いるテーブルの一例について説明するための図である。It is a figure for demonstrating an example of the table used for the capacity | capacitance estimation of a secondary battery cell in the secondary battery apparatus which concerns on embodiment.

以下、本発明の一実施形態に係る二次電池装置および容量推定に用いるデータ作成方法について、図面を参照して説明する。   Hereinafter, a secondary battery device and a data creation method used for capacity estimation according to an embodiment of the present invention will be described with reference to the drawings.

図1に、本実施形態に係る二次電池装置の一構成例を概略的に示す。図1に示す二次電池装置は、複数の二次電池セルBTを含む組電池1と、電圧測定部2と、電流測定部3と、温度測定部4と、演算制御部5と、記憶部6とを備えている。     FIG. 1 schematically shows a configuration example of the secondary battery device according to the present embodiment. A secondary battery device shown in FIG. 1 includes an assembled battery 1 including a plurality of secondary battery cells BT, a voltage measurement unit 2, a current measurement unit 3, a temperature measurement unit 4, an arithmetic control unit 5, and a storage unit. 6 is provided.

電圧測定部2は、各二次電池セルBTの正極端子の電圧と負極端子の電圧とを取得して端子間電圧を測定する。電圧測定部2は、測定した端子間電圧の値を演算制御部5へ出力する。   The voltage measurement part 2 acquires the voltage of the positive electrode terminal and the voltage of a negative electrode terminal of each secondary battery cell BT, and measures the voltage between terminals. The voltage measuring unit 2 outputs the measured value of the terminal voltage to the calculation control unit 5.

電流測定部3は、組電池1の電流経路に直列に接続され、組電池1の充放電電流を測定する。電流測定部3は、測定した充放電電流の値を演算制御部5へ出力する。   The current measuring unit 3 is connected in series to the current path of the assembled battery 1 and measures the charge / discharge current of the assembled battery 1. The current measuring unit 3 outputs the measured charge / discharge current value to the calculation control unit 5.

温度測定部4は、複数の二次電池セルBTの近傍に配置され複数の二次電池セルBTの温度を検出する温度センサを備える。温度測定部4は、温度センサで検出された温度の値を演算制御部5へ出力する。   The temperature measurement unit 4 includes a temperature sensor that is disposed in the vicinity of the plurality of secondary battery cells BT and detects the temperature of the plurality of secondary battery cells BT. The temperature measurement unit 4 outputs the temperature value detected by the temperature sensor to the calculation control unit 5.

演算制御部5は、電圧測定部2、電流測定部3、および、温度測定部4の動作を制御する。演算制御部5には、電圧測定部2、電流測定部3、および、温度測定部4から、端子間電圧、充放電電流、および、温度の測定データを受信して記憶部6へ出力する。   The arithmetic control unit 5 controls operations of the voltage measuring unit 2, the current measuring unit 3, and the temperature measuring unit 4. The arithmetic control unit 5 receives the terminal-to-terminal voltage, charge / discharge current, and temperature measurement data from the voltage measurement unit 2, the current measurement unit 3, and the temperature measurement unit 4, and outputs them to the storage unit 6.

記憶部6は、演算制御部5から測定データを受信して記憶するとともに、二次電池セルBTの容量推定に用いるデータのデータベースDBを備えている。データベースDBには、例えば、ステップダウン充電を行なった場合の、測定データおよびその演算結果より二次電池セルBTの標準容量の特性データがテーブルとして記録されている。   The storage unit 6 receives and stores measurement data from the arithmetic control unit 5 and includes a database DB of data used for capacity estimation of the secondary battery cell BT. In the database DB, for example, the characteristic data of the standard capacity of the secondary battery cell BT is recorded as a table from the measurement data and the calculation result when step-down charging is performed.

図2に、上記二次電池装置において、二次電池セルBTの容量推定を行なう方法の一例を説明するフローチャートを示す。本実施形態では、二次電池装置の外部に接続される充電器(図示せず)により組電池1をステップダウン充電する。   FIG. 2 shows a flowchart for explaining an example of a method for estimating the capacity of the secondary battery cell BT in the secondary battery device. In this embodiment, the assembled battery 1 is step-down charged by a charger (not shown) connected to the outside of the secondary battery device.

