JP5489950B2 - Method for producing silica film precursor composition and silica film - Google Patents

Method for producing silica film precursor composition and silica film Download PDF

Info

Publication number
JP5489950B2
JP5489950B2 JP2010235977A JP2010235977A JP5489950B2 JP 5489950 B2 JP5489950 B2 JP 5489950B2 JP 2010235977 A JP2010235977 A JP 2010235977A JP 2010235977 A JP2010235977 A JP 2010235977A JP 5489950 B2 JP5489950 B2 JP 5489950B2
Authority
JP
Japan
Prior art keywords
silica film
precursor composition
mol
film precursor
alkoxysilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010235977A
Other languages
Japanese (ja)
Other versions
JP2012087020A (en
Inventor
正明 平川
剛 加賀美
貴久 山崎
一誠 東條
高博 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2010235977A priority Critical patent/JP5489950B2/en
Publication of JP2012087020A publication Critical patent/JP2012087020A/en
Application granted granted Critical
Publication of JP5489950B2 publication Critical patent/JP5489950B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)

Description

本発明は、シリカ膜前駆体組成物の製造方法及びシリカ膜に関する。   The present invention relates to a method for producing a silica film precursor composition and a silica film.

半導体素子の層間絶縁膜等として、シリカ膜が使用されている。このようなシリカ膜は、例えば、アルコキシシランと溶媒とを原料とする塗布液(シリカ膜前駆体組成物)を作製し、これを基材に塗布して膜を形成した後、焼成する方法により製造されている(特許文献1等参照)。   A silica film is used as an interlayer insulating film of a semiconductor element. Such a silica film is prepared by, for example, producing a coating liquid (silica film precursor composition) using alkoxysilane and a solvent as raw materials, applying the resulting solution to a base material to form a film, and then firing it. It is manufactured (see Patent Document 1).

このような方法において、塗布液の段階での放置時間によって塗布液の特性が変化して、得られるシリカ膜の比誘電率等の特性が変化してしまう場合があるという問題がある。   In such a method, there is a problem that the characteristics of the coating liquid may change depending on the standing time at the stage of the coating liquid, and the characteristics such as the relative dielectric constant of the resulting silica film may change.

また、半導体素子の層間絶縁膜等として使用されるシリカ膜は、後工程で、例えばパターニングの際に使用したレジスト膜を剥離するために酸素プラズマ処理を施される場合があるため、酸素プラズマ耐性が求められている。   In addition, a silica film used as an interlayer insulating film or the like of a semiconductor element may be subjected to an oxygen plasma treatment in a subsequent process, for example, to remove a resist film used in patterning. Is required.

特開平07−133350号公報Japanese Patent Application Laid-Open No. 07-133350

本発明は、このような事情に鑑み、酸素プラズマ耐性に優れたシリカ膜を形成することができ、且つ、安定性に優れたシリカ膜前駆体組成物の製造方法及びシリカ膜を提供することを目的とする。   In view of such circumstances, the present invention is capable of forming a silica film excellent in oxygen plasma resistance and providing a method for producing a silica film precursor composition excellent in stability and a silica film. Objective.

上記課題を解決する本発明のシリカ膜前駆体組成物の製造方法は、アルコキシシランと溶媒と酸触媒を混合してアルコキシシランの加水分解反応及び縮重合反応を生じさせた後、前記アルコキシシランのアルコキシ基1モルに対し、0.005〜0.2モルのシリル化剤を添加して前記縮重合反応により生じたアルコキシシランの重合体の反応末端をシリル化することを特徴とする。
そして、前記酸触媒が、無機酸であることが好ましい。
また、前記シリル化剤が、クロロトリメチルシラン、ヘキサメチルジシラザン、トリメチルシリルアセトアミド、トリメチルシリルジメチルアミン及びトリメチルシリルイミダゾールから選択される少なくとも一種であってもよい。
さらに、前記シリカ膜前駆体組成物は界面活性剤を含むものであり、前記シリカ膜は多孔質膜であってもよい。
また、本発明のシリカ膜は、上記シリカ膜前駆体組成物の製造方法により製造されたシリカ膜前駆体組成物を用いて形成されたものであることを特徴とする。
The method for producing a silica film precursor composition of the present invention that solves the above-mentioned problems is obtained by mixing an alkoxysilane, a solvent, and an acid catalyst to cause an alkoxysilane hydrolysis reaction and a polycondensation reaction. It is characterized in that 0.005 to 0.2 mol of a silylating agent is added to 1 mol of an alkoxy group to silylate the reaction terminal of the alkoxysilane polymer produced by the condensation polymerization reaction.
And it is preferable that the said acid catalyst is an inorganic acid.
The silylating agent may be at least one selected from chlorotrimethylsilane, hexamethyldisilazane, trimethylsilylacetamide, trimethylsilyldimethylamine, and trimethylsilylimidazole.
Furthermore, the silica film precursor composition contains a surfactant, and the silica film may be a porous film.
Moreover, the silica film of the present invention is formed using the silica film precursor composition produced by the method for producing a silica film precursor composition.

本発明によれば、アルコキシシランを酸触媒の存在下で加水分解反応及び縮重合反応させた原料液に、用いたアルコキシシランのアルコキシ基1モルに対し、0.005〜0.2モルのシリル化剤を添加して縮重合反応により生じたアルコキシシランの重合体の反応末端をシリル化することにより、安定性に優れたシリカ膜前駆体組成物を製造することができる。また、このシリカ膜前駆体組成物を用いることにより、酸素プラズマ耐性に優れたシリカ膜を形成することができる。   According to the present invention, 0.005 to 0.2 mol of silyl is obtained per 1 mol of alkoxy group of alkoxysilane used in the raw material liquid obtained by subjecting alkoxysilane to hydrolysis reaction and condensation polymerization reaction in the presence of an acid catalyst. A silica film precursor composition having excellent stability can be produced by silylating the reaction terminal of the alkoxysilane polymer produced by the condensation polymerization reaction by adding an agent. Moreover, the silica film excellent in oxygen plasma tolerance can be formed by using this silica film precursor composition.

本発明のシリカ膜前駆体組成物の製造方法は、アルコキシシランと溶媒と酸触媒を混合してアルコキシシランの加水分解反応及び縮重合反応を生じさせた後、用いたアルコキシシランのアルコキシ基1モルに対し、0.005〜0.2モルのシリル化剤を添加して縮重合反応により生じたアルコキシシランの重合体の反応末端をシリル化するものである。   In the method for producing a silica film precursor composition of the present invention, alkoxysilane, a solvent and an acid catalyst are mixed to cause hydrolysis reaction and polycondensation reaction of alkoxysilane, and then 1 mol of alkoxy group of alkoxysilane used. On the other hand, 0.005 to 0.2 mol of a silylating agent is added to silylate the reaction end of the alkoxysilane polymer produced by the condensation polymerization reaction.

具体的には、まず、アルコキシシランと溶媒と酸触媒を混合して加水分解反応及び縮重合反応を生じさせる。   Specifically, first, an alkoxysilane, a solvent, and an acid catalyst are mixed to cause a hydrolysis reaction and a condensation polymerization reaction.

アルコキシシランとしては、例えばテトラエトキシシラン(TEOS)、テトラメトキシシラン(TMOS)、テトライソプロポキシシラン、テトラブトキシシランなどの4級アルコキシシラン;トリメトキシフルオロシラン、トリエトキシフルオロシラン、トリイソプロポキシフルオロシラン、トリブトキシフルオロシランなどの3級アルコキシフルオロシラン;トリメトキシメチルシラン、トリエトキシメチルシラン、トリメトキシエチルシラン、トリエトキシエチルシラン、トリメトキシプロピルシラン、トリエトキシプロピルシランなどの3級アルコキシアルキルシラン;トリメトキシフェニルシラン、トリエトキシフェニルシラン、トリメトキシクロロフェニルシラン、トリエトキシクロロフェニルシランなどの3級アルコキシアリールシラン;トリメトキシフェネチルシラン、トリエトキシフェネチルシランなどの3級アルコキシフェネチルシラン;ジメトキシジメチルシラン、ジエトキシジメチルシランなどの2級アルコキシアルキルシラン;アルコキシシランの2量体等のオリゴマーなどが挙げられる。また、2種類以上用いてもよい。   Examples of the alkoxysilane include quaternary alkoxysilanes such as tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), tetraisopropoxysilane, and tetrabutoxysilane; trimethoxyfluorosilane, triethoxyfluorosilane, triisopropoxyfluorosilane Tertiary alkoxyfluorosilanes such as tributoxyfluorosilane; tertiary alkoxyalkylsilanes such as trimethoxymethylsilane, triethoxymethylsilane, trimethoxyethylsilane, triethoxyethylsilane, trimethoxypropylsilane, triethoxypropylsilane; Tertiary alkoxyaryl such as trimethoxyphenylsilane, triethoxyphenylsilane, trimethoxychlorophenylsilane, triethoxychlorophenylsilane Examples include silanes; tertiary alkoxyphenethylsilanes such as trimethoxyphenethylsilane and triethoxyphenethylsilane; secondary alkoxyalkylsilanes such as dimethoxydimethylsilane and diethoxydimethylsilane; oligomers such as dimers of alkoxysilanes, and the like. Two or more types may be used.

溶媒は、アルコキシシランを溶解または分散させることができるものであれば特に限定されず、例えば、メタノール、エタノール、1−プロパノールなどの一級アルコール;2−プロパノール、2−ブタノールなどの二級アルコール;ターシャリーブチルアルコールなどの三級アルコール;アセトン、アセトニトリル等が挙げられる。また、2種類以上を組み合わせて用いてもよい。   The solvent is not particularly limited as long as it can dissolve or disperse alkoxysilane, and examples thereof include primary alcohols such as methanol, ethanol and 1-propanol; secondary alcohols such as 2-propanol and 2-butanol; Tertiary alcohols such as butyl alcohol; acetone, acetonitrile and the like. Two or more types may be used in combination.

酸触媒は、アルコキシシランを加水分解することができるものであれば特に限定されないが、例えば、塩酸、硝酸、硫酸等の無機酸や、酢酸等の有機酸を挙げることができ、また、2種類以上を組み合わせて用いてもよい。但し、有機酸を用いると、アセチル基等の有機酸の残渣が、得られるシリカ膜に残存してしまうことや、無機酸に比べて酸素プラズマ耐性に優れたシリカ膜を形成することができるという効果が低くなるため、無機酸を用いることが好ましい。   The acid catalyst is not particularly limited as long as it can hydrolyze alkoxysilane, and examples thereof include inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, and organic acids such as acetic acid. A combination of the above may also be used. However, when an organic acid is used, a residue of an organic acid such as an acetyl group may remain in the obtained silica film, or a silica film having superior oxygen plasma resistance can be formed compared to an inorganic acid. Since an effect becomes low, it is preferable to use an inorganic acid.

また、アルコキシシランと溶媒と酸触媒に加えて、さらに、界面活性剤等を含有していてもよい。界面活性剤としては、ポリアルキレンオキサイド構造を有する化合物を使用することが好ましい。ポリアルキレンオキサイド構造としては、ポリエチレンオキシド構造、ポリプロピレンオキシド構造、ポリメチレンオキシド構造、ポリブチレンオキシド構造等が挙げられる。このようなポリアルキレンオキサイド構造を有する化合物としては、例えば、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル等のエーテル型化合物、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリエチレンソルビトール脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル等のエーテルエステル型化合物等を挙げることができる。また、2種類以上を組み合わせて用いてもよい。界面活性剤の状態は問われず、固体状態でも、溶媒に溶解した状態でもよい。   Further, in addition to the alkoxysilane, the solvent, and the acid catalyst, it may further contain a surfactant or the like. As the surfactant, a compound having a polyalkylene oxide structure is preferably used. Examples of the polyalkylene oxide structure include a polyethylene oxide structure, a polypropylene oxide structure, a polymethylene oxide structure, and a polybutylene oxide structure. Examples of the compound having such a polyalkylene oxide structure include polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropylene alkyl ether, polyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyethylene alkyl ether, polyoxy Ether type compounds such as ethylene alkylphenyl ether, ether ester type compounds such as polyoxyethylene glycerin fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyethylene sorbitol fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, sucrose fatty acid ester, etc. Can be mentioned. Two or more types may be used in combination. The state of the surfactant is not limited, and it may be solid or dissolved in a solvent.

上記界面活性剤は、溶液中でミセルを形成し、規則的に配列する。このミセルをテンプレートとして、シリカと複合体をつくり、後段の工程でテンプレートを除去すると、均一で規則的な細孔を有する多孔質シリカ膜を製造することができる。そして、多孔質の膜とすることにより、例えば、誘電率(k)≦2.5の低誘電率及び低屈折率を有する膜となる。   The surfactant forms micelles in the solution and is regularly arranged. By using this micelle as a template to form a composite with silica and removing the template in a subsequent step, a porous silica film having uniform and regular pores can be produced. By forming a porous film, for example, a film having a low dielectric constant and a low refractive index of dielectric constant (k) ≦ 2.5 is obtained.

このようなアルコキシシラン及び酸触媒や必要に応じて含有させる界面活性剤等の添加剤を溶媒に溶解または分散させて、アルコキシシランの加水分解反応及び縮重合反応を生じさせて、原料液を形成する。加水分解反応や縮重合反応は、水を添加することにより生じるが、必要に応じて加熱や撹拌等してもよい。   Additives such as alkoxysilanes and acid catalysts and surfactants to be added as necessary are dissolved or dispersed in a solvent to cause hydrolysis and condensation polymerization of alkoxysilanes to form a raw material liquid To do. The hydrolysis reaction and the condensation polymerization reaction are caused by adding water, but may be heated or stirred as necessary.

アルコキシシランの加水分解反応及び縮重合反応について、アルコキシシランとしてテトラエトキシシランを用いた場合を例に、以下に説明する。テトラエトキシシランを用い酸触媒の存在下で行う加水分解反応は、下記式のように進む。そして、加水分解反応の後に、下記縮重合反応により、シリカネットワークを形成していく。
<加水分解反応>
Si(OC25)4+xH2O→Si(OH)x(OC25)4-x+xC25OH
<縮重合反応>
2Si(OH)x(OC25)4-x→Si2O[(OC25)4-x(OH)x-1]2+H2
The alkoxysilane hydrolysis reaction and polycondensation reaction will be described below using tetraethoxysilane as an example of alkoxysilane. The hydrolysis reaction performed using tetraethoxysilane in the presence of an acid catalyst proceeds as shown in the following formula. Then, after the hydrolysis reaction, a silica network is formed by the following condensation polymerization reaction.
<Hydrolysis reaction>
Si (OC 2 H 5 ) 4 + xH 2 O → Si (OH) x (OC 2 H 5 ) 4-x + xC 2 H 5 OH
<Condensation polymerization reaction>
2Si (OH) x (OC 2 H 5) 4-x → Si 2 O [(OC 2 H 5) 4-x (OH) x-1] 2 + H 2 O

次いで、このアルコキシシラン及び酸触媒や必要に応じて含有させる界面活性剤等の添加剤を溶媒に溶解または分散させてアルコキシシランの加水分解反応及び縮重合反応を生じさせて得られた原料液に、用いたアルコキシシランのアルコキシ基1モルに対し、0.005〜0.2モルのシリル化剤を添加することにより、本発明のシリカ膜前駆体組成物が製造される。シリル化剤は、縮重合反応により生じたアルコキシシランの重合体の反応末端をシリル化することができるものであれば特に限定されないが、例えば、R123−Si−X(式中、R1、R2及びR3はそれぞれ独立に一価の炭化水素基、Xはハロゲン等の活性基。)である。具体例としては、クロロトリメチルシラン、ヘキサメチルジシラザン、トリメチルシリルアセトアミド、トリメチルシリルジメチルアミン及びトリメチルシリルイミダゾール等が挙げられる。 Next, the raw material liquid obtained by dissolving or dispersing the alkoxysilane and an acid catalyst or additives such as a surfactant to be contained as necessary in a solvent to cause hydrolysis reaction and condensation polymerization reaction of alkoxysilane. The silica film precursor composition of the present invention is produced by adding 0.005 to 0.2 mol of silylating agent to 1 mol of alkoxy group of the used alkoxysilane. The silylating agent is not particularly limited as long as it can silylate the reaction terminal of the alkoxysilane polymer generated by the condensation polymerization reaction. For example, R 1 R 2 R 3 —Si—X (wherein , R 1 , R 2 and R 3 are each independently a monovalent hydrocarbon group, and X is an active group such as halogen. Specific examples include chlorotrimethylsilane, hexamethyldisilazane, trimethylsilylacetamide, trimethylsilyldimethylamine, and trimethylsilylimidazole.

そして、シリル化剤の添加量は、用いたアルコキシシランのアルコキシ基1モルに対し、0.005〜0.2モルである。0.2モルより多いと、安定性に優れたシリカ膜前駆体組成物を得ることができず、また、シリル化剤から遊離したハロゲン等の影響によりシリカ膜前駆体組成物がゲル化して流動性がなくなってしまう場合がある。また、0.005モル未満では、安定性に優れ且つ酸素プラズマ耐性が良好なシリカ膜を製造することができない。   And the addition amount of a silylating agent is 0.005-0.2 mol with respect to 1 mol of alkoxy groups of the used alkoxysilane. When the amount is more than 0.2 mol, a silica film precursor composition having excellent stability cannot be obtained, and the silica film precursor composition gels due to the influence of halogen released from the silylating agent and flows. There is a case that sex is lost. On the other hand, when the amount is less than 0.005 mol, a silica film having excellent stability and good oxygen plasma resistance cannot be produced.

このように、アルコキシシランの加水分解反応及び縮重合反応が生じている原料液に、特定量のシリル化剤を添加することにより、縮重合反応により生じたアルコキシシランの重合体の反応末端、すなわちアルコキシ基をシリル化する。これにより、縮重合反応が止まるため、シリカ膜前駆体組成物(塗布液)の経時変化が抑制されて、シリカ膜前駆体組成物の安定性が良好になる。したがって、本発明のシリカ膜前駆体組成物を長期間、例えば、2週間以上放置しても、ゾル液の縮重合反応が進むことによるシリカ膜前駆体組成物の特性変化を防ぐことができる。すなわち、寿命の長いシリカ膜前駆体組成物となる。   Thus, by adding a specific amount of silylating agent to the raw material liquid in which the alkoxysilane hydrolysis reaction and the condensation polymerization reaction have occurred, the reaction terminal of the alkoxysilane polymer produced by the condensation polymerization reaction, that is, Silylate an alkoxy group. Thereby, since the polycondensation reaction is stopped, the change with time of the silica film precursor composition (coating liquid) is suppressed, and the stability of the silica film precursor composition is improved. Therefore, even if the silica film precursor composition of the present invention is allowed to stand for a long period of time, for example, 2 weeks or more, it is possible to prevent changes in the characteristics of the silica film precursor composition due to the progress of the condensation polymerization reaction of the sol solution. That is, a silica film precursor composition having a long lifetime is obtained.

また、シリル化剤を添加してアルコキシシランの重合体と反応させているため、得られるシリカ膜は、Si原子に結合したシリル化剤由来の炭化水素基が導入されたものとなる。したがって、シリカ膜の炭素量が多くなるため、シリカ膜に酸素プラズマを照射する酸素プラズマ処理に対する耐性(酸素プラズマ耐性)が良好なシリカ膜を製造することができる。なお、縮重合反応により生じたアルコキシシランの重合体の反応末端を処理するために、本発明のようにシリル化剤ではなく、アセチル化剤やエステル化剤を用いることも考えられるが、アセチル化やエステル化ではSi−O−Cという構造が形成され、本発明のようにSi−O−Si−RといったSi原子に炭化水素基Rが直接結合した構造とすることはできず、酸素プラズマ耐性が良好なシリカ膜にはならない。   In addition, since a silylating agent is added and reacted with the alkoxysilane polymer, the resulting silica film has a hydrocarbon group derived from a silylating agent bonded to Si atoms introduced therein. Therefore, since the amount of carbon in the silica film increases, it is possible to manufacture a silica film with good resistance to oxygen plasma treatment (oxygen plasma resistance) in which the silica film is irradiated with oxygen plasma. In order to treat the reaction end of the alkoxysilane polymer produced by the condensation polymerization reaction, it is possible to use an acetylating agent or an esterifying agent instead of a silylating agent as in the present invention. In the case of esterification, a structure of Si—O—C is formed, and a structure in which a hydrocarbon group R is directly bonded to a Si atom such as Si—O—Si—R cannot be made as in the present invention, and oxygen plasma resistance However, it is not a good silica film.

ここで、本発明においては、アルコキシシランを加水分解するための触媒として、酸触媒を用いる必要がある。一方、アルカリ触媒を用いると、シリル化剤を添加しても重縮合反応を止めることはできず、シリカ膜前駆体組成物の安定性を良好にすることはできない。   Here, in this invention, it is necessary to use an acid catalyst as a catalyst for hydrolyzing alkoxysilane. On the other hand, when an alkali catalyst is used, the polycondensation reaction cannot be stopped even if a silylating agent is added, and the stability of the silica film precursor composition cannot be improved.

アルコキシシラン及び酸触媒や必要に応じて含有させる界面活性剤等の添加剤を溶媒に溶解または分散させてアルコキシシランの加水分解反応及び縮重合反応を生じさせた原料液に、シリル化剤を添加するタイミングは、加水分解反応及び縮重合反応を所望の状態まで進めた時とすればよい。勿論、流動性がなくなった状態であるゲルになる前に、シリル化剤を添加する必要がある。なお、アルコキシシランの加水分解反応及び縮重合反応が生じた後ある程度時間(例えば20〜25時間)が経過すると、この加水分解反応及び縮重合反応の速度は遅くなるが、この加水分解反応及び縮重合反応の速度が遅くなった段階でシリル化剤を原料液に添加することが好ましい。縮重合反応が飽和近くまで進行している可能性が高いからである。   Addition of silylating agent to the raw material liquid in which alkoxysilane, acid catalyst, and other additives such as surfactant to be contained as required are dissolved or dispersed in a solvent to cause alkoxysilane hydrolysis and condensation polymerization reactions The timing to perform may be the time when the hydrolysis reaction and the condensation polymerization reaction are advanced to a desired state. Of course, it is necessary to add a silylating agent before the gel is in a state where the fluidity is lost. Note that when a certain amount of time (for example, 20 to 25 hours) elapses after the hydrolysis reaction and condensation polymerization reaction of alkoxysilane, the rate of the hydrolysis reaction and condensation polymerization reaction is slowed down. It is preferable to add the silylating agent to the raw material liquid when the rate of the polymerization reaction is slow. This is because there is a high possibility that the polycondensation reaction proceeds to near saturation.

そして、このシリカ膜前駆体組成物を基材に塗布して膜を形成した後、加熱して焼成することにより、シリカ膜を製造することができる。基材に特に限定はないが、例えば、ガラス、石英、シリコンウェハー、ステンレス等が挙げられ、その形状は板状、皿状等のいずれであってもよい。   And after apply | coating this silica film precursor composition to a base material and forming a film | membrane, a silica film can be manufactured by heating and baking. Although there is no limitation in particular in a base material, Glass, quartz, a silicon wafer, stainless steel etc. are mentioned, for example, The shape may be either plate shape, dish shape, etc.

シリカ膜前駆体組成物を基材に塗布する方法としては、例えば、スピンコート法、キャスティング法、ディップコート法等が挙げられる。スピンコート法の場合、スピナー上に基材を置き、この基材上にゾル液を滴下し、例えば、500〜10000rpmで回転させて行えばよい。   Examples of the method for applying the silica film precursor composition to the substrate include a spin coating method, a casting method, and a dip coating method. In the case of the spin coating method, a base material is placed on a spinner, a sol solution is dropped on the base material, and rotated at, for example, 500 to 10,000 rpm.

なお、界面活性剤を用いた場合は、界面活性剤は焼成工程の加熱によりある程度消失して空孔を形成するが、焼成工程と同時または焼成工程の後に紫外線や電子線を照射する等して、界面活性剤の残渣を除去するようにしてもよい。   In addition, when a surfactant is used, the surfactant disappears to some extent by heating in the baking step, and a void is formed. However, ultraviolet rays or electron beams are irradiated at the same time as or after the baking step. The residue of the surfactant may be removed.

このようにして得られたシリカ膜は、Si原子に結合したシリル化剤由来の炭化水素基が導入されたもので炭素量が多いため、酸素プラズマ耐性に優れている。したがって、半導体装置の層間絶縁膜等として、好適に用いることができる。また、安定性が良好なシリカ膜前駆体組成物を用いているため、シリカ膜前駆体組成物製造直後でも長期間放置後でも、同様の比誘電率等の特性を有するシリカ膜が形成される。   The silica film thus obtained is excellent in oxygen plasma resistance because it has a large amount of carbon introduced with a hydrocarbon group derived from a silylating agent bonded to Si atoms. Therefore, it can be suitably used as an interlayer insulating film or the like of a semiconductor device. In addition, since a silica film precursor composition having good stability is used, a silica film having the same characteristics such as relative dielectric constant is formed immediately after the production of the silica film precursor composition and after standing for a long period of time. .

以下、実施例及び比較例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。   Hereinafter, although it further explains in full detail based on an Example and a comparative example, the present invention is not limited at all by this example.

(実施例1)
<シリカ膜前駆体組成物の作製>
テトラエトキシシラン(TEOS)0.022モルと、水4.13モル、ジメチルジエトキシシラン(DMDEOS)0.0048モルと、非イオン系界面活性剤(商品名:P45、第一工業製薬社製、平均分子量:2300、HO(CHCHO)13(CH(CH)CHO)20(CHCHO)13H) 0.010モル、硝酸0.10モルをエタノールに加え、25℃で24時間撹拌し、透明で均一な溶液(原料液)を得た。この溶液に、クロロトリメチルシラン0.0097モル(原料のテトラエトキシシラン及びジメチルジエトキシシランのエトキシ基の総量1モルに対して0.1モル)を加え、25℃で3時間撹拌し、シリカ膜前駆体組成物を得た。
Example 1
<Preparation of silica film precursor composition>
Tetraethoxysilane (TEOS) 0.022 mol, water 4.13 mol, dimethyldiethoxysilane (DMDEOS) 0.0048 mol, nonionic surfactant (trade name: P45, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Average molecular weight: 2300, HO (CH 2 CH 2 O) 13 (CH (CH 3 ) CH 2 O) 20 (CH 2 CH 2 O) 13 H) 0.010 mol, nitric acid 0.10 mol were added to ethanol, The mixture was stirred at 25 ° C. for 24 hours to obtain a transparent and uniform solution (raw material solution). To this solution, 0.0097 mol of chlorotrimethylsilane (0.1 mol with respect to 1 mol of the total amount of ethoxy groups of the raw material tetraethoxysilane and dimethyldiethoxysilane) was added and stirred at 25 ° C. for 3 hours to obtain a silica film. A precursor composition was obtained.

<シリカ膜の作製>
上記シリカ膜前駆体組成物を作製後すぐに、得られたシリカ膜前駆体組成物を用いて、シリコン基板上に1200rpmでスピンコートして膜を形成した。次いで、この膜が形成されたシリコン基板を、5Paの真空雰囲気下、15分で350℃まで昇温し、この温度で1時間保ち焼成することにより、多孔質シリカ膜を得た。
<Preparation of silica film>
Immediately after producing the silica film precursor composition, a film was formed by spin coating at 1200 rpm on a silicon substrate using the obtained silica film precursor composition. Next, the silicon substrate on which this film was formed was heated to 350 ° C. in 15 minutes in a vacuum atmosphere of 5 Pa, and baked by maintaining at this temperature for 1 hour to obtain a porous silica film.

<シリカ膜前駆体組成物の2週間放置>
また、上記シリカ膜前駆体組成物を2週間放置した後、上記<シリカ膜の作製>と同様の操作により、シリコン基板上に多孔質シリカ膜を形成した。
<Standing Silica Film Precursor Composition for 2 Weeks>
The silica film precursor composition was allowed to stand for 2 weeks, and then a porous silica film was formed on the silicon substrate by the same operation as in the above <Preparation of silica film>.

(実施例2)
硝酸0.10モルのかわりに塩酸0.10モルを用い、また、クロロトリメチルシラン0.0097モルのかわりにヘキサメチルジシラザン0.0097モル(原料のテトラエトキシシラン及びジメチルジエトキシシランのエトキシ基の総量1モルに対して0.05モル)を用いた以外は、実施例1と同様の操作を行った。
(Example 2)
Instead of 0.10 mol of nitric acid, 0.10 mol of hydrochloric acid was used, and 0.0097 mol of hexamethyldisilazane instead of 0.0097 mol of chlorotrimethylsilane (the ethoxy groups of tetraethoxysilane and dimethyldiethoxysilane as raw materials) The same operation as in Example 1 was performed except that 0.05 mol) was used with respect to 1 mol of the total amount.

(実施例3)
クロロトリメチルシラン0.0097モルを0.0005モルとしたこと以外は、実施例1と同様の操作を行った。
(Example 3)
The same operation as in Example 1 was performed except that 0.0097 mol of chlorotrimethylsilane was changed to 0.0005 mol.

(実施例4)
クロロトリメチルシラン0.0097モルを0.0195モルとしたこと以外は、実施例1と同様の操作を行った。
(Example 4)
The same operation as in Example 1 was performed except that 0.0097 mol of chlorotrimethylsilane was changed to 0.0195 mol.

(実施例5)
硝酸0.10モルのかわりにコハク酸0.10モルを用いた以外は、実施例1と同様の操作を行った。
(Example 5)
The same operation as in Example 1 was performed except that 0.10 mol of succinic acid was used instead of 0.10 mol of nitric acid.

(比較例1)
クロロトリメチルシランを用いなかった以外は、実施例1と同様の操作を行った。
(Comparative Example 1)
The same operation as in Example 1 was performed except that chlorotrimethylsilane was not used.

(比較例2)
ヘキサメチルジシラザンを用いなかった以外は、実施例2と同様の操作を行った。
(Comparative Example 2)
The same operation as in Example 2 was performed except that hexamethyldisilazane was not used.

(比較例3)
硝酸0.10モルのかわりに水酸化ナトリウム0.10モルを用いた以外は、実施例1と同様の操作を行った。
(Comparative Example 3)
The same operation as in Example 1 was performed except that 0.10 mol of sodium hydroxide was used instead of 0.10 mol of nitric acid.

(比較例4)
クロロトリメチルシラン0.0097モルを0.0003モルとしたこと以外は、実施例1と同様の操作を行った。
(Comparative Example 4)
The same operation as in Example 1 was performed except that 0.0097 mol of chlorotrimethylsilane was changed to 0.0003 mol.

(比較例5)
クロロトリメチルシラン0.0097モルを0.0250モルとしたこと以外は、実施例1と同様の操作を行った。
(Comparative Example 5)
The same operation as in Example 1 was performed except that 0.0097 mol of chlorotrimethylsilane was changed to 0.0250 mol.

(比較例6)
硝酸0.10モルのかわりにコハク酸0.10モルとし、クロロトリメチルシラン0.0097モルを0.0003モルとしたこと以外は、実施例1と同様の操作を行った。
(Comparative Example 6)
The same operation as in Example 1 was performed except that 0.10 mol of succinic acid was substituted for 0.10 mol of nitric acid and 0.0097 mol of chlorotrimethylsilane was changed to 0.0003 mol.

(比較例7)
硝酸0.10モルのかわりにコハク酸0.10モルとし、クロロトリメチルシラン0.0097モルを0.0250モルとしたこと以外は、実施例1と同様の操作を行った。
(Comparative Example 7)
The same operation as in Example 1 was performed except that 0.10 mol of succinic acid was substituted for 0.10 mol of nitric acid and 0.0097 mol of chlorotrimethylsilane was changed to 0.0250 mol.

(試験例1)
実施例1〜5及び比較例1〜7の多孔質シリカ膜について、比誘電率、633nmの波長に対する屈折率、及び、ヤング率(GPa)を測定した。比誘電率は水銀プローブを用いた電気測定機器(4D社製 CV−Map)により測定し、屈折率は分光エリプソ(大日本スクリーン製RE−3000)により測定し、ヤング率はナノインデンター(MTS社製SA−2)により測定した。結果を表1に示す。
(Test Example 1)
About the porous silica film | membrane of Examples 1-5 and Comparative Examples 1-7, the dielectric constant, the refractive index with respect to the wavelength of 633 nm, and the Young's modulus (GPa) were measured. The relative dielectric constant is measured with an electrical measuring instrument (4V CV-Map) using a mercury probe, the refractive index is measured with a spectroscopic ellipso (Dainippon Screen RE-3000), and the Young's modulus is a nanoindenter (MTS). Measured by SA-2). The results are shown in Table 1.

表1に示すように、実施例1〜5では、製造後2週間経過したシリカ膜前駆体組成物を用いても、製造直後のシリカ膜前駆体組成物と同等の特性を示す膜を形成することができることが確認された。一方、シリル化剤を用いなかった比較例1〜2、アルカリ触媒を用いた比較例3や、シリル化剤の添加量がアルコキシシランのアルコキシ基1モルに対し0.005〜0.2モルの範囲外の比較例4〜7は、製造直後のシリカ膜前駆体組成物を用いた場合と、製造後2週間経過したシリカ膜前駆体組成物を用いた場合とで、特性が大きく異なっていた。   As shown in Table 1, in Examples 1 to 5, even if a silica film precursor composition that has been passed for 2 weeks has been used, a film that exhibits the same characteristics as the silica film precursor composition immediately after manufacture is formed. It was confirmed that it was possible. On the other hand, Comparative Examples 1 and 2 in which no silylating agent was used, Comparative Example 3 in which an alkali catalyst was used, and the addition amount of the silylating agent was 0.005 to 0.2 mol with respect to 1 mol of alkoxy group of alkoxysilane. Comparative Examples 4 to 7 outside the range were greatly different in characteristics between the case where the silica film precursor composition immediately after production was used and the case where the silica film precursor composition which had passed 2 weeks after production was used. .

Figure 0005489950
Figure 0005489950

(試験例2)
製造直後のシリカ膜前駆体組成物を用いて形成した実施例1〜5及び比較例1〜7の多孔質シリカ膜、及び、製造後2週間放置したシリカ膜前駆体組成物を用いて形成した実施例1〜5及び比較例1〜7の多孔質シリカ膜を、アッシング機構を備えたチャンバにセットし、O:100sccm、圧力:10Pa、RFパワー:1kWで、酸素プラズマ処理を行った。酸素プラズマ処理後の各多孔質シリカ膜の比誘電率を、試験例1と同様の方法で測定した。結果を、酸素プラズマ処理前の比誘電率と共に、表2に示す。
(Test Example 2)
It formed using the porous silica film of Examples 1-5 and Comparative Examples 1-7 formed using the silica film precursor composition immediately after manufacture, and the silica film precursor composition left to stand for 2 weeks after manufacture. The porous silica films of Examples 1 to 5 and Comparative Examples 1 to 7 were set in a chamber equipped with an ashing mechanism, and oxygen plasma treatment was performed at O 2 : 100 sccm, pressure: 10 Pa, and RF power: 1 kW. The relative dielectric constant of each porous silica film after the oxygen plasma treatment was measured by the same method as in Test Example 1. The results are shown in Table 2 together with the relative dielectric constant before the oxygen plasma treatment.

表2に示すように、実施例1〜5では、製造直後のシリカ膜前駆体組成物を用いた場合と製造後2週間放置したシリカ膜前駆体組成物を用いた場合の両方とも、酸素プラズマ処理前後の比誘電率の増加量は顕著に小さく、実施例1〜5は、酸素プラズマ耐性に優れていることが確認された。そして、無機酸を触媒として用いた実施例1〜4は、有機酸を触媒として用いた実施例5よりも、酸素プラズマ処理前後の比誘電率の増加量が小さかった。これは、OH基の一部がアセチル化しているため、シリル化される量が減少してしまったためと推測される。
一方、シリル化剤を用いなかった比較例1〜2やアルカリ触媒を用いた比較例3は、製造後2週間放置したシリカ膜前駆体組成物を用いた場合の酸素プラズマ処理前後の比誘電率の増加量が大きかった。
また、シリル化剤量が本発明の範囲よりも少ない比較例4及び6は、製造後2週間放置したシリカ膜前駆体組成物を用いた場合の酸素プラズマ処理前後の比誘電率の増加量は、シリル化剤を用いなかった比較例1と同程度であり、製造直後のシリカ膜前駆体組成物を用いた場合の酸素プラズマ処理前後の比誘電率の増加量は、比較例1よりも大きかった。
そして、シリル化剤量が本発明の範囲よりも多い比較例5及び7は、製造後2週間放置したシリカ膜前駆体組成物を用いた場合の酸素プラズマ処理前後の比誘電率の増加量は抑制されているが、縮重合が制御できず、比誘電率が高くなった。
As shown in Table 2, in Examples 1 to 5, oxygen plasma was used both when the silica film precursor composition immediately after production was used and when the silica film precursor composition left for 2 weeks after production was used. The amount of increase in the relative dielectric constant before and after the treatment was remarkably small, and it was confirmed that Examples 1 to 5 were excellent in oxygen plasma resistance. In Examples 1 to 4 using an inorganic acid as a catalyst, the amount of increase in relative dielectric constant before and after the oxygen plasma treatment was smaller than in Example 5 using an organic acid as a catalyst. This is presumably because part of the OH group is acetylated, so that the amount to be silylated has decreased.
On the other hand, Comparative Examples 1 and 2 using no silylating agent and Comparative Example 3 using an alkali catalyst have a relative dielectric constant before and after the oxygen plasma treatment when using a silica film precursor composition left for 2 weeks after production. The amount of increase was large.
Further, in Comparative Examples 4 and 6 in which the amount of the silylating agent is less than the range of the present invention, the amount of increase in the relative dielectric constant before and after the oxygen plasma treatment when using the silica film precursor composition left for 2 weeks after production is The amount of increase in the dielectric constant before and after the oxygen plasma treatment in the case of using the silica film precursor composition immediately after production is similar to that in Comparative Example 1 in which no silylating agent was used. It was.
In Comparative Examples 5 and 7 in which the amount of the silylating agent is larger than the range of the present invention, the amount of increase in the relative dielectric constant before and after the oxygen plasma treatment when using the silica film precursor composition left for 2 weeks after production is Although suppressed, polycondensation could not be controlled, and the relative dielectric constant increased.

Figure 0005489950
Figure 0005489950

Claims (5)

アルコキシシランと溶媒と酸触媒を混合してアルコキシシランの加水分解反応及び縮重合反応を生じさせた後、前記アルコキシシランのアルコキシ基1モルに対し、0.005〜0.2モルのシリル化剤を添加して前記縮重合反応により生じたアルコキシシランの重合体の反応末端をシリル化することを特徴とするシリカ膜前駆体組成物の製造方法。   After mixing alkoxysilane, a solvent, and an acid catalyst to cause hydrolysis reaction and condensation polymerization reaction of alkoxysilane, 0.005-0.2 mol of silylating agent with respect to 1 mol of alkoxy group of said alkoxysilane A method for producing a silica film precursor composition, wherein the reaction terminal of a polymer of alkoxysilane produced by the condensation polymerization reaction is silylated. 前記酸触媒が、無機酸であることを特徴とする請求項1に記載するシリカ膜前駆体組成物の製造方法。   The method for producing a silica film precursor composition according to claim 1, wherein the acid catalyst is an inorganic acid. 前記シリル化剤が、クロロトリメチルシラン、ヘキサメチルジシラザン、トリメチルシリルアセトアミド、トリメチルシリルジメチルアミン及びトリメチルシリルイミダゾールから選択される少なくとも一種であることを特徴とする請求項1または2に記載するシリカ膜前駆体組成物の製造方法。   The silica film precursor composition according to claim 1 or 2, wherein the silylating agent is at least one selected from chlorotrimethylsilane, hexamethyldisilazane, trimethylsilylacetamide, trimethylsilyldimethylamine, and trimethylsilylimidazole. Manufacturing method. 前記シリカ膜前駆体組成物は界面活性剤を含むものであり、前記シリカ膜は多孔質膜であることを特徴とする請求項1〜3のいずれか一項に記載するシリカ膜前駆体組成物の製造方法。   The silica film precursor composition according to any one of claims 1 to 3, wherein the silica film precursor composition contains a surfactant, and the silica film is a porous film. Manufacturing method. 請求項1〜4のいずれか一項に記載するシリカ膜前駆体組成物の製造方法により製造されたシリカ膜前駆体組成物を用いて形成されたものであることを特徴とするシリカ膜。   A silica film formed using the silica film precursor composition produced by the method for producing a silica film precursor composition according to any one of claims 1 to 4.
JP2010235977A 2010-10-20 2010-10-20 Method for producing silica film precursor composition and silica film Expired - Fee Related JP5489950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010235977A JP5489950B2 (en) 2010-10-20 2010-10-20 Method for producing silica film precursor composition and silica film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010235977A JP5489950B2 (en) 2010-10-20 2010-10-20 Method for producing silica film precursor composition and silica film

Publications (2)

Publication Number Publication Date
JP2012087020A JP2012087020A (en) 2012-05-10
JP5489950B2 true JP5489950B2 (en) 2014-05-14

Family

ID=46259066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010235977A Expired - Fee Related JP5489950B2 (en) 2010-10-20 2010-10-20 Method for producing silica film precursor composition and silica film

Country Status (1)

Country Link
JP (1) JP5489950B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201319299A (en) * 2011-09-13 2013-05-16 Applied Materials Inc Activated silicon precursors for low temperature plasma enhanced deposition
JP5988817B2 (en) * 2012-10-12 2016-09-07 株式会社アルバック Porous silica film precursor composition, method for producing porous silica film, porous silica film, and semiconductor device
JP6814278B2 (en) * 2016-07-18 2021-01-13 プリズミアン ソチエタ ペル アツィオーニ Method for manufacturing silicon dioxide base material used for optical fiber manufacturing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729769B2 (en) * 1989-04-28 1995-04-05 松下電器産業株式会社 Silicon oxide film manufacturing method
US6090448A (en) * 1997-10-31 2000-07-18 Alliedsignal Inc. Polyol-based precursors for producing nanoporous silica thin films
JP2001139321A (en) * 1999-11-10 2001-05-22 Matsushita Electric Works Ltd Method for manufacturing thin film of silica aerogel
JP2007134420A (en) * 2005-11-09 2007-05-31 Ulvac Japan Ltd Embedding method inside structure by hydrophobic porous silica material

Also Published As

Publication number Publication date
JP2012087020A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
TW494131B (en) Coating solution for low dielectric constant silica film forming and substrate with the low dielectric constant film
JP5529912B2 (en) Aminosilane for shallow trench isolation films
JP4642165B2 (en) Porous silica-based coating solution, coated substrate and short fibrous silica
JP3739331B2 (en) Siloxane resin and method for forming semiconductor interlayer insulating film using the same
WO2007142000A1 (en) Precursor composition for porous membrane, process for preparation of the precursor composition, porous membrane, process for production of the porous membrane, and semiconductor device
US20090206453A1 (en) Method for Preparing Modified Porous Silica Films, Modified Porous Silica Films Prepared According to This Method and Semiconductor Devices Fabricated Using the Modified Porous Silica Films
JPH09137121A (en) Coating liquid for silica coating and reparation thereof
TWI527845B (en) Polysiloxane condensation reactants
JP5547890B2 (en) Reactant for filling polysiloxane trench
WO2006101027A1 (en) Precursor composition for porous membrane and process for preparation thereof, porous membrane and process for production thereof, and semiconductor device
JP5341944B2 (en) Method of forming insulating film for trench filling using polysiloxane condensation reaction product
JP5489950B2 (en) Method for producing silica film precursor composition and silica film
JP2010177647A (en) Polysilazane-based composition for being filled in trench
JP3228714B2 (en) Silica-based coating and method for producing the same
JP2001131479A (en) Coating liquid for forming silica-based film
JP6035098B2 (en) Trench filling solution
WO2011052657A1 (en) Precursor composition for porous film and method for forming porous film
US20050089642A1 (en) Dielectric materials preparation
JP5988817B2 (en) Porous silica film precursor composition, method for producing porous silica film, porous silica film, and semiconductor device
JP4989571B2 (en) Porous membrane precursor composition solution
JP5700616B2 (en) Polysilane-based trench filling composition
JP2004250585A (en) Silicon-containing aromatic polymer and its application
JP2012251119A (en) Porous silica precursor composition and method for preparing the same, porous silica film and method for preparing the same, and semiconductor element
KR20030057312A (en) Nanopore forming material for forming insulating film for semiconductors and low dielectric insulating film comprising the same
JPWO2011052656A1 (en) Precursor composition of porous film and method for forming porous film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5489950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees