JP5482536B2 - Semiconductor manufacturing method - Google Patents

Semiconductor manufacturing method Download PDF

Info

Publication number
JP5482536B2
JP5482536B2 JP2010166322A JP2010166322A JP5482536B2 JP 5482536 B2 JP5482536 B2 JP 5482536B2 JP 2010166322 A JP2010166322 A JP 2010166322A JP 2010166322 A JP2010166322 A JP 2010166322A JP 5482536 B2 JP5482536 B2 JP 5482536B2
Authority
JP
Japan
Prior art keywords
film
semiconductor element
manufacturing
semiconductor device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010166322A
Other languages
Japanese (ja)
Other versions
JP2012028582A (en
Inventor
豊 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010166322A priority Critical patent/JP5482536B2/en
Publication of JP2012028582A publication Critical patent/JP2012028582A/en
Application granted granted Critical
Publication of JP5482536B2 publication Critical patent/JP5482536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Description

本発明は、インバータ等に用いられる半導体装置に関する。   The present invention relates to a semiconductor device used for an inverter or the like.

特許文献1は、基盤の上にはんだ材を塗布し、これに半導体素子を載置し、はんだ付け実装することによって、半導体素子と基盤とを接合する技術を開示している。   Patent Document 1 discloses a technique for joining a semiconductor element and a base by applying a solder material on the base, placing a semiconductor element on the base, and soldering and mounting the semiconductor element.

特開2000−252387号公報JP 2000-252387 A

特許文献1に開示される方法によって基盤に接合された半導体素子の上面に、小型化、抜熱性能向上を目的として、さらに電極を接合する場合がある。この場合、上記手順と同様の手順で半導体素子の上面に電極をはんだ付け実装が行われる。   In some cases, an electrode is further bonded to the upper surface of the semiconductor element bonded to the substrate by the method disclosed in Patent Document 1 for the purpose of reducing the size and improving the heat removal performance. In this case, the electrodes are soldered and mounted on the upper surface of the semiconductor element in the same procedure as described above.

しかしながら、このような実装方法において、電極が固定されていないと、電極が動いて半導体素子に捻り応力が作用し、半導体素子が損傷する可能性がある。   However, in such a mounting method, if the electrode is not fixed, the electrode may move and a torsional stress may act on the semiconductor element, possibly damaging the semiconductor element.

本発明は、このような技術的課題に鑑みてなされたもので、半導体素子に電極を接合するにあたって、半導体素子に捻り応力が作用するのを抑え、半導体素子の損傷を防止することを目的とする。   The present invention has been made in view of such a technical problem, and an object of the present invention is to prevent the twisting stress from acting on the semiconductor element and prevent the semiconductor element from being damaged when bonding the electrode to the semiconductor element. To do.

本発明のある態様によれば、半導体装置の製造方法が、半導体素子を膜に接着・固定する工程と、前記半導体素子の少なくとも一方の面にはんだ材を塗布する工程と、前記膜に熱硬化性の接着剤を塗布する工程と、前記はんだ材及び前記接着剤の塗布位置を加熱することによって、前記接着剤を硬化させて前記膜に金属電極を接着・固定するとともに前記はんだ材を溶融させて前記半導体素子の前記少なくとも一方の面に前記金属電極を実装する工程と、を含む。 According to an aspect of the present invention, a method of manufacturing a semiconductor device includes a step of bonding and fixing a semiconductor element to a film, a step of applying a solder material to at least one surface of the semiconductor element, and thermosetting the film A step of applying a functional adhesive, and heating the solder material and the application position of the adhesive to cure the adhesive and to bond and fix the metal electrode to the film and to melt the solder material Te and a step of mounting the metal electrode on the at least one surface of the semiconductor element.

この態様によれば、半導体素子と金属電極との位置関係が膜によって規定され、かつ、金属電極が膜に固定される。これにより、金属電極が半導体素子に対して動くことによって金属電極から半導体素子に捻り応力が作用するのが抑制され、半導体素子の損傷を防止することができる。 According to this aspect, the positional relationship between the semiconductor element and the metal electrode is defined by the film, and the metal electrode is fixed to the film. Thereby, it is suppressed that a torsional stress acts on a semiconductor element from a metal electrode by moving a metal electrode with respect to a semiconductor element, and damage to a semiconductor element can be prevented.

第1実施形態に係る半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device which concerns on 1st Embodiment. 第1実施形態に係る半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device which concerns on 1st Embodiment. 第1実施形態に係る半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device which concerns on 1st Embodiment. 第1実施形態に係る半導体装置の回路図である。1 is a circuit diagram of a semiconductor device according to a first embodiment. 第2実施形態に係る半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device which concerns on 2nd Embodiment. 第2実施形態に係る半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device which concerns on 2nd Embodiment. 第2実施形態に係る半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device which concerns on 2nd Embodiment. 第2実施形態に係る半導体装置の回路図である。It is a circuit diagram of the semiconductor device concerning a 2nd embodiment. 第3実施形態に係る半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device which concerns on 3rd Embodiment. 第4実施形態に係る半導体装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor device which concerns on 4th Embodiment.

以下、添付図面を参照しながら本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1実施形態
図1A〜図1Cは第1実施形態に係る半導体装置の製造方法を示している。半導体装置は、半導体素子としてIGBT(絶縁ゲートバイポーラトランジスタ)11とダイオード12とを含み、図1A〜図1Cに示される工程(a)〜(e)を経て製造される。各図の左側の図は半導体装置を上面側から見た図、右側の図は対応する左側の図のX−X断面を示した図である。これらを参照しながら、以下、各工程について説明する。
First Embodiment FIGS. 1A to 1C show a method of manufacturing a semiconductor device according to a first embodiment. The semiconductor device includes an IGBT (insulated gate bipolar transistor) 11 and a diode 12 as semiconductor elements, and is manufactured through steps (a) to (e) shown in FIGS. 1A to 1C. The left-hand side of each figure is a view of the semiconductor device as viewed from the upper surface side, and the right-hand side view is a cross-sectional view taken along the line XX of the corresponding left-side view. Hereinafter, each process will be described with reference to these.

まず、工程(a)では、フィルム状膜20が用意される。フィルム状膜20は、セラミックス板又は金属板、若しくは、膜内部にセラミックス板又は金属板を含んだ膜である。フィルム状膜20には、IGBT11、ダイオード12よりも僅かに大きな矩形の開口31、32が形成される。また、フィルム状膜20の上面には、配線パターンが配置される配線パターン領域40が形成される。   First, in the step (a), a film-like film 20 is prepared. The film-like film 20 is a ceramic plate or a metal plate, or a film containing a ceramic plate or a metal plate inside the film. The film-like film 20 is formed with rectangular openings 31 and 32 that are slightly larger than the IGBT 11 and the diode 12. In addition, a wiring pattern region 40 in which a wiring pattern is arranged is formed on the upper surface of the film-like film 20.

開口31内にはIGBT11が配置され、開口32内にはダイオード12が配置される。IGBT11及びダイオード12の上面にはそれぞれ、主電極及び制御端子電極を含む金属薄膜電極が形成される。フィルム状膜20の厚さは、IGBT11及びダイオード12の金属薄膜電極を含んだ厚さと略同じである。   The IGBT 11 is disposed in the opening 31, and the diode 12 is disposed in the opening 32. Metal thin film electrodes including a main electrode and a control terminal electrode are formed on the upper surfaces of the IGBT 11 and the diode 12, respectively. The thickness of the film-like film 20 is substantially the same as the thickness including the metal thin film electrodes of the IGBT 11 and the diode 12.

工程(b)では、フィルム状膜20とIGBT11との間の隙間、及び、フィルム状膜20とダイオード12との間の隙間に、それぞれ絶縁材50が充填される。これにより、IGBT11及びダイオード12がフィルム状膜20に接着・固定される。   In the step (b), the gap between the film-like film 20 and the IGBT 11 and the gap between the film-like film 20 and the diode 12 are filled with the insulating material 50, respectively. As a result, the IGBT 11 and the diode 12 are bonded and fixed to the film-like film 20.

工程(c)では、IGBT11及びダイオード12の上面にはんだ材71が塗布され、フィルム状膜20の上面に熱硬化性の接着剤72が塗布される。そして、IGBT11及びダイオード12の上面に上側金属電極81が載置される。上側金属電極81は一部に切欠き81cを有しており、切欠き81cからは、配線パターン領域40とIGBT11の一部とが露出する。   In the step (c), the solder material 71 is applied to the upper surfaces of the IGBT 11 and the diode 12, and the thermosetting adhesive 72 is applied to the upper surface of the film-like film 20. Then, the upper metal electrode 81 is placed on the upper surfaces of the IGBT 11 and the diode 12. The upper metal electrode 81 has a notch 81c in part, and the wiring pattern region 40 and a part of the IGBT 11 are exposed from the notch 81c.

この状態ではんだ材71及び接着剤72の塗布位置を加熱すると、接着剤72が硬化して上側金属電極81がフィルム状膜20に接着・固定されると同時に、はんだ材71が溶融して上側金属電極81がIGBT11及びダイオード12に実装される。このとき、上側金属電極81はフィルム状膜20の上に載置されているので、上側金属電極81の自重によってはんだ材71が潰れることはない。   When the application position of the solder material 71 and the adhesive 72 is heated in this state, the adhesive 72 is cured and the upper metal electrode 81 is bonded and fixed to the film-like film 20, and at the same time, the solder material 71 is melted and the upper side is melted. A metal electrode 81 is mounted on the IGBT 11 and the diode 12. At this time, since the upper metal electrode 81 is placed on the film-like film 20, the solder material 71 is not crushed by the weight of the upper metal electrode 81.

同様にして、フィルム状膜20への下側金属電極82の接着・固定、及び、IGBT11及びダイオード12への下側金属電極82の実装が行われる。   Similarly, the lower metal electrode 82 is bonded and fixed to the film-like film 20, and the lower metal electrode 82 is mounted on the IGBT 11 and the diode 12.

工程(d)では、IGBT11の上面に配置される制御端子電極がワイヤ60(信号線)によって配線パターン領域40内の配線パターンと電気的に接続される。ワイヤ60は上側金属電極81の上面よりもフィルム状膜20側、かつ、切欠き81c内(上側金属電極81の側方空間内)に配置される。


工程(e)では、上側金属電極81及び下側金属電極82にそれぞれ絶縁材73を介してヒートシンク90が取り付けられる。
In the step (d), the control terminal electrode disposed on the upper surface of the IGBT 11 is electrically connected to the wiring pattern in the wiring pattern region 40 by the wire 60 (signal line). The wire 60 is arranged on the film-like film 20 side of the upper surface of the upper metal electrode 81 and in the notch 81c (in the side space of the upper metal electrode 81).


In the step (e), the heat sink 90 is attached to the upper metal electrode 81 and the lower metal electrode 82 via the insulating material 73, respectively.

図1Dは、以上の工程(a)〜(e)を経て製造される半導体装置の回路図である。半導体装置においては、IGBT11とダイオード12が逆並列接続され、電動機の制御に用いられるインバータ回路のスイッチの一つを構成する。   FIG. 1D is a circuit diagram of a semiconductor device manufactured through the above steps (a) to (e). In the semiconductor device, the IGBT 11 and the diode 12 are connected in reverse parallel to constitute one of the switches of the inverter circuit used for controlling the electric motor.

続いて、第1実施形態の作用効果について説明する。   Then, the effect of 1st Embodiment is demonstrated.

上記製造方法によれば、IGBT11及びダイオード12と金属電極81、82との位置関係がフィルム状膜20によって規定され、かつ、金属電極81、82がフィルム状膜20に固定される。これにより、金属電極81、82がIGBT11及びダイオード12に対して動くことによってIGBT11及びダイオード12に捻り応力が作用するのが抑制され、IGBT11及びダイオード12の損傷を防止することができる。   According to the manufacturing method, the positional relationship between the IGBT 11 and the diode 12 and the metal electrodes 81 and 82 is defined by the film-like film 20, and the metal electrodes 81 and 82 are fixed to the film-like film 20. Thereby, it is suppressed that the torsional stress acts on IGBT11 and the diode 12 by the metal electrodes 81 and 82 moving with respect to IGBT11 and the diode 12, and damage to IGBT11 and the diode 12 can be prevented.

仮に、金属電極81、82からIGBT11及びダイオード12に捻り応力が作用したとしても、フィルム状膜20が撓み変形するので、かかる捻り応力は吸収され、IGBT11及びダイオード12の損傷に至ることはない。   Even if a torsional stress acts on the IGBT 11 and the diode 12 from the metal electrodes 81 and 82, the film-like film 20 is bent and deformed, so that the torsional stress is absorbed and the IGBT 11 and the diode 12 are not damaged.

さらに、金属電極81、82に両者を近接するような力が作用しても、フィルム状膜20が間に配置されており、かつ、金属電極81、82がフィルム状膜20に固定されているので、金属電極81、82が接触して短絡することもない。   Furthermore, even if a force that causes both of them to approach the metal electrodes 81 and 82 acts, the film-like film 20 is disposed between them, and the metal electrodes 81 and 82 are fixed to the film-like film 20. Therefore, the metal electrodes 81 and 82 do not contact and short-circuit.

また、開口31、32を利用してIGBT11及びダイオード12を配置することにより、IGBT11及びダイオード12が面方向に位置決めされるので、IGBT11及びダイオード12への金属電極81、82の実装が容易になる。   Further, by arranging the IGBT 11 and the diode 12 using the openings 31 and 32, the IGBT 11 and the diode 12 are positioned in the surface direction, so that the metal electrodes 81 and 82 can be easily mounted on the IGBT 11 and the diode 12. .

上記製造方法は、IGBT11及びダイオード12を並列接続する場合に限らず、電気的な容量を増やすために半導体素子の並列数を増やす場合、インバータ回路において多相化する場合等、複数の半導体素子に電極を実装する必要がある場合に有効である。   The above manufacturing method is not limited to the case where the IGBT 11 and the diode 12 are connected in parallel, but when the number of parallel semiconductor elements is increased in order to increase the electric capacity, the case where the inverter circuit is multiphased, etc. This is effective when it is necessary to mount electrodes.

IGBT11及びダイオード12の一方の高さが他方よりも低い場合は、低い方の上面にスペーサを載置して高さを揃える必要がある。上記製造方法によれば、フィルム状膜20によってこのようなスペーサの移動も制限されるので、スペーサの位置ずれも防止することができる。なお、スペーサを用いることにより、フィルム状膜20への金属電極81、82の接着位置とIGBT11及びダイオード12への金属電極81、82の実装位置とで高さに差がなくなり、接着と実装を同時に行うのが容易になる。スペーサは載置される半導体素子に絶縁性の接着剤で固定するようにしてもよい。   When the height of one of the IGBT 11 and the diode 12 is lower than that of the other, it is necessary to place a spacer on the lower upper surface so as to align the height. According to the manufacturing method described above, since the movement of the spacer is restricted by the film-like film 20, the displacement of the spacer can also be prevented. In addition, by using the spacer, there is no difference in height between the bonding position of the metal electrodes 81 and 82 to the film-like film 20 and the mounting position of the metal electrodes 81 and 82 to the IGBT 11 and the diode 12. Easy to do at the same time. The spacer may be fixed to the semiconductor element to be placed with an insulating adhesive.

また、金属電極81、82の間にフィルム状膜20を介在させ、かつ、フィルム状膜20とIGBT11及びダイオード12との間の隙間に絶縁材50を充填しているので、仮に実装時にはんだ材71が流れ落ちたとしても、はんだ材71が原因となって短絡が起きることはない。   In addition, since the film-like film 20 is interposed between the metal electrodes 81 and 82 and the insulating material 50 is filled in the gap between the film-like film 20 and the IGBT 11 and the diode 12, it is assumed that the solder material is used at the time of mounting. Even if 71 flows down, a short circuit does not occur due to the solder material 71.

なお、半導体装置の薄型化を図る場合であっても、IGBT11及びダイオード12とフィルム状膜20との間の隙間への絶縁材50の充填は、当該部位を露出させた状態で行われるので簡単に行うことができる。   Even when the thickness of the semiconductor device is reduced, the filling of the insulating material 50 into the gaps between the IGBT 11 and the diode 12 and the film-like film 20 is performed in a state where the portions are exposed. Can be done.

また、フィルム状膜20として、セラミックス板又は金属板、若しくは、膜内部にセラミックス板又は金属板を含んだ膜を用いたことにより、フィルム状膜20の熱伝導率が高くなり、IGBT11及びダイオード12の放熱性を向上させることができる。   In addition, by using a ceramic plate or a metal plate or a film containing a ceramic plate or a metal plate inside the film as the film-like film 20, the thermal conductivity of the film-like film 20 is increased, and the IGBT 11 and the diode 12 The heat dissipation can be improved.

また、IGBT11及びダイオード12に実装される金属電極81、82がIGBT11及びダイオード12の熱を逃がすヒートスプレッダとしても機能する。したがって、金属電極81、82に絶縁材73を介してヒートシンク90を取り付けることによって、IGBT11及びダイオード12からの放熱をより一層促進することができる。   Further, the metal electrodes 81 and 82 mounted on the IGBT 11 and the diode 12 also function as a heat spreader that releases the heat of the IGBT 11 and the diode 12. Therefore, the heat radiation from the IGBT 11 and the diode 12 can be further promoted by attaching the heat sink 90 to the metal electrodes 81 and 82 via the insulating material 73.

また、ワイヤ60を金属電極81、82の上面よりもフィルム状膜20側、かつ、切欠き81c内に配置したことにより、ヒートシンク90との干渉が避けられ、また、ワイヤ60を配置するための空間をわざわざ設ける必要がなくなるので、半導体装置を小型化することができる。   Further, since the wire 60 is arranged on the film-like film 20 side of the upper surfaces of the metal electrodes 81 and 82 and in the notch 81c, interference with the heat sink 90 can be avoided, and the wire 60 can be arranged. Since it is not necessary to provide a space, the size of the semiconductor device can be reduced.

なお、変形例として、上記製造方法では、上側金属電極81をIGBT11及びダイオード12に実装した後に、下側金属電極82をIGBT11及びダイオード12に実装しているが、金属電極81、82を一括して実装するようにしてもよい。これにより、工程数を削減することができる。   As a modification, in the manufacturing method described above, the upper metal electrode 81 is mounted on the IGBT 11 and the diode 12 and then the lower metal electrode 82 is mounted on the IGBT 11 and the diode 12. However, the metal electrodes 81 and 82 are bundled together. May be implemented. Thereby, the number of processes can be reduced.

また、フィルム状膜20への上側金属電極81の接着・固定とIGBT11及びダイオード12への上側金属電極81の実装を同時に行っているが、フィルム状膜20への上側金属電極81の接着・固定をIGBT11及びダイオード12への上側金属電極81の実装よりも先に行うようにしてもよい。   In addition, the upper metal electrode 81 is bonded and fixed to the film-like film 20 and the upper metal electrode 81 is mounted to the IGBT 11 and the diode 12 at the same time, but the upper metal electrode 81 is bonded and fixed to the film-like film 20. May be performed before the upper metal electrode 81 is mounted on the IGBT 11 and the diode 12.

また、IGBT11及びダイオード12への金属電極81、82の実装にはんだ材を用いているが、他の導電性材料、例えば、銀ペーストを用いるようにしてもよい。   Moreover, although the solder material is used for mounting the metal electrodes 81 and 82 on the IGBT 11 and the diode 12, other conductive materials such as silver paste may be used.

また、IGBT11及びダイオード12への金属電極81、82の実装を、超音波接合又は摩擦攪拌接合によって行ってもよい。この場合、金属電極81、82をフィルム状膜に予め接着・固定しておき、この状態で超音波又は摩擦を金属電極81、82に印可する。金属電極81、82のIGBT11及びダイオード12に接触する部分がIGBT11及びダイオード12に対して僅かに変位する必要があるが、かかる変位はフィルム状膜20が撓むことで実現することができる。   Further, the metal electrodes 81 and 82 may be mounted on the IGBT 11 and the diode 12 by ultrasonic bonding or friction stir welding. In this case, the metal electrodes 81 and 82 are bonded and fixed in advance to the film-like film, and ultrasonic waves or friction is applied to the metal electrodes 81 and 82 in this state. The portions of the metal electrodes 81 and 82 that are in contact with the IGBT 11 and the diode 12 need to be slightly displaced with respect to the IGBT 11 and the diode 12, but such displacement can be realized by bending the film-like film 20.

第2実施形態
続いて、本発明の第2実施形態について説明する。
Second Embodiment Subsequently, a second embodiment of the present invention will be described.

図2A〜図2Cは第2実施形態に係る半導体装置の製造方法を示している。半導体装置は、半導体素子としてIGBT11a、11bとダイオード12a、12bとを含み、図2A〜図2Cに示される工程(a)〜(e)を経て製造される。各図の左側の図は半導体装置を上面側から見た図、右側の図は対応する左側の図のX−X断面及びY−Y断面を示した図である。これらを参照しながら、以下、各工程について第1実施形態との相違点を中心に説明する。   2A to 2C show a method for manufacturing a semiconductor device according to the second embodiment. The semiconductor device includes IGBTs 11a and 11b and diodes 12a and 12b as semiconductor elements, and is manufactured through steps (a) to (e) shown in FIGS. 2A to 2C. The left side of each figure is a view of the semiconductor device as viewed from the upper surface side, and the right side figure is a view showing the XX cross section and the YY cross section of the corresponding left side figure. Hereinafter, each process will be described with a focus on differences from the first embodiment.

工程(a)では、フィルム状膜20が用意される。フィルム状膜20には、半導体素子11a〜12bよりも僅かに大きな矩形の開口31〜34が形成される。なお、以下の説明では、適宜、IGBT11a及びダイオード12aの全体を「半導体素子群10a」、IGBT11b及びダイオード12bの全体を「半導体素子群10b」と称する。また、フィルム状膜20の上面には配線パターン領域40aが形成され、下面には配線パターン領域40bが形成される。   In the step (a), a film-like film 20 is prepared. In the film-like film 20, rectangular openings 31 to 34 that are slightly larger than the semiconductor elements 11a to 12b are formed. In the following description, the entire IGBT 11a and the diode 12a are appropriately referred to as “semiconductor element group 10a”, and the entire IGBT 11b and the diode 12b are referred to as “semiconductor element group 10b”. In addition, a wiring pattern region 40a is formed on the upper surface of the film-like film 20, and a wiring pattern region 40b is formed on the lower surface.

開口31、32にはそれぞれ、IGBT11a、ダイオード12aが配置され、開口33、34にはそれぞれ、IGBT11b、ダイオード12bが配置される。IGBT11a、ダイオード12aは上面がフィルム状膜20の上面側に露出するように、逆に、IGBT11b、ダイオード12bは上面がフィルム状膜20の下面側に露出するようにそれぞれ配置される。   An IGBT 11a and a diode 12a are disposed in the openings 31 and 32, respectively, and an IGBT 11b and a diode 12b are disposed in the openings 33 and 34, respectively. The IGBT 11a and the diode 12a are arranged so that the upper surface is exposed on the upper surface side of the film-like film 20, and conversely, the IGBT 11b and the diode 12b are respectively arranged so that the upper surface is exposed on the lower surface side of the film-like film 20.

工程(b)では、フィルム状膜20と半導体素子11a〜12bとの間の隙間に絶縁材50が充填される。これにより、半導体素子11a〜12bがフィルム状膜20に接着・固定される。   In the step (b), the insulating material 50 is filled in the gap between the film-like film 20 and the semiconductor elements 11a to 12b. Thereby, the semiconductor elements 11 a to 12 b are bonded and fixed to the film-like film 20.

工程(c)では、半導体素子群10aの上面、半導体素子群10bの下面にはんだ材71が塗布され、フィルム状膜20の上面に熱硬化性の接着剤72が塗布される。そして、半導体素子群10aの上面に低電位電極101が載置され、半導体素子群10bの下面に高電位電極102が載置される。電極101、102は、それぞれ一部に切欠き101c、102cを有しており、切欠き101c、102cからは、配線パターン領域40a、40bとIGBT11a、11bの一部とが露出する。   In the step (c), the solder material 71 is applied to the upper surface of the semiconductor element group 10 a and the lower surface of the semiconductor element group 10 b, and the thermosetting adhesive 72 is applied to the upper surface of the film-like film 20. The low potential electrode 101 is placed on the upper surface of the semiconductor element group 10a, and the high potential electrode 102 is placed on the lower surface of the semiconductor element group 10b. The electrodes 101 and 102 have notches 101c and 102c, respectively, and the wiring pattern regions 40a and 40b and parts of the IGBTs 11a and 11b are exposed from the notches 101c and 102c.

この状態ではんだ材71及び接着剤72の塗布位置を加熱すると、接着剤72が硬化して電極101、102がフィルム状膜20に接着・固定される。これと同時に、はんだ材71が溶融して低電位電極101がIGBT11a及びダイオード12aに実装されるとともに、高電位電極102がIGBT11b及びダイオード12bに実装される。このとき、電極101、102はフィルム状膜20の上に載置されているので、電極101、102の自重によりはんだ材71が潰れることはない。   When the application position of the solder material 71 and the adhesive 72 is heated in this state, the adhesive 72 is cured and the electrodes 101 and 102 are bonded and fixed to the film film 20. At the same time, the solder material 71 is melted and the low potential electrode 101 is mounted on the IGBT 11a and the diode 12a, and the high potential electrode 102 is mounted on the IGBT 11b and the diode 12b. At this time, since the electrodes 101 and 102 are placed on the film-like film 20, the solder material 71 is not crushed by the weight of the electrodes 101 and 102.

同様にして、フィルム状膜20と交流電極103との接着、及び、半導体素子11a〜12bへの交流電極103の実装が行われる。交流電極103は、半導体素子群10aの下面から半導体素子群10bの上面まで延びる平板部位を有する電極である。   Similarly, adhesion between the film-like film 20 and the AC electrode 103 and mounting of the AC electrode 103 on the semiconductor elements 11a to 12b are performed. The AC electrode 103 is an electrode having a flat plate portion extending from the lower surface of the semiconductor element group 10a to the upper surface of the semiconductor element group 10b.

工程(d)では、IGBT11aの上面に配置される制御端子電極がワイヤ60(信号線)によって配線パターン領域40a内の配線パターンと電気的に接続される。同様に、IGBT11bの上面に配置される制御端子電極がワイヤ60(信号線)によって配線パターン領域40b内の配線パターンと電気的に接続される。   In the step (d), the control terminal electrode disposed on the upper surface of the IGBT 11a is electrically connected to the wiring pattern in the wiring pattern region 40a by the wire 60 (signal line). Similarly, the control terminal electrode arranged on the upper surface of the IGBT 11b is electrically connected to the wiring pattern in the wiring pattern region 40b by the wire 60 (signal line).

ワイヤ60は低電位電極101の上面、高電位電極102の上面よりもフィルム状膜20側、かつ、切欠き101c、102c内(電極101、102の側方空間内)に配置される。   The wire 60 is disposed on the upper surface of the low potential electrode 101 and the upper surface of the high potential electrode 102 on the film-like film 20 side and in the notches 101c and 102c (in the lateral space of the electrodes 101 and 102).

工程(e)では、電極101、102に絶縁材73を介してヒートシンク90aが取り付けられ、交流電極103に絶縁材73を介してヒートシンク90bが取り付けられる。   In the step (e), the heat sink 90 a is attached to the electrodes 101 and 102 via the insulating material 73, and the heat sink 90 b is attached to the AC electrode 103 via the insulating material 73.

図2Dは、以上の工程(a)〜(e)を経て製造される半導体装置の回路図である。半導体装置においては、IGBT11aとダイオード12aが逆並列接続されて半導体素子群10aを構成し、IGBT11b及びダイオード12bが逆並列接続されて半導体素子群10bを構成する。さらに、半導体素子群10a、10bは、直列に接続され、インバータ回路の電気的1相分の回路を構成する。   FIG. 2D is a circuit diagram of a semiconductor device manufactured through the above steps (a) to (e). In the semiconductor device, the IGBT 11a and the diode 12a are connected in reverse parallel to form the semiconductor element group 10a, and the IGBT 11b and the diode 12b are connected in reverse parallel to form the semiconductor element group 10b. Furthermore, the semiconductor element groups 10a and 10b are connected in series to constitute a circuit for one electrical phase of the inverter circuit.

続いて、第2実施形態の作用効果について説明する。   Then, the effect of 2nd Embodiment is demonstrated.

通常、複数の半導体素子は上下同じ向きで配置され、これらを直列に接続する場合、屈曲した電極を用いて接続する必要が生じる。例えば、ある2つの半導体素子を直列接続する場合、一方の下面と他方の上面とを接続するクランク形状の電極が必要である。   Usually, a plurality of semiconductor elements are arranged in the same direction up and down, and when they are connected in series, it is necessary to connect them using bent electrodes. For example, when two semiconductor elements are connected in series, a crank-shaped electrode that connects one lower surface and the other upper surface is necessary.

しかしながら、屈曲した電極の使用は、配置スペースの増大、製造コストの増大の原因となり、また、半導体素子の周囲に絶縁材を充填する場合、この屈曲した電極が障害となって絶縁材が十分に充填しきれないという問題が生じる可能性がある。   However, the use of a bent electrode causes an increase in arrangement space and an increase in manufacturing cost. Also, when an insulating material is filled around a semiconductor element, the bent electrode becomes an obstacle and the insulating material is not sufficient. There may be a problem that it cannot be filled.

これに対し、上記製造方法によれば、半導体素子群10a、10bを上下逆に配置、固定することができ、これによって、単純に横方向に延びる交流電極103を用いて両半導体素子群10a、10bを接続することができる。これにより、交流電極103を配置するスペースが縮小されるので、半導体装置の設置スペースが低減され、ひいては当該装置が搭載されるインバータを小型化することができる。また、上記屈曲した電極に起因する絶縁材の充填不良の問題も生じることがない。   On the other hand, according to the manufacturing method described above, the semiconductor element groups 10a and 10b can be arranged and fixed upside down, whereby both the semiconductor element groups 10a, 10b can be connected. Thereby, since the space for arranging the AC electrode 103 is reduced, the installation space for the semiconductor device is reduced, and the inverter on which the device is mounted can be downsized. Further, the problem of poor filling of the insulating material due to the bent electrode does not occur.

その他の作用効果は、第1実施形態の効果と同様である。   Other functions and effects are the same as those of the first embodiment.

第3実施形態
続いて、本発明の第3実施形態について説明する。第3実施形態は第2実施形態の一部変形例である。
Third Embodiment Subsequently, a third embodiment of the present invention will be described. The third embodiment is a partial modification of the second embodiment.

第3実施形態に係る半導体装置の製造方法では、第2実施形態と同じ工程(a)〜(e)を経て、上下逆に配置された半導体素子群10a、10bに電極101、102及び交流電極103a、103bが実装される。   In the method for manufacturing a semiconductor device according to the third embodiment, the same steps (a) to (e) as in the second embodiment are performed, and the semiconductor elements 10a and 10b arranged upside down are connected to the electrodes 101 and 102 and the AC electrode. 103a and 103b are mounted.

第2実施形態との相違点は、半導体素子群10a、10bそれぞれに独立した交流電極103a、103bが実装されている点と、実装後、半導体素子群10aと半導体素子群10bとの間の部位(フィルム状膜20又は絶縁材の一部)で装置が直角に折り曲げられている点である。また、独立した交流電極103a、103bは、実装後、中間電極103cによって互いに接続される。回路図は図2Dに示したものと同じである。   The difference from the second embodiment is that independent AC electrodes 103a and 103b are mounted on the semiconductor element groups 10a and 10b, respectively, and a portion between the semiconductor element group 10a and the semiconductor element group 10b after mounting. The point is that the device is bent at a right angle (a part of the film-like film 20 or the insulating material). The independent AC electrodes 103a and 103b are connected to each other by the intermediate electrode 103c after mounting. The circuit diagram is the same as shown in FIG. 2D.

続いて、第3実施形態の作用効果について説明する。   Then, the effect of 3rd Embodiment is demonstrated.

第3実施形態によれば、半導体素子群10aが半導体素子群10bに対して直角な方向に配置されるので、半導体素子群10aと半導体素子群10bとを、これらが収容される筐体の隅部壁面(例えば、底面と側面)に配置することができる。これにより、半導体装置の設置スペースを低減し、ひいては当該装置が搭載されるインバータを小型化することができる。   According to the third embodiment, since the semiconductor element group 10a is arranged in a direction perpendicular to the semiconductor element group 10b, the semiconductor element group 10a and the semiconductor element group 10b are arranged at the corners of the housing in which they are accommodated. It can arrange | position to a part wall surface (for example, a bottom face and a side surface). As a result, the installation space of the semiconductor device can be reduced, and the inverter on which the device is mounted can be downsized.

交流電極103a、103bへの中間電極103cの接続は、装置を筐体内に配置した後に行ってもよい。中間電極103cを接続する前は搭載場所の形状に合わせて装置全体を自由に屈曲させることができるので、装置のレイアウト自由度が向上する。なお、装置を筐体内に配置した後に中間電極103cを接続することに格別な困難性はない。   The connection of the intermediate electrode 103c to the AC electrodes 103a and 103b may be performed after the device is arranged in the housing. Before the intermediate electrode 103c is connected, the entire apparatus can be freely bent according to the shape of the mounting place, so that the degree of layout freedom of the apparatus is improved. Note that there is no particular difficulty in connecting the intermediate electrode 103c after the device is arranged in the housing.

その他の作用効果は、第1及び第2実施形態の効果と同様である。   Other functions and effects are the same as those of the first and second embodiments.

第4実施形態
続いて第4実施形態について説明する。第4実施形態は、第1〜第3実施形態の一部変形例であり、半導体素子を膜に固定する方法が第1〜第3実施形態と異なる。
Fourth Embodiment Next, a fourth embodiment will be described. The fourth embodiment is a partial modification of the first to third embodiments, and the method for fixing the semiconductor element to the film is different from the first to third embodiments.

ここでは、第2実施形態と同様に、半導体素子群10a、10bを膜に固定する場合を例に挙げて説明する。   Here, as in the second embodiment, the case where the semiconductor element groups 10a and 10b are fixed to a film will be described as an example.

第4実施形態では、まず、半導体素子群10a、10bが平板上に載置され、熱可塑性樹脂が塗布される。塗布範囲は、半導体素子群10a、10bを含み、半導体素子群10a、10bよりも広い範囲(フィルム状膜20及び絶縁材50に対応する範囲)である。熱可塑性樹脂の塗布には印刷技術が利用される。その後、半導体素子群10a、10bの表面(上面及び下面)に付着している不要な樹脂材がエッチングにより除去される。   In the fourth embodiment, first, the semiconductor element groups 10a and 10b are placed on a flat plate, and a thermoplastic resin is applied thereto. The application range includes the semiconductor element groups 10a and 10b and is wider than the semiconductor element groups 10a and 10b (a range corresponding to the film-like film 20 and the insulating material 50). Printing technology is used to apply the thermoplastic resin. Thereafter, unnecessary resin materials adhering to the surfaces (upper and lower surfaces) of the semiconductor element groups 10a and 10b are removed by etching.

これにより、図4に示すように、フィルム状膜20、及び、フィルム状膜20と半導体素子との間に充填される絶縁材に対応する樹脂膜21が形成され、樹脂膜21に半導体素子群10a、10bが接着・固定される。   As a result, as shown in FIG. 4, a film-like film 20 and a resin film 21 corresponding to an insulating material filled between the film-like film 20 and the semiconductor element are formed, and a semiconductor element group is formed on the resin film 21. 10a and 10b are bonded and fixed.

なお、ここではエッチングにより不要な樹脂材を除去しているが、これに代えて、熱可塑性樹脂を塗布する前に半導体素子群10a、10bの表面をマスクし、これらの部位に樹脂材が塗布されないようにしてもよい。   Here, unnecessary resin material is removed by etching, but instead, the surfaces of the semiconductor element groups 10a and 10b are masked before applying the thermoplastic resin, and the resin material is applied to these portions. It may not be done.

その後の電極の実装工程は第1〜第3実施形態と同じである。   The subsequent electrode mounting process is the same as in the first to third embodiments.

続いて、第4実施形態の作用効果について説明する。   Then, the effect of 4th Embodiment is demonstrated.

第4実施形態によれば、第1〜第3実施形態と比較して、半導体素子を容易に樹脂膜21に接着・固定することができ、製造コストを低減することができる。また、半導体素子の主電極及び制御端子電極の周辺部のように、電気特性確保のために電極やはんだ材71などを接触させたくない部分を樹脂材で被覆することもできる。   According to the fourth embodiment, the semiconductor element can be easily bonded and fixed to the resin film 21 as compared with the first to third embodiments, and the manufacturing cost can be reduced. In addition, a portion that does not want to be brought into contact with the electrode, the solder material 71, or the like can be covered with a resin material in order to ensure electrical characteristics, such as the peripheral portion of the main electrode and the control terminal electrode of the semiconductor element.

また、開口31〜34を有するフィルム状膜20を予め用意する必要がないので、材料費、製造コストともに低減することができる。   Moreover, since it is not necessary to prepare the film-like film | membrane 20 which has the openings 31-34 beforehand, both material cost and manufacturing cost can be reduced.

また、電極101〜103を実装する時の熱により樹脂膜21が潰れ変形するので、半導体素子11a〜12bの厚さが不均一な場合や電極101〜103に若干の反りがある場合に、これらを吸収することができる。これにより、実装前に厚さの不均一をスペーサで調整することや、電極101〜103の反りを修正することが不要になり、製造コストを低減することができる。   In addition, since the resin film 21 is crushed and deformed by heat when mounting the electrodes 101 to 103, when the thickness of the semiconductor elements 11a to 12b is not uniform or the electrodes 101 to 103 are slightly warped, Can be absorbed. Thereby, it becomes unnecessary to adjust the thickness non-uniformity with the spacer before mounting and to correct the warp of the electrodes 101 to 103, and the manufacturing cost can be reduced.

その他の作用効果は、第1〜第3実施形態の効果と同様である。   Other functions and effects are the same as those of the first to third embodiments.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。本発明の趣旨を逸脱しない範囲で種々の変更が可能である。   The embodiment of the present invention has been described above, but the above embodiment is merely an example of application of the present invention, and the technical scope of the present invention is not intended to be limited to the specific configuration of the above embodiment. Various modifications can be made without departing from the spirit of the present invention.

例えば、上記実施形態はいずれも半導体素子の表面に金属電極単体を実装しているが、実装される金属電極は基盤上に配置されている金属電極であってもよい。   For example, in all of the above embodiments, the metal electrode alone is mounted on the surface of the semiconductor element, but the metal electrode to be mounted may be a metal electrode arranged on the substrate.

11、11a、11b IGBT(半導体素子)
12、12a、12b ダイオード(半導体素子)
20 フィルム状膜(膜)
21 樹脂膜(膜)
40、40a、40b 配線パターン領域
50 絶縁材
81 上側金属電極(金属電極)
82 下側金属電極(金属電極)
101 低電位電極(第1金属電極)
102 高電位電極(第2金属電極)
103、103a、103b 交流電極(第3金属電極)
11, 11a, 11b IGBT (semiconductor element)
12, 12a, 12b Diode (semiconductor element)
20 Film-like membrane (membrane)
21 Resin film (film)
40, 40a, 40b Wiring pattern region 50 Insulating material 81 Upper metal electrode (metal electrode)
82 Lower metal electrode (metal electrode)
101 Low potential electrode (first metal electrode)
102 High potential electrode (second metal electrode)
103, 103a, 103b AC electrode (third metal electrode)

Claims (6)

半導体装置の製造方法であって、
半導体素子を膜に接着・固定する工程と、
前記半導体素子の少なくとも一方の面にはんだ材を塗布する工程と、
前記膜に熱硬化性の接着剤を塗布する工程と、
前記はんだ材及び前記接着剤の塗布位置を加熱することによって、前記接着剤を硬化させて前記膜に金属電極を接着・固定するとともに前記はんだ材を溶融させて前記半導体素子の前記少なくとも一方の面に前記金属電極を実装する工程と、
を含むことを特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device, comprising:
Bonding and fixing the semiconductor element to the film;
Applying a solder material to at least one surface of the semiconductor element;
Applying a thermosetting adhesive to the film;
By heating the coating position of the solder material and said adhesive, said at least one surface of the semiconductor device by melting the solder material with the adhesive is cured to bond and fix the metal electrode on the film Mounting the metal electrode on
A method for manufacturing a semiconductor device, comprising:
請求項1に記載の半導体装置の製造方法であって、
前記半導体素子を前記膜に接着・固定する工程が、
前記半導体素子に対応する開口を有するフィルム状膜を用意する工程と、
前記開口内に前記半導体素子を配置する工程と、
前記フィルム状膜と前記半導体素子との間に絶縁材を充填する工程と、
を含むことを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device according to claim 1,
The step of bonding and fixing the semiconductor element to the film includes
Preparing a film-like film having an opening corresponding to the semiconductor element;
Disposing the semiconductor element in the opening;
Filling an insulating material between the film-like film and the semiconductor element;
A method for manufacturing a semiconductor device, comprising:
請求項1に記載の半導体装置の製造方法であって、
前記半導体素子を前記膜に接着・固定する工程が、
前記半導体素子を含み前記半導体素子よりも広い範囲に樹脂を塗布する工程と、
前記樹脂を塗布する前に前記半導体素子の前記一方の面をマスクする前工程、又は、
前記樹脂を塗布した後に前記半導体素子の前記一方の面上に塗布された前記樹脂を除去する後工程と、
を含むことを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device according to claim 1,
The step of bonding and fixing the semiconductor element to the film includes
Applying the resin to a wider area than the semiconductor element including the semiconductor element;
A pre-process for masking the one surface of the semiconductor element before applying the resin, or
A post-process for removing the resin applied on the one surface of the semiconductor element after applying the resin;
A method for manufacturing a semiconductor device, comprising:
請求項1又は2に記載の半導体装置の製造方法であって、
前記膜が、セラミックス板又は金属板である、若しくは、内部にセラミックス板又は金属板を含む、
ことを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device according to claim 1 or 2,
The film is a ceramic plate or a metal plate, or contains a ceramic plate or a metal plate inside,
A method for manufacturing a semiconductor device.
請求項1から4のいずれか一つに記載の半導体装置の製造方法であって、
前記膜に配線パターンを形成する工程と、
前記半導体素子と前記配線パターンとをワイヤにより接続し、前記ワイヤを前記金属電極の上面よりも前記膜側に配置する工程と、
を含むことを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device according to any one of claims 1 to 4,
Forming a wiring pattern on the film;
Connecting the semiconductor element and the wiring pattern with a wire, and disposing the wire on the film side of the upper surface of the metal electrode;
A method for manufacturing a semiconductor device, comprising:
半導体装置の製造方法であって、
第1半導体素子及び第2半導体素子を用意する工程と、
請求項1から5のいずれか一つに記載の半導体装置の製造方法によって、前記第1半導体素子の上面が前記第2半導体素子の下面と同じ側となるように前記第1半導体素子及び前記第2半導体素子を前記膜に固定し、前記第1半導体素子の上面に第1金属電極を実装し、前記第2半導体素子の下面に第2金属電極を実装する工程と、
前記第1半導体素子の下面と前記第2半導体素子の上面とに第3金属電極を実装する工程と、
を含むことを特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device, comprising:
Preparing a first semiconductor element and a second semiconductor element;
6. The method of manufacturing a semiconductor device according to claim 1, wherein the first semiconductor element and the first semiconductor element are arranged so that an upper surface of the first semiconductor element is on the same side as a lower surface of the second semiconductor element. Fixing two semiconductor elements to the film, mounting a first metal electrode on the upper surface of the first semiconductor element, and mounting a second metal electrode on the lower surface of the second semiconductor element;
Mounting a third metal electrode on the lower surface of the first semiconductor element and the upper surface of the second semiconductor element;
A method for manufacturing a semiconductor device, comprising:
JP2010166322A 2010-07-23 2010-07-23 Semiconductor manufacturing method Active JP5482536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010166322A JP5482536B2 (en) 2010-07-23 2010-07-23 Semiconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010166322A JP5482536B2 (en) 2010-07-23 2010-07-23 Semiconductor manufacturing method

Publications (2)

Publication Number Publication Date
JP2012028582A JP2012028582A (en) 2012-02-09
JP5482536B2 true JP5482536B2 (en) 2014-05-07

Family

ID=45781157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010166322A Active JP5482536B2 (en) 2010-07-23 2010-07-23 Semiconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP5482536B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6561602B2 (en) * 2015-06-09 2019-08-21 富士通株式会社 Manufacturing method of electronic device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229454A (en) * 1989-03-02 1990-09-12 Nippon Soken Inc Semiconductor device
JP2001339041A (en) * 2000-05-29 2001-12-07 Toshiba Digital Media Engineering Corp Semiconductor device and manufacturing method thereof
JP2004247383A (en) * 2003-02-12 2004-09-02 Mitsubishi Electric Corp Power module
JP2006300877A (en) * 2005-04-25 2006-11-02 Chugoku Electric Power Co Inc:The Measuring adapter
JP4902560B2 (en) * 2008-01-28 2012-03-21 株式会社日立製作所 Power semiconductor module
JP5233339B2 (en) * 2008-03-17 2013-07-10 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
JP5233337B2 (en) * 2008-03-17 2013-07-10 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2012028582A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
US10083900B2 (en) Semiconductor device
JP4973059B2 (en) Semiconductor device and power conversion device
WO2012157583A1 (en) Semiconductor device and manufacturing method thereof
WO2020050325A1 (en) Power semiconductor device, method of manufacturing same, and power conversion device
JP4967701B2 (en) Power semiconductor device
JP2015142018A (en) power semiconductor device
JP2015207582A (en) Power semiconductor device and method of manufacturing the same
JP6200759B2 (en) Semiconductor device and manufacturing method thereof
JP6048238B2 (en) Electronic equipment
KR20130045596A (en) Power module package and method for manufacturing the same
JP6335815B2 (en) Heat dissipation structure
JP5482536B2 (en) Semiconductor manufacturing method
JP4715283B2 (en) Power converter and manufacturing method thereof
JP5840102B2 (en) Power semiconductor device
JP4485995B2 (en) Power semiconductor module
JP2013062405A (en) Semiconductor device
JP6391430B2 (en) Electronic control device and manufacturing method thereof
JP7059714B2 (en) Power converter and manufacturing method of power converter
JP2018152525A (en) Component mounting body and electronic apparatus
JP2011249636A (en) Semiconductor device and method of manufacturing the same
US7750448B2 (en) Semiconductor package and method for manufacturing the same
JP2005123464A (en) Semiconductor device, its manufacturing method, electronic module, and electronic equipment
US11264351B2 (en) Method of manufacturing chip module
KR20170095681A (en) Power module and method for the same
JP5217014B2 (en) Power conversion device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R151 Written notification of patent or utility model registration

Ref document number: 5482536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151