まず、二次電池装置に充電器が接続され、充電器により第1電流による組電池1の充電(第1段階充電)が開始されると(ステップSP1)、演算制御部5は、電圧測定部2、電流測定部3、および、温度測定部4を制御して、各二次電池セルBTの端子間電圧、電流、および、温度を測定させて(ステップSP2)、測定データを受信する。演算制御部5は、受信した測定データから電流積算値の算出を開始するとともに、受信した時刻とともに測定データおよび電流積算値を記憶部6に記録する。   First, when a charger is connected to the secondary battery device, and charging of the assembled battery 1 with the first current (first stage charging) is started by the charger (step SP1), the arithmetic control unit 5 includes a voltage measuring unit. 2. The current measurement unit 3 and the temperature measurement unit 4 are controlled to measure the inter-terminal voltage, current, and temperature of each secondary battery cell BT (step SP2), and receive measurement data. The arithmetic control unit 5 starts calculating the current integrated value from the received measurement data, and records the measurement data and the current integrated value in the storage unit 6 together with the received time.

図3に、二次電池セルBTをステップダウン充電したときの二次電池セルBTの端子間電圧[V]と充電容量(電流積算値)[Ah]との関係の一例を示す。第1電流で二次電池セルBTの充電を継続すると、二次電池セルBTの端子間電圧が大きくなる。   FIG. 3 shows an example of the relationship between the voltage [V] between the terminals of the secondary battery cell BT and the charge capacity (current integrated value) [Ah] when the secondary battery cell BT is step-down charged. When charging of the secondary battery cell BT is continued with the first current, the voltage between the terminals of the secondary battery cell BT increases.

演算制御部5は、二次電池セルBTの端子間電圧が充電終止電圧に到達するか否か判断し(ステップSP3)、充電終止電圧に到達すると、充電器へ充電終止電圧に到達したことを通知する。充電器は、演算制御部5から充電終止電圧に到達したことの通知を受けると、充電電流を第1電流から第2電流(第1電流>第2電流)に変更して充電を開始する(ステップSP4)。   The arithmetic control unit 5 determines whether or not the voltage between the terminals of the secondary battery cell BT reaches the end-of-charge voltage (step SP3), and when the end-of-charge voltage is reached, the charger determines that the end-of-charge voltage has been reached. Notice. When the charger receives notification from the arithmetic control unit 5 that the charging end voltage has been reached, the charger changes the charging current from the first current to the second current (first current> second current) and starts charging ( Step SP4).

充電器が第2電流で充電を開始すると、二次電池セルBTの端子間電圧は一旦低下した後に再び上昇する。この特性は、電圧降下に起因する二次電池セルBTの端子間電圧の変動を表しており、内部の状態を示唆する特性である。また、定電圧充電終止で充電を行う場合は、電流値が小さい場合の方が充電可能容量は多い事を示している。   When the charger starts charging with the second current, the voltage between the terminals of the secondary battery cell BT once decreases and then increases again. This characteristic represents the fluctuation of the voltage between the terminals of the secondary battery cell BT due to the voltage drop, and is a characteristic suggesting the internal state. Further, when charging is performed at the end of constant voltage charging, it indicates that the chargeable capacity is larger when the current value is smaller.

演算制御部5は、電圧測定部2、電流測定部3、および、温度測定部4を制御して、各二次電池セルBTの端子間電圧、電流、および、温度を測定させて(ステップSP5)、測定データを受信する。続いて、演算制御部5は、二次電池セルBTの端子間線圧が充電終止電圧に到達するか否かを判断し(ステップSP6)、充電終止電圧に到達すると、充電器へ充電終止電圧に到達したことを通知する。充電器は、演算制御部5から充電終止電圧に到達したことの通知を受けると、第2段階充電を終了する。   The calculation control unit 5 controls the voltage measurement unit 2, the current measurement unit 3, and the temperature measurement unit 4 to measure the voltage, current, and temperature between the terminals of each secondary battery cell BT (step SP5). ), Receive the measurement data. Subsequently, the arithmetic control unit 5 determines whether or not the line pressure between the terminals of the secondary battery cell BT reaches the charge end voltage (step SP6). When the charge end voltage is reached, the charge end voltage is supplied to the charger. Notify that you have reached When the charger receives notification from the arithmetic control unit 5 that the charge end voltage has been reached, the charger ends the second stage charging.

次に、演算制御部5は、第1段階充電の終了時の充電容量と、第2段階充電の終了時の充電容量との差(Δ容量)或いは第2電流での充電容量(Δ容量)を演算する(ステップSP7)。続いて、演算制御部5は、記憶部6からデータベースDBを読み出して(ステップSP8)、データベースDBを用いて2段階充電終了時の標準容量を推定する(ステップSP9)。   Next, the arithmetic control unit 5 determines the difference between the charge capacity at the end of the first stage charge and the charge capacity at the end of the second stage charge (Δ capacity) or the charge capacity at the second current (Δ capacity). Is calculated (step SP7). Subsequently, the arithmetic control unit 5 reads the database DB from the storage unit 6 (step SP8), and estimates the standard capacity at the end of the two-stage charging using the database DB (step SP9).

図7に、記憶部6にデータベースDBとして記録されたテーブルの一例を示す。記憶部6のデータベースDBには、Δ容量と第2電流の値と第2段階充電終了時の温度とに対応する二次電池セルBTの標準容量の特性データがテーブルとして記録されている。さらに、必要に応じて、第1電流は複数水準とし、テーブルは第1電流の値毎に用意する。   FIG. 7 shows an example of a table recorded as a database DB in the storage unit 6. In the database DB of the storage unit 6, the characteristic data of the standard capacity of the secondary battery cell BT corresponding to the Δ capacity, the value of the second current, and the temperature at the end of the second stage charging are recorded as a table. Furthermore, if necessary, the first current has a plurality of levels, and a table is prepared for each value of the first current.

更に、演算制御部5は、最終的な充電終止条件(電流、温度)と推定された標準容量、およびデータベースDBに記録された既知の特性から充電終了後の残容量(SOC:state of charge)を算出し(SP10)、SOCを上位制御手段(図示せず)へ送信する(SP11)。   Further, the calculation control unit 5 determines the remaining capacity (SOC: state of charge) after completion of charging from the standard capacity estimated as the final charge termination condition (current, temperature) and the known characteristics recorded in the database DB. Is calculated (SP10), and the SOC is transmitted to the host control means (not shown) (SP11).

上記のように容量推定を行なうと、実使用状態において比較的頻繁に容量データの更新が可能であり、且つ、相互に影響するパラメータを持たないため、推定精度の低下が抑制される。   When capacity estimation is performed as described above, capacity data can be updated relatively frequently in the actual use state, and since there are no parameters that affect each other, a decrease in estimation accuracy is suppressed.

以下に、データベースDBに含まれるデータの作成方法について説明する。必要に応じて、第1電流を複数水準とし、以下を第1電流の値毎に行う。まず、二次電池装置に充電器を接続して複数の第2電流により第2段階充電を行い、第1段階充電の終了時の充電容量と、第2段階充電の終了時の充電容量との差(Δ容量)或いは第2電流での充電容量(Δ容量)と、第2電流の値との関係を一次関数で近似する。   Below, the creation method of the data contained in database DB is demonstrated. If necessary, the first current is set to a plurality of levels, and the following is performed for each value of the first current. First, a secondary battery device is connected to a charger to perform a second stage charge with a plurality of second currents, and a charge capacity at the end of the first stage charge and a charge capacity at the end of the second stage charge. The relationship between the difference (Δ capacity) or the charge capacity at the second current (Δ capacity) and the value of the second current is approximated by a linear function.

図4に、Δ容量と第2電流との値の関係を一次関数で近似したときの関数の一例を示す。図4には、二次電池セルBTの劣化の程度が異なる3つの場合について、複数の一次関数を示している。一次関数は、二次電池セルBTの劣化が初期であるほどその傾きが小さく、劣化が後期になるほどその傾きが大きくなる。また一次関数の切片の値は、二次電池セルBTの劣化が初期であるほど大きく、劣化が後期になるほど小さくなる。このように、一次関数の傾きおよび切片の値は、二次電池セルBTの劣化の程度に応じて変化するものである。   FIG. 4 shows an example of a function when the relationship between the value of Δcapacitance and the second current is approximated by a linear function. FIG. 4 shows a plurality of linear functions for three cases where the degree of deterioration of the secondary battery cell BT is different. The slope of the linear function is smaller as the deterioration of the secondary battery cell BT is earlier, and the slope is larger as the deterioration is later. Further, the value of the intercept of the linear function is larger as the deterioration of the secondary battery cell BT is earlier, and is smaller as the deterioration is later. Thus, the slope of the linear function and the value of the intercept change according to the degree of deterioration of the secondary battery cell BT.

図5に、Δ容量と第2電流との値の一次関数の切片と、第1電流での標準容量との関係の一例を示す。切片の値が大きくなるほど、標準容量は小さくなる。例えば、標準容量は、25℃の環境において、1Cの電流により定電流(CC)充放電(1C_CC充放電)をしたときの容量である。   FIG. 5 shows an example of the relationship between the intercept of the linear function of the value of Δ capacity and the second current and the standard capacity at the first current. The larger the intercept value, the smaller the standard capacity. For example, the standard capacity is a capacity when a constant current (CC) charge / discharge (1C_CC charge / discharge) is performed with a current of 1 C in an environment of 25 ° C.

従って、予め図5の一時関数の温度特性をデータベースDBとすると、第2段階充電で充電終止した時に、第2電流とΔ容量と温度とから現在の標準容量を算出することが可能となる。例えば、モデル式として、現在の標準容量は下記の式で表され、Δ容量と第2電流との値から算出される切片を代入することで、標準容量が算出できる。この時、A、Bは温度Tの関数であり、充電終了時の電池温度とDBから求められる。   Therefore, assuming that the temperature characteristic of the temporary function of FIG. 5 is the database DB in advance, the current standard capacity can be calculated from the second current, the Δ capacity, and the temperature when the charging is terminated in the second stage charging. For example, as a model formula, the current standard capacity is expressed by the following formula, and the standard capacity can be calculated by substituting the intercept calculated from the values of the Δ capacity and the second current. At this time, A and B are functions of the temperature T, and are obtained from the battery temperature at the end of charging and DB.

現在の標準容量=A(T)×切片+B(T)・・・ (1)式
また、(1)式のようなモデル式ではなく、標準容量と切片と温度との関係をテーブルとして持っても同様に標準容量を求められる。このように標準容量を算出し、Δ容量と第2電流と、温度とに対応する標準容量をデータベースに記録する。この時の標準容量を、例えば25℃での1C_CC充放電容量とすることで、容量劣化の指標とすることが出来る。
Current standard capacity = A (T) × intercept + B (T) (1) Formula Also, it is not a model formula like formula (1), but has a relationship between standard capacity, intercept and temperature as a table. Similarly, standard capacity is required. In this way, the standard capacity is calculated, and the standard capacity corresponding to the Δ capacity, the second current, and the temperature is recorded in the database. By setting the standard capacity at this time to, for example, 1 C_CC charge / discharge capacity at 25 ° C., it can be used as an index of capacity deterioration.

本実施形態は、比較的頻繁に充電終止電圧まで充電を行う場合に効果が発揮される。例えば、カメラ、携帯電話、ノートPCや電動バイク、電気自動車に搭載される二次電池セルなどを充電する場合に効果的である。特に、電池容量が大きく、フル充電に長時間を要する電動バイクや電動自動車の場合には、大電流(第1電流)での急速充電後、小電流(第2電流)でフル充電するステップダウン充電で充電される頻度が多い事が想定され、現在の容量データを頻繁に更新することが可能である。その結果として、電池残量の推定を高精度に保つことが可能となる。   The present embodiment is effective when charging up to the end-of-charge voltage relatively frequently. For example, it is effective when charging a secondary battery cell mounted on a camera, a mobile phone, a notebook PC, an electric motorcycle, or an electric vehicle. In particular, in the case of electric motorcycles and electric automobiles that have a large battery capacity and require a long time for full charge, step down to perform full charge with small current (second current) after rapid charge with large current (first current). It is assumed that the battery is frequently charged, and the current capacity data can be updated frequently. As a result, the remaining battery level can be estimated with high accuracy.

また、本実施形態の二次電池装置では、既知のデータベースと現時点での測定データのみを使用しており、容量推定のパラメータに相互パラメータが含まれないため、一方の推定精度が低下する(あるいは低い)ことが相互に影響し、推定精度の低下が増幅されてゆくことが抑制される。   In addition, in the secondary battery device of the present embodiment, only the known database and the current measurement data are used, and the mutual estimation parameter is not included in the capacity estimation parameter. Low) affects each other, and the decrease in estimation accuracy is suppressed from being amplified.

なお、上記データベースDBに含まれるデータの作成方法では、Δ容量と第2電流との値の一次関数の切片を用いて、標準容量を求めるデータを作成したが、Δ容量と第2電流との値の一次関数の傾きを用いて標準容量を求めてもよい。   In the data creation method included in the database DB, data for obtaining the standard capacity is created using the intercept of the linear function of the value of the Δ capacity and the second current. The standard capacity may be obtained using the slope of a linear function of the value.

図6に、Δ容量と第2電流との値の一次関数の傾きと、第1電流での標準容量との関係の一例を示す。一次関数の傾きの値が大きくなるほど、標準容量は大きくなる。   FIG. 6 shows an example of the relationship between the slope of the linear function of the values of the Δ capacity and the second current and the standard capacity at the first current. The standard capacity increases as the slope of the linear function increases.

従って、予め図6の一時関数の温度特性をデータベースDBとすると、第2段階充電で充電終止した時に、充電電流とΔ容量と温度とから現在の標準容量を算出することが可能となる。例えば、モデル式として、現在の標準容量は下記の式で表され、Δ容量と第2電流との値から算出される傾きを代入することで、標準容量が算出できる。この時、A´、B´は温度Tの関数であり、充電終了時の電池温度とDBから求められる。   Therefore, assuming that the temperature characteristic of the temporary function of FIG. 6 is the database DB in advance, the current standard capacity can be calculated from the charging current, the Δ capacity, and the temperature when the charging is terminated in the second stage charging. For example, as a model formula, the current standard capacity is expressed by the following formula, and the standard capacity can be calculated by substituting the slope calculated from the values of the Δ capacity and the second current. At this time, A ′ and B ′ are functions of the temperature T, and are obtained from the battery temperature at the end of charging and DB.

現在の標準容量=A´(T)×傾き+B´(T)・・・ (2)式
また、(2)式のようなモデル式ではなく、標準容量と傾きと温度との関係をテーブルとして持っても同様に標準容量を求められる。このように標準容量を算出し、Δ容量と第2電流と、温度とに対応する標準容量をデータベースDBとして記憶部6に記録する。
Current standard capacity = A ′ (T) × slope + B ′ (T) (2) Formula Also, not a model formula such as formula (2), but the relationship between standard capacity, slope and temperature as a table Even if you have it, you will be asked for a standard capacity. In this way, the standard capacity is calculated, and the standard capacity corresponding to the Δ capacity, the second current, and the temperature is recorded in the storage unit 6 as the database DB.

このようにΔ容量と第2電流との値の一次関数の傾きを用いて、データベースDBに記録するデータを作成しても、切片を用いた場合と同様の効果を得ることができる。   Thus, even if the data to be recorded in the database DB is created using the slope of the linear function of the values of the Δ capacity and the second current, the same effect as when using the intercept can be obtained.

さらに、Δ容量と第2電流との値の一次関数の傾きおよび切片との両方を用いて、データベースDBに記録するデータを作成してもよい。その場合にも、切片のみを用いた場合と同様の効果を得ることができる。   Furthermore, the data to be recorded in the database DB may be created using both the slope and intercept of the linear function of the values of the Δ capacity and the second current. In this case, the same effect as that obtained when only the section is used can be obtained.

上記実施形態によれば、二次電池セルの実際の劣化状態を考慮した容量推定を精度良く行なう二次電池装置および推定に用いるデータ作成方法を提供することができる。   According to the embodiment, it is possible to provide a secondary battery device that accurately performs capacity estimation in consideration of an actual deterioration state of a secondary battery cell, and a data creation method used for estimation.

上記の実施形態では、2段階に充電電流を変更したステップダウン充電を例に説明したが、3段階以上のステップダウン充電を行なう場合にも本発明を適用することができる。その場合には、充電終止電圧に到達した後の電流値を第2電流値として標準容量およびSOCを推定することにより、上記実施形態と同様の効果を得ることができる。   In the above embodiment, step-down charging in which the charging current is changed in two stages has been described as an example. However, the present invention can also be applied to the case where step-down charging in three or more stages is performed. In that case, by estimating the standard capacity and the SOC using the current value after reaching the end-of-charge voltage as the second current value, the same effect as in the above embodiment can be obtained.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

BT…二次電池セル、DB…データベース、1…組電池、2…電圧測定部(電圧測定手段)、3…電流測定部(電流測定手段)、4…温度測定部(温度測定手段)、5…演算制御部(演算手段)、6…記憶部(記憶手段)。   BT ... secondary battery cell, DB ... database, 1 ... assembled battery, 2 ... voltage measurement unit (voltage measurement unit), 3 ... current measurement unit (current measurement unit), 4 ... temperature measurement unit (temperature measurement unit), 5 ... calculation control unit (calculation unit), 6 ... storage unit (storage unit).

Claims (4)

複数の二次電池セルの温度測定手段と、
前記二次電池セルの端子間電圧を測定する電圧測定手段と、
前記複数の二次電池セルの電流経路に配置された電流測定手段と、
前記温度測定手段、前記電圧測定手段及び前記電流測定手段によって測定した測定値と、前記二次電池セルの標準容量の特性を記憶した記憶手段と、
外部に接続された充電器が第1電流により二次電池セルを充電し前記二次電池セルの端子間電圧が充電終止電圧に到達した後、前記第1電流よりも小さい第2電流による前記二次電池セルの充電により前記二次電池セルの端子間電圧が前記充電終止電圧に到達した場合に、前記第1電流による充電終了時の充電容量と、前記第2電流による充電終了時の充電容量との差、或いは前記第2電流での充電容量を演算し、前記記憶手段から前記二次電池セルの標準容量の前記第1電流値での特性を読み出し、前記充電容量の差或いは前記第2電流での充電容量と、前記第2電流と、前記第2電流による充電終了時の温度との値を用いて、前記二次電池セルの標準容量の前記第1電流値での特性から現在の標準容量を演算するように構成された演算手段と、を備えることを特徴とする二次電池装置。
Temperature measuring means for a plurality of secondary battery cells;
Voltage measuring means for measuring a voltage between terminals of the secondary battery cell;
Current measuring means disposed in a current path of the plurality of secondary battery cells;
A storage means for storing measured values measured by the temperature measuring means, the voltage measuring means and the current measuring means; and a standard capacity characteristic of the secondary battery cell;
After the charger connected to the outside charges the secondary battery cell with the first current and the voltage between the terminals of the secondary battery cell reaches the end-of-charge voltage, the second battery with the second current smaller than the first current is used. Charging capacity at the end of charging with the first current and charging capacity at the end of charging with the second current when the voltage between the terminals of the secondary battery cell reaches the charging end voltage due to charging of the secondary battery cell Or the charge capacity at the second current is calculated, the characteristic at the first current value of the standard capacity of the secondary battery cell is read from the storage means, and the difference between the charge capacity or the second Using the values of the charge capacity at current, the second current, and the temperature at the end of charging by the second current, the current capacity of the secondary battery cell from the characteristics at the first current value Arithmetic configured to calculate standard capacity When the secondary battery system, characterized in that it comprises a.
前記演算手段は、前記第2電流値と、前記第2電流による充電終了時の温度と、前記標準容量とから、第2電流による充電終了後の残容量を演算するように構成されていることを特徴とする請求項1記載の二次電池装置。   The calculation means is configured to calculate a remaining capacity after the end of charging with the second current from the second current value, a temperature at the end of charging with the second current, and the standard capacity. The secondary battery device according to claim 1. 第1電流により二次電池セルの端子間電圧が充電終止電圧に到達するまで充電したときの充電容量と、第1電流による充電終了後に前記第1電流よりも小さい第2電流により二次電池セルの端子間電圧が前記充電終止電圧に到達するまで充電したときの充電容量との差を算出し、
前記第2電流と前記充電容量の差との関係を一次関数で近似し、
前記一次関数の切片と、前記第2電流による充電終了時の温度とを用いて、前記二次電池セルの標準容量を算出することを特徴とする、容量推定に用いるデータの作成方法。
The secondary battery cell is charged with a charging capacity when the voltage between the terminals of the secondary battery cell reaches the end-of-charge voltage by the first current, and a second current smaller than the first current after the charging by the first current is completed. The difference between the charge capacity when charging until the terminal voltage of the battery reaches the charge end voltage is calculated,
Approximating the relationship between the second current and the charge capacity difference by a linear function,
A method for creating data used for capacity estimation, wherein the standard capacity of the secondary battery cell is calculated using the intercept of the linear function and the temperature at the end of charging by the second current.
第1電流により二次電池セルの端子間電圧が充電終止電圧に到達するまで充電したときの充電容量と、第1電流による充電終了後に前記第1電流よりも小さい第2電流により二次電池セルの端子間電圧が前記充電終止電圧に到達するまで充電したときの充電容量との差を算出し、
前記第2電流と前記充電容量の差との関係を一次関数で近似し、
前記一次関数の傾きと、前記第2電流による充電終了時の温度とを用いて、前記二次電池セルの標準容量を算出することを特徴とする、容量推定に用いるデータの作成方法。
The secondary battery cell is charged with a charging capacity when the voltage between the terminals of the secondary battery cell reaches the end-of-charge voltage by the first current, and a second current smaller than the first current after the charging by the first current is completed. The difference between the charge capacity when charging until the terminal voltage of the battery reaches the charge end voltage is calculated,
Approximating the relationship between the second current and the charge capacity difference by a linear function,
A method for creating data used for capacity estimation, wherein the standard capacity of the secondary battery cell is calculated using the slope of the linear function and the temperature at the end of charging by the second current.
JP2010175690A 2010-08-04 2010-08-04 Secondary battery device and data creation method used for capacity estimation Expired - Fee Related JP5498311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010175690A JP5498311B2 (en) 2010-08-04 2010-08-04 Secondary battery device and data creation method used for capacity estimation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175690A JP5498311B2 (en) 2010-08-04 2010-08-04 Secondary battery device and data creation method used for capacity estimation

Publications (2)

Publication Number Publication Date
JP2012037289A JP2012037289A (en) 2012-02-23
JP5498311B2 true JP5498311B2 (en) 2014-05-21

Family

ID=45849450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010175690A Expired - Fee Related JP5498311B2 (en) 2010-08-04 2010-08-04 Secondary battery device and data creation method used for capacity estimation

Country Status (1)

Country Link
JP (1) JP5498311B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033760A (en) * 2012-12-15 2013-04-10 安徽工程大学 Battery charging and discharging tester

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3572381B2 (en) * 1998-03-06 2004-09-29 日産自動車株式会社 Calculation method of rechargeable battery charge capacity
JP2005318790A (en) * 2004-03-30 2005-11-10 Matsushita Electric Ind Co Ltd Charger
JP5075353B2 (en) * 2006-05-17 2012-11-21 株式会社東芝 Rechargeable battery charging method
JP2010002374A (en) * 2008-06-23 2010-01-07 Toshiba Corp Battery pack

Also Published As

Publication number Publication date
JP2012037289A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
US8175826B2 (en) Apparatus for estimating open circuit voltage of battery, apparatus for estimating state of charge of battery, and method for controlling the same
US8332169B2 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
TWI384246B (en) Apparatus and method for estimating resistance characteristics of battery based on open circuit voltage estimated by battery voltage variation
JP5994521B2 (en) State estimation device, open-circuit voltage characteristics generation method
WO2015106691A1 (en) Soc estimation method for power battery for hybrid electric vehicle
KR101402802B1 (en) Apparatus and Method for cell balancing based on battery's voltage variation pattern
JP2020508442A (en) Battery state of charge estimation apparatus and method
US20100138178A1 (en) Battery capacity estimating method and apparatus
EP3107146B1 (en) Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
CN110376536B (en) SOH detection method and device for battery system, computer equipment and storage medium
CN112986842B (en) Method, device and equipment for estimating state of charge of battery
JP6958965B2 (en) Battery SOC Estimator and Method
JP5163542B2 (en) Secondary battery input / output possible power estimation device
CN114137415A (en) Method and device for detecting calorific value of battery pack, vehicle, and storage medium
JP7010563B2 (en) Battery charge status estimator
KR20150037144A (en) Intelligent Battery Sensor Apparatus and Method thereof
JP5498311B2 (en) Secondary battery device and data creation method used for capacity estimation
CN113748438B (en) Electric quantity prediction method and equipment
KR20190069894A (en) Apparatus and method for recalibrating SOC of secondary battery cell
KR101352841B1 (en) Method and System for Calculating SOC of Battery
KR101371742B1 (en) Estimating method for state of charge of high voltage battery in vehicle
WO2022183459A1 (en) Method and apparatus for estimating soc of battery pack, and battery management system
KR102239365B1 (en) Apparatus for estimating state of charge of battery
JP6472163B2 (en) CHARGE RATE ESTIMATION DEVICE AND CHARGE RATE ESTIMATION METHOD
KR20230021500A (en) Method and apparatus for estimating the charging time of a battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140307

R151 Written notification of patent or utility model registration

Ref document number: 5498311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